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PART  1:   
Unit Reliability Estimation  
 
2.   Main Knowledge of Statistics 
 
2.1  Introduction 
 
 In reliability one deals with objects of various complexity.  It is usual to speak about systems 
and units. We begin with consideration of a unit.  We will call a unit an indivisible object in the 
frame of current reliability analysis.  So, systems consist of units. Of course in engineering sense, a 
system can be considered as a “unit” if it is taken as a whole, that is, there is no need to consider its 
structure and its constituent parts.  
 Statistical reliability analysis of a unit predominantly consists of standard statistical 
inferences.  Since this material is covered by many excellent books on statistics, we will present 
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only a brief review of these statistical methods as an introductory knowledge.  The main goal of 
this book is statistical analysis of system reliability which will be given in subsequent chapters. 
 
 
 
2.1.1   Reliability Indices 
 
 Engineering practice of reliability characterization requires indices which are probabilistic in 
nature.  We deal with random variables (e.g., time to failure or repair time) and their 
characterization.  Detailed analysis of these indices is given in the first volume, "Probabilistic 
Reliability Engineering" (PRE).  We only describe only main indices supplying them with brief 
explanations here. 
 Any object fails after random period of operation.  We call this period time to failure (TTF) 
and denote this non-negative random variable (r.v.) by .  A complete mathematical description of 
TTF is given by TTF distribution function (d.f.): 
 
 F(t) = P{ <t}. 
 
Continuous r.v. can be also characterized by the density function 

 f t =
d
dt

F t( ) ( ) . 

Ошибка! Не указан аргумент ключа. 
In particular, if an analyzed random variable is time to failure, we will also call this function a 
failure density. From the definition of the density function, it follows  
that 

F t  =  f t dt.
t

( ) ( )
0
  

 
 In reliability, one frequently uses the so-called reliability function, or survival function, 
defined as  
 
 R(t) = 1-F(t) = P{ >t}. 
 
 A quantile, tp, of level p of a continuous distribution F(t) is defined as the solution of 
equation F(tp) = p.  A quantile of the level p shows that (1-p) 100% of objects are expected to 
survive during time tp.   
 One of the main reliability indices for unrepairable objects  
is the mean time to failure (MTTF), T, which is defined as 

T =  tf t dt.
0



 ( )  

 
As it was shown in PRE, the MTTF can be expressed in another (equivalent) form 
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T =  R t dt.
0



 ( )  

 For repairable objects, one also introduces the mean time between failures (MTBF) which is 
similar to MTTF.  MTBF is the mathematical expectation of time between failures (TBF). The 
difference between MTTF and MTBF is explained in PRE with detail.  We notice that in many 
engineering probabilistic models repair is considered "ideal", i.e., repaired item is assumed to be 
identical with a new one. 
 The mean repair time, , is defined via the distribution of random repair time in a similar 
way.  In practice the mean repair time is usually not derived on the basis of tests but rather based on 
an expert evaluation.  
 In addition to the indices mentioned above, repairable objects are characterized by either the 
so-called availability coefficient, or  operational availability coefficient.  The first index equals 
probability that a repairable object will be in the operational state at specified moment of time.  The 
second one equals probability that an object will be operational at some moment and will have been 
operating without failures during a specified interval of time. (For details, see Volume 1.)  Here we 
will deal only with the so-called stationary availability coefficient, i.e., the probability that an object 
will be  
operational at "the time moment in the far future".  This index can be determined as 
 

K =  T
T +

.


 

 
 
  In reliability engineering one often refers to the so-called failure rate, or hazard rate 
formally defined as 

( )
( )
( )

t  =  
f t
R t

. 

 
In other words, the failure rate at an instant is the conditional density of TTF if it has survived up to 
moment t.   For more explanations, note that the "element of probability" that the object,  survived 
up to t, will have failed before moment t+ is (t)  
 The dependence of the failure rate on time is a helpful qualitative characterization of life 
distributions.  The increasing failure rate (IFR) and increasing failure rate average (IFRA), 
introduced by Barlow and Proschan, related to a wide class of distributions important in practical 
applications.  Such distributions characterize “aging” objects whose reliability properties worsen in 
time.  The decreasing failure rate (DFR) and decreasing failure rate average (DFRA) relates to the 
so-called "younging" objects whose reliability properties improves with time going.  Such a 
phenomenon takes place in burn-in testing and in some specific situations with hardening. 
 Numerical values of all these reliability indices above can be experimentally checked by 
special testing or from the analysis of field data.  Although reliability indices for units and systems 
are similar by their sense, statistical methods for their estimation might be different.  In particular, a 
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very special statistical reliability problem  is a system indices estimation on the basis of testing its 
units.   
 This chapter is narrowed by a brief review of statistics methods which will be necessary 
and/or useful for understanding of the further material.   
 
2.1.2   Main Tasks of Mathematical Statistics 
 
 If you perform reliability tests of an object or observe its utilization, you might collect some 
statistical data and use them for characterization of the object's reliability.  These collected data are 
realizations of some r.v.'s X1, X2, ... , Xn. 
 Such data might represent TTF, repair time, number of cycles before failure, number of 
spare units used for repair and preventive maintenance, and so on.  These values can be continuous 
or discrete depending on their nature.  They are usually used for obtaining the sample mean or 
sample variance.  The same data can be transformed into order statistics and be useful for plotting 
histograms and/or empirical distributions.   
 Another problem arises when you intend to construct confidence intervals for parameters of 
the distribution.  You should usually have some prior information about the r.v. and possess special 
mathematical methods of statistical inferences. 
 Observing random events, you collect the number of outcomes of different types and the 
total number of trials. In probability theory one usually calls events as "success" and "failure".  In 
this terms, the following so-called indicator, k, of the kth event can be introduced: k =1 if success 
has been observed, and    k=0, otherwise.  After introducing the indicator, we formally can consider 
it as a discrete r.v. taking two meanings: 0 or 1. 
 Let us illustrate the role of statistics with an example of a classical Bernoulli trials.  
Remember that this is a series of n independent, identical trials, each of which might be a "success" 
with probability p or "failure" with probability 1-p. In this case we can prescribe 1 to indicate 
success, and 0 to failure.  This model is completely defined by the value of parameter p for a trial.  
Examples of such a situation are often met in practice.  Under some specified conditions, mass 
production of some items is characterized by an almost stable percentage of items with fixed 
quality.  A group of practically homogeneous objects, tested in similar conditions, is characterized 
by some stable frequency of successful operation. Of course, a real life differs from mathematical 
models:  a sequence of Bernoulli trials is only an approximation for the description of these practical 
schemes. 
 If real value p is unknown but if there are experimental data, we can use methods of 
mathematical statistics to find various probabilistic characteristics.  For instance, such expected 
number of successes or the probability of m successes in n trials.  In this particular case of Bernoulli 
trials, the experimental data is the observed number of successes, m, in a series of n independent 
trials.  On the basis of this data we need to make a conclusion about the value of unknown 
parameter p, which is the unknown probability of success.   
 In mathematical statistics following main problems are studied: 

 Point estimation of an unknown parameter.  We wish to find a function of the 
experimental results (m successes in n trials), which allows us to obtain a "good" 
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estimate of unknown parameter p.  A standard estimator of the probability is the 

observed frequency of success: p = m
n

. 2  

 
 Interval estimation of an unknown parameter.  In this case, we need to construct an 

interval [ ]p, p 3 which will cover an unknown real value of parameter p with the 
specified probability 

P{ }p p p         (1.1) 
 
where  is the so-called confidence coefficient which is usually chosen close to 1.   
 We should emphasize that the limits of confidence interval are random because they are 
functions of random variables: p =  p m ,    p =  p m .( ) ( ) 4 Moreover, the confidence interval 
covers unknown parameter p but gives no information about its "real" position within this interval.  
Expression (1.1) says that in 100% cases this confidence interval will cover unknown parameter 
and in (1- ) 100% cases the parameter will lie outside these limits. 
 Test of hypothesis.  One needs to check some hypothesis, for instance, that an unknown value of 

parameter p satisfies inequality p<p0 or equality p=p0 (or other conditions) where p0 given.  
These statements are also made with some guaranteed probabilities.  The specific of test of 
hypothesis will be considered later. 

 These types of statistical inferences comprise the main body of applied statistics.  
 
 
2.1.3   Sample 
 
 Probability theory deals with d.f. based either on measure theory concepts (following 
Kolmogorov), or on conception of frequency of event occurrence with potentially arbitrary number 
of observation (following von Mises). In statistics, one always has a sample of a finite size, say, n.  
Usually, we say about a sample from a distribution.  It means that we deal with n independent and 
identically distributed (i.i.d.) r.v.'s: 
 
 X1, X2, ... ,Xn. (1.2) 
 
 The problems in mathematical statistics is to make some inferences about the distribution to 
which extracted Xk's belongs. 
 We extract a sample from a finite homogeneous population which is characterized by some 
probabilistic properties.  In statistics this group of objects is called a general population.  Usually in 
practice (in sociology, econometrics, medicine, telecommunications), the size of a general 
population, N, is assumed to be large.  One takes a random sample of size n from a general 
population and makes a conclusion about a general population as a whole. 
 A sample from a general population can be taken in two main ways: with or without 
replacement.  If sampling is performed with replacement, then the general population remains 
without changes at each extraction of a new item.  In this case observations of r.v.'s are assumed to 
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be independent.  If an extracted item has not been returned to the general population, the latter can 
change its probabilistic properties. (The general population is assumed finite in this case.) Samples 
without replacement are frequently used in special problems of quality control, especially in cases 
where tests are destructive.    
 For sampling without replacement, each current trial depends on the results of all previous 
trials.  For instance, let us have a general population of 100 items among which there are exactly 3 
failed items. We make a sample of size 5.  Let the first pick be a failed unit. Then at the second step 
the probability to choose in random a failed item equals 2/99.  But if at the first step we have picked 
up a good item, then at the second step the probability to choose in random a failed item equals 
3/99.  Further, if at the first three steps we have picked up 3 failed items, the probability to choose a 
failed item at any next step equals 0. 
 If the size of a general population is very large (but finite), there is practically no difference 
between these two types of sampling. 
 Further, we will almost exclusively consider samples from distributions, i.e., from infinite 
general populations. 
 If sample (1.2) is placed in ascending order as  

X(1) < X(2) < ... < X(n-1) < X(n) 
 
then X(k) is called kth order statistic. 
 
Example 1.1    Five independent measurements of TTF gives the following records (in hours): 
X1=104, X2=95, X3=93, X4=101, X5=107.  Then the order statistics are  X(1)=93, X(2)=95, X(3)=101, 
X(4)=104, X(5)=107.   
 
 The function 

nF x  =  
r x

n
 ( )

( )
 

based on a sample (1.2) is called an empirical distribution function (here r(x) is a number of 
observations Xi which are smaller than x).  An empirical d.f. can be also written with the help of the 
order statistic as 
 


( )

( )

F =  

  if  x < X
j
n

   if  X   x <  X ,  j = , ... ,n
  if  X   x.

j j+

n

0

1
1

1

1











 

 
Example 1.2    Construct the empirical d.f. for the data given in Example 1.1.  The result is depicted 
in Figure 1.1.  
 
................................................Figure 1.1.  
 
 Let F(x) be a true (or theoretical) d.f.   Then in accordance with the Glivenko-Cantelli 
theorem, well-known in probability theory, the following condition: 
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x
n |F x  -  F x |  sup  ( ) ( )  0  

holds with probability 1  for n  .  That means that an empirical d.f. stochastically converges to its 
theoretical one when the sample size infinitely increases.  This fact could be explained with the 
following simple arguments.  Each value of an empirical d.f. is a frequency of the event: "a r.v. is 
smaller than a corresponding fixed value".  The frequency converges (in probabilistic sense) to the 
probability with increasing the number of trials, so does the set of such frequencies (i.e., the 
empirical d.f.). 
 The following empirical, or sample characteristics can be constructed on the basis of 
sample data.  The value of 

X =  
n

 X
i n

i
1

1 
  

is called the empirical (or sample) mean.  The value of 

 2

i n
is  =  

n
 X - X

1
1

2

 
 ( )  

 
is called the empirical (or sample) variance.  If the sample mean indicates a "location" of the 
distribution, the sample variance characterizes the sample dispersion around its mean.  Note that the 
mean is analogous to the center of mass in mechanics, and the variance to the moment of inertia.  
The value of  = S 5 is called the empirical (or sample) standard deviation.  In some sense, the 
standard deviation is more convenient for sample characterization because it has the same 
dimension as the mean (and, consequently, the observed r.v.).   
 Another characteristic describing the spread of the sample is a range of the sample which is 
defined as Rn=X(n)-X(1).  The deficiency of this value is in its main property: with the sample size 
increasing this value is increasing monotone.  (In principle, for distributions with an infinite area of 
domain, the range increases to infinity.) 
 As well one uses empirical (sample) moments r

 6  and empirical central moments r 7 of 
the rth order which are calculated by formulas 

r
i n

i
r =  

n
 X ,

1
1 
  

 

r
i n

i
r =  

n
 X - X . ( )

1
1 
  

 
Obviously, the sample mean and the sample variance are particular cases of these X = ,  S = .1

2
2  

8. 
 
 Example 1.3    Find the sample mean, variance, standard deviation, and range for the data 
represented in Example 1.1.  In this particular case 
 
 X 9=(1/5)(93+95+101+104+107)=100; 
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 S2=(1/5)(72+52+12+42+72)=28; 
 
   S = ,28 5 3 . 10 
 
 R5=107-93=14.  
 
 Remark 1.1   If value Xi repeats in the sample ni times, i=1,... ,m, and n=n1+n2+ ... +nm where 

m is the number of different Xi's, then the formulas for the sample mean and variance can be 
rewritten in the form 

X =  
n

 n X ;
i m

i i
1

1 
  

 
2

i m
i i

2s  =  
n

 n X X )( - .1
1 
  

 
 
Example 1.4    Find the sample mean and variance of the following 100 observations: 
 
============================================= 
 Xi 1250  1270  1280  1290 
 ni 20  25  50  5 
============================================= 
 
  In this case one has m=4 different types of sample's values.  In this case 

 X =
1

100
11 (20·1250+25·1270+50·1280+5·1290)=1272; 

 S2=
1

100
[20·222+25·22+50·82+5·182] 125; 

   S = 125  1211.2.    
 
 
 
 
 
2.2  Main Distributions  
 
 We consider here only main probability distributions used in reliability statistical problems.  
More detailed description of distributions, as well as interrelations between various distributions are 
in PRE.   
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2.2.1 Continuous Distributions 
 
 Normal Distribution 
 A normal distribution occupies a special place in probability theory and its applications.  
This distribution is often called Gaussian because the great German mathematician Karl Friedreich 
Gauss studied its main properties and widely applied it in practice.  
 A number of phenomena in nature, engineering and science can be modeled with the help of 
this distribution.  A normally distributed random value appears where a large number of 
independent factors influence on a considered parameter.   
 In probability theory there is the Central limit theorem known in several forms.  All of them 
state the following general fact: the sum of independent r.v.'s (usually -- although not necessarily -- 
assumed to be identically distributed) has the asymptotically normal distribution. One of the 
formulation of the Central limit theorem in the Lindeberg's form states that the distribution of the 
sample mean asymptotically converges to the normal distribution. 
 The density of the normal d.f. and its main characteristics are presented in Table 1.1. 
 For practical use, one applies the so-called standard normal distribution.  This distribution 
has the mean equal to 0 and variance equal to 1, i.e., its density is  

f x =
2

x
.( ) exp( )

1
2

2


  

 
It is clear that a general normally distributed r.v., say, , is subjected to two transformations to be 
presented in form of a standard normally distributed r.v. .  First,  this r.v. must be  centered, that is, 
represented as   - , and, second, it must be normalized, that is, its scale must be changed in 

accordance with the standard deviation:   


= - . 13  Thus, any normally distributed r.v. can be 

easily transform to the standard form. 
 The cumulative standard normal distribution (sometimes called the Laplace function) has 
form 
 

(x) =
2

t
dt

-

x

.1
2

2

 
 exp( )   (1.3)  

There are detailed numerical tables for the standard normal distribution(one of which is given in the 
end of the book).  
 This distribution is symmetrical around x=0, and its domain is (- , + ).   Due to symmetry 
of the distribution, the quantile of the level q of the standard normal distribution satisfies equation 
U1-q=-Uq, and the cumulative d.f. satisfies equation (x) = 1- (-x).  
 
 The Sum of Normally Distributed Random Variables 
 Let 1, 2, ... , n be normally distributed r.v.'s and parameters i and i are known for 
each i, i=1, 2, ... ,n  .  Then the sum  1+ 2+ ... + n also has a normal distribution with the mean 

= 1+ 2+ ... + n and variance 2= 1
2+ 2

2+ ... + n
2.   

 This property of the normal distribution is true for any number of summands, n. 
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 Gamma Distribution 
 The density of this distribution is presented in Table 1.1.  This distribution can be considered 
as a "head of a family" of distributions which are very important in reliability theory and other 
applications. 
 The following essential property of the gamma distribution is presented below. 
 
 The Sum of Gamma Distributed Random Variables 
 Let 1, 2, ... , n be gamma distributed r.v.'s and parameters  and ai are known for each 

i, i=1, 2, ... ,n.  Then the sum  1+ 2+ ... + n also has the gamma distribution with  parameters  
and a=a1+a2+ ... +an.   
 
 Exponential Distribution 
 Exponential distribution has extremely wide application in reliability theory.  This is 
explained by two main reasons.   
 From the theoretical side, the exponential distribution allows us to obtain simple analytical 
results for many mathematical models. But this fact alone should be a wrong excuse for its 
extensive use.  Much more important is that from a practical viewpoint, this distribution is an 
appropriate reflection of many real physical phenomena.  First of all, as practice shows,  electronic 
equipment often has TTF distributed exponentially.  Besides, this distribution has a close relation to 
a Poisson process (see Volume 1 for details).  Remember that the Poisson process can be considered 
as a sequence of point events which distance from each other by independent exponentially 
distributed random time intervals.   The Poisson process is a convenient model for a flow of failures 
of complex systems consisting of a large number of highly reliable units.  This fact is confirmed by 
the Khinchin, Renyi, and Grigelionis-Pogozhev theorems where the procedures of thinning and 
superposition of point stochastic processes are analyzed  (for details see Volume 1).  
 Notice that the exponential distribution formally is a particular case of the gamma 
distribution for a=1.  The density of the exponential distribution is represented in Table 1.1. 
 The exponential distribution possesses the so-called lack of memory (or Markov) property: 
the conditional probability P(x+y x) does not depend on x, that is  P(x+y x)=P(y). 
 
 Erlang Distribution 
 This distribution bears its name after A. K. Erlang, the Danish telephone engineer who 
introduced it and widely used in varied telecommunication problems.  An r.v. is said to have the 
Erlang distribution of the kth order if it can be represented as a sum of k  i.i.d. r.v.'s each of which 
has an exponential  distribution.  The form of the density function with its mathematical expectation 
and variance is presented in Table 1.1.  Sometimes for special tasks one considers the so-called 
generalized Erlang distribution where r.v.'s are not identical.  
 

Sum of Erlang R.V.'s 
 Sum of the M Erlang r.v.'s of the orders n1, n2, ... nM, respectively, has the Erlang 
distribution of the order n=n1+n2+...+nM.  This fact follows immediately from the definition of the 
Erlang distribution. 
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 Weibull-Gnedenko Distribution 
 This distribution plays an important role in many applications because its form allows to use 
it in many practical cases.  Weibull introduced this distribution analyzing wearing failures.  A year 
later Gnedenko published a paper dedicated to limit distributions of extremum statistics. The 
distribution introduced by Weibull was a particular class of limit distributions.  So, excellent 
engineering intuition and first class mathematical research generated a new distribution with wide 
area of applications. 
 The density of this distribution, its mean and variance are presented in Table 1.1. 
 This distribution is widely used in engineering practice because of the obvious convenience: 
two parameters -- one of scale and another of shape -- allow to approximate many various empirical 
distributions.  In particular, such different classes of distributions as IFR and DFR can be expressed 
with the help of the Weibull-Gnedenko distribution.   
 Notice that a particular case for =1 corresponds to the exponential distribution. 
 
 Uniform Distribution 
 An r.v., , is said to have the uniform distribution if it might take any value from some 
closed interval with equal probability (see Table 1.1).  This distribution is essentially used in Monte 
Carlo simulation.  For generating an r.v., , with given arbitrary d.f. F(t), one have to solve 
equation F( )= , i.e., =F-1( ).  Such a transformation is easily performed on a computer. 

Table 1.1 
2.2.2 Discrete Distributions  
 
  Binomial Distribution 
 The binomial distribution characterizes samples of identical and independent events each of 
which has two possible outcomes, say, success and failure.   Let n Bernoulli trials be performed. 
The probability of success in a single trial equals p.  Then the  number of successes, m, in n trials 
has a binomial distribution (see Table 1.2).  This distribution is often used in sample quality control 
of mass production.  Some redundant systems are also described by this distribution. 
 
 Joint Sample of Several Subsamples 
 Consider M series of Bernoulli trials of size n1, n2, ... ,nM, respectively.  Let probability of 
success in each sample is the same and equals p.  In this case, the probability to observe m successes 

in all M samples is 
n
m

p qm n-m





 14 where n=n1+n2+...+nM.  This statement follows directly from the 

reformulation of the problem:  m samples of different sizes, ni, can be considered as a single sample 
with the size equals n. 
 
  Geometrical Distribution 
 Consider again a sequence of Bernoulli trials.  Let  denote the random number of 
successes until the first failure has occurred. This random number has the geometrical distribution 
(see Table 1.2).  This distribution describes, for instance, a random number of successful cycles of 
operation or switching when each of them occurs independently and with the same probability.   
 A geometrical distribution can be considered as a discrete analog of an exponential one. 
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 Negative Binomial Distribution 
 This distribution is, in some sense, a generalization of the geometrical distribution.   Assume 
that a sequence of Bernoulli trials is performing.  The question of interest is: What is the probability 
of observing the mth failure at the nth trial?  This event is equivalent to the product of the two 
following events: in n-1 first trials one observes m-1 failures in any order and then with probability 
q the mth failure might occur at the very last trial. The probability of this combined event is 

m
n-m m-1P = q

n
m

p q











1
1

Ошибка! Не указан аргумент ключа.. Some combinatorial 

transformations (see Volume 1) leads to the standard form (see Table 1.2).  This distribution is often 
used in quality control. 
 
 Poisson Distribution 
 Consider a sequence of independent events in time, such that a time interval between two 
neighbor events, , is exponentially distributed  with parameter .  Such a sequence of events is 
called a Poisson process.  In engineering practice a flow of a complex system failures forms a 
Poisson process.  The number of failures, m, occurring during a fixed interval, t, is a discrete r.v. 
with the Poisson distribution with parameter = t (see Table 1.2).  Value  is called an intensity 
of a corresponding Poisson process.   The Poisson distribution is asymptotic form for a binomial 
distribution if n  , p  0, and at the same time np= .  
 
 Sum of Poisson R.V.'s 
 Let us consider a Poisson process with intensity .  Take two non-intersecting intervals t1 
and t2 and consider the numbers of events on each one of them.  The number of events on the kth 
interval has the Poisson distribution with parameter tk.  Due to the Markov property, there is no 
difference if these intervals are neighbor or not.  The condition of non-intersecting delivers 
independence of numbers of events on these intervals.  Let us consider a new interval t=t1+t2.  It is 
clear that the number of events on this joint interval has the Poisson distribution with parameter t.   
 Obviously, the same rule expands on an arbitrary number of non-intersected intervals tk. 
 
  Multinomial Distribution 
 This distribution is a generalization of a binomial distribution.  In this case, one of k>2 
different events can be observed in each single trial.  Let pi is the probability of the event of type j, 
j=1,2, ... ,n, p1+p2+...+pn=1.  Let j be the number of observations of the jth event in a series of n 
trials, 1+ 2+...+ k=n. Then vector =( 1, 2, ..., k) has the multinomial distribution with 
parameters n and  (see Table 1.2). 

Table 1.2 
2.2.3 Special Distributions 
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 The following distributions are frequently used in solving various statistical problems.   
   2 Distribution 
 Let 1, 2, ... , n be i.i.d.  r.v.'s each of which has  a standard normal distribution.  Then the 
sum of squares of these r.v.'s has a 2 distribution with m degrees of freedom.  The density of this 
sum is represented in Table 1.3. 
 Notice that this distribution is a particular case of a gamma distribution with parameters =
1
2

, a=
m
2

.  

 Due to this relation between gamma and 2 distributions, their quantiles can be expressed 
via each other as 

q
q
2

, m  =  
m

,   m = , , ... ( )
( )





2

2
1 2        (1.13) 

where q( , m) is the quantile of level q of a gamma distribution with parameters  and m,  and 
q
2(2m) is the quantile of level q of a 2 distribution with m degrees of freedom. 

 
 The Sum of 2 Distributed Random Variables 
 Let 1, 2, ... , n be 2 distributed independent r.v.'s each of which has degree of freedom 
mi, i=1, 2, ... ,n  .  Then the sum  1+ 2+ ... + n also has a 2  distribution with the degree of 
freedom m=m1+m2+ ... +mn.   
  Student Distribution 
 This distribution is applied for finding confidence limits of the sample mean of a normal 
distribution if the variance of the distribution is unknown. 
 Let r.v.'s  and  are independent and  has a standard normal distribution with parameters 

0 and 1, and  has a 2- distribution with m degrees of freedom.  Then r.v. t = m


35 has the 

Student distribution with m degrees of freedom.  The density of a Student distribution is shown in 
Table 1.3.  There  

( ) ( )y, z = u - u duy- z

0

1
1 1 1   

is the beta-function (for details see, for instance, Rao (1965, Chapter 3).  
 
Remark:  If a sample X1, X2, ... ,Xn is chosen from a normal distribution then the following r.v.'s 
 




 
 

= n X - ,   =
nS

=  X - X
<i n

i
1 12

2 2
1

2( ) ( )

  

 
are independent and have, respectively, standard normal distribution and 2- distribution with n-1 
degrees of freedom 
 (ibid.).  So, the r.v. 
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T = n -  =  
X -

S
n -





1 1









  

 
has the Student distribution with n-1 degrees of freedom.  This is the basis for the construction of 
the standard confidence interval for an unknown mathematical expectation of a normal distribution 
if the variance of the distribution, 2, is also unknown.  
 
 Fisher Distribution 
 This distribution is used, in particular, for constructing the confidence limits of the ratio of 
variances of two normal distributions.  In reliability problems, the Fisher distribution is used for 
constructing the confidence limits of the availability coefficient. 
 If r.v.'s   and  are independent and have 2 distributions with n and m degrees of 

freedom, respectively, then the r.v.  


= m
n

36 has a Fisher distribution (see the density in Table 

1.3). 
 

Kolmogorov Distribution 
 This distribution characterizes asymptotic (for n)  behavior of r.v. 
 

T n F x F xn
x

n  sup|  ( ) ( )|  

 
where  ( )F xn  is empirical d.f., based on the sample of size n, and F(x) is a true (theoretical) d.f. 
This d.f. is given in Table 1.3. 

Table 1.3 
 
2.3  Point Estimation 
 
 
2.3.1   Introduction 
 
 Let r.v.  have d.f. F(x, ) and density f(x, ) which depend on some parameter  whose 
true value is unknown.  (This parameter might be a vector.)  We would like to estimate this 
parameter on the basis of n independent observations of r.v. .  In other words, there is sample X1, 
X2, ... ,Xn of size n from d.f. F(x, ). 
 The problem of the construction of the point estimator of  
 

  ( ) = X , ... , X n1        (1.14) 
 
parameter  consists of finding a function of observations 
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such that r.v. (or random vector)  37 in some sense is close to an unknown true value of 
parameter  of the corresponding distribution. 
 A function of observations = (X1, ... ,Xn) is called a statistic.  For instance, a point 
estimator is a statistic.  This particular statistic guarantees the closeness to the unknown true 
parameter. 
 
 
2.3.2 Properties of Estimators   
 Unbiased Estimator 
 An estimator  38 is called an unbiased estimator of a  parameter  if its mathematical 
expectation E  =  for all .  In other words, it means the following.  Let us estimate an unknown 
parameter for a sample of arbitrary fixed size.   Let us repeat this procedure until the number of such 
samples becomes sufficiently large.  Then the mean of these estimates will be approximately equal 
to the unknown parameter. 
 
 Example 1.5     Consider n independent Bernoulli trials with the success probability p and 
failure q=1-p.  Suppose m successes have been occurred.  

 The standard estimator of the unknown probability of success is the frequency: p = m
n

39.  This 

estimator is unbiased because 

E E Ep =   
m
n

=  
n

m =  
n

np =  p. 





1 1
 

 Example 1.6    Consider an estimation of the mean, =E , of some r.v.  by n 
independent observations X1, X2, ... ,Xn.  The sample mean X 40 is the unbiased estimator of  
because 

E E EX =  
n i n

ix  =  
n x  =  

n
n  =  .  

i n
i

1

1

1 1
1 















 
    

 
 Example 1.7    For data of the previous example, determine whether the sample variance, 
S2, is an unbiased estimator of the variance, 2=E( - )2 of r.v. .  For this purpose, let us write the 
sample variance in the form 

2

1 1

2

1

2 21 1
2

1
S  =  

n
 ( X X )  =  

n
 ( X - X X + X ) =  

n
 X X

i n
i

2

i n
i
2

i
i n

i - .
     
      

 
 

Let us now use the well-known formula which connects the mathematical expectation and variance 
of any arbitrary r.v.  as 
 E 2-(E )2 = Var{  
 
In the considered case, we obtain 
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E E E E Var2

1

2 2

1

2 2 21 1
S  =  

n X - X  =  
n

+ - X + X ].
i n

i
i n   

 ( ) ( ) [( )   

 
 The expected value of the sample mean is E{X =}  41 and its variance is 
 

 Var Var Var{X =  
n X

n
X  =  

n
n  =  

n
.

i n
i

i n
i =  1 1 1

1 2 1
2

2
2

   
 








} 


 

 
From here follows that  

E 2 21
S =

n -
n

.  

So, the sample variance is a biased estimator of the true variance.  Instead of S2, therefore, we 
frequently use an estimator S1

2  

1
2 2

1

2

1
1

1S  =  
n

n - S  =  
n -

( X - X ) .
i n

i
 
  

 
because the latter estimator is unbiased.  
 
 
 Asymptotically Unbiased Estimators 
 An estimator n 42 is called an asymptotically unbiased if  

n
n  =  


lim E   

for all possible values of .  In other words, if we produce a large number of trials then the 
asymptotically unbiased estimate will approximately coincide with the unknown value of the 
parameter. 
 
 Example 1.8   In Bernoulli trials considered above, any estimator for the probability of 
success of the form 

p =  m + C
n+ C

 

is asymptotically unbiased.  (Here C is an arbitrary positive constant.)  
 
 Example 1.9   In the conditions of Example 1.6  the sample variance S2 is an asymptotically 
unbiased estimator of the population variance 2.  
 
 Consistent Estimators 
 Consider a dependence of an estimator, n n n= X ,..., X  ( )  1 43, on a sample size.  Such 
estimator is called consistent if it converges in probability to the true value of parameter   as n  

, i.e., 
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n
n (| - |> ) =


lim P    0  

 
for any >0 and for any possible . 
 In practical terms, this is close to asymptotic unbiased. 
 

 Example 1.10    Let us show that the estimator p = m
n

44 in Example 1.5 is consistent for 

the probability p.  
  For an arbitrary r.v.  with the finite mathematical expectation E  and variance Var{ , 
the well-known Chebyshev inequality 

 

P E
Var{

( )
}

| - |>     



 2                   (1.15) 

holds.  Utilizing this inequality and taking into account that 

E Var{ Var Var{ } }
( )

p =  p,   p  =  
m
n

 =  
n

m  =  
p - p

n2








1 1
 

 
one obtains that as n   

Pr(
Var{

| p - p|>   
p

 =  
p - p

n
   )

} ( )


 
 2 2

1
0  

and the consistency of the estimator follows.  
 
 Example 1.11   In analogous way, we can verify that the sample mean is a consistent 
estimator for the mathematical expectation μ=Eξ.  
 We again use the Chebyshev inequality (1.15) and the formula for variance Var{ X }45 to 
obtain 

P(
Var

| X - |>
X

=
n

.  





)  2

2

2 0   

 With the help of the Chebyshev inequality, we can prove a more general result concerning 
the consistency of asymptotically unbiased estimators. 
 
Theorem 1.3.1    Let n 46 be an asymptotically unbiased estimator of parameter , such that 

n
n = 0.


lim Var  

Then n 47 is a consistent estimator.  
 It is easy to see that in the case of Bernoulli trials, the consistent estimator of parameter p is 

not only a value p = m
n

48 but also any estimator of the form of p = m + C
n+ C

49.  For the variance 2, 

both S2 and S1
2 are consistent. 
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 Efficient Estimators 
 Assume that we have two unbiased estimators  50 and   51 for a parameter .  It is 
natural to say that the estimator  52 is more efficient than   53 if the variance of the first is 
smaller than the variance of the second: 
 

Var{ E( E( Var{ }  )  )  }      =  -   -  =  2 2     (1.16) 
  
for all possible values of .  If in some classes of estimators there exists an estimator  54 for which 
(1.16) holds for all of the members of this class, one says that this estimator is efficient in the chosen 
class of estimators. 
 The major approach for finding efficient estimators is based on the Cramer-Rao inequality. 
 
 
 Cramer-Rao Inequality 
 Let us introduce the function, I( ), of parameter  defined as 

I  =  
 f x, 

 =  
 f x, 

f x, dx,2

-

( ) [
ln ( ) ] [

ln ( ) ] ( )
 

E









 2  

where f(x, ) is the density function.  This function is called the Fisher information.  Under some 
general conditions of regularity, for any unbiased estimator n 55 of parameter , the following 
Cramer-Rao inequality for the variance of estimator holds for any values of :  

Var{ n   
n I

. }
( ) 




1
 

 The value 

e  =  
n I n

( )
( )  }


 

1
 Var{

     (1.17) 

is called efficiency of the unbiased estimator.   By the Cramer-Rao inequality, any estimator satisfies 
inequality 0 < e( )<1.  An unbiased estimator n 56 is called efficient if e( )=1, or in other words, 
if its variance Var{  }n 57 exceeds the Cramer-Rao lower limit for any . 
 
Example 1.12  For Bernoulli trials from Example 1.5, the unknown parameter is the probability of 
success, =p.  Since in this case f(x, )=p for x=1, and f(x, )=1-p for x=0, the Fisher information 
can be written as 
 

I p  =  
 f(x, p)

p
 

=  x =
 f( , p)

p
+  x =

 f( , p)
p

( )
ln

( )
ln

( )
ln

E

P P


























 














2

2 2

0
0

1
1
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 =  - p
- p

+ p
p

 =  
p - p

.( ) ( ) ( )
( )

1
1

1
1 1

1
2 2   

 

  The variance of the estimator p = m
n

58 equals 
1

1
n

p - p( ) 59 (see Example 1.10), 

and thus it follows that the estimator p 60 is efficient.  
 
 Example 1.13    Consider a sample of size n from normal distribution with the known 
variance 2 and density  
 

f x,  =  e .-
x-

( )
( )







1
2

2

22  

In this case =  and the Fisher information is expressed as 

I =
 f x, 

=
x -

 =  .( )
ln ( ) ( )







 
E E

2























2

2

2

2

1
 

But the variance of the estimator  ( =
n

X +...+ X )n
1

1 61 equals 
 2

n
. Hence from the Cramer-Rao 

inequality, we see that this estimator of parameter  is efficient.  
 
Example 1.14  Consider a sample of size n from  exponential distribution with density  

f(x, ) =  e ,   x > 0.-
x





1

 

 
In this case the Fisher information is 

I  =  
 f x, 

 =  
x -

 =  .4( )
ln ( ) ( )


 

 
E E




















2 2 2

2

1
 

The variance of the estimator  ( ) =
n

X +...+X n

1
1 62 equals 

Var{ Var} { }


 =  
n

  X  =  
n

,
i n

i
1

2
1

2

 
  

so this estimator of the exponent parameter is efficient.   
 
 Example 1.15   Consider a Poisson distribution 

f x, =
x e ,   x = ,  , ...

x
-( )

!


  1 2  

The Fisher information in this case is 

I = x - - x =
x

- = .( ) [ ( ln ln ! ] ( )  
 

E E



0 1
12 2  
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and the variance of the estimator of parameter  ( ... )    
1

2 1n
x xn  equals 

Var Var 


=
n

  X =
n

n =
n

,2
i n

i 2

1 1
1 
    

 
Thus the estimator  63 is efficient.   
 
 
2.3.3  Methods of Estimation 
 
 The two most frequently used methods of parameter estimation  are the method of moments 
and the method of maximum likelihood. 
 
 Method of Moments  
 Let X1, ... ,Xn be a sample from a distribution with density f(x, ) which depends on a single 
unknown parameter .  The moment estimate of , found by the method of moments, is the 
solution  64 of the equation derived by setting the theoretical first moment equal to the sample first 
moment X 65.  That is, we solve 

1 1 =   =  X  =  X .  ( ) ( ) E  
 Let us take the solution of equation 
 

1 = X ( )   (1.18) 
 
In other words, we take as an estimate of the parameter such a value for which the true (or 
"theoretical") value of the first moment (expressed as a function of ) coincides with its value 
found from experimental data. 
 In analogous way the method of moments is applied for the case of multiple unknown 
parameters.  If =( 1, ... , k) is a k-dimensional parameter, then estimators 1

  ,..., k 66 can be 
found from the solution of the system of k equations 

1 1 1

1

 

 

( ) 

...
( ) 

 

 

,  ...  , =

, ...  , =

k

k k k









 

where  
 

r r
-

r
r,... , = x f x dx, ...    ( ) ( ), ,1 1





  

 
is the "theoretical" moment of order r, and 
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r
i n

i
r =  

n
 x

1
1 
  

 
is its empirical value found from the sample. 
 For k=2, the above system of equations can be written in the following form 

1 1 2

1 2
2

 ( )
}

 
 

, = X
, = SVar{





  (1.19) 

 
where Var{ 1, 2} is the true variance and S2 the empirical variance. 
 
Example 1.16   Consider the estimation of an unknown parameter (probability of success, p) in 
Bernoulli trials.  Let m be the number of observed successes in n trials.  The first moment, or the 
expectation of m,  equals 

1 1
0

1 = p  =  m =  m 
n
m

p - p  =  np.
i n

m n m( ) ( )E
 

 





  

 Corresponding to the method of moments, the estimator p 67 of parameter p is thus found 

from equation np=m.  It follows that p = m
n

. 68    

 
Example 1.17   Consider a sample from the exponential distribution with density f x, = e- x( )  

69, x>0, where parameter  is unknown.  In this case the first moment equals 

1 1
0

1
   


 =   =  x e dx =  .- x( )



  

Thus equation (1.18) has the form 
1


= x 70 from which it follows that 


 =
x
1

71.  

 
 Example 1.18   For the Erlang distribution of order r with density  

f x,  =  
x

r -
e ,    x >

r r-
- x( )

( )!


 
1

1
0  

the first moment is derived as 

1
0

  


( ) ( ) =  xf x, dx =  
r

.


  

 

So, the estimator of parameter  by the method of moments is found from equation r = x


72 and, 

consequently,  = r
x

73.   
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Example 1.19   Consider a sample from the normal distribution with two unknown parameters,  
and .  The system of equations (1.19) in this case has the following simple form 




 =  X
 =  S2 2





 

which gives   = x,  = S.74    
 
Example 1.20   Consider a sample from gamma distribution with the density  

f x, ,   =  
x

e
-

- x( )
( )

 




 


1


 , ,  x>0 

 
which includes two unknown parameters , .  Using the well-known expression for gamma 
function 

( ) =  t e dt
0

- -t


 1  

and recurrence relation ( +1)= ( ), one obtains the following  
expressions for the first and second moments and variance: 

1
0

1
  





 




 
( )

( )
( )

( )
,  =  x

e dx =  
+

 =  ,- x


 



 

2
0

1

2 2

2 1
  





 

 


 
( )

( )
( )

( )
( )

,   =  x
e dx =  

+
 =  

+
,- x

 

 



 

 

Var(       



,   =  ,  -  ,   =  .) ( ) ( )2 1
2

2  

 
The  system of equations for finding estimators of the parameters in this case has the form: 






 =  X

 =  S2
2









 

 Thus and it follows that   =
x
S

,  = x
S

.2

2

2 75   

 
 The method of moments gives consistent estimators of the parameters but not always good 
from the efficiency viewpoint. 
 
 
 Method of Maximum Likelihood 
 Consider a continuous distribution with density f(x, ).   Let X1, ... ,Xn be a sample of size n 
from this distribution.  The joint density of all sample data, written as a function of ,  
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L X  ... , X ,  =  f X , f X ,  ...  f X , n 2 n( ) ( ) ( ) ( )1 1            (1.20) 
 
is called the likelihood function. 
 The maximum likelihood estimator  ( = X ,..., X )n1 76 is found as a value of parameter  
for which the likelihood function reaches the maximum in  under the condition that results of 
observation X1, ... ,Xn are fixed.  In other words, the maximum likelihood estimator (MLE) is found 
from equation 

L X  ... , X , ) =   L X , ... , X , ).n n( ,  (max1 1 


 

 It is typically more convenient to search for the maximum of the logarithm of the likelihood 
function rather than the maximum of the function itself.  (The maximum of the logarithm and the 
function itself coincide.)  Thus, under the assumption that function f(x, ) is differentiable with 
respect to , one can find MLE  77 from equation 
 




ln ( ) L X , ... , X ,  =  .n1 0      ( 1.21) 

 
Equation (1.21) is called the likelihood equation. 
 
Remark:  Equation (1.21) is the necessary but not sufficient condition for obtaining the maximum.  
However, for many distribution families used in practice, it happens that the solution is unique and 
delivers the desired maximum likelihood estimator. 
 
 In an analogous way, in the case of a vector parameter =( 1, ... , k), for finding the MLE 
of parameters 1

  ,..., l 78, one needs to solve a system of equations (with respect to 1, ... , k, for 
fixed observed values X1, ... ,Xn): 

















1
1 1

1

0

0


 


 

  L X , ... , X , , ... ,  =  

...
  L X , ... , X , , ... ,  =  .

n 1 k

k
n 1 k

ln ( )

ln ( )
 

 
 The important property of the MLE is the following:  If an efficient estimator exists, the 
maximum likelihood method delivers this estimator.  In general, under some conditions, the 
maximum likelihood method delivers asymptotically unbiased and asymptotically efficient 
estimates. 
 
Example 1.21   Let us apply the maximum likelihood method for finding the estimator of an 
unknown parameter p in a set of Bernoulli trials.  In this case, the likelihood function for the 
probability of observing m successes in a series of n trials equals 
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L m, n  =
n
m

p - p .m n-m( ) ( )






 1  

 
 The equation of likelihood has the form 




  
p

m p  n - m - p  =  
m
p

  
n - m

- p
 =  [ ln ( ) ln( )]1

1
0  

so we obtain p = m
n

. 79   

 
Example 1.22   Let us find an estimator of parameter  of the exponential distribution using the 
method of maximum likelihood.  The likelihood function in this case is 

L X , ... , X , ) =  e  ... e  =  - xn
- x - x n

i n
i

n .( exp1
1

1      








 
  

 
The likelihood equation has form 












   
 

 


n   -  x
n

 - x  
i n

i
i n

i =    =ln
1 1

0  

from where 
 =  

n
x

i n
i
.  

1 


 

 
Example 1.23   Using the method of maximum likelihood find the point estimators of parameters 

,  of the normal density 

f x, ,  =  e .-
x-

( )
( )

 





1
2

2

22  

In this case, the likelihood function and its logarithm are equal to 

 
L =  

2
- x - ,n

i n
i

1 1
2 2

1

2

 
exp ( )

 








  

and 

ln ln ln ( ) L =  - n  -  n   -  x - .
i n

i2
1

2 2
1

2 



 
  

 
There are two unknown parameters in this problem, and the system of equations for finding this 
MLE has the form 
 


  

 
  L =  X -  =  

i n
iln ( )

1
02

1
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ln ( ) L =  -

n
 +   X -  =

i n
i

1
03

1

2  

 
 It thus follows that  

  ( ) 
   
 1 1

1

2

1

2

n X =
n

X - X
i n

i
i n

i,   

So the MLE for the expectation  and variance 2 of normal distribution coincide with the sample 
mean X 80 and sample variance S2.   
 
2.3.4   Sufficient Statistics 
 
 Let X1, ... Xn be a random sample of size n from a distribution with density f(x, ).  For the 
sake of simplicity, let us restrain ourselves to the case where r.v.'s are discrete.  In this case, f(x, ) 
represents the probability that r.v.  has value x. 
 Let T = T(X1, ... , Xn)  be some statistic, i.e., some function of the observations.  Assume that 
after an experiment we do not know the total sample (X1, ... , Xn) but only the value of statistic 
  T(X1, ... , Xn) =t  (1.22) 
 
 Statistic T is called a sufficient statistic for parameter  (or more precisely, for the 
parametric family of distributions f(x, ) if for any event A, the conditional probability of 
occurrence of this event under condition (1.22) 
 
 P{A T(x1, ... , xn) =t} 
 
does not depend on the value of parameter  for any possible value of statistic t.  In the discrete 
case the conditional probability above can be calculated by formula  

 Pr{A  T(x1, ... xn) =t }= T=t,x A
n

T=t
n

L X , ... , X , 

L X , ... , X , 






( )

( )

1

1




 

where L(X1, ... ,Xn, ) is the likelihood function, the sum in the denominator is taken over all 
possible X= X ,..., X )n( 1 81 for which 82 T(X)=t and the sum in the numerator is taken over all x83 
such that T(X)=t,  X A. 84 
 The sense of the definition given above is the following: for some known value of a 
sufficient statistic, changing parameter  does not influence the probabilities of one or another 
events  (or, more precisely, the conditional distribution of the sample under condition (1.22)).  This 
means  that statistic T delivers the complete information about parameter .  The following known 
result gives a simple criterion for verifying whether statistic is sufficient or not. 
 
Theorem 1.3.2  (Criterion of factorization) 
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 Statistic T(X1, ... ,Xn) is sufficient for parameter  if and only if the likelihood function has 
the form 

L X , ... , X ,  =  h X , ..., X ) g T X , ... , X ), .n n n( ) ( [ ( ]1 1 1    
 In other words, the likelihood function can be written as a product of two factors, one of 
them depending only on the results of the observations (not on parameter ), and another depends 
on parameter   and on observation X1, ... ,Xn only via statistic T. 
 For continuous distributions with multidimensional parameter  and multidimensional 
sufficient statistic T, the principles are analogous.  From the criterion of factorization, it follows that 
the method of maximum likelihood always leads to the expression of the parameter's estimator via 
the sufficient statistic.  Another important property of sufficient statistics lies in the fact that  if an 
efficient estimator of a parameter exists, then it is expressed via a sufficient statistic. 
 In other words, a sufficient statistic contains all necessary information about observations. 
 
Example 1.24    Consider the exponential distribution with density 

f(x, ) =  e ,   x > 0.-
x





1

 

 In this case, the likelihood function is 

L X , ... , X ,  =  f X ,  ... f X ,  =  xn k n
i n

i( ) ( ) ( ) exp1 1
1

1 1
  

 
  









 
  

From the factorization criterion, it follows that statistic T=X1+ ... +Xn is sufficient.  In this case, an 
efficient estimator of parameter  expressed via a sufficient statistic, exists (see Example 1.6 
above).   
 
Example 1.25    For the normal distribution with two unknown parameters , , the likelihood 
function has the form 

 

L X , ... , X , ,  =  
( x - )

2
 =n

i n

i( ) exp1
1

2

2

1
2

 



 

 








  

 
n

i n
i

i n
i-

n
- x x +  1

2 2
1

2

2

2 2
1

2

2 1

 




















 













   

 exp exp . 

 
In accordance with the factorization criterion, we see that two-dimensional sufficient statistic for 
two-dimensional parameter ( , ) is T=(T1, T2), where 

1
1

2
1

2T  =  x T x
i n

i
i n

i,    =  . 
   
   

 
 
2.4  Confidence Intervals 
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2.4.1  Introduction 
 
  Confidence intervals are used to estimate unknown population characteristics with a certain 
level of guarantee.  The confidence interval is such an interval that an unknown parameter occurs 
within this interval with some guaranteed probability (confidence probability).  Let us give a verbal 
explanation of this probability. If we increase the numbers of homogeneous samples (i.e. samples of 
identical and independent objects) and construct the confidence interval for each sample, the relative 
frequency of cases where the unknown parameter will be covered by these confidence intervals 
converges to the confidence probability. 
 In practice we often construct a symmetrical confidence interval.  It makes an impression 
that the confidence interval "surrounds" the real value of the investigated parameter.  It is a wrong 
impression.  We don't know a real position of the unknown parameter within the confidence 
interval.  Moreover, with some non-zero probability the real parameter might occur outside of the 
confidence interval.   
 Let us consider the problem in strict terms.  Let X1, ... Xn be a sample of size n from d.f. F(x, 

) which depends on parameter  in a prior unknown way.  Let us now assume that an interval 
[ ] , Ошибка! Не указан аргумент ключа. such that the lower and upper limits are functions 
of test results 

   = X ,... , X ,  = X ,..., X )n n( ) (1 1  
 
and the inequality 
 

P(    ) =     (1.23) 
 
holds for all possible values of .    Both these limits are random because they depend on a set of 
random variables.  These limits will change from sample to sample. (Samples are assumed 
homogeneous and of the same size.)  Interval [ ] , 86 is called the confidence interval with 
confidence coefficient  (or, briefly, -confidence interval) for parameter . In practice, one 
chooses the level of  close to 1, for instance, 0.9, 0.95 or 0.99.  
 Based on the same statistical data, we can build a set of different confidence intervals with 
different confidence probabilities.  Common sense hints that, for the same statistical data, better the 
level of guarantee (i.e., the higher confidence probability), wider is the confidence interval.  On the 
basis of given statistical data, let us build a symmetrical confidence interval [ ] , 87 for confidence 
probability '=0.9.  Using the same data, we can construct confidence interval [ ] , 88 for 
confidence probability "=0.99.  If we choose the higher confidence probability, we must sacrifice 
accuracy: the confidence interval will be wider. 89 
 Thus, confidence interval [ ] , 90 is an interval with random limits which are constructed 
on the basis of test results.  This interval covers an unknown true value of parameter  with 
probability .  So, in contrast to the point estimator, the confidence interval gives guarantee 
information about the unknown true value of a parameter though this information is "fuzzy".   
 In some cases (for instance, for discrete r.v.'s)  it is possible to satisfy only the inequality 
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P(    )     (1.24) 

 
for all possible  instead of equality (1.23) because there are no lower and upper limits which 
deliver an exact value of .  In this case, we say that interval [ ] , 91 is a confidence interval with 
confidence coefficient not less than . 
 Sometimes we need to find only a one-sided interval for parameter , from below or from 
above.  If the inequality 

P( )      
holds, then  92 is called the lower -confidence interval of parameter .  Analogously, if 

P( )       
holds, then  93 is called the upper -confidence interval of parameter .  For example, if we are 
interested in the MTTF of some equipment we should be sure that this value is not smaller than 
some specified level but, factually, we are less interested in the upper limit.  Considering probability 
of failure, on the contrary, we are interested in the fact that this value is not larger than some given 
level. 
 
 
2.4.2   Construction of Confidence Intervals 
 
 One of the frequently used methods of construction of confidence intervals is based on use 
of some central statistic, which is a function depending on parameter  and observations 
 
 T = T(X1, ... ,Xn, ) (1.25) 
 
such that its d.f. F(t)=P(T<t) does not depend on . 
 The value Kq defined from the relation 

P( ) ( )T K  =  F K =  qq q  
is called the quantile of level q of d.f. F(t) of r.v. T.  Let us choose two small enough values  and 

, and find values t1, t2 from the following conditions:  
 

P( ) ( )T t  =  F t  =  , 1 1   
 

P( ) ( )T > t  =  - F t  =  .2 21   
 
For these purposes one needs to set t1=K , t2=K1- .  Then for the central statistic, equality 
 

Pr{ 1 1t T X  ... , X , t  =  n 2 ( ) }    (1.26) 
 
holds for =1- - .   Further, the lower and upper limits of the confidence interval for parameter  
are defined, respectively, as minimum and maximum values among all  satisfying inequality 
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1 1 2  T X  ...  , X , , n( )  
 
Therefore, from (1.26), it follows that 

Pr(    ) =    
i.e., the interval defined in such a manner is a confidence interval for parameter  with confidence 
coefficient equal to =1- - . 

T X X tn( ,..., , )1 2                   
T X X tn( ,..., , )1 1           (1.27) 

 
If the central statistic monotonocally increases in , then the confidence limits are found from the 
following equations: 
 

T X X tn( , ..., , )1 1                  
T X X tn( ,..., , )1 2           (1.28) 

 

Usually in practice, a confidence interval is chosen to be symmetrical, i.e., = =
1

2
 

. 

 
 
 General Method of Confidence Interval Construction 
 An appropriate central statistic may not always be found.  This obstacle leads to the use of 
another -- more general -- method which is sometimes called the method of confidence sets.  We 
consider this case for a one-dimensional parameter . 
 Let S=S(X1, ... ,Xn) be some initial statistic.  Most often for these purposes we use an 

unbiased point estimator , i.e., S = . 94. For a given , a distribution function of the statistic is 
denoted as F(t, )=P(S<t).  For the sake of arguing simplicity, this function will be assumed 
continuous, strictly increasing in t and strictly decreasing in .  
 Let us set values t1=t1( ), t2=t2( ) corresponding to any possible value of parameter . 
These values are chosen from conditions 

F t , = ,   F t ,  =( ) ( )1 2 1     (1.29) 
 
so that t1( ), t2( ) are, at the same time, the quantiles of levels  and 1-  of d.f. F(t, ) of 
statistic S.  So if =1- - , equality  

P{ 1 2t S t  =  ( ) ( )}     
holds.  The set of values of statistic S belonging to the interval [t1( ), t2( )] is denoted as H  
and is called a -zone of parameter  (see Figure 1.2).  For any possible value of parameter , the 
probability that statistic S will belong to the -zone equals  by  construction. 
 
 Figure 1.2 
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 Further, in correspondence to an observed value of statistic S, let us define an interval of 
all values of  for which this value of S belongs to the -zone (see Figure 1.2).  The lower and 
upper limits of this interval,  and  95 are found from the following condition 

2 1t = S ,    t = S( ) ( )   
or by (1.29) from the equivalent conditions 
 

F S, = ,   F S, = - .( ) ( )  1   (1.30) 
 
 The interval constructed above is a -confidence interval for parameter .  Indeed, for any 
possible  value of parameter  (including an unknown true), the interval [ ] , 96 covers  if and 
only if an observed value of statistic S belongs to the -zone H  for the specified value of .  So, 
by construction of the -zone, the equality 

Pr{ }     =    
holds. 
 
 If d.f. F(t, ) is monotone increasing in parameter  , then the limits of the -zone 
t1( ), t2( ) are monotone decreasing in .  Repeating the arguments above, we find that the 
lower and upper limits of the confidence interval in this case are defined as 

F S, = ,   F S, = - .( ) ( )  1      (1.31) 
 
 
 Confidence Interval for Discrete Random Variables 
 The above method is used in an analogous way for the case of discrete r.v.'s.  Consider, for 
example, a case, which is often met in practice, where statistic S takes on integer values  
0, 1, 2, ... . 
 Let F(n, )=P(S<n),  n=0, 1, 2, ... , be the d.f. of statistic S.  Differing from a continuous 
case, the limits of the -zone here have a step-like form (see Figure 1.3).   
 
 Figure 1.3 
 
 For a specified fixed value of parameter  , the lower limit,  t1( ), of the -zone is 
defined as the maximal number among n for which inequality  

P(S n  =  - F n - , - ) ( )1 1 1   
holds.  The lower limit,  2( ), of the -zone is defined as the minimal number among n for 
which inequality 

P( ) ( )S n  =  F n, - .  1   
holds.  After this, the lower and upper limits of the confidence interval for parameter  with 
confidence coefficient not less than =1- -  is defined by the minimum and maximum values 
among all of  on the basis of statistic S.   This which satisfy inequalities 
 

1 2t S t( ) ( )     (1.32) 
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i.e., among all  which belong to the -zone for a specified value of statistic S.  Inequalities (1.32) 
are equivalent to 
 

F S, ,
F S - , - .

( )
( )












1 1

 

 
From the above inequalities, it follows that if d.f. F(n, ) of statistic S is monotone decreasing in 

, then the lower and upper limits for the -confidence interval for parameter  can be found from 
the solution of the system of equations 
 

F S - , - ,
F S, 

( )
( )
1 1












     (1.33) 

 
Analogously, if d.f. F(n, ) is monotone increasing in , then the -confidence interval for 
parameter  can be found from 
 

F S - , ,
F S, .

( )
( )

1
1





 








  (1.34) 

 
where again =1- - . 
 
 
 
 Confidence Sets for Vector of Parameters 
 In a similar way, we can construct the confidence sets for the multi-dimensional parameter 

=( 1, ... , m).  Let X be a vector of observations, and P (X) be the d.f. of X for a given .  Let 
set C  of values X be defined for each possible  in such a way that inequality 
 

 P ( )X  C    (1.35) 
 
holds for all of possible s.  Then for each observations x we find set DX of parameter  such that 
X C .  This procedure is a straightforward extension of the procedure above for a one-dimensional 
parameter.  By constructing set DX for each fixed , events A={X C }, B={X DX} are 
equivalent.  From here, taking into account (1.35), it follows that 
 
 P { DX}>  (1.36) 
 
for all of possible values of parameter .  A collection of all sets DX for all possible values x 
satisfying (1.36) is called a system of -confidence sets for parameter .  
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 Further, if we need to construct a -confidence interval for some function f=f( ) of the 
vector of parameters , then such an interval can be constructed on the basis of confidence sets DX 
in the following way.  Let us choose the lower and upper limits of f as values   

f = f ,  f =  fmin ( ) max ( )   
 

where the minimum and maximum are taken over all  belonging to sets DX.  Then it follows 
directly from (1.36) that 
 

 Pr ( )f f( ) f     
 
for all , i.e., interval [ ]f , f 97 is the -confidence interval for f( ). 
 This type of problem will be considered below in more detail for the case of confidence 
estimation of reliability of a complex system on the basis of test results of its units. 
 We now consider constructing confidence intervals for parameters of the most frequently 
used distribution functions. 
 
 
2.4.3 Confidence Estimation of Exponential Distribution 
 
 Consider an exponential distribution with density f x, = e ,  x > .- x( )   0 98   As a central 
statistic, we choose 

T =  X
i n

i .2
1


 
  

 
 This statistic has standard 2 distribution with 2n degrees of freedom (see Section 1.2).  
Equations (1.28) in this case take the form 
 

2 2
1

1
2  X t n ,

i n
i  =   =  

 
 ( )  

 
2 2

1
2 1

2   X t n ,
i n

i - =   =  
 
 ( )  

 
where q

2(2n) is the quantile of level q for a 2 distribution with 2n degrees of freedom.  From 
here, it follows that the lower and upper limits of the confidence interval with confidence coefficient 

=1- -  for parameter  has the form   


 =  

n
X

i n
i

2

1

2
2

( )

 


 and 
  =  

n

X
-

i n
i

1
2

1

2

2

( )

 


. 
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2.4.4 Normal Distribution, Known Variance 2 
 
Consider confidence interval for mean m of the normal distribution with known variance 2. Choose 
the central statistic of the form 
 

T =  X -
/ n



 

which has the standard normal distribution with the mean 0 and variance 1.  In this case, system 
(1.27) takes the form 
 

X -
/ n

 =  u -



1  

X -
/ n

 =  u





 
 
where  u  is the quantile of level 1-  of the standard normal distribution.  Taking into account that 
u1-=-u  for a normal distribution, we have the following lower and upper limits for the -
confidence interval for parameter : 
 




 =  X -  u
n

,( )  

 




 =  X +  u
n

.( )  

 
 
 Normal Distribution, Unknown Variance 2 
 Now consider confidence interval for the mean of a normal distribution with unknown 
variance 2.  For this case, the central statistic is 

T
X

S
n













1

 

where X 99 and S2 are the sample mean and variance, respectively. 
 This statistic has Student d.f. with n-1 degrees of freedom (see Section 1.2).  System of 
equations (1.27) in this case takes the form 
 

X -

S / n -
 =  t n - , 




1
1( )  
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X -

S / n -
 =  t n - , -




1
1 1( )  

 
where t(n-1, ) is the quantile of level 1-  of Student distribution with n-1 degrees of freedom.  
Since Student distribution is symmetrical, t(n-1, 1- ) = -t(n-1, ).  It follows therefore that the 
lower and upper limits of the confidence interval with confidence coefficient =1- -  for 
parameter  (when the variance is unknown) can be found by formulas 
 

  =  X -  t n - , 
S
n -

( )1
1

  

 

  =  X +  t(n - , )
S
n -

.1
1

  

 
 
 Normal Distribution, Known Mean 
 Consider confidence interval for the standard deviation of a normal distribution with known 
expectation .  The central statistic in this case is  

T =   x - ,
i n

i
1

2
1

2




 
 ( )  

which has 2 distribution with n degrees of freedom (see Section 1.2).   Analogous to the previous 
case, we obtain the following lower and upper confidence limits with confidence coefficient =1-

-  for parameter : 




 

 =  
x -

n
i n

i

-

1

2

1
2

 
 ( )

( )
 

 




 

 =  
x -

n
i n

i
1

2

2
 
 ( )

( )
 

 
where q

2(n) is the quantile of level q for 2 distribution with n degrees of freedom. 
 
 
 
 
 Normal distribution, Unknown Mean 
 Now consider confidence interval for the standard deviation of a normal distribution with 
unknown expectation .  The central statistic in this case is 
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T =  
nS

 =   X - X ,
i n

i

2

2 2
1

21
   

 ( )  

 
which has a 2- distribution with n-1 degrees of freedom.  This leads to the following lower and 
upper limits of the confidence interval with the confidence coefficient =1- -  for parameter : 
 


 

 =  
n S

n --1
2 1( )

 

 


 

=  
n S

n -2 1( )
 

 
 
2.4.5 Approximation Based on Levy-Lindberg Theorem 
 
 Consider a simple and constructive approximation for the confidence interval of the mean 
based on Levy-Lindeberg Theorem.  Let X1, ... ,Xn be a sample of n independent observations of 
some r.v.  with a finite and unknown mathematical expectation =E  and variance 2=E( -

)2.  We also assume that a d.f. of the observed r.v. is unknown. 

 Consider statistic T =
X -

/ n


( )
100.  In accordance with the Levy-Lindeberg form of the 

Central Limit Theorem  this statistic has  asymptotically normal distribution.  This fact allows us 
consider normal approximation if n is sufficiently large.  In this case, the inequalities 

- u   
X -

n  u 



    (1.37) 

 
hold with probability close to =1- - .  Inequalities (1.37) are equivalent to the following ones 

X -  u
n

    X  +  u
n

. 





_





 







 

 These inequalities still don't give a confidence interval for parameter  because the left and 
right parts contain an unknown parameter .  Using another approximation, namely, substituting 
into these inequalities estimate  = S 101 instead of , we obtain the approximate lower and upper 
limits of the confidence  interval with the confidence coefficient =1- -  for the mathematical 
expectation, : 

  =  X -  u
S
n
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  =  X  u
S
n

   

 
 
2.4.6 Clopper-Pearson Confidence Intervals 
 
 Consider construction of the confidence limits for parameter of a binomial distribution. For 
evaluation of a unit reliability, we often use the following procedure.  A sample of size n is taken 
randomly from a homogeneous general population. (Sometimes this is not a sample from a 
population but a special lot of trial items manufactured before mass production.)  This sample is 
tested under some specified condition.  After the test completion, one observes that m items have 
survived.   For this case, the sequence of Bernoulli trials is considered as an appropriate 
mathematical model. 
 The distribution function of statistic m (the number of successes in a series of n independent 
Bernoulli trials) has the form 

F(m, p) =  
n
j

p - p .
j m

j n- j

0
1

 
 





 ( )  

 
Note that this function is decreasing in p.  Applying the general formulas (1.33) obtained above, we 
find that the lower and upper limits of the confidence interval with the confidence coefficient =1-

-  for parameter p are found from equations 
 

m j n

j n- jn
j

p - p  =  
 
 


 ( )1   

0
1

 
 







j m

j n- jn
j p - p  =  .( )   

 
 Of course, solution of these equations is not a simple task, especially for high order of 
polynomial.  In practice for this purpose one uses tables of incomplete beta function or standard 
computer programs. 
 For m=0, the lower limit equals 0, and for m=n the upper limit equals 1. 
 
 
2.4.7 Approximation for Binomial Distribution 
 
 Although an accurate calculation of confidence intervals with the help of the Clopper-
Pearson method is possible with a computer, sometimes it is useful to have a simple approximate 
method of the confidence limits construction. 
 Let m be the number of observed successes in a series of n Bernoulli trials with an unknown 
parameter -- probability of success in a single trial, p.  For constructing confidence interval for p, let 
us take value 
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T =  
m - np
np - p

.
( )1

 

 
as an initial statistic.  In accordance with DeMoivre-Laplace Limit theorem (see PRE), this statistic 
is asymptotically normal.  Thus, for large n, we can use inequalities 
 

- u   
m - np
np - p

  u  
( )1

 

 
which holds approximately with the probability close to =1- - . These inequalities can be 
rewritten in the form 
 

m
n

 -  u
p - p

n
  p  

m
n

 +  u
p - p

n
. 

( ) ( )1 1
   

 
 These inequalities still don't give the confidence interval for p because the left and right 

sides contain unknown parameter p.   Therefore in practice one often substitutes estimate p =
m
n

102 instead of p.  As a result, one has the following lower and upper limits of the confidence 
interval with the confidence coefficient =1- -  for parameter p: 
 

p =  
m
n

 -  u
m
n

-
m
n 2 1( )  

 

p =  
m
n

 +  u
m
n

-
m
n 2 1( )  

 
These confidence intervals are approximate and can be used only if n, the size of a sample, is large. 
 
 
2.4.8 Confidence Interval for Parameter of Poisson Distribution 
 
 A flow of failures occurring in time for a complex system can be successfully described by 
Poisson process.  As it was shown in Volume 1 of this book, the random number of failures having 
been occurred within an interval of fixed length has Poisson distribution.  The problem is to 
construct the confidence limits for an unknown parameter of the failure flow, or for a parameter of 
the Poisson distribution.  Consider this problem in formal terms. 
 Let d=0, 1, 2, ...  be an integer r.v. with the Poisson distribution (see Section 1.2) with 
unknown parameter .  We need to construct the confidence interval for parameter  on the basis 
of the observed value of d.  The distribution function of r.v. d is defined as 
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F d,  =  
j e .

j d

j
-( )

!


 

0 
  

 
Note that this function is decreasing in .  Applying formulas (1.33), as before, we obtain that the 
lower and upper limits  of the confidence interval for  with confidence coefficient equal to =1-

-  are found from equations 
 

exp( )
!

  
  


 j

j d j
1

0 1
  

 

exp( )
!

 
 


 j

j d j


0
 

 
 For d=0 the lower limit is  = 0 103.  Notice that the left hand sides of these equations can 
be expressed via gamma distribution (see Section 1.2).  Taking into account the relation between 
gamma and 2 distributions (see formula 1.13), the confidence interval obtained above can be 
rewritten in the form 
 

 =  d ,
1
2

22
 ( )  

 

 =  d + ,-
1
2

2 21
2
 ( )   (1.38) 

 
where q

2(n) is the quantile of level q for 2 distribution with n degrees of freedom. 
 
 
2.5 Test of Hypothesis 
 
2.5.1 Introduction 
 
 In previous sections we considered the two main statistical inferences related to test results.  
They are point and confidence estimations.  However, sometimes the objective is not to estimate an 
unknown parameter but to make a decision about some claims regarding that investigated 
parameter.  For instance,  we can formulate two contradictory claims about the parameter and the 
problem is to find which one is correct (with some probability, of course).  Such claims might be (a) 
unknown parameter  relates to some specified level A as <A  (or <A, >A, >A, =A),  or (b) 
unknown parameter  relates to another unknown parameter  as <  (or < , > , > , 

= ).  Examples of the first case:  the empirical probability of call completion obtained during 
some test of telephone network is compared with a specified baseline; an unknown and random 
strength of some mechanical construction is analyzed under a fixed load, etc.  Analogous examples 
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for the second case:  two competing telephone companies compare their probabilities of call 
completion;  two constructions are compared by their strength under some certain load, etc.  Each 
such claim is called a statistical hypothesis.  The procedure for executing this statistical inference is 
called tests of hypothesis. 
 A test of hypotheses includes two contradictory hypotheses, one of them, which is believed 
to be true, is called the null hypothesis and is denoted by H0 and another is called alternative 
hypothesis and is denoted by Ha.  For instance, the null hypothesis 
H0: = 0 means that we suggest that the true hypothesis is that parameter  is equal to some 
specified number 0 (which is called the null value).  For this null hypothesis, there might be the 
following three possible alternative hypotheses:  
(a) H1: < 0,  
(b) (b) H1: > 0, and  
(c) (c) H1: 0.   
Hypothesis H: = 0 (that is, 0 is a single value) is called a simple hypothesis.  Hypothesis 
H: D Ошибка! Не указан аргумент ключа. is called a composite hypothesis if D is some 
set of values of parameter  including more than a single point.  Thus, alternative hypotheses (a), 
(b), and (c) considered above are composite ones.  Of course, the null hypothesis might be one of 
composite hypothesis and the alternative hypothesis might be, on the contrary, a simple one.   
 Hypotheses considered above are called parametrical contrasting to non-parametrical.  The 
latter will be considered in Section 1.5.6. 
 
 
2.5.2 Two Simple Hypotheses 
 
 Let us have a sample of size n of independent observations of r.v.  
 X1, ... ,Xn 
 
with density function f(X, ) where X=(X1, ... ,Xn) and  can be also a vector (multi-dimensional 
parameter), =( 1, ... k). 
 Let us consider the simplest case where two simple hypotheses 
 
 H0: = 0, and H1:  = 1 
are tested. 
 Test procedure allows us to accept or reject the null hypothesis.  This procedure has two 
constituents: (1) a test statistic that is a function of the sample data on which the decision of 
acceptance (or rejection) is based, and (2) a rejection region, W, representing the set of all test 
statistic values for which the null hypothesis will be rejected.  The rule used for hypotheses rejection 
is also called a criterion of test of hypothesis. 
 We might make two following types of errors:  
 A type I error ( ) consisting in rejecting H0 when it is true, 
 A type II error ( ) consisting in acceptance H0 when it is false. 
 The errors of the first and second types are defined as follows: 

 =  X ,  ... , X W | H  ,nP{( ) }1 0  
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and 
 =  X ,  ... , X ) W | H  ,nP{( 1 1 }  

 
where W 89 is the complementary set to W and P{A Hj} is the probability of event A under the 
condition that hypothesis Hj is true, j=0, 1. 
 Let us introduce the likelihood function 
 
 L(X1,... , Xn, ) = f(X1, ) ...f(Xn, ). 
 
 The errors of the both types can be written as 
 

  =  L x , ... ,x , dx ...dx
W

n n...  ( )1 0 1  

and   
 

  =  L x  ... ,x , dx ...dx
W

n n...  ( , )1 1 1  

 
 The error of type  is also called the level of significance of the criterion.  The value of 1- , 
equal to the probability of rejection of hypothesis H0 when it is true, is called the power of the 
criterion. 
 
 
 
 
2.5.3 Neumann-Pearson Criterion 
 
 The most frequent problem of the criterion construction is formulated as follows:  for a fixed 
level of significance , construct the criterion (or, in other words, critical set W) with the maximum 
power 1- .  The solution of this problem is given by the well known result of Neumann and 
Pearson which for continuous variables is formulated as follows.  Let us introduce the function of 
the sample 

 



 =  X , ... , X ) =  
L X , ... , X , 
L X , ...  , X , n

n

n
(

( )
( )1

1 1

1 0
 

 
which is the ratio of the two likelihood functions: null and alternative, respectively.  The optimal, or 
maximally powerful for the given level of significance  Neumann-Pearson criterion is constructed 
in the following way.  The critical region W includes all those (X1, ... ,Xn) for which the inequality 

  =  ( X , ...  X )  Cn1   
 
holds.  Here C is a constant which is found from the condition 
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P{ } C|H   =  0  , 
 
that is, the level  is guaranteed.  In more detail, this condition can be written as 
 



 
( )1X X, ... , C

1 n 0 1 n

n

 ... L( x ,  ...  ,x , )dx  ... dx  =  .


     

 
 The Neumann-Pearson result remains analogous for discrete r.v.'s.  The only difference is in 
a possible necessity of "randomization" of the optimal criterion (for details, see Lehmann, 1959). 
 
Example 1.26   Let us construct the Neumann-Pearson criterion in the case of normal distribution.  
Consider the test of two simple hypotheses 
 H0:  = 0 and H1:  = 1 
 
where  is the mean, 0, 1 are some given values, 0< 1, and the 
 variance 2 is supposed to be known.  
 In this case the likelihood function is 
 

L( X ,  ... , X ) =   -
2

x - .n

n

i n
i1 2

1

21
2

1
  


















 
exp ( )  

 
Thus, the likelihood ratio is 
 



 =  

L X ,  ... , X , 
L X ,  ... , X , 

 

n

n

( )
( )

1 1

1 0    

=
( - )

x
n

.
i n

i   -
-

exp exp
( )

1 0
2

1

1 0
2

22
 


 

 
 

























 

 
From here we see that the critical region W is given in this case as 

1 
 

i n
iX  C   (1.38) 

 
where constant C is chosen from the condition of the given level of significance : 

 P  X   C | = =  .
i n

i   
1

0
 
       (1.39) 
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Random variable 
1 


i n
iX 90 has normal distribution with the mean n  and variance n 2 (see 

Section 1.2).  Thus the latter equality can be rewritten as 

1 0 -  
C - n

n
 =  












   (1.40) 

 
where (•) is the function of the standard normal distribution (Laplace function).  Thus, 

C - n
n =  U -

0
1


   

where U1-  is the quantile of the standard normal distribution of the level 1- .  Thus, constant C 
which determines the critical region (1.38) can be found as 
 

C =  n  +  U n.-0 1   
 
 The error of type II is defined as  

   



 =    x < C | =  

C-n

ni n
i   =  .P

1
1

1
 










        (1.41) 

 
 By the Neumann-Pearson lemma, this value of  is minimum possible for the specified 
value of .   
 
Example 1.27   Consider the previous example for the condition 1< 0.  Following the steps 
analogous to that at the Example 1.5.1, we find that the optimal Neumann-Pearson criterion with the 
level,of significance  is given by the critical region 

 
1 
 

i n
ix C  

 
where constant C is chosen from the condition 

 P  x C | =
i n

i 0   =  
1 
      

or 

  C - n
n

 =  .0








  

This gives 
C - n

n
 =  U  =  -U0

-



 1  

and finally  
C =  n  -  U n.0 - 1   
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Example 1.28   Let us construct the optimal Neumann-Pearson criterion for parameter of 
exponential distribution.   
 Consider two simple hypotheses 
 H0:  = 0 and H1:  = 1 
where 0 and 1 are the given levels for the distribution with  density f(x, )= e- x, x>0.  In this 
case the likelihood function is 

L X ,  ... , X ) =  - Xn
k

i n
i . ( exp1

1
 

 







  

 
The likelihood ratio has the form 
 





  =  - - X
n

i n
i .1

0
1 0

1

















 
exp ( )  

 
It follows that the critical region is defined by the inequality 
 

1 
 

i n
iX  C  

 
where constant C is chosen from the condition 

 Pr  x C | = =  
i n

i   
1

0
 
      

 
The latter condition can be rewritten in the form 
 

 P  x C | = =  .
i n

i   2 20
1

0 0    
 
   

 
Random variable 2 0

1


 


i n
ix 91 for = 0 has  gamma distribution (see Section 1.2) with 

parameters (1/2, n), which is equivalent, 2 distribution with 2n degrees of freedom.  Thus, the 
latter condition is equivalent to 
 
 H2n(2 0C) =  
 
where H2n(•) is the cumulative function of 2 distribution with 2n degrees of freedom.  Finally, for 
constant C, we have 
 

C =  
n



2

0

2
2

( )
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where 2(2n) denotes the quantile of the level  for 2 distribution with 2n degrees of freedom.  
The minimum error of the II type in this case equals 

     



 =   X >  C | = =  - H C  - H n

i n
i n n    .P

1
1 2 1 2

21 2 1 2 1

0 
  































( ) ( )  

 
 It follows from the Neumann-Pearson statement, this value cannot be decreased for a given 
error of the first type, .   
 
Example 1.29    Let us construct the optimal Neumann-Pearson criterion for parameter of binomial 
distribution.   
 Consider two simple hypotheses 
 H0:  p=p0 and H1:  p=p1 
 
where p is the probability of success for a sequence of Bernoulli trials, p0 and p1 are the given 
values, and p0<p1.  Let Xj denote the result of the jth trial.  Xj=1 means success in the jth trial and 
Xj=0 means failure, Pr{Xj=1}=p and Pr{Xj=0}=1-p. 
 The likelihood function in this case is 

L X ,  ...  , X , p  =
n
m

p - pn
m n-m( ) ( )1 1







  

where m = x
j n

j
1 
 92 is the total number of observed successes in the sequence of n trials.  The 

likelihood ratio function is  
 

 =  
L X ,  ... X , p
L x ,  ... x , p  =  

p
p

- p
- p

n

1 n

m n-m( )
( )

1 1

0

1

0

0

1

1
1














  

 
From the latter expression, we easily find that the critical region for the Neumann-Pearson criterion 
has the form 
 
 m>C.     (1.42) 
 
The DeMoivre-Laplace limit theorem states that for large n, the distribution of r.v. m is 
approximated by the normal distribution with the mean =np and variance 2=np(1-p).  Using the 
normal approximation, constant C in (1.42) can be found from the condition 

Pr{ }
(

m C| p = p   -
C - np

np - p )
 =   











0

0

0 0

1
1

   

 
and, consequently, we have 
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C  np  +  U np - p .- 0 1 0 01 ( )    (1.43) 

 
 The error of type II is defined as 
 

 =  m C| p = p   
C - np

np - p
.P{ }

( )
 











1

1

1 11
   (1.44) 

 
 
2.5.4 Sample Size  
 
 Let some values Type I and II errors (  and  be specified, so that + <1.  We need to 
determine before the test the needed sample size, n*, to construct the criterion for testing two simple 
hypotheses H0:  = 0 and H1:  = 1 with given levels of  and .  The quantity of n* is defined 
as a minimum integer n for which the inequalities 
 

P{   ( ) }X ,  ...  , X   C | =    n1 0   
(1.45) 

P X ,   ...  , X  <  C | =    n{ ( ) }   1 1   
 

hold for some constant C=C*.  In this case the Neumann-Pearson criterion delivering given  and 
 has the critical region defined by the inequality 

( )X ,  ... , X  C . n
*

1   
 
Example 1.30   Consider a sample from normal distribution.  For the situation considered above in 
Example 1.26, from (1.40) and (1.41) we find that (1.45) in this case has the form 
 

1 0-  
C - n

n
  ,












   

 

  
C - n

n
  .1










   

 
 From the above formula, we obtain that the minimum sample size n* and the corresponding 
critical constant C* for given  and  are determined from the following system of equations 
 

1 0-  
C - n

n
 =  ,
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C - n

n
 =  .1










  

Using quantiles of the standard normal distribution, we can write these equations in the form 
 

C - n
n

 =  U ,-
0

1




  

 
C - n

n
 =  U  =  -U -

1
1




   

 
Thus, we obtain a sample size as 
 

* - -
n  =  

U  +  U
-

.
2

1 1
2

1 2
2


 
 ( )

( )
  (1.46) 

For example, let hypotheses 
 
 H0:  = 0=3.5  and H1:  = 1=3.8 
 
should be tested for known =0.8 and given =0.05 and =0.1.  Using (1.46) and taking into 
account that U1- =U0.95=1.64 and  
U1- =U0.9=1.28, we find that the sample size is n*=61.   
 
Example 1.31   Find the sample size for testing by Bernoulli scheme.  For the problem considered 
in Example 1.5.4, we obtain from (1.43) and (1.44) the following equation system for determination 
of n* and C*: 

1
1

0

0 0

-
C - np

np - p
 =  

( )











   

 


C - np

np - p
 =  1

1 11( )











   

 
or in the equivalent form 
 

C - np
np - p

 =  U ,-
0

0 0
1

1( )
  

C - np
np - p

 =  U  =  -U -
1

1 1

1
1( )
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and, finally, 

* - -
n  =  

U p - p  +  U p - p
p - p

[ ( ) ( ) ]
( )

1 0 0 1 1 1
2

1 0
2

1 1 
 

 This expression gives the needed sample size for testing of simple hypotheses of type H0:  
p=p0,  H1:  p=p1 for a sequence of Bernoulli trials to satisfy the given probabilities of errors  and 

.  Since the quantity of n* usually is fractional, in practice we take the smallest integer larger than 
n*.   
 
 The sample size obtained with the use of the Neumann-Pearson criterion cannot be 
improved (decreased) if this sample size has been determined and fixed in advance.  Nevertheless, 
the average sample size can be decreased for the same error probabilities  and  in sequential 
trials where the decision about stopping the test is made during testing depending on the obtained 
data (see details in Part III). 
 
 
 
 
2.5.5 Composite Parametrical Hypotheses 
 
 Let us test two composite hypotheses 
 H0:  D0 and H1:  D1  (1.47) 
where D0 and D1 are some non-intersected regions of domain of , for instance, these regions are 

< 0 and > 1 where 0 and 1 are given values, 0< 1. 
 Parametrical hypotheses of type (1.47) can be one-parametrical (if parameter  is a scalar) 
or multi-parametrical (if parameter  is a vector).   The criterion of testing of composite hypotheses 
is also defined via a critical set W of the sample (X1,... ,Xn). As before, if the sample (X1 ,... ,Xn) 
belongs to W then the null hypothesis H0 is rejected and the alternative hypothesis is accepted.  If 
the sample does not belong to W, then the alternative hypothesis is rejected and the null hypothesis 
is accepted. 
 The error probabilities of the I and II types have the same meaning as above and are defined 
as 
 

   ( ) {( ) } =  X ,  ...  , X W | ,   DnP 1 0    
 

   ( ) {( } =  X ,  ... , X ) W | ,   DnP 1 1   
 
where P{• } is the conditional probability under condition that the true value of the parameter 
equals .  Contrary to simple hypotheses, values ( ) and ( ) are some functions of 
parameter 

.  The maximum possible value of the error of type I is 
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 =   
D 0

max ( )  

 
and is called a criterion scale, or a level of significance. 
 Function 
 

E  =  X ,  ...  , X W |  =   L( x ,  ... x , )dx  ... dxn
W

n n ... ( ) {( ) } (  P 1 1 1     

 
expressing the rejection probability for hypothesis H0 dependence of parameter , is called function 
of criterion power (power function).  If there exists such a criterion which maximizes function 
E( ) in all possible criteria simultaneously for all D1 (for fixed ), this criterion is called 
uniformly most powerful.  Such criteria exist only in some particular cases for simple hypotheses 
(see examples below). 
 Probabilities of errors are expressed via the power functions as follows 
 ( ) = E( )  for D0, (1.48) 
 
 1- ( ) = 1-E( )  for D1. (1.49) 
 Thus the uniformly most powerful criterion (if it exists) minimizes the error of type II (for 
fixed ) for all D1. 
 
Remark.   Equalities (1.48) and (1.49) are true only for values of parameter  indicated there.  For 
values differing from the mentioned, the values of  ( ) and ( ) have no sense of probabilities of 
error. 
 
 Sometimes together with the power function, the so-called operative characteristic of a 
criterion is used 
 
S  =  X ,  ... , X W |  =   L x ,  ...  x , )dx  ...  dxn

W
n n ... ( ) ) } (  P{( 1 1 1     

 
that is, the probability to accept the null hypothesis, H0, if the  
true value of the parameter equals .   Obviously, the operative characteristic and power function 
can be expressed via each other as S( )=1-E( ). 
 Let us construct the criteria for testing of composite hypotheses on normal distribution. 
 
 Example 1.32  Consider test of simple hypothesis H0:  = 0 vs. the composite one H1:  

> 0 where  is the mean of normal distribution with the known variance 2.   
 For any 1> 0, the critical region of the most powerful Neumann-Pearson criterion of 
significance  for simple hypotheses = 0 against = 1 has the form (1.38) where constant C is 
chosen from (1.39) or (1.40) and, consequently, does not depend on 1.  This means that the 
criterion constructed above for that simple hypotheses with the critical region 
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1
0 1

 
 

i n
i -X  C =  n U n  +      (1.50) 

 
is the uniformly most powerful criterion (with the significance level ) for the composite alternative 
hypothesis H1:  > 0.   
 
 Example 1.33    Under the previous example’s conditions, let us consider the test of simple 
hypothesis H0:  = 0 vs. composite hypothesis H1:  < 0 .   
 In this case, using the results obtained in Example 1.27, we find that the uniformly most 
powerful criterion of significance  for this case is given by the critical region 
 

1
0 1

 
 

i n
i -  X  C =  n  -  U n.     

 
 Example 1.34   For conditions of Example 1.32, let us consider the test of two composite 
hypotheses  
 
 H0:  < 0 and H1:  > 1  (1.51) 
where 0< 1.  
  Notice that for the criterion with the critical region (1.50), the probability of the error of 
type I 
 

   ( ) =  X  C
i n

i  

 

|P
1 
 

 

 
 
 

 + = -
C-n

n
 = - U

n
-1 1 1 0 




 








 







( )

 

 
monotone increases in .  Thus, the maximum value of the probability of the error of the I type is 
determined as 
 

  
 

 =   
0

max ( )  

 
and achieved at the point = 0.  It follows that this criterion used to composite hypotheses (1.51) 
has the significance level = ( 0).  Following the same arguments as in Example 1.32, we find 



 

57 
 

that the criterion with the critical region (1.50) is the uniformly most powerful criterion for the 
considered problem with composite hypotheses.   
 

 Example 1.35   Consider a test for two composite hypotheses  
 

  H0:  = 0 and H1:  > 1  (1.52) 
 

for the mean, , of normal distribution with the unknown variance 2.   
 In contrast to Example 1.32  hypothesis H0 in this case is also composite.  For = 0, the 
statistic 
 

X -
S

n -
0 1









   (1.53) 

 
has Student distribution with (n-1) degrees of freedom (see Section 1.2 above).  From here, we 
obtain that the criterion with the significance level  for hypotheses (1.52) is given by the following 
critical region  
 

X -
S

n -   t n --
0

11 1












  ( )  

 
where t1- (n-1) is the quantile of the level 1-  of Student distribution with (n-1) degrees of freedom. 
 Analogously, using the statistic (1.53), we construct the criterion for the test of composite 
hypotheses of the form 
 
 H0:  = 0 and H1:  < 0 (1.54) 
or 
 H0:  = 0 and H1:  0 (1.55) 
 
 For the hypothesis (1.54) the criterion of significance  is given by the critical region 
 

X -
S

n -   t n -0 1 1












  ( )  

 
and for the alternative hypothesis (1.55) by 
 

| X - |
S

n -   t n --
2

0
11 1












  ( )   
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Example 1.36   Consider a test hypothesis about equality of the mathematical expectations of two 
normal distributions.  Let us have two independent samples X1, ... ,Xn and Y1, ... ,Ym of sizes n and m 
from normal distributions with parameters 1, 1 and  2, 2, respectively.  Consider the following 
cases of composite hypotheses where the variances 1

2 and 2
2 are known: 

 1.  H0:  1= 2 and H1:  1> 2 
 2.  H0:  1= 2 and H1:  1< 2 (1.56) 
 3.  H0:  1= 2 and H1:  1 2. 
 The difference of the sample means ( )X - Y 93 has normal distribution with the mean equals 

1- 2 and the variance equals ( 1
2/n)+( 2

2/m).  It follows that if the null hypothesis is true, that is, 
if 1= 2, statistic 
 

X -  Y

n
+

m
1
2

2
2 

        (1.57) 

 
has normal distribution with parameters (0, 1).  Then the significance criterion, , for the problems 
formulated above are  
given by 

1. 
X -  Y

n m

  U -
1
2

2
2 1

 




  

 

2. 
X -  Y

n m

 
1
2

2
2 



  U   

 

3. 
| |X -  Y

n m

 
1
2

2
2 



  U - 1
2
  

 
where u  is the quantile of level  of the standard normal distribution. 
 Let us now consider problems (1.56) for the case where the variances are unknown but 

equal, that is, 1= 2= .  In this case  statistics 
nS1

2

2
 and 

nS2
2

2
 have 2 distributions with (n-1) and 

(m-1) degrees of freedom, respectively.  Thus, statistic 
nS1

2

2
+

nS21
2

2
 also has 2 distributions with 

(n+m-2) degrees of freedom.  Taking into account that statistic (1.57) has the standard normal 
distribution for 1= 2, we conclude that statistic 
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( )X - Y n + m -

n
+

m
  nS + mS

2
1 1

1
2

2
2

 

 
has Student distribution with (n+m-2) degrees of freedom (see Section 1.2).  Thus, we find that the 
criterion of significance  for the considered problems are 
 

1.  
( )

( )
X -Y b

  nS + mS
t n + mnm

-
1
2

2
2 1 2   

 

2. 
( )

( )
X - Y b

  nS + mS
t n+ mnm

1
2

2
2

2   

 

3. 
( )

( )
X - Y b

  nS + mS
t n + mnm

-
2

1
2

2
2 1 2   

where nmb = nm
n+ m

n + m


 2
94, t (n+m-2) is the quantile of level  of Student distribution with 

(n+m-2) degrees of freedom.   
 

3. PLANS OF TESTS WITH A SINGLE CENSORSHIP 
 
 In this chapter, we consider simple test plans with a single censorship, that is, tests which are 
performed for a specified in advance duration of time T, or up to a fixed number of failures, r.  
Statistical inferences for these test plans were almost completely developed for the exponential 
distributions by Epstein and Sobel (1963), Epstein (1960a, 1960b, 1960c), and others.  However, for 
many other important practical cases, there is no solution even for simple cases.  Some new results 
for multiple censorship we will consider in the next chapter. 
 
3.1 Introduction 
 
3.1.1 Test Without Replacement.    
  
Consider a unit whose random TTF  has an unknown distribution F(t)=P{ <t}.  N identical units 
are placed on test at t=0.  First, consider a case where the test continues until all N units will have 
failed.  In this case we observe a sequence of failure moments 
 0<t1<t2< ... <tr< .. <tN (2.1) 
where tr is the moment of the rth failure, 1<r<N.  
 This type of test forms the standard complete sample of N independently distributed r.v.'s .  
Test results (2.1) are ordered statistics. 
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 In practice, we usually have no possibility to perform test until the failure of all units.  A 
test terminates either when the rth failure has occurred at time tr, r<N, or when the fixed (in 
advance) duration T is exceeded. 
 Below we will use the following notation for test plans: 
 1.  Plan [N U r].  Here the first symbol, N, denotes the number of identical units tested at 
t=0.  The second symbol, U, means that the tested units are unrepairable while testing.  The third 
symbol specifies the stopping rule.  In this particular case, a symbol r reflects that the test terminates 
at the moment tr, r<N, i.e., when the rth failure has happened.  Thus the moment of the test 
termination is random.  The results of the test are moments of failure's occurrence 
 
 0<t1<t2< ... <tr. 
 
(For remaining units the test is stopped at moment tr.) 
  
 2.  Plan [N U T].  Here the first two symbols have the same meaning as in the previous case, 
and symbol T reflects that the test continues up to the in advance fixed moment.  The number of 
failures for this plan, d, is random.  The results of the test are moments of failure's occurrence before 
time T 
 
 0<t1<t2< ... <td<T 
 
where d<N.  Obviously, d is a random number. 
  
 3.  Plan [N U (r,T)].  Here the first two symbols have the same sense as in the previous 
cases, and symbol (r,T) reflects that the test terminates at moment =min(tr,T), that is, either at the 
in advance fixed moment T, or at the moment of the rth failure occurrence depending on what 
happens earlier.  The number of failures for this plan, d, is a r.v. restricted by r.  The moment of the 
test termination is also random and restricted from the right.  The results of the test are moments of 
failure occurred before time T 
 
 0<t1<t2< ... <td<T 
 
where d<r. 
 The first test plan described by statistic (2.1) is plan  
[N U r] with r=N, i.e., plan [N U N] corresponds to the complete (uncensored) sample of size N.  
Different test plans can be depicted on plane (t, d(t)), where d(t) is the number of failures occurred 
by in time t (Figure 2.1 - 2.3).  The test terminates when the process d(t) reaches the bound of the 
corresponding region.  

 Note that for all plans of type [• U •] a normalized trajectory of the process 
d t
N
( )

Ошибка! 

Не указан аргумент ключа. coincides with the graph of the empirical d.f. NF t ( )Ошибка! Не 
указан аргумент ключа. for all t for which this trajectory was observed.  In other words, the 
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graph of the type mentioned above represents an empirical d.f. on time interval [0, ] where  is 
the stop moment. 
 The test termination before moment tN is called censorship.  The corresponding moment is 
called the moment of censorship.  For each plan considered above, the moment of censorship is 
unique.  Such plans are called plans with a single censoring.  (More complex plans are considered in 
Chapter 3.) 

 Figures 2.1-2.3 
3.1.2 Test Plans With Renewable Units 
 
   In some test plans units are renewed after failure.  It is assumed that replacing units are 
identical to the initial ones in reliability sense.  Thus, the number of tested units is constant during 
the entire testing period. 
 The test plans where units are instantly replaced after a failure are denoted as [• R •].  The 
remaining attributes of the test plan notation preserve as above.  So, there are the following test 
plans for renewable (replaceable) units. 
 1.  Plan [N R r].  There are N units at the initial moment t=0.  All units are independent and 
after each failure a new units completely identical to the initial one replaces the failed one.  The test 
terminates at the moment tr, r<N, when the rth failure has happened.    
 2.  Plan [N R T].  This plan differs from the previous one: the test continues up to the in 
advance fixed moment T.   
 3.  Plan [N R (r,T)].   Here the test terminates at moment =min(tr,T) which we have 
explained above. 
 Test plans without replacement we will call the U-type plans, and test plans with 
replacement we will call the R-type plans.  Graphical illustration of the R-plans coincides with that 
of the U-plans but in this case there is no analogy of the trajectory with an empirical d.f. 
 
 
3.2 Exponential Distribution 
 
 Here we briefly present main results for the simplest and better investigated case where the 
d.f. of the unit's TTF is exponential, F(t)=1-e- t, with unknown parameter , >0 [Epstein and 
Sobel (1953); Epstein (1960a, 1960b, 1960c); Gnedenko at al. (1965)].  For this distribution all 
reliability indexes of interest can be expressed through parameter , therefore estimating of this 
parameter is the main issue. 
 
3.2.1 Test Plan [N U r]    
 
 In this case the results of test are moments of first r failures 
 
 t1<t2< ... <tr. (2.2) 
 
Due to the memoriless property of the exponential distribution, r.v.'s t1, t2-t1, ... , tr-tr-1 are 
independent.  An r.v. tj-tj-1 has the exponential distribution with parameter (N-j+1) , 1< j<r. 
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Ошибка! Не указан аргумент ключа. (Obviously, t0=0.)  Hence the likelihood function, i.e., 
the joint density function of test results (2.2), is 
 

 
or after simple transformations 
 

 (2.3) 
where  C is a normalizing constant, C = N(n-1)  ... (N-r+1), and the value of S equals the total 
testing time of all units, that is, 

  
 Thus, the likelihood function depends on test results via the value of S.  It means (see above 
Section 1.3.4) that statistic S is a sufficient statistic for this test plan. 
 
 Point Estimate of Parameter  
 Applying the maximum likelihood method, we obtain from (2.3) that the maximum 
likelihood equation has the form 

 
and hence the maximum likelihood estimate (MLE) for  is 
 

  

 L  N - j + e
j n

-(N - j+ ) ( t -t )j j -1
 


1

11( )   

 

 L =  C er - S   
 

 S = N - j + t - t = t +...+t + n - r t .
j r

j j- r r
1

1 11
 
 ( )( ) ( )   (2.4) 

 

 

 


ln L

=
r

- S = 0
 

 

 

  = r
S

.    (2.5) 
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 This estimate is biased.  We can prove this by finding the density function of the 
distribution of statistic S.  R.v.'s j=(N-j+1)(tj-tj-1), 1<j<r, are independent and identical r.v.'s  
exponentially distributed with parameter .  Therefore, as we can see from (2.4), the r.v. S is the 
sum of r independent exponentially distributed r.v.'s.  From this, it follows (see Section 1.2 above) 
that statistic S has the gamma distribution with parameters ( , r) and density function 
 

  
From (2.6), we can easily find the mathematical expectation of estimate  104: 
 

Consequently, the MLE (2.5) is biased.  Because of the bias, we usually use the estimate of the form 
 

which is unbiased  (for r>1).  Further, we can easily show on the basis of (2.6) that the variance of 
the unbiased estimate is (for r>2) 

 
 
 Confidence Limits  of Parameter  
 Applying a general approach (see Section 1.4 above), let us take an initial centered statistic 
in the form 
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 W = S. 
 
 Expressing the density function of distribution of S from formula (2.6), we can easily find 
that statistic W has the gamma distribution with parameters (1, r).  Let us denote the quantile of the 
level q for this distribution by q(1, r).  Then the following inequalities 
 
 (1, r) < S < 1- (1, r) 
 
hold with the probability =1- - .  Hence the expressions for the lower and upper confidence 
limits with the confidence probability =1- -  ( -confidence limits) for parameter  are 
 

Taking into account the relation between the gamma and 2 distributions (see Section 1.2.3 above), 
we can write 
 

where q
2(2r) is the quantile of level q of the 2 distribution with 2r degrees of freedom.  

Numerical tables for these quantiles are given in Appendix (Table E.16).  Additionally, these 
confidence limits are often expressed as 
 

where 1- (d) and  (d) are the standard lower and upper -confidence limits, =1- - , for 
parameter  of the Poisson d.f.  These limits are constructed on the basis of the observed value of d 
(see Section 1.4.8 above).  Numerical tables of 1- (d) are given in Appendix (Table 12.4). 
 
Example 2.1  We tested nine units (N=9) by plan [N U r] until three failures (r=3) have been 
occurred.  The following failure moments were recorded (in hours): t1=144, t2=182, and t3=243.  We 
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need to construct the 0.9-confidence interval for parameter .  We are also interested in the 

corresponding -confidence limits for the MTTF, = 1


111, and probability of failure-free 

operation (PFFO), P = e- t0 112 for t0=10 hours. 
 In this case the total testing time equals 
 
 S = t1 + ... + tr + (N-r)tr = 
 = 144 + 182 + 243 + 6 243 = 2027. 
 

Taking = = 
2

113=0.05 and applying formula (2.7) and Table E.16 from Appendix, we obtain 

the following lower and upper -confidence limits 

 The corresponding confidence limits for  and P are 
 

and 
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P = e = e = 0.996.- t -0.402 10 10-3    
 
3.2.2 Test Plan [N U T] 
 
 The result of this test is represented by the set of the sequential failure moments 
 
 t1 < t2 < ... < td-1 < td < T 
 
where d is the number of failures occurred during time T.  For this plan, the number of failures, d, is 
a r.v., d<N.  As above, in the result of simple transforms, we obtain that the likelihood function in 
this case can be written as 
 
 L = C de- S   (2.9) 
 
where C=N(N-1)  ... (N-d+1) is a normalizing constant and S is again the total testing time of all 
units.  The value of S is calculated as 
 
 S = t1 + ... + td + (N-d)T. 
 
From (2.9) it follows that the sufficient statistic is the two-dimensional statistic (d, S).  The 
maximum likelihood equation in this case is 
 

 
and, consequently, the MLE for  is 
 

 
 
 Construction of the confidence limits for parameter , based on the two-dimensional 
statistic (d, S), leads to enormous volume of calculations.  Besides we would like to emphasize that 
for the case of most practical interest, where units are highly reliable (that is, where T<<1 and 
d<<N), the main information contains in statistic d.  Therefore in practice, one has often to 
construct the confidence limits only on the basis of statistic d. 
 It is clear that r.v. d is binomial distributed with parameter p = e- T1  120.  Therefore the 
confidence limits for parameter  can be easily obtained on the basis of the standard Clopper-
Pearson -confidence limits for a binomial trials (see Section 1.4.6 above).  The lower and upper 

 

ln L = d - S = 0
 

 

 

  = d
S
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-confidence limits for binomial parameter p (if d failures have occurred while testing N units) 
obtained by the Clopper-Pearson equations equal 
 

  
(Values of p and p 123 for =1- =0.99 and =1- =0.95 are given in Tables E.14 and E.15.)  Let 
us denote 
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 In accordance with (2.10) the lower and upper -confidence  
limits, =1- , for parameter  can be calculated using the formulas 
 

  
Values of 1- d ( ) 128 and 1- d ( ) 129 are given in Table 12.5 for 
=1- =0.95. 
 
Example 2.2.2   Fifty units (N=50) are tested during t*=30 hours by plan [N U t*].  Six failures (d=6) 
have occurred.  We need to find the lower and upper -confidence limits, =0.95, for the 
parameter , MTTF =1/ , and probability of successful operation P(t0)= - t0e  130 for t0=4 hours. 
 Applying formulas (2.12) and Table 12.5, we obtain the following lower and upper -
confidence limits for the parameter : 
 

 

 The remaining lower and upper -confidence limits are 
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3.2.3 Test Plan [N U (r, T)] 
 
 Results of this plan are given by the set of sequential moments of failures: 
 
 t1<t2< ... <td<T 
 
where d is the number of failures during time T, d<r.  The likelihood function has the form 

where C=N(N-1)  ... (N-d+1) is the normalizing constant, and 
 
 S =t1+ ... + td+(N-d)T if d<r, and 
 S =t1+ ...+ tr+(N-r)tr if d=r.     
 
 The value of S, as stated previously, represents the total testing time for all units.  The 
sufficient statistic is again a pair (d, S).  The MLE for parameter  is the same as for the previous 

test plans:  = d
S

. 137 

 Applying the general approach given in Section 1.4, we can obtain the following confidence 
limits with the confidence probability =1-  for parameter : 
 For d<r the lower and upper -confidence limits are the same as for test plan [N U T],, that 
is, 
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140 
 For d=r (or for tr<t*) the confidence limits for  can be found from equations 
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- T -(N - j) T
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- e e  +  S, T =    


( )  

where (x, y) = P{ S<x, tr<y}. 
 Finding the lower and upper -confidence limits from these equations needs cumbersome 
calculations and compiling special tables of function (x, y).  We would like to emphasize that in 
the case for highly reliable units (that is, for <<1, r<<N) which is the most interesting for 
practical applications, all test plans of types  [N U r], [N U T], and [N U (r,T)] can be considered 
approximately equivalent to the R-plans [N R r], [N R T], and [N R (r,T)].  For this reason, in 
practice one often uses simple formulas for the test plan  [N R (r,T)] for construction of the 
confidence limits ,  143 instead of the exact equations (2.13). 
 
3.2.4  Test Plan [N R r] 
 
 Test results of this plan are given by the set of sequential moments of failures: 
 
 t1<t2< ... <tr. (2.14) 
 
 Due to the memoriless property of the exponential distribution, r.v.'s t1, t2-t1, ... ,tr-tr-1 are 
independent and identical r.v.'s exponentially distributed with parameter N . 
Thus the failures moments of (2.14) form the Poisson process with intensity N . Therefore the 
likelihood function has the form 
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where S=Ntr is, as before, the total testing time of all units.  Thus, for this case, the sufficient 
statistic is S (or the moment of the rth failure, tr).  The MLE is 
 

 
 Notice that the value of S can be written for this test plan as 
 
 S = Nt1+N(t2-t1)+ ... +N(tr-tr-1) 
 
 
that is, S is the sum of r independent and identical r.v.'s  distributed exponentially with parameter .  
So, S has the distribution coinciding with that for test plan [N U r].  It follows that the confidence 
limits for the considered test plan  
[N R r] can be found by the analogous formulas: 

where S=Ntr. 
 
 
3.2.5 Test Plan [N R T] 
 
 Results of this plan are given by the set of sequential moments of failures: 
 
 t1<t2< ... <td<T. (2.15) 
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where d is the number of failures during time T.  These moments of failures form the Poisson 
process with parameter N .  Consequently, the likelihood function is determined by the following 
expression 
 

  
and the sufficient statistic is d, the number of failures having occurred during time T.  From (2.16), 
we can obtain, as above, that the MLE of parameter  has the form 
 

  
 
 Confidence Limits for  
 The number of failures during time T, d, has the Poisson distribution with parameter 

= NT.  Consequently, the task is reduced to the construction of the lower and upper -
confidence limits for the parameter of the Poisson distribution (see Section 1.4.8 above).  The lower 
and upper -confidence limits, =1- - , for parameter  can be found by the formulas 
 

  
where 1- (d-1) and (d) are the standard lower and upper -confidence limits, =1- - , of the 
parameter of the Poisson distribution for d failures. The value of q(d) is the solution of the 
equation 
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Numerical tables of these values are given in Appendix in Table 12.4.  The lower and upper -
confidence limits (2.17) can also be expressed via quantiles of the 2 distribution (see Section 
1.4.8): 

 Values  and  154 can be also used as the one-side limits:  is the one-side lower (1- )-
confidence limit and  155 is the one-side upper (1- )-confidence limit for . 
 
Example 2.2.3   Ten units (N=10)were tested according to plan [N R T] for 150 hours (T=150). Six 
failures were registered, d=6 failures. 
 Find the point estimate and lower and upper -confidence limits, =0.98, for ; the 
MTTF, =1/ ; and probability of successful operation P(t0)= - t 0e  156 for t0=1 hour. 
 Using formula (2.17), the point estimate of parameter  is 
 

 Setting =1- - , =0.001 and =0,01, and using formula (2.18) and Table 12.4, the 
lower and upper -confidence limits for  can be found as: 
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The corresponding point estimate and confidence limits for the MTTF and PFFO are 
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3.2.6 Plan [N R (r,T)] 
 
 In this case the test results are the moments of failures 
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where d is the number of failures (d<r).  As above we obtain that the likelihood function in this 
case has the form 
 
 L = (N )d e- S (2.19) 
 
where S is the total testing time of all units.  This value is determined by the following formulas 
 
 S=NT if d<r, 
 
 S=Ntr if d=r. 
 
According to (2.19), the sufficient statistic for this plan is the two-dimensional statistic (d, S). The 

MLE of parameter  has the same form as for the previous plans, that is,  = d
S

. 162 

 The confidence limits for parameter  for this plan are calculated exactly as for plans [N R 
T] and [N R r].  If d<r we use the formulas for plan [N R T]: 
 

If d=r (or, in other words, tr<T),the formulas for plan [N R r] are used: 

where S=Ntr. 
 
3.3 "Exponential" Methods for IFR Distributions 
 
 Assumption that the distribution of time to failure, F(t), is exponential is widely used in 
reliability theory and its applications.  This is an understandable (though not satisfactory 
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orforgivable) excuse because analytical approaches in this case are very simple and 
mathematically attractive.  (The argument reminds of searching of the lost thing under a street lamp 
only because this is a brightly lighted place!)  Nevertheless for practical purposes this assumption 
sometimes is far from realistic.  Naturally, the question arises:  how does the assumption of 
exponentiality effect the statistical inferences if the real distribution is not exponential?  In some 
sense, this is a question about the stability, or robustness, of statistical inferences in relation to the 
form of a distribution function F(t).  This problem and related ones were studied by Barlow and 
Proschan (1966, 1967). Zelen and Dannemiller (1961), Barlow and Gupta (1966), Pavlov (1974, 
1977), and others.  In particular, these works show that some results for an exponential distribution 
can be extended to IFR distributions (distributions with increasing failure rate).  For the sake of 
brevity, we will say about application of "exponential" methods (i.e., methods for estimation of the 
exponential distribution) for more general cases, in particular, for the estimation of the IFR class of 
distributions. 
 We will assume that a distribution function has a density: f(t)=F'(t).  Denote the reliability 

function by P(t)=1-F(t) and intensity function by ( )
( )
( )

t =
f t
P t

.167  Let us also introduce the 

function  which is defined as cumulative hazard function ( ) ( )t = x dx
t

0
  168.  This new function 

relates to the reliability function via formula P(t)=e- t. 
 A distribution function F(t) is IFR if (t) is monotonically nondecreasing in t>0.  It easy to 
see that for IFR distributions, function it) is convex in t for all t, for which P(t)>0. 
 The assumption that function (t) is nondecreasing coordinates with the common 
understanding of aging.  Indeed, for the overwhelming majority of real physical objects, time leads 
to deterioration of materials and worsening of its reliability properties.  This is the reason why IFR 
distributions are widely used in reliability analysis (Barlow and Proschan (1975), Gnedenko, 
Belyaev and Solovyev (1965), Ushakov, ed. (1994), and others).  It is necessary emphasize that the 
class of IFR distributions includes as particular cases such standard parametrical distributions as 
exponential, normal, Weibull-Gnedenko (with form parameter >1), gamma, and others. 
 
3.3.1 Plan [N U r] 
 
 Let we need to construct the lower -confidence limit for the reliability function, P(t)=1-
F(t), on the basis of the test results by plan [N U r]: 
 
 t1<t2< ... <tr. (2.20) 
 

For an exponential function F(t) this confidence limit has the form 
 (2.21) 

 P t = e- t( )   
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where  =
S

r --
1

11 ( ) 170 is the upper -confidence limit for the parameter of the exponential 

distribution, and  
S=t1+ ... +tr+(N-r)tr is the total testing time of all units (see Section 2.2). 
 The lower -confidence limit for the IFR distribution is given by the following expression 
 

   exp{-
1
S

171 1- (r-1)t} if t S
N

 172, 

    P*(t) = (2.22) 

   0 if t > S
N

173. 

 
 This lower limit coincides with the corresponding limit for the exponential distribution 

(2.21) at the beginning of time interval 0<t< S
N

174. 

 Another important reliability index is the time of failure-free operation, tq, with the 
probability q.  This value is determined from equation P(tq)=q.  It is clear that this value coincides 
with the quantile of level 1-q of the distribution F(t). For the exponential distribution, we can write 

- tqe = q 175, and, consequently, qt = -  q .ln


176  The lower -confident limit for tq for the 

exponential distribution has the form 
 

  
The analogue of the limit (2.23) for tq is the following 
 

  
This value delivers the lower -confidence limit for tq if F(t) is IFR.  The lower confidence limits in 
(2.22) and (2.24) for P(t) and tq are connected by the following obvious relation 
 

 q
-

t = -
q

=
- q S

r -
ln ( ln )

( ) 



1 1
   (2.23) 

 

 q
*

-
t  =   

S
N

, 
- q S

r -
 .min

( ln )
( )







1 1

  (2.24) 

 



 

78 
 

The lower confidence limit in (2.24) coincides with the analogous limit for the exponential 
distribution in (2.23) if the level q satisfies the inequality 

  
 The limit of type (2.24) for the class of IFR distributions was obtained by Barlow and 
Proschan (1966).  The limit of type (2.22) was found by Pavlov (1977).  In the latter work, 
improved limits of types (2.22) and (2.24) were also obtained for IFR and IFRA distributions.  
Besides, more general test plans of type [N U (r,T)] were also considered there.  We avoid exposure 
those results because they are too clumsy. 
 
Example 2.3.1 On the basis of data given in form (2.20) we need to test hypotheses for P(t0): 
 H0: P(t0)>b  vs. H1: P(t0)<b 
where b is some required level of the reliability index P(t0).  Let us consider first an exponential 
distribution.  In  this case the following standard rule based on the lower -confidence limit of type 
(2.21) is used: 
 
 to accept H0 if P(t0)>b, 
 to accept H1 if P(t0)<b.   (2.26) 
 
In this case the probability of the II type error is not larger than =1- .  Indeed, by the definition of 
the lower limit, for P(t0)<b the probability of the second type error (that is, the probability to accept 
an item if it must be rejected) is  
 
 P{ accept H0} = P{P(t0)>b} < P{P(t0)>P(t0)} 
 = 1-P{P(t0)<P(t0)} < 1- . 
 
 Let us now assume that distribution F(t) is IFR rather than exponential.  Then from 
expressions (2.21) and (2.22) for the lower confidence limits, the rule (2.26) delivers the II type 
error not larger than =1-  if the critical level b satisfies the following inequality 

  

 q
* *t  =   t:  P t q .max { ( ) }  

 
 

 q  e   e .-
(r- )
N

-
r
N

-

 
1 1

   (2.25) 
 

 b  e-
r -

N
-


1 1 ( )

    (2.27) 
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In practice, the required level b is usually close to 1 and the right side of (2.27) is of order 

exp( )-
r
N

  -
r
N

. 1 182  Hence condition (2.27) is not too restrictive.  Thus, the decision rule (2.26) 

based on the exponentiality  of F(t) usually preserves the supplier risk  (but not the consumer risk) 
for distributions of the IFR class. 
 The analogous result can be obtained for the index of type tq.  
 
 Example 2.3.2  On the basis of data (2.20) let us test hypotheses 
 
 H0: tq>C vs. H1: tq<C 
 
where C is a required level of tq.  
 Consider the decision rule for the exponential distribution based on the lower -confidence 
limit (2.23): 
 
 to accept H0 if tq>C, 
 to accept H1 if tq<C. (2.28) 
 
For the exponential distribution, this decision rule delivers the consumer risk (the II type error) not 
larger than =1- .  The proof of this fact  completely coincides with the previous case.  The 
comparison of confidence limits (2.23) and (2.24) shows that the decision rule (2.28) for the 
exponential distribution preserves the consumer risk for IFR distributions if the value of q satisfies 
the inequality (2.25).  In practice, we usually choose q close to 1.  
 Thus, for indexes of type P(t0) and tq the decision rules for the exponential distribution can 
be extended to IFR distributions with not too restrictive conditions,  and the meaning of  is 
preserved.  Let us emphasize once more that in general it is not a correct estimate for the supplier 
risk (in detail this is considered in Part III). 
 The confidence limits (2.22) and (2.24) for the class of IFR distributions are not consistent.  
This deficiency, however, becomes significant only for large sample sizes.  At the same time, the 
standard non-parametrical confidence limits for P(t0) and tq based on an empirical distribution 
function or order statistic, though being consistent, gives worse confidence limits than (2.22) and 
(2.24) if 
 - the sample size is small or/and 
 - an item is highly reliable (either t0 is small or q is close to 1). 
Notice that the cases mentioned above are the most important in practice (see Exercises 2.3 and 
2.4).  The standard non-parametrical confidence limits for tq based on order statistic have the 
following deficiency (see Walsh(1962), Zacks (1971) and others).  For a specified confidence 
coefficient , the lower confidence limit for tq can be constructed only for a large enough sample 
size, namely, for N>N( ,q) where N( ,q) is some threshold value.  The standard non-parametrical 
confidence limits for P(t0) based on an empirical distribution function (see Section 2.5 below) have 
an analogous deficiency: for a given sample size N, the lower -confidence limit for P(t0) does not 
exceed some threshold level Q(N, )<1 for arbitrary small t. At the same time for IFR distributions 
P(t)  1 if t  0. 
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Confidence Strip for the Reliability Index 

 By construction, (2.22) is the lower -confidence limit for P(t) for any fixed moment t.   It 
is possible to show a stronger statement: inequality 

 (2.29) 
simultaneously holds for all t>0 with the probability not less than  if F(t) is IFR.  Thus, (2.22) 
gives -confidence strip for P(t) in the case of IFR distributions.  The proof of this statement 
follows from the fact that the confidence limit P*(t) for different t depends on the same statistic S 
(for details, see Pavlov (1977)). 

 Let us denote the unit's MTTF by  = P t dt
0



 ( ) 184.  By integration of the left side of (2.29), 

we obtain the following lower -confidence limit for the class of IFR distributions 
 

  
 
where the constant is 
 

Let us compare this limit with the lower -confidence limit for  for the exponential distribution 

  
The value of Cr is of the order Cr 1-exp(-r/N).  It follows that in the case of no censorship (or with 
insignificant one, that is, where r is close to N) there is no practical difference between the two 
confidence limits: * and .  If r<<N the difference becomes significant.  The constant Cr can be 

 *P t P t( ) ( )  
 

 * *

S
N

-
r-

S
t

r= P (t)dt = e dt = C
S

r -

-





0 0

101

1
1



  







(

( )
  (2.30) 

 

 r
-

(r- )
NC = - e .

1-

1
1

 
 
 

 


=
S
r -

.
-1 1 ( )

  (2.31) 
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interpreted as the correction coefficient for the confidence limit for  which should be used if you 
apply the "exponential methods" to a more general IFR distribution. 
 
Example 2.3.3  The test of four units by plan [N U r] with r=N=4 gave the following failure 
moments (in hours): 
 t1=40,  t2=80,  t3=110,  t4=240. 
 Then the lower -confidence limit (2.31), with the confidence coefficient =0.9, for the 
exponential distribution equals 
 

The lower -confidence limit (2.30) for the IFR distribution equals 

In this case the coefficient Cr equals 0.812.  
 Assume that under the assumption that F(t) is IFR, we need to check on the basis of (2.20) 
the following standard hypotheses related to the MTTF: 
 H0: >b vs. H1: <b 
 
where  b is a specified level of the reliability index .  Consider the following decision rule based 
on the lower -confidence limit (2.30): 
 
 to accept H0 if *>b, 
 to accept H1 if *<b. 
 
By definition of the lower confidence limit, this rule delivers the probability of the II type error (the 
consumer risk) not higher than =1-  for an IFR distribution.  This decision rule can also be 
expressed via the confidence limit (2.31) for the exponential distribution as 
 

 to accept H0 if > b
Cr

190, 

 to accept H1 if < b
Cr

191  (2.32) 

 

 


=
S
r -

=
470

3
=

470
6.68

= 70.4
-1 0.11 ( ) ( )

 hours. 

 
 

 *
r

-
3

4= C = - e = 0.812 = 57.3    



  1

0.1( )
 hours. 
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where coefficient Cr introduced above is less than 1.  It means that applying the "exponential 

method" we must increase the required level of reliability index equal to b in 
1

rC
192 times to keep 

the same II type error for the class of IFR distributions. 
 
Example 2.3.4  Under the conditions of previous Example 2.3.3, where test was made using by the 
plan of type [N U r] with N=r=4, to obtain the needed level b, we need to increase the required 

level of reliability in 
1 1

rC
=

0.812
= 1.22 193 times.  

 
Remark.  If we use  the decision rule (3.32) for index for the exponential distribution with no 
modification (i.e., Cr=1), the consumer risk increases. Concerning the producer risk, Barlow and 
Proschan (1967) showed that it might be preserved under some additional conditions on N, r and .  
For the reliability indexes of types P(t0) and tq, there is an inverse situation: the consumer risk is 
preserved and the producer risk increased.  In this connection, the questions arise:  How to 
guarantee simultaneously both types of risk for reliability indexes dealing with the class of IFR 
distributions?  Is it necessary to increase the sample size for testing?  If so, how much the sample 
size must be increased?  These and related questions are considered in Part III of the book. 
 
3.3.2 Test Plan [N R T] 
 
  Consider test plan of type [N R T] for systems consisting of units with IFR distribution of 
TTF (Pavlov (1974)).  Using plan [N R T], at any moment t we test N identical units.  Each failed 
unit is immediately replaced by a new one, completely identical.  The test continues up to some 
moment T specified in advance.  The result of the test are failure moments 
 
 t1<t2< ... <td<T (2.33) 
 
where d is the number of failures occurred during the test. 
 The lower -confidence limit for the IFR reliability function P(t) is found in the work 
mentioned above: 
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where S=NT is the total testing time of all units. This limit coincides for t NT
N + d

 195 with the 

standard lower -confidence limit for the exponential distribution for the same plan (see Section 
2.2): 

  
 Notice that for plan [N R T] the total number of units tested and the number of failure-free 

intervals equals N+d.  Thus, the value of * = NT
N + d

 197 represents the MTTF of a unit tested.  

Therefore the lower confidence limit of the reliability function for the exponential d.f. remains 
correct for the class of IFR distributions if t< * where * is a statistical estimate of the MTTF, .  
This fact can serve as statistical analogue of the well known lower bound of the IFR reliability 
function with the given MTTF (see Barlow and Proschan (1967)): 
 
 

 *

-
d

S
t

P t =
e    if  t

NT
N + D

,

 

           if  t >
NT

N + D
.

-
( )

( )1

0


 





















  (2.34) 

 

 P t = e .-
d

S
t-

( )
( )1 

    (2.35) 
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 The value of P*(t) delivers the lower -confidence limit of P(t) for each fixed moment of 
time t>0.  Besides, there exists even more strong statement, namely, that the system of inequalities 
 
 P*(t) < P(t) for all t>0 
 
holds with the probability not less than .  This gives us an opportunity to get the corresponding 
confidence limits for such reliability indexes as  tq and . 
 Let us define tq

* as the moment when function P*(t) crosses the level of q: 

 
from where 
 

  
 
By integration (2.34), we obtain 

 P t
e        if t ,

 
        if   t .

-
t
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 q
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where 

 
 Values of tq* and * deliver the lower -confidence limits for indexes tq and , 
respectively, for IFR distributions. 
 
Example 2.3.5  On the basis of tests performed by plan [N R T] we need to test hypotheses related 
to the probability of failure-free operation, P(t0), for some fixed moment t: 
 
 H0: P(t0)>b vs. H1: P(t0)<b 
 
where b is the required level of index P(t0).  
 Consider  the decision rule based on the lower -confidence limit (2.34): 
 
 to accept H0 if P*(t0)>b, 
 to accept H1 if P*(t0)<b. (2.38) 
 
By definition of the lower confidence limit, this rule delivers the probability of the II type error (the 
consumer risk) not higher than =1-  for IFR distributions.  Compare this decision rule with the 
standard case of the exponential distribution F(t) 
 
 to accept H0 if P(t0)>b, 
 to accept H1 if P(t0)<b. (2.39) 
 
where P(t0) is the lower confidence limit (2.35) for the exponential distribution.  This decision rule 
delivers the consumer risk equal to =1-  for the exponential d.f.  
 From (2.34) and (2.35), it follows that the decision rules (2.38) and (2.39) coincide if the 
required level of reliability, b, satisfies the inequality 
 b>q* (2.40) 
where 

 d
-

(d
N+dC = - e .
-

1
1  ( )

 
 

 *q = -
d

.
- d
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Using simple transformation and taking into account that 1 0
1

1- =
- 

 ( ) ln






 204, we obtain 

 

  

 To be correct, notice that in (2.40) we find the exact lower limit of the value 1- d
N + d

 ( )
206 in 

d rather than minimum, since this value exceeds 1 only as d  . 
 Thus, if the required level of reliability is sufficiently high, that is, the condition (2.40) 
holds, then the decision rule (2.39) preserves the consumer risk for IFR distributions.  An analogous 
fact is true for the index of type tq.  Let us show this on the following example. 
 
Example 2.3.6  On the basis of data obtained using plan [N R T], let us test hypotheses 
 
 H0: tq>b vs. H1: tq <b 
 
where b is the required level of tq.  Let us consider the decision rule based on the lower -
confidence limit (2.36) for IFR distributions: 
 
 to accept H0 if tq*>b, 
 to accept H1 if tq*<b. (2.42) 
 
and the analogous decision rule 
 
 to accept H0 if tq>b, 
 to accept H1 if tq <b. (2.43) 
 
which is based on the standard lower -confidence limit for an exponential distribution: 
 

  
 The confidence limits (2.44) and (2.36) coincide, and consequently, the decision rules (2.42) 
and (2.43) coincide if the inequality 

 * - Nq = - ,
N

=
e

, - .exp min
( )

max1
0 1
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 q > q* (2.45) 
 
holds.  (This inequality has the same sense as above.)  
 In practice, the required level of reliability is usually high, it is almost always higher than 
0.9.  Therefore the conditions (2.45) and (2.40) hold if, roughly speaking, 1- 0.9N   208, or 

For the confidence coefficients from 0.8 to 0.99, the left side of the above expression equal from 20 
to 40.  Thus, for test plans with replacement, the "exponential methods" applied to the class of IFR 
distributions usually preserves the consumer risk for indexes of types P(t0) and tq. 
 
 
3.4 Estimation of Unit Reliability Indexes for General Parametric Case 
 
 Let F(t, ) be the d.f of a unit's TTF and depend on some parameter .  This parameter may 
in general be a vector =( 1, ... , r).  We denote the corresponding density function by 
f(t, )=F'(t, ).  The value of parameter  (or components of ) is unknown.  We wish to determine 
the point estimate and confidence limits for some reliability index, R, on the basis of the test data.  
This index is assumed to depend on the mentioned above parameter 
 R = R( ) = R( 1, ... , r). 
 
 In practice we are usually interested in the following standard reliability indexes of a unit: 
 (1)  The probability of unit failure-free operation (PFFO) during a required time t0, 
R = - F t ,( ) ( ) 1 0 210. 

 (2) The mean time to failure (MTTF), R = - F t, dt( ) [ ( )] 
0

1


 211 

 (3) The guaranteed time to failure (or q100th percent life), R( ), which is determined 
from the equation 1-F(R, )=q. 
 
Remark.  In Section 2.4 we consider only units with no renewal, that is, only units working until its 
first failure.  Renewable units will be considered in Chapter 3 and in Part 2 (Reliability Estimate of 
Complex Systems). 
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3.4.1 Point Estimate of Reliability Index 
 
  The point estimate of reliability index R=R( ) is usually calculated as 

where  (   )  = ,..., r1 213 is a vector of point estimate of parameters which were found on the basis 
of test results by some standard method, usually by the maximum likelihood method. The likelihood 
function is usually written for different test plans in the following ways. 
  For plan [N U r] the likelihood function has the form 
 

  
where t1<t2< ... <tr-1<tr are the observed failure moments, F t, = - F t,( ) ( ) 1 215 is a 
complementary function, and C is a norm constant: C=N(N-1)  ... (N-r+1).  This formula for the 
likelihood function (as well as following below) is obtained in a  similar fashion to that for the 
exponential distribution (see Section 2.2 above). 
 For plan [N U T] this formula is 
 

  
where d is the number of observed failures, t1<t2< ... <td<T are the observed failure moments, and C 
is a norm constant (the meaning of it is insignificant). 
 For plan [N U (r, T)] the likelihood function is determined by (2.46) if d=r (that is, if tr<T) 
or by (2.47) if d<r (that is, if tr>T). 
 For plan [N R r] the likelihood function is 
 

  

  ( ) (   )R = R = R ,... , r  1  
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where si are the intervals terminated by failure, and uj are the incomplete intervals where the test 
was interrupted before a failure occurrence. 
 For plans with replacement [N R T]the likelihood function is 
 

  
where the notation coincides with the previous case. 
 For plan [N R (r, T)] the likelihood function is determined by (2.48) if d=r (that is, if tr<T) 
or by (2.49) if d<r (that is, if tr>T). 
 It is easy to see that the likelihood function can be written for all these cases in the uniform 
type as follows 
 

  
where, in addition to the previous notation, d is the number of complete intervals (up to the failure 
occurrence) and  is the number of incomplete intervals.  The latter values might be random or be 
specified in advance. 
 In accordance with the maximum likelihood method, the estimates of parameters 
 (   )  = ,..., r1 220 are those values of the parameters   = ,... , r( )1 221 which deliver minimum of 

the likelihood function (2.50) for given fixed test results si, uj, d, and .  As is well known, from the 
computational viewpoint is better to consider a logarithm of the likelihood function. 
 As an illustration, let us consider the two-parameter Weibull-Gnedenko distribution which is 
often applied to practical reliability problems.  This distribution has the cumulative function and 
density as follows 

and 
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where =( , ) is the vector of parameters. 
 This distribution was applied by Weibull for reliability engineering problems in mechanics 
(Weibull (1939, 1951)). Almost simultaneously Gnedenko showed that this distribution is a 
particular case of the class of limit distributions of extremum values of a large number of 
independent r.v.'s (Gnedenko (1941, 1943)). 
 The likelihood function (2.50) for the Weibull-Gnedenko distribution has the form 
 

 Various variants of calculation of the point estimates of parameters  225 and  226 for the 
Weibull-Gnedenko distribution are considered in Kao and John (1956), Lieberman (1960), Menon 
(1963), Cohen (1965), Mann (1968), Kudlaev (1986), and others. 
 If the point estimates  227 and  228 are found, the PFFO during time t0 

can be easily found as 

 In an analogous manner, we can find estimates for other reliability indexes. 
 
 
3.4.2 Confidence Limits for Reliability Indexes 
 
 Usual general approach for calculation of approximate confidence limits for a reliability 
index, R=R(), consists in finding the point estimate of this index,  ( )R = R  231 and after this a 
normal approximation is used for a large sample size.  In this case the lower and upper -
confidence limits for R are obtained as 
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where u  is the quantile of the level  of the standard normal distribution, V() is the variance of 
the estimate R 234 for the given values of parameters =(1, ... , r), and  (   )  = ,..., r1 235 is the 
vector of point estimates.  (Particular cases of this approach were considered in Sections 1.4.5 and 
1.4.6.)  The interval ( )R,R 236 forms the approximate two-side confidence interval with the 
confidence coefficient equal to 2 -1.  Besides, if the point estimates  (   )  = ,..., r1 237 are 
asymptotically unbiased and effective, then the confidence limits (2.51) are also asymptotically 
effective.  (Notice that the MLEs possesses such properties under some not too restrictive 
conditions.) 
 Nevertheless, this method is essentially approximate and can be applied only if the sample 
size is very large.  We should emphasize that the error is generated by the following two main 
factors:   
 (1) the normal approximation is used instead of an exact distribution of estimate R 238, and  
 (2) in (2.51) we use the estimate  239 instead of its exact value. 
 We will show below that such an approximation can lead to serious mistakes if the sample 
size is not large.  In particular, this approximation might lead to a significant increase of the lower 
confidence limit of reliability indexes (MTTF, or PFFO). 
 
Example 2.4.1  For illustration, let us consider a simple example with the exponential distribution, 
F(t, )=1-e- t, for which the strict confidence limits are known.  Consider plan [N R T] with N=10, 
T=150 hours. During the test we have observed d=6 failures.  
 We are interested in the upper -confidence limit, =0.99, for parameter .  (This case 
corresponds to the lower estimation of a reliability index).  In this case the MLE of parameter  has 
the form 

This estimate is unbiased with the mathematical expectation E  = 241 and variance 

V = - =
NT

.( ) (  )  


E 2 242  Applying formula (2.51) and Table E.5 for quantiles of the standard 

normal distribution, we obtain the following approximate upper -confidence limit for   

 R = R-u V( ), 
   

(2.51) 
 

 R = R+u V( ), 
   

 

  = d
NT
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 We can find the same upper confidence limit by the strict formula (2.18).  By this formula 
and Table 12.4, we have 
 

 This difference becomes more visible if we consider such a standard reliability index as 
MTTF, =1/ .  In this case the approximate lower -confidence limit, =0.99 is 

and the strict limit is 
 

 Thus, the use of the normal approximation (2.51) gives some 24% of error and in the 
undesirable direction.  For practical use it is always better to have a conservative evaluation of a 
reliability index. 
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 However, except an exponential distribution, the strict confidence limits for reliability 
indexes can be constructed for very few particular cases.  Some of them are considered below.  
 

Confidence Limits for the Normal Distribution 
 Consider a unit which has a normal distribution of TTF 
 

where (•) is the function of the standard normal distribution (Laplace function),  and  are the 
mean and standard deviation, respectively.  In this case the two-dimension parameter is  

=( , ).  
 Consider a test by plan [N U N] which corresponds to the complete sample.  The results of 
this test are 
 
 t1<t2< ... <tN. (2.52) 
 
We are interested in the confidence limits for the reliability function for the fixed  t0, that is,  
 

  
 Since (•) is a monotone increasing function, the problem is in finding the confidence limits 

for 

- t .0 249  The standard empirical mean and variance found by the test results (2.52) are 

x =
N t
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 ( ) 251  Then statistic 

  
has a non-centered Student distribution with N-1 degrees of freedom and with the parameter of non-
centrality 
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(More details about the Student distribution see, for example, in Rao (1965), Section 3a.)  Now we 
can construct the desired confidence limits.  Let us denote the non-centered Student distribution 
with N-1 degrees of freedom and with the parameter of non-centrality by G(y, )=P(W<y). This 
function is decreasing in .  Applying the general method-of the confidence limit construction (see 
formula 1.30), we find that the lower and upper -confidence bounds for parameter  follow from 
the equations 

where W is the value of statistic (2.54).  After this the lower and upper -confidence limits for the 
reliability index (2.53) can be found by the formulas  

The interval ( )R,R 257 is the two-sided confidence interval for R with the confidence coefficient 
2 -1. 
 
 
 
                            

Confidence Limits for the Weibull-Gnedenko Distribution 
 Consider test of a unit by plan [N U r].  Let the unit's TTF be distributed by Weibull-
Gnedenko: 
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where >0 and >0 are unknown parameters.  Test results are presented by the moments of the 
first r failures 
 
 t1<t2< ... <tr-1<tr. (2.55) 
 
The task is to construct the confidence limits for the reliability function for fixed t0 

  
on the basis of the test results. 
 In practice, the most important is to construct the lower confidence limit for (2.56).  The 
solution of this task is obtained in Johns and Lieberman (1966). 

 Instead of test results in the form of (2.55), let us introduce new r.v.'s: i
i

0
y = t

t
,ln





260, i=1, 

... ,r.  The distribution function of the r.v. y =
t0

ln 





261can be written in the form: 
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where H(z)=1-exp(-ez).  Thus,  and  represent parameters of bias and scale for the distribution of 
the r.v. y.  Notice that the reliability index defined in (2.56) is expressed via  and  as 

  

So, the problem is reduced to the construction of the confidence limits for the value 


.268 

 Let us introduce linear statistics 
 

and 

 
where ai and bi are some constants such that 
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These r.v.'s can be represented in the following form: 
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and 

 The distribution of r.v.'s iy - 


276  does not depend on parameters  and .  So, the two 

dimensional r.v. (Va, Vb) does not depend on  and .  This allows us to construct the confidence 

limits for 


277 and P(t0).  From (2.59), we obtain 

For each fixed t, consider the r.v.  tVb-Va and find the value of L(t) from the following condition 
 

  
where  is the specified confidence coefficient.  Then 
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where h(•) is the function inverse to the function L.  Denoting t = h 





 281 and taking into account 

that L t = L h ) =( ) [ ( )]






282, we obtain from (2.61) that 

 

So L
Z
Z

a

b







284 is the lower -confidence for r.v. 


.285  It follows from (2.58) that the lower -

confidence for the reliability index P(t0) has the form 

  
L(•) can be calculated using Monte Carlo simulation.   
 Above procedure of the confidence limits  construction depends on the choice of constants 
ai and bi while statistics Za and Zb are determined.  Johns and Lieberman obtained the tables for 
construction of optimal confidence limits which are asymptotically effective.  They also give tables 
of the confidence limits (2.62) for various values of N,  r, and . 
 We present an example which permits one to compare the confidence limits obtained by the 
method of Johns and Lieberman with the confidence limits for an IFR distribution given in Section 
2.3. 
 
Example 2.4.2  Ten units (N=10) were tested by plan [N U r].  The test was terminated with 
occurrence of the fifth failure (r=5).  The moments of failure were (measured in hours) 
 ti=50, ti=75, t3=125, t4=250, t5=300. 
Assume that a unit has TTF with the Weibull-Gnedenko distribution.  We need to construct the 
lower -confidence limit, =0.9, for the PFFO, P(t0), with the fixed required time of failure-free 
operation, t0=40 hours. 
 For this example, in Johns and Lieberman (1966) the lower confidence limit (2.62) was 
found: 
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Example 2.4.3  For the previous example, assume that the unit's TTF distribution is IFR.   
 The total testing time of all units in this case equals 
 
 s=50+75+125+250+300+5 300=2300 hours. 
 

The time interval t0 for which we estimate the unit reliability index satisfies the inequality 40=t0<
S
N

288=230.  Therefore the lower confidence limit can be constructed by the "exponential methods" 
(see Section 2.3).  Applying the formula (2.22) from the previous section and Table 12.4, we find 
for the same confidence coefficient =0.9: 
 

  
The lower confidence limit (2.64) for the class of IFR distributions is essentially higher than the 
lower confidence limit (2.63) which was found for the Weibull-Gnedenko distribution.  Notice that 
the class of IFR distributions includes a family of Weibull-Gnedenko distributions (with the shape 
parameter >1).  In our opinion, such a significant difference can be explained by the fact that <1 
family of Weibull-Gnedenko distributions also contains a subclass of DFR distributions.  So, the 
general approach can give a gain in comparison with the strict results obtained for specific cases. 
 
3.5 Nonparametric Confidence Limits for Distribution Function 
 
 At the beginning of this section let us consider the test plan [N U N].  The test results  in this 
case are moments t1<t2< ... <tN  which form a complete sample of size N.  We assume that the d.f. of 
unit's TTF, F(t), is continuous.  Let NF t ( ) 290 be the empirical distribution function constructed on 
the basis of the test results, and 

 (2.65) 
be the maximum deviation of the empirical d.f. from the theoretical one.  It is important that the d.f. 
of r.v. DN does not depend on the d.f. F(t).  To convince the reader, let us introduce  a new r.v. 
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=F( ) which, as it is well known, has the uniform distribution on the interval [0, 1].  Then the 
statement above follows from the equality 

where NG z ( ) 293 is the empirical d.f. constructed on the basis of the sample i=F(ti), i=1, ... ,N 
taken from the uniform distribution. 
 Let the d.f. of the r.v. (2.65) be denoted by 
 
 HN(u) = P{DN <u}. (2.66) 
 
 Distribution (2.66)is the distribution of r.v. (2.65) which is defined for any distribution of 
initial r.v .  So, it is enough to find (2.66) for any distribution, for instance, for the uniform 
distribution of an r.v. .  Let us denote the quantile of the level 1-q for the distribution (2.66) by 
A(N,q).  We obtain that the inequalities 
 

simultaneously hold for all 0<t<  with the probability .  Thus, these inequalities give -
confidence strip for the reliability function P(t)=1-F(t).  In accordance with (2.67), this strip has the 
form 
 

  
for all 0<t< .  Here N NP t = - F t ( )  ( )1 296 is the empirical reliability function.  The numerical 
values of A(N,q) are given in Appendix (Table E.11).  For N , the asymptotic distribution of 

N DN 297 is given by the Kolmogorov distribution (see Section 1.5.6).  Therefore for large 
sample size N, the -confidence strip of the reliability function can be approximately determined by 
the inequalities 
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 N NF t - A N, - F t F t + A N, - ( ) ( ) ( )  ( ) ( )1 1     (2.67) 
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where yq is the quantile of the level 1-q of the Kolmogorov distribution (the numerical tables see in 
Appendix, Table E.12.)    
 

Plans [N U r], [N U T], and [N U (r,T)] 
 For all these censored plans listed above, the considered confidence strips for distributions 
and reliability functions remain valid but only for the time interval 0<t< where  is the moment of 
censorship.  This moment for the plans mentioned above are determined as =tr, =T, and = min 
(tr, T).  For t> in the nonparametrical case, that is, where there is no assumption about a 
distribution belonging to any distribution family, it impossible make more to declare anything 
except the trivial inequalities 
 

 
3.6 Bootstrap Method of Approximate Confidence Limits 
 
 The idea of the bootstrap method will be demonstrated using the following simple example.  
Assume that we use plan [N U r].  A unit's TTF has the distribution, F(t, ), with an unknown 
vector of parameters =( 1, ... , r).  The results of the test are presented by the random vector 
 
 x = (t1, ... ,tr) 
 
where t1<t2< ... <tr are the moments of sequential failures. 
 We need to construct the confidence limits for some unit's reliability index R=R( ).  For 
instance, if we are interested in the unit's MTTF, then 

if this reliability index is PFFO, then 
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and so on. Let  ( ) = x 302 and   ( )R R x= 303 are some point estimates of  and R( ), 
respectively, which are obtained on the basis of the test results x.  Let us denote the d.f. of estimate 
R 304 for a given value of  by 

 For the sake of simplicity, we assume that this function is continuous and strictly monotone 
increasing in t. 
 The lower and upper confidence limits, R  and R 306, with the confidence coefficient =1-

-  for the reliability index R, are determined from the conditions 
 

  
that is, they are the corresponding quantiles of the distribution H(t, ) of the estimate R.309  
However, the function H(t, ) depends on the parameter  which is unknown by the assumption.  
Let us set =  310 where  311 is the estimate of  found on the basis of the test results.  It gives 
us the estimate of H(t, ) in the form of H t, .( ) 312  The final form of the confidence limits for R  
and R 313 is presented by 

  
 An analytical form of the d.f. H(t, ) is usually unknown and if known then it is rather 
complex.  Therefore in most cases the function and confidence limits R  and R 316 are 
approximately found by Monte Carlo simulation with setting = .  
 Thus, the procedure of this method is as follows: 
 (1)  On the basis of real test results, x, we calculate the point estimate of the vector of 
unknown parameters  ( = .x) 317 

 R = - F t ,( ) ( ) 1 0  
 
 

 H t, = P R t .( ) (  )      (2.69) 
 
 

 H R, = ,( )   
(2.70) 

 
 H R, = - ,( ) 1  
 

 H R, = ,( )   
(2.71) 

 H R, = -( ) . 1  
 



 

103 
 

 (2) Then with the help of computer modeling, we find M independent realizations of the 
process of testing with =  318 : 

where xi is the ith realization of modeling, and i i iR = R x  ( ) 320 is the estimate of the reliability 
index obtained in the ith realization, 1<i<M. 

(3) On the basis of the obtained values 321, we construct by a common way the 
corresponding empirical d.f. MH t . ( ) 322  

Finally,its quantiles of the levels  (from the left) and 1-  (from the right) are chosen.  They are the 
confidence limits, R and R 323, respectively.  For instance, if = =0.05 and the number of 
realizations N=1000, we take R= (50) and R = (950) 324 where (j) is the jth order statistic. 
 
Remark.  This approach can be extended in an obvious way to a nonparametric case, if we consider 

 as the d.f. of a unit's TTF, F(t), and  325 as its empirical d.f., NF t ( ) 326 (for plan [N U N]).   
The interval ( )R,R 327 constructed in such a way is not, generally speaking, the confidence interval 
for R in a precise "frequency" sense.  Indeed, it does not follow from the construction of the interval 
that this interval satisfies the condition 
 

for all .  (Here =1- - .)  Therefore the bootstrap limits ( )R,R 329 can be interpreted as 
approximate confidence limits.  Sometimes these limits are close to the confidence limits but 
sometimes they are weaker(see Example 2.6.3). 
 
Example 2.6.1  A unit with the normal d.f of TTF is tested by plan [N U N].  The mean of this 
normal d.f. equals  and the variance equals 2, assume that >> 2.  The result of this test has the 
form of the complete sample of size N: 
 
 t1, t2, ... ,tN.  
 
 Let us construct the bootstrap limits for the parameter  under the assumption that the 
variance 2 is known.  The standard point estimate of the mean  is its empirical average 

 =
N t

i N
i .1

1 
 330  For given value of , the estimate  331  has the normal d.f. with the mean  

and variance 2, that is, 

 (  ) (  ) (  )1 1 2 2x ,R , x ,R , ... , x ,RM M  
 
 

   P { ( ) }R R R    
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where (u) is the function of the standard normal distribution with parameters =0 and =1.  
Applying (2.71), we obtain the lower and upper bootstrap limits,  and  333, for  from the 
equations 
 

From here it follows 

where uq is the quantile of level q of the standard normal distribution.  Thus in this case the 
bootstrap limits coincide with the standard exact confidence limits for .  
 
Example 2.6.2  Consider the conditions of the previous example with the following difference:  the 
variance 2 is unknown.  In this case =( , ) is the two dimensional parameter and the reliability 
index of interest is R=R( , ) .  The estimate of the vector of parameters  is  (  )  = , 338 
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respectively.  For the given =( , ), the distribution of the estimate  341 has the same form as 
in the previous case: 

 Applying the equation (2.71), we find that the lower and upper bootstrap limits  and  343 
can be found from the equations 
 

and from here it follows 
 

 In this case the bootstrap limits do not coincide with the exact confidence limits for 
parameter  based on the Student distribution.  Thus these limits can be considered only as 
approximate ones.  
 
Example 2.6.3  Consider now the exponential distribution F(t, )=1-exp(-t/).  In this case, 
parameter  represents the MTTF.  Applying the approach described above, let us construct the 

bootstrap limits for the parameter  for plan [N U r].  The standard point estimate for  is  = S
r
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348 (see Section 2.3) where S=t1+ ... + tr+(N-r)tr is the total testing time of all units during the 
entire test.  The d.f. of the estimate  349 for a specified value of  is given by the expression 

Taking into account that r.v. S has the gamma distribution with the parameters  and r where 
=1/  (see Section 2.3), we obtain 

where 

is the gamma d.f.  
 Thus, for this example, the d.f. of estimate  353 can be easily found in an analytical form.  
It allows us to obtain analytical expressions for the bootstrap limits  and  354.  In 
correspondence to (2.71), these limits can be found from the equations 
 

Finally, we have 
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where values of 1- (r-1) and (r-1) were introduced above in Section 2.3.1.  At the same time, 
the exact confidence limits for parameter  for the exponential distribution and for test plan [N U r] 
has the form (see Section 2.3.1): 

  
 From the expressions obtained above, we have that the ratio of the bootstrap limits to the 
confidence limits is written as follows 

 It is easy to check, for instance, by direct calculations with the help of tables for q(r-1) (see 
Table 12.4), that both ratios are less than 1.  It means that the lower and upper bootstrap limits are 
biased to the left in respect to the exact confidence limits, that is,  <  362 and  <  363.  
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Example 2.6.4  The test was performed by plan [N U r] until the occurrence of two failures, d=2.  
The total unit testing time was S=100 hours.  Then for =0.9, and = =0.05 using table 12.4, we 
find 
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Naturally, using the bootstrap method in this particular case has no sense since the exact confidence 
limits are known.   However, this example clearly shows that the bootstrap method might produce a 
very significant bias.  Thus this method should be used with a definite caution. 
 Nevertheless, this method has some obvious advantages: it is simple, understandable and 
universal.  This is the reason why it is so often used in practice.  This approach and some its 
improvements were considered by Efron (1981, 1985) and others.  The bootstrap method is useful 
for the situations where exact confidence limits are not calculable.  In particular, this method is very 
effective if you estimate reliability indexes of complex systems by results of testing their units (see 
Part 2). 
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PROBLEMS to Chapter 2 
 
2.1  Eight units (N=8) have been tested by plan [N U r].  The test has been terminated with the 
occurrence of the second failure (r=2).  There were two recorded failures at t1=60 hours and t2=110 
hours.  A unit has the exponential distribution, F(t)=1-e- t.  
 Construct the -confidence limit, =0.9, for the parameter , for the PFFO, P(t0) if t0=5 
hours, and for the MTTF, . 
 
2.2  The test have been performed by plan [N U T].  Ten units have been tested (N=10). The test has 
been terminated at the predetermined moment, T=100 hours.  There have been recorded two failures 
at t1=15 hours and t2=72 hours.  The unit has the exponential distribution, F(t)=1-e- t.  
 Construct the point estimates and lower confidence limits with the confidence coefficient 

=0.975 for the parameter , for the PFFO, P(t0) if t0=10 hours, and for the MTTF, . 
 
2.3  Testing of seven units (N=7) has been performed by plan 
[N U r].  The test has been terminated at the moment of occurrence of the third failure (r=3).  The 
moments of failure occurrence are: t1=150, t2=250 and t3=400 hours.  The unit's TTF distribution, 
F(t), is assumed to be IFR.  
 Construct the lower confidence limit with the confidence coefficient =0.975 for the PFFO, 
P(t0)=1-F(t0) if t0=20 hours. 
 
2.4  In the conditions of the previous exercise find the non-parametrical lower confidence limit for 
P(t0) with the same confidence coefficient =0.975.  Compare the result with the case where F(t) is 
IFR. 
 
2.5  Assume that F(t) is IFR.  In the conditions of Exercise 2.3 find the lower confidence limit for 
MTTF, , with the confidence coefficient =0.975.  Compare that results with the result for the 
exponential distribution. 
 
2.6  The test of for units (N=4) has been performed by plan [N R T].  Failed units were immediately 
replaced by new ones.  The test has been terminated at the moment of time predetermined in 
advance, T=100.  Six failures have been recorded (d=6).  We assume that the unit's TTF 
distribution, F(t), is IFR.  
 Construct the lower confidence limit with the confidence coefficient =0.95 for P(t0) if t0=1 
hour. 
 
2.7  In the conditions of the previous exercise find the lower confidence limit with the confidence 
coefficient =0.95 for the guarantee unit's TTF tq (with the guarantee level q=0.9). 
 
2.8  In the conditions of Exercise 2.5 find the lower confidence limit with the confidence coefficient 

=0.95 for the MTTF, . 
 
2.9  Ten units (N=10) have been tested by plan [N U r].  The test has been terminated after the fifth 
failure (r=5).  The moments of failure occurrence are: t1=50, t2=75, t3=125, t4=250, and t5=300 
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hours.  It is known that the unit's TTF distribution, F(t), is IFR.  Find the non-parametrical 
lower confidence limit with the confidence coefficient =0.9 for P(t0) if t0=40 hours.  Compare this 
result with that obtained for the Weibull-Gnedenko distribution (see Example 2.4.2 above) and IFR 
distribution (see Example 2.4.3). 

 
 

4. Censored Samples 
 
4.1 Introduction 
 
 Censored samples appear in practice if for some reasons, we stop testing before all tested 
units have failed.  The procedure of test interruption may be different: test of the entire sample 
might be stopped at some moment of time (chosen in advance or spontaneously); test of some group 
of tested units might be stopped at some specified moments; finally, test of some individual units 
might be terminated for some reason.  At the end, we know several moments of unit failures and 
also know that some units have their time to failure (TTF), tj, larger than moment of their test 
stopping, j.   

Sometimes we have information that the moment of failure belongs to the time interval 
aj<tj<bj. Such a situation appears if we perform only periodical inspections.  At moment bj we found 
that the unit j has failed though at the previous inspection at moment aj it was operational.  These 
test plans cover most but not all possible types of censorship. 
 
 
 
 
4.2    Independent Random Censorship 
 
 One of the most known and best investigated problem of censored testing is the following.  
We have a unit with unknown d.f. F(t)=P{ <t} of a random TTF, .  We are testing N identical 
independent units.  Testing of each unit is terminated at a random time  if it has not failed.  
Random variables  and  are independent.  The d.f. of  is denoted by G(t)=P{ <t}.  Thus unit j 
is tested up to the moment  
 zj=min ( j, j) 
where j is the moment of the jth unit failure, j is the moment of the jth unit's test termination, j=1, 
... ,N.  We assume that all r.v.'s 1, ... , N, 1, ... , N are mutually independent.  Thus, the test 
results are N pairs of r.v.'s 
 (zj, Ij),  j=1, ... ,N (3.1) 
where Ij=1 if j< j, that is, the jth unit has failed during the test, and Ij=0 if j> j, that is, the test 
was terminated before a failure. 
 Using the test results (3.1), we need to estimate this d.f. These results can be represented in 
more convenient form by introducing an additional notation 
 
 sj=zj  if Ij=1, 
 uj=zj  if Ij=0. 
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 Values sj are called complete intervals and values uj are called censored ones.  In this 
notation (3.1) can be rewritten as 
 (s1, ... ,sd), (u1, ... ,uN-d) 
where d is the number of failed units and N-d is the number of units whose test was terminated. 
 This model is called the model of independent random censorship.  Sometimes this model is 
also called the model of "concurrent risks" where moments of test termination are interpreted as 
failures of some other types. 
 
Example 3.1    Consider a series system consisting of two independent units.  Their TTFs 

are denoted by  and , and their d.f.'s by  F(t)=P{ <t} and G(t)=P{ <t}, 
respectively.  The system TTF is defined as 

 z = min ( , ). 
Assume that we wish to estimate the d.f. of the first unit, i.e., F(t) under the following restriction: 
this unit can be tested only within the test of the entire system. Let N systems be under the test and 
every time the test is continued until system failure.  We have test results in the form  
 (zj, Ij),  j=1, ... ,N 
where zj = min ( j, j) is the moment of system failure, j and j are the moments of unit failures 
within the jth system, 
  1 if j< j,  
        Ij=                     
  0 if j> j.  
 
 It is clear that this is a particular case of the model of independent random censorship 
("concurrent risks"). 
 
Example 3.2  Consider a series system consisting of n units of the first type and m units 

of the second type with the d.f.'s F(t)=Pr{ <t} and G(t)=Pr{ <t}, respectively.  
All system units are independent.  The moment of the system failure is 
determined as 

 
 z = min ( 1, ..., n, 1, ... , m) 
 
where k is the moment of failure of the kth unit of the first type, k=1, ... ,n, and r is the moment 
of failure of the rth unit of the second type r=1, ... ,m.  We are testing N identical systems until 
failure.  Let us again estimate F(t).  The test results are represented by the set of Nn TTF intervals of 
units of the first type: d complete and (Nn-d) censored, where d is the number of system failures due 
to units of the first type.  
 In this case, the model of test is not based on independent random censorship; after a failure 
of a unit of the first type, testing of all of the remaining units of this type is terminated.  It leads to 
the fact that the moment of the test termination of the units of the first type might depend on the 
failures moments of units of the same type.  
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Remark 3.1   These examples lead to the problem of estimation of unit reliability on the basis of 
system testing.  The "inverse problems" concerning estimation of the system reliability on the basis 
of censored testing of its units are less investigated (see Part II of the book). 
 
Remark 3.2  (relating to terminology). Let tj be the moment of the jth unit failure and  be the 
moment of censorship.  Then if <tj we say about censorship from the left.  (Examples above are of 
this type.)  If tj<T where T is some moment of time, we say about censorship from the right.  
Finally, if a<tj<b,we say about interval censorship. 
 
Example 3.3  Units are tested by the plan [N U T], that is, N units to be tested starting at t=0 with 
no replacement of failed units and the test continues until a prior specified moment T.  There is no 
recording the moments of failures during the test.   Thus, the only information is that d units have 
failed up to the moment T: tj<T,  j=1, ... ,d (censorship from the left).  All the remaining N-d units 
don't fail, i.e., tk>T, k=1, ... ,N-d (censorship from the right).  
 
Example 3.4  Consider the test plan [N U T].  There is a possibility to check the unit states only at 
some specified moments 
 0<T1< ... <Tn<T. 
 
We have observed d failures for each of which it is known that the moment of failure tj belongs to 
an interval (Tl, Tl+1). Thus, for d units we have interval censorship and for the remaining N-d units 
tk>T, that is, there is censorship from the right.  
 
 We see that there are many various situation which lead to the test censorship.  Main 
attention will be paid to the models with censorship from the right. 
 
4.3 Markov Model of Censored Testing without Renewal 
 
 The following testing model with censorship was considered in [Ushakov, 1980], and 
[Pavlov and Ushakov, 1984].  It is a natural generalization of the model of independent random 
censorship ("concurrent risks").  A close model was considered in [Belyaev, 1984].  Let us present 
an informal description of the problem (formal description is given below in Section 3.7.2 of 
Appendix of the current chapter). 
 Let a test of N identical and independent units with unknown d.f. begin at moment t=0. At 
some moment 1 we terminate the test of n1 units (operational up to this moment), then at some 
moment 2, 2> 1, we terminate the test of n2 units, an so on.  The sequential moments of time 1, 

2, ... , k, ... and corresponding numbers n1, n2, ... ,nk, ... can be chosen in advance or in the process 
of testing (even depending on the result of the test).  All of these values might be deterministic or 
random.  Moments where we terminate testing of some number of units 1< 2< ... < k< ... form 
monotone increasing sequence of Markov random moments (see below Section 3.7.1 of 
Appendixes to the current chapter).  The number of units, n1, whose testing is terminated at the 
moment 1, is random and might depend on the prehistory of test evolution up to the moment 1 
but does not depend on the future testing process trajectory for t> 1.  In analogous way, the number 
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of units, nk, k>1,  whose testing is terminated at the moment k, is random and might arbitrarily 
depend on the prehistory but does not depend on the future for t> k.   
 The moment of the termination of the entire test, , might also be random.  The total 
number of inner termination points might be random (although naturally restricted by N).  So, it is 
sufficient to consider a finite sequence of N moments: 1< 2< ... < k< ... < N< . For formal 
description, it is convenient to assume that some nk might be equal to 0.  The number of a "real" 
number of termination, r, is defined as the number of such moments k for which nk>0. Thus the 
model is given by the set 
 
 M = {( 1, n1), ( 2, n2), ... ( N, nN), } (3.2) 
 
 We will call this model of testing a Markov model.  We repeat once more that the 
intervention in the testing process does not depend on the future. 
 This model generalizes the model of independent random censorship ("concurrent risks"), 
standard testing plans without replacement of types [N U T], [N U r] and [N U (r,T)] considered in 
Chapter 2 and factually all other testing plans without replacement.  For instance, it includes the 
case where a sample is tested simultaneously by several different plans of class U (some by plan [N1 
U r1], another by plan [N2 U T2],  and so on). 
 The main characterization of the plan (3.2) is an absence of replacement of failed units.  We 
will call this model Markov model of type U and use the abbreviation [MMU].  More general 
models including tests with replacement (renewal) are considered below in Section 3.6. 
 As above, an interval is called complete if it terminates by the unit failure, and censored 
otherwise.  Let N(t) be the number under testing at moment t.  A graph of function N(t) is a 
convenient form of the process presentation.  The graph can be constructed by putting ordered 
intervals one over another.  The staircase function N(t) is represented by the envelope of this set of 
intervals (see Figure 3.1). 
 
 Figure 3.1 
 
The results might also be presented by the set of failure moments t1, t2, ... ,tj, ...,  moments of 
termination 1, 2, ... , k, ..., and numbers of units whose test is terminated at those moments, n1, 
n2, ... ,nk, ... .  Same information might be also presented by the set of complete and censored 
intervals: s1, s2, ... ,sd; u1, u2, ... ,uN-d, where d is the total number of failures.  Notice that some uk 
may coincide if nk>1. 
 
4.4  Non-Parametrical Estimates of Reliability Function 
 
4.4.1  Kaplan-Meier Estimate 
 
 Let us consider the problem of construction of the point estimate of unit reliability function, 
P(t)=1-F(t).  The d.f. F(t) is assumed continuous. Estimate (3.3) given below was found by Kaplan 
and Meier (1958).  This estimate is often called product limit estimator.  It can be easily extended 
on the general Markov model described above. 
 For convenience, let us introduce the following notation: 
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 D(t) is the number of failures on interval (0, t], or in other words, the number of failure 
moments tj such that tj <t; 
 L(t) is the number of units whose test has been terminated on interval (0, t], or in other 
words,  
 

L t = n
kk t

k( )
: 
  

 
N(t) is the number of units under test at the moment t (that is, not failed or terminated): 
 
 N(t)= N - D(t) - L(t). 
 
 All random functions D(t), L(t),and N(t) are continuous in t from the right. Let us also 
denote 
 

D(t-)= 
  0 0,
lim D(t-), N(t-)= 

  0 0,
lim N(t-) 

 
the limits of the mentioned functions from the left at the moment of time t.  
 Let 0< 1< 2< ... < r be the moments of test termination for groups of units and l is the 
total number of such termination.  Then the estimate ( )P t 364 of the reliability function P(t) at the 
moment t is constructed as follows 
 

( )
( )

P t = - d
N

- d t
Nk m-

k

k

m

m0 1
1 1

 
 










 

 
for m<t< m+1,  m=0, 1, ... ,r where dk=D( k+1)-D( k) is the number of failures on the kth interval 
( k, k+1] between two sequential termination points; Nk=N( k) is the number of units testing at the 
beginning of the kth interval ( k, k+1], or in other words, the number of units under the test after 
current test termination for a group of units at moment k,  k=0, 1, ... ,r; dm(t)=D(t)-D( m) is the 
number of failures on the interval ( m, t]. Here we assume that 0=0, N0=N(0)=N, and l+1= . 
 It is easy to see that (3.3) can be rewritten in the following form 

 ( )
( )
( )( )

P t = -
D t

N tj D t

j

j
-

1
1

 













  (3.4) 

 
where tj is the moment of the jth failure; N(tj-)=N(tj-0) is the number of units under the test just 
before the moment of the jth failure; D(tj)=D(tj)-D(tj-) is the number of failures at the moment tj.  
If the d.f. F(t) is continuous then D(tj)=1 with the probability 1.  It means that (3.3) and (3.4) can 
be rewritten as 
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( )( )

P(t) = -
N tj D t j

-
1

1
1

 










   (3.5) 

 
Sometimes it is more convenient to write (3.4) and (3.5) in the form of infinite product as 

 ( )
( )

( )
P t = -

D u
N uu t

-

 






1


 

 
where N(u-)=N(u-0), and D(u)=D(u)-D(u-). 
 
Remark 3.3   Expressions (3.3)-(3.5) are valid for all situations except the only special case where 
m=l, l<t and Nl=N( l)=0, that is, the test of all units has been terminated at some moment l 
before t.  (For illustration, in Figure 3.2 we depicted the case with r=4.)  In this case one needs to 
reject attempts of construction of estimate, or formally set, for instance,  ( )P t  0 365.  (In the latter 

case, we should use a conditional agreement that ratio 
0
0

1= 366.) 

 
 Figure 3.2 
 
Example 3.5  Nineteen units have been tested (n=19). The test was stopped at moment t.  The test 
results are presented in Tables 3.1 and 3.2 where tj are the moments of failures (in hours), k are the 
moments of test termination for a group of nk units.  The graph for this case is depicted in Figure 
3.3. 
 

Table 3.1 
Table 3.2 
Figure 3.3 

 We need to construct the estimate ( )P t 367 for the reliability function P(t) for the specified 
moment t=300 hours.  In this case the total number of test termination r=4.  The moment, for which 
the reliability function is estimated, is t=300 and it satisfies the inequalities  1< 2<t< 3< 4, that 
is, m=2.  The numbers of failures between two sequential test termination moments are 
 d0 = D( 1) - D(0) = D( 1) = 3, 
 d1 = D( 2) - D( 1) = 4-3=1.    
The number of failures on the interval ( 2, t] equals 
 d2(t) = D(t) - D( 2) = 5-4=1.    
The values of Nk at the beginning of these intervals are 
 N0=N(0)=19, 
 N1=N( 1)=N0-d0-n1=13, 
 N2=N( 2)=N1-d1-n2=10. 
Thus, the estimate (3.3) in this case equals 
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( )
( )

.P t = = -
d
N

-
d
N

-
d t

N
= - - - = .300 1 1 1 1

3
19

1
1

13
1

1
10

0 6980

0

1

1

2

2































  

 
Calculation with the help of formula (3.5) gives the same result 
 

( )
( )

.P t = = -
t

= - - - - - = .
j 5 j

-300 1
1

1
1

19
1

1
18

1
1

17
1

1
13

1
1

10
0 698

1 










 

























 

 
Notice that (3.5) usually leads to simpler calculations because it does not need any ordering of 
intervals ( k, k+1] on the time axis. 
 
Example 3.6  (The case where the moment of test termination of a group of units coincides with a 
moment of one of failures).  In the condition of the previous example let us calculate the estimate of 
reliability function P(t) for the moment t=375.  In this case, one of the termination moments, 

3=344, coincides with the moment of failure, t6=344.  The calculation is analogous to the previous 
case.  In this case the moment t=375 satisfies the inequalities 
 1< 2< 3<t< 4, 
that is, m=3.  The values of dk and Nk equal 
 d0 = D( 1) - D(0) = 3, 
 d1 = D( 2) - D( 1) =1, 
 d2 = D( 3) - D( 2) =2,    
 d3(t) = D(t) - D( 3) =0; 
 N0=N(0)=19, 
 N1=N( 1)=13, 
 N2=N( 2)=10, 
 N3=N( 3)=3. 
The estimate (3.3) in this case is 
 

( )
( )

.P t = = - d
N

- d
N

- d
N

- d t
N

= - - - = .375 1 1 1 1 1
3

19
1

1
13

1
2

10
0 6210

0

1

1

2

2

3

3






































 

 
Calculation with the help of formula (3.5) gives the same result 
 

( )
( )

.P t = = -
N t

= - - - - - - = .
j j

-375 1
1

1
1

19
1

1
18

1
1

17
1

1
13

1
1

10
1

1
9

0 621
1 6 










 






























  

 
 
4.4.2 Discrete Scheme of Testing 
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 Let us consider a simple approximate method of obtaining the estimates (3.3)-(3.5) above.  

Let us divide the interval (0, t] into M equal parts, each of the length h = t
M

368.  Consider the case 

where test termination moments of groups of units, k, can take only discrete values h, 2h, ... ,jh, ... 
where the size of a step h is fixed but might be infinitesimally small.  Consider the conditional 
probability of unit failure on the interval (jh, jh+h) under condition that the unit has not failed before 
the moment jh or has not been removed from the test.  Denote this probablility by 

jq =
P jh - P jh + h

P jh
.

( ) ( )
( )

    (3.6) 

 
Then P(t) might be written as 
 

P t = - q .
j M -

j( ) ( )
0 1

1
 
           (3.7) 

 
Formula (3.7) can easily be obtained from the definition of the reliability function and the 
conditional probabilities (3.6).  (See Exercise 3.1 below.) 
 Consider the testing process on the interval (jh, jh+h).  At the moment jh there are some 
random number of units N(jh) which have not failed or whose test has not been terminated.  On the 
interval (jh, jh+h)  these units are operating without external "intervention" because the next 
termination might occur only at the moment jh+h.  So, on this interval we deal with a simple 
binomial scheme of testing.  Namely, we have N(jh) independent trials with the probability qj to fail 
at each trial.  The standard estimate for the binomial parameter qj is the value 
 

j
jq =

d
N jh


( )

 

 
where dj=D(jh+h)-D(jh) is the number of failed units onto the interval (jh, jh+h).  Substituting (3.8) 
into (3.7) gives the estimate of the reliability function 


( )

P(t) = -
d

N jh
.

j M -

j

0 1
1

 








  (3.9) 

It is easy to see that this is just the given above in (3.3)-(3.5) the Kaplan-Meier estimate where the 
test termination moments, k, are jh, j=1, 2, ... .  (The estimate for the general case can be obtained 
by the limit for h 0.) 
 
Remark 3.4  It can be seen from the arguments above, the discrete scheme of censored tests is a 
sequence of Bernoulli trials with varied sample size from step to step.  For parameter qj, the 
following approximate formula for small h is valid 

j
jh

jh+h

q =
P jh - P jh+ h

P jh
= - - t dt jh h

( ) ( )
( )

exp ( ) ( )1 
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where (t) is the failure rate of the unit. Thus, in general case where h 0, the process of testing 
can be interpreted as a sequence of binomial trials with a randomly changed size of a sample N(t) 
and infinitesimally small binomial parameter equal to the probability of failure q (t)h.  On the 
basis of this experiment, one needs to estimate some reliability index which depends on (t), for 
instance, the reliability function  
 

P t = - u du .
t

( ) exp ( )
0










  

 
Remark 3.5  Let us mention an interesting analogy with the problem of system reliability 
estimation on the basis of the results of unit tests.  In the discrete model of censored test considered 
above, the estimate (point or interval) of P(t) is reduced to the estimate (3.7) of binomial parameters 
qj on the basis of corresponding binomial tests 
 
 {N(jh), dj},  j=0, 1, ... ,M-1 (3.10) 
 
where N(jh) is the number of  tests of the parameter qj and dj is the number of observed failures.  
But this problem coincides with the problem of reliability estimation of the series system, consisting 
of M different units, based on the results of binomial trials (3.10) for each unit individually (see Part 
II below).  The difference is in the fact that in the problem considered above, the sample size N(jh) 
for each jth parameter qj is random and depends on other parameters test results.  In system 
reliability estimation for different parameters qj, sample sizes Nj are specified in advance and fixed.   
 Limit for h 0 shows us that the estimate of unit reliability function, P(t), on the basis of 
censored tests can be reduced to the following asymptotic problem:  to construct an estimate (point 
or interval) for the reliability function of a series system consisting of M different units on the basis 
of binomial trials for each unit if the number of system's units M  and the probability of failure of 
each jth unit qj 0, j=1, ... ,M. 
 Ushakov (1980) suggested another recurrent procedure of calculation of estimate  ( )P t 369 
which produces the estimate coinciding with the Kaplan-Meier estimate (3.3)-(3.5). (See below 
Exercises 3.2 and 3.3.) Pavlov and Ushakov (1984) considered Markov model of censored tests 
above obtained conditions where this estimate as well as estimates (3.3)-(3.5) are unbiased. 
 Let us describe this recurrent procedure.  As before, m is the index that satisfies the 
following inequalities 
 
 0= 0< 1< ... < m<t< m+1< ... < r< r+1=  
 
where k, k=1, ... ,r, is the moment of test termination for a group of units, r is the total number of 
such moments (in this particular test).  Let us introduce values rm, rm-1, ... ,r0 which are calculated by 
the following recurrent procedure 
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r = d t +
n
N

r = r + d +
n
N

,  k = m - ,m - ,...,
        

m m
m

m

k k+ k
k

k

( ) 1

1 1 2 01






















 

 
where values dm(t), Nk, dk has the same meaning as in (3.3), nk is the number of units whose test has 
been terminated at moment k,   k=0, 1, ... ,m-1;  n0=0.  This procedure has the following simple 
meaning.  Based on the number of failures, dm(t), observed on the interval ( m, t], we can 
extrapolate the number of failures, rm, in a natural way which may occur within this interval if nm 
units, whose test was terminated at the moment m, would continue to be tested.  In analogous way, 
based on observed numbers of failures dk, dk+1, ... ,dm, the value of rk is the extrapolation of the 
number of failures which could occur on the interval ( k, t] if nk units whose test has been 
terminated at the moment k would continue to be tested.  After finding all values described above, 
the estimate of the reliability function for the moment t can be found as 
 

 ( )P t = - r
N

1 0         (3.12) 

 
where N=N(0) is the initial number of units under the test.  The recurrent procedure is defined for all 
situations except m=r, l<t and Nl=N( l)=0, that is, when at some moment l before the moment t 
the test of all units has been terminated (see also Remark 3.1 and Figure 3.2).  In this situation, as 
above, one should suggest no estimate, or formally takes ( )P t = .0 370 
 
4.4.3 Unbiased Estimator 
 
 Let us introduce the condition 
 

P{ ( ) }r r< t, N .   0 0        (3.13) 
 

This condition means that not all unit tests have been terminated before moment t.  Let us introduce 
even stronger condition: 
 

P{ ( ) }N = .r 0 0      (3.14) 
 

The value of r is the test termination of the last group of units.  Notice that if there was no 
termination at all, i.e., it was a complete sample, then we assume r=0, l= 0=0, n0=0.  The 
condition (3.14) means that (3.13) holds for all t.  In other words, some units are always remaining 
under testing. 
 If condition (3.13) holds, the equality 
 
 E{r0}=NF(t) 
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is valid, that is, estimate (3.12) and, consequently, (3.3)-(3.5), is an unbiased estimate of the 
reliability function P(t)=1-F(t) at the moment t. (The proof of this statement is given in Section 
3.7.3 of Appendix to the current Chapter.)  If (3.14) holds, then the estimate mentioned above is 
unbiased for all t. 
 
Example 3.3.3  As a simple example let us consider test plan   
[N U T].  In this case, obviously, the condition (3.14) does not hold, and the condition (3.13) holds 
for t<T. So, the estimates considered above give an unbiased estimate for P(t) for all t<T. 
 
Example 3.3.4  Consider test plan [NB U r] where r<N.  In this case for any t>0  test of all units 
might be terminated before t with the positive probability at the moment of the rth failure, tr.  The 
probability of this event equals 

r d N

d N -d
N
d

F t - F t
 
 






[ ( )] [ ( )]1  

 
The condition (3.13) holds for no t>0.  
 
Example 3.3.5  Consider no the model of independent random censoring ("concurrent risks").  For 
this model the probability of the left side of (3.13) also differs from 0 for any t>0 if G(t)>0.  It 
means, as in the previous example, the condition (3.13) does not hold, and consequently, it is 
impossible to declare that the estimates considered above are unbiased.  
 
Example 3.3.6  Assume that the test is performed b the following plan.  At the moment t=0 ten 
units are tested.  After the first failure,test of n1=2 units is terminated.  After the second failure test 
of n2=4 units is terminated.   After this the test is continue until the failure of two remaining units.  
In this case the condition (3.14) holds, or in other words, the condition (3.13) holds for all t>0.  So, 
the estimates considered above are unbiased for all t>0.  
 
Example 3.3.7  Let two tests be performed simultaneously: by plan  
[N1 U r] where r<N1 and by plan [N2 U T].  In this case the condition (3.13) holds and, 
consequently, the estimates considered above are unbiased for all t<T.  
 
Example 3.3.8  Let the units be tested simultaneously by several plans of type [Nj U rj], rj<Nj, j=1, 
... ,k; and several plans of type [Nj

' U Tj], j=1, ... ,m.  In this case the condition (3.13) holds; 
consequently, the estimates considered above are unbiased for any t  T .

j m
j

 1
max   371 

 
4.4.4   Non-Parametric Estimator of "Resource Function" 
 
 In practice of reliability characterization, one often uses a resource function (t) which 
relates to the reliability function, P(t), via the well known expression 
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( ) ln ( ) ( )t = - P t = u du
t

0
          (3.16) 

 
 
where (u) is the hazard function. (In this chapter we everywhere assume that the function (u) is 
continuous in t>0.) 
 Consider the Markov testing model [MMU] corresponding to censorship without 
replacement of failed units.  Consider an approximate derivation of the point estimate of  ( ) t 372 
for the resource function.  We turn our attention again to the discrete scheme of testing (see Section 
3.3.2 above) where test termination moments, k, for groups of units might take only discrete 
meanings h, 2h, ..., jh, ... with some step h. 
 From (3.6) and (3.7) we obtain 

( ) ln ( ) ln ( )t = -  P t = -  - q
j M -

j
0 1

1
 
       (3.16) 

where 

j
jh

jh+h

q = - (u)du .1 exp 












   

 
It is clear that if h 0 values qj 0.  So, for small h from (3.16) the approximate equality follows 
 

( )t q
j M -

j .
 


0 1
      (3.17) 

 
More precisely, as it can be shown (see Section 3.7.4 of Appendix to the current chapter) that 
 

( )t = q
j M -

j
0 1 
        (3.17) 

 
where <Ch and C is some constant.  Thus, for a discrete testing scheme the estimation of the 
resource function  (t) is reduced (with some error  which can be chosen arbitrary small by an 
appropriate choice of h) to the estimation of the sum of binomial parameters 
 

( )t = q
j M -

j .
0 1 
  

 
The latter value is estimated in obvious way.  One needs to substitute estimates jq 373 of parameters 
from (3.8) to obtain 
 

 ( ) 
( )

 t = q d
N jh

.
j M -

j
j M -

j=
0 1 0 1   
     (3.19) 
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The limit in h 0 gives 
 

 ( )
( )( )

 t =
N t

.
j D t j

-
0

1
 
      (3.20) 

 
where tj is the moment of the jth failure, D(t) is the total number of failures on the interval (0, t], 
N(tj-)=N(tj-0) is the number of units tested just before the moment of the jth failure, tj.  Indeed, from 
the graph of the function N(t)in Figure 3.1 we can see that right sides of (3.19) and (3.20) begin to 
coincide for h<  where >0 is the minimum length of an interval between two neighboring 
failures, tj, and termination moments, k. 
 Note that the estimate (3.20) is defined for N(t-)>0 or for >t where  is the moment of 
termination of the entire test that means that at least one unit is still tested at moment t.  If  
N(t-)=0 (or <t), that is, all units have failed or their testing has been terminated up to the moment t, 
the estimate is undefined  In this case one might reject the estimation completely, or to set, for 
instance, either  ( )  ( ) t =  374 or  ( ) t =  375, and so on. 
 The estimate  ( ) t 376  for plan [M M U] constructed in such a way can be called an 
empirical resource function. First estimates of type (3.20) were obtained by Nelson (1969, 1972).  
(For details, see also Belyaev (1984, 1987), Zamyatin (1986), and others.)  Conditions for the 
consistency of the estimates of the reliability function ( )P t 377  and resource function  ( ) t 378 for 
the initial number of tested units N=N(0)  are given in Section 3.7.6 of Appendix to the current 
chapter. 
 Below we give some numerical examples of calculation of estimates of the reliability 
function and resource function on the basis of formula (3.20). 
 
Example 3.3.9  In the conditions of Example 3.3.1, let us find estimates of the reliability function 
P(t) and resource function (t) for t=200 and t=300.  On the basis of formula (3.20) we obtain 
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Corresponding estimates of the reliability function for t=200 and t=300 are 
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 P(200) = e = e = 0.783,- (200) -0.244  
( ) . ( ) .P = e = e = .- -300 0 709300 0 344  

 
The latter estimate has insignificant deviation from the estimate ( ) .P =300 0 698379 which was 
found in Example 3.3.1 with the use of the Kaplan-Meier formula.¦ 
 
4.5 Asymptotic Confidence Limits 
 
 The problem of construction of confidence limits for the reliability function and resource 
function in the case of censored samples is more complex then for the case of complete sample.  It 
explains why most often for large samples these confidence limits are constructed as asymptotical.  
The model of independent random censorship ("concurrent risks") is most developed.  These 
problem was considered by Breslow and Crowley (1974), Hall and Wellner (1980), Gill (1983), 
Belyaev (1984, 1985), and others.  For test plans with renewal of type [N R T] analogous problems 
were considered by Gill (1981), Belyaev (1987), and Zamyatin (1986).  (See also Section 3.6.) 
 Consider the construction of estimates of the reliability function P(t) and resource function 

(t) for fixed moment of time t.  For the model of independent random censorship, let the number 
of tested units be large, N , and for the chosen t the condition [1-F(t)]{1-G(t)]>0 hold.  From the 
works mentioned above, it follows that the lower and upper -confidence bounds for (t) has the 
form 

 ( )  ( ) ( )t = t - u V t ,-1   
       (3.21) 

 ( )  ( ) ( )t = t + u V t-1   
 

where 


=
-1
2

380,u1-  is the quantile of the level (1- ) of the standard normal distribution, and 

( )V t 381 is the estimate of the variance of the value  ( ) t 382 which is determined by the 
expression 
 

( )
[ ( )]( )

V t =  
N t

.
j D t j

-
1

2

1
 
  

 
Corresponding lower and upper confidence limits for the reliability function P(t) are 
 

P t = e- (t)( )    and  P t = e .- (t)( )   
 
The confidence limits (3.21) and (3.23) are approximate and its confidence coefficient is close to the 
specified value  only if the sample size, N, and the number of failures up to the moment t, D(t), are 
sufficiently large. 
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Example 3.4.1  In the condition of Example 3.3.1, let us construct an approximate -confidence 
limit for =0.9 for the reliability function P(t) and resource function (t) for t=300. 
 Using formula (3.22) we obtain the estimate of the variance 
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Applying formula (3.21) and using the value of the estimate  ( ) . 300 0 344 383 obtained in 
Example 3.3.9, we have the following lower and upper confidence limits 

 ( )  ( ) ( )

. . . .

.300 300 300

0 344 164 0 025 0 085

0 95= - u V
 

= = ,

 

 ( )  ( ) ( )

. . . .

.300 300 300

0 344 164 0 025 0 603

0 95= + u V
 

= = .

 

 
Corresponding confidence limits for the reliability function P(t)  
for t=300 are 
 
 

P = e = e = ,- -( ) .( ) .300 0547300 0 603  
P = e = e = .- -( ) .( ) .300 0 918300 0 085   ¦ 

 
 
4.6 Accurate Confidence Limits 
 
 In practice we often meet situations where sample size are of a moderate quantity.  The use 
of approximate formulas might lead to significant errors.  In particular, the lower confidence limit of 
the reliability function is higher than its real value.  We propose an approach (see Pavlov (1982, 
1983a, 1983b, 1995) and others) which allows for models of censored tests to construct non-
parametric confidence limits which are accurate , that is, they guarantee the specified level of 
confidence coefficient for any sample size. 
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 Let us first consider the Markov model of censored tests without renewal considered in 
Section 3.2.  Construction of the confidence limits and corresponding proofs are given in Section 
3.7.5 in Appendix to the current chapter in more detail.  Here we give only results and illustrate 
them with examples. 
 Assume that the hazard function (t) is continuous. Let A(t) be some function of time which 
is chosen by a researcher during the testing {N(t), D(t)}in such a way that the following conditions 
hold; 
Condition 1: The inequality A(t)<1 for all t>0. 
Condition 2: Function A(t) is piecewise-continuous in t, continuous on the right and has finite limits 
on the left at any t>0.  Function A(t) is called "control function".  Actual function can be arbitrarily 
chosen by the researcher in arbitrary way  at any current moment t depending on all information of 
testing behavior on the interval (0, t]. (More detailed description of the control function see in 
Section 3.7.5 of Appendix to the current chapter.) 
 The confidential strip for the hazard rate (u) with the confidence coefficient  is 
constructed at any current moment of time during the testing.  This strip includes all functions (u), 
u >0, which satisfy the following system of inequalities: 
 

0 1
1 1

s

j D(s)
j
-A u N u u du +  - A t |  - | 

 
( ) ( ) ( ) ln [ ( )] ln ( )    (3.24) 

 
 
for all s<t where A(tj

-)=A(tj-0) is the limit on the left of the function A(t) at the moment of the jth 
failure, tj. 
 It is easy to see that the confidence strip (3.24) becomes tighter with increasing t.  It follows 
from the fact that new inequalities add to (3.24) as t increases.  For t= , where  is the termination 
of the entire test, the formula (3.24) gives the final confidence strip for (u) with the confidence 
coefficient not less than  by the system of inequalities  

0 1
1 1

s

j D(s)
j
-A u N u u du +  - A t |  - | 

 
( ) ( ) ( ) ln [ ( )] ln ( )          (3.25) 

 
for all s< . 
 Then by appropriate choice of the control function A(t) from (3.25) one can obtain the 
confidential strips for the resource function, (t), reliability function, P(t), and the confidence limits 

for other reliability indexes, for instance, MTTF.   Particularly, choosing =1-  and A t = -
a

N t
( )

( )
384, where a>0 is some constant, we obtain the -confidence strip for (u) as the inequality 
 

a u du |  |+  +
a

N t

s

j D(s) j
-

0 1
1 










 
 ( ) ln ln

( )
   (3.26) 

 
for all s< .  For s>  this inequality also holds, and for s>  its right side remains constant. 
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 In analogous way, assuming in (3.25) =1-  and A t =
b

N t
( )

( )
385 where b is a positive 

constant, 0<b<N(0), we obtain the confidence strip for (u) with the confidence coefficient not less 
than 1-  as the inequality 

b u du |  |-  -
b

N t

s

j D(s) j
-

0 1
1 










 
 ( ) ln ln

( )
    (3.27) 

  
for all s< . 
 Notice that (3.27) is valid for s< '=min ( , b) where b= min {t: N(t)<b} is the moment 
of crossing the level b by the function N(t).  For s> 'in a non-parametric case, the right side of 
(3.27) should be assumed to be equal to .  For this purpose, we can set ln z= -  for z<0. 
 Formulas (3.26) and (3.27) give the following confidence strip for the resource function 
with the confidence coefficient not less than 1- -  

P{  ( ) ( ) ( )t t t     for all t   - - 0}    
 
where the lower and upper strips have the form 
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      (3.28) 

( )
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t  =  
| |

b b
b

N t
.

j D(t) j
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1

1
1

     (3.29) 

 
It gives the corresponding confidence strips for the reliability function with the confidence 
coefficient not less than 1- -  
 

P t   P t  P t ,  t( ) ( ( ( )   0      (3.30) 
 
where the lower and upper limits are determined by formulas 
 

P t = e- (t)( )   
and 

P t = e .- (t)( )   
 
In Section 3.7.6 of Appendix to the current chapter, we give the conditions which allow us to obtain 
consistent confidence limits for the reliability function and resource function if the initial number of 
tested units is N=N(0) . 
 From the expressions given above, one can obtain the non-parametrical lower limit for the 
MTTF, , with the confidence coefficient not less than 1- .  Indeed, using the formula for the 
MTTF expressed via the reliability function, we have 
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 = P t dt = e dt- (t) .
0 0

 

 ( )   

 
In analogous way, on the basis of the confidence strip (3.30) we can construct non-parametric limits 
for guaranteed time, tq, with the level of guarantee q.  In this case the lower and upper limits with 
the confidence coefficient not less than 1- -  are given by the following formulas 
 

qt = inf t  P t q ,{ : ( ) }  

qt = sup t  P t q .{ : ( ) }  
 
In other words, qt 386 and qt 387 are defined as the moments of crossing the level q by the graphs of 

the lower and upper confidence limits P(t) and P t .( ) 388 
 
Example 3.5.1 (case of no failure test)  Let us choose the control function as 

A(t) 1, t > 0.             (3.31) 
Let there is no failures or test termination up to the moment t. Then from (3.24) follows 

0

1
s

N u u du |  - |  for all  s t.  ( ) ( ) ln ( )   

 
Since in this case N(u) N=N(0) for all u<t, it follows that 
 

0

s

u du
| - |

N
  for all  s t.  


( )

ln( )1
     (3.32) 

 
From (3.32) we obtain the following upper confidence limit for the resource function with the 
confidence coefficient not less then  

 ( )
ln ( )

s =
|  - |

N
 

1 
 for all s< t 

 
which gives the following lower -confidence limit for the reliability function 
 

P s P t = e = -   for all s t.- N( ) ( )  1   
 
 Thus, choosing the control function A(t) from the condition 3.31), we obtain on the interval 
[0, t] with no failures the lower -confidence limit P which coincides with the standard Clopper-
Pearson limit for the case of testing N units with no failures. ¦ 
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Example 3.5.2  (Testing until the first failure)  Let the test is performed until the first failure, i.e., 
the termination of the entire test is =t1.  No censorship is available.  Choosing again the control 
function as A(t) 1 for all t>0, from (3.24) and (3.25) we obtain  
 

0

1
s

N u u du  |  - |  ( ) ( ) ln ( )   for all  s <  

 
or 
 

0

1s

u du  
|  - |

N 


( )
ln ( )

 for all  s < .  

 
from where the -confidence limit for the reliability function follows 
 

 ( )
ln ( )

s    =  
|  - |

N


1 
 for all  s < .   

 
 The corresponding lower -confidence limit for reliability function is 
 

P s P = e = -    - N( )   1   for all  s < .  ¦ 

 
Example 3.5.3  In the conditions of Example 3.3.1, let us construct the lower -confidence limit for 
the reliability function, P(t=160), with the confidence coefficient not less than =0.95.  Setting  in 
(3.29) the constant b=10, we obtain the following upper confidence limit for the resource function 
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So, the lower 0.95-confidence limit for the reliability function, P(160) is 

P = e = e = .- -( ) .( ) .160 0597160 0 515   ¦ 
 
Notice that on the basis of the confidence limits constructed above, one can solve the problem of 
test statistical hypothesis relating to different reliability indexes, for instance, 
 H0:  P(t)>P0 vs. H1:  P(t)<P1 
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where P0>P1 are specified critical levels of the reliability index P(t), an so on. 
 One of the interesting and still not appropriately solved questions is the problem of choice of 
an optimal - in some sense - control function A(t). (The conditions on A(t) for which the confidence 
limits constructed above are consistent for the initial number of tested units N=N(0)  are given in 
Section 3.7.6 of Appendix to the current chapter.) 
 We considered above only the model [MMU] but this approach can be easily extended onto 
more general models, including models with renewal (some of them are considered below). 
 
4.7 More General Models of Censored Tests 
 
4.7.1 Markov Model of Censored Tests with Renewal   
 
 Consider a test model which differs from [MMU] by the possibility to replace failed the 
units by identical new ones or to add new units to previously tested ones.  Let us call such a model 
[MMR] where the last letter stands for "renewal".  At the initial moment t=0 there are N=N(0) 
identical and independent units.  At some moment of time 1>0  we add m2 new units identical to 
the initial ones, at the moment 2> 1  we add m1 units, and so on. We assume that all units fail 
independently.  So, new units are tested at moments 
 0< 1< 2< ... < i< ... 
which form Markov and "independent on the future" sequence of time moments.  In other words, 
the moments and corresponding numbers of added units might be appointed arbitrarily, depending 
on any information known at the moment t.  (Some comments see in Section 3.7.1 of Appendix.)  
So, at moment i we add mi new units where mi is a discrete random number which might 
arbitrarily depend on the current results of the test process on the interval [0, i] but does not 
depend on the future development of the process for t> i.  (More accurate formal definition of i 
and mi see below in Section 3.7.7.) 
 Thus the test model is given by the set of data 
M = {( 1, n1), ... ,( k, nk), ... ;( 1, m1), ... ,( i, mi), ... ; } 
where  is the termination of the entire test.  This moment is defined by some rule and in general 
might be a Markov random moment. Values ( k, nk) are defined as above: k is the moment of the 
kth test termination for a group of units and nk is the number of units of the group, k=1, 2, ... .  If in 
the model [MMU] the number of the test termination was restricted by the value of N=N(0), in the 
model [MMR] number of moments of test termination, k, and unit additions, i, are not restricted.  
The sequential moments of unit failures are denoted as above: 
 0<t1< ... <tj<tj+1< ... . 
We also keep the notation D(t) for the number of moments tj such that tj<t (i.e., the number of 
failures), N(t) for the number of units which are tested at the moment t  
 N(t) = N(0) + B(t) -D(t) - L(t) 
where 
 

B t =  m ,
i: t

i
i

( )
 
  

L t =  n ,
k: t

k
k

( )
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that is, B(t) is the number of units which were put to the test before t, and L(t) is the number of units 
whose test has been terminated up to the moment t.  All functions N(t), D(t), B(t) and L(t) are 
continuous from the right in t.  A graphical illustration of a possible track of the function N(t) is 
depicted in Figure 3.4. 
 
 Figure 3.4 
 
Remark 3.6.1  In the previous model [MMU] all of N(t) tested units at the moment t have the same 
operational time equal to t.  In this model -- which is more general -- the "age" of tested units are 
different.  Denote the "age" of unit e at moment t by Se(t).  Obviously, this value is 
 Se(t) = 1- i 
where i is the moment when this unit was added to the set of the tested units.  Denote the set of 
subscripts of all units tested at the moment t by E(t).  This set includes N(t) different subscripts. So, 
units at the moment of termination of their testing, k, have different operational time ("age"): 
Se( k),  
e E( k

-) where E( k
-) = E( k-0) is the set of subscripts of the units which are under the testing 

just before the moment k.  Thus, for the complete description of the model, it is necessary to point 
out not only the number of units whose test has been terminated but their "age": Se( k),  e E( k) 
where E( k) is the set of subscripts of the units whose test has been terminated at the moment k, 
E( k) E( k

-).  It is clear that the only case where this condition is redundant is the exponential 
distribution F(t) for which the distribution of residual time coincides with initial one. 
 This model includes the previously described model [MMU] as a particular case.  This 
model also covers all standard plans of type R (with unit renewal or replacement after failure). 
 
Example 3.6.1   (Test plan of type [1 R T])   Consider a standard renewal process, or in our 
terminology the test plan [1 R T]. (See Chapter 2.)  At the moment t=0, a single unit is in testing, 
N(0)=1. At the failure moment, a failed unit is replaced by a new one, then at the moment of the 
second failure, a failed unit is again replaced by a new one, and so on.  It is clear that this plan is a 
particular case of plan [MMR] with N(0)=1; nk=0 for all  
k=1, 2, ... ; with moments of new units addition i=ti, i=1, 2, ...; and mi=1, i=1, 2, ... .  Obviously, 
N(t) 1 for all t>0.  The entire test termination moment is =T where T is a specified constant. ¦ 
 
Example 3.6.2  (Test plan of type [N R ...])   Let us consider a test consisting in N simultaneous 
observations of processes discussed in Example 3.6.1. We call this plan [N R ...].  This model can 
be considered as a particular case of the model [MMR] with N(0)=n;  nk=0, k=1,2, ... ; i=ti; mi=1, 
i=1, 2, ... .  At any moment of time, t>0, there are N(t) N tested units. Moments of the test 
termination depend on the particular test plan.  For the plan [N R T], it is =T; for the plan [N R r], 
it is =tr; and for the plan [N R (r,T)], it is v= min (T, tr). ¦ 
 The method of the construction for the confidence limits for the model [MMU] extends to 
the more general model [MMR] in the  following way.  Each unit with subscript e is set in 
correspondence with some "control function" A(e,t) which satisfies the same conditions as A(t) does 
(see Section 3.5).  For each unit e E(t), the meaning of A(e,t) might be chosen arbitrarily with 
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taking into account any previous information about the current test on the interval [0, t].  (Of 
course, we need to maintain conditions 1 and 2 which were formulated for control the function 
A(t).)  As above, the confidence strip for the hazard rate, (u), with the confidence coefficient not 
less than the specified value  is constructed for any t during the testing.  At moment t this 
confident strip includes all continuous functions (u), u>0, which satisfy the system of inequalities 
 

0 1
1 1

s

e E(u)
e

j D(t)
j j

- A e,u S u du +    - A e ,t   |  - |  
  

( ) [ ( )] ln [ ( )] ln ( )      (3.33) 

 
for all s<t where Se(u) is the "testing age" of unit e at the moment u;  A(e,tj

-)=A(e,tj-0) is the limit 
from the left for the control function A(e,t) at the moment of the jth failure, tj; ej is the subscript of 
the unit which fails at tj; E(u) is the set of unit indexes which are tested at the moment u. 
 From the definition follows that with increase of time t the confidence strip is monotone 
narrowing for any trajectory of the testing process. It follows again from the fact that with 
increasing t, that more inequalities are included into (3.33). At t= , where  is the moment of the 
entire test termination, the system (3.33) gives the final confidence strip for the hazard rate, (u): 
 

0 1
1 1

s

e E(u)
e

j D(t)
j j

- A e,u S u du +    - A e ,t   |  - |  
  

( ) [ ( )] ln [ ( )] ln ( )     (3.34) 

 
for all s< . 
 The proof of the confidence strips (3.33) and (3.34) for the model [MMR] is analogous to 
that for the model [MMU] (see Section 3.7.5 below). 
 As we did in the previous section, the non-parametric confidence strips can be constructed  
on the basis of (3.33) and (3.34) for the reliability function, P(t), and resource function, (t), as well 
as the confidence limits for other reliability indexes. 
 
 
4.8 Appendices 
4.8.1 Markov Moments of Time 
 
 Let ( , , P) be the main probabilistic space where the process of testing, xt, t>0, is defined; 

t , t>0, be a non-decreasing family of -sub-algebras; the stochastic process xt correspond to 
the family of t, t>0. 
 A random moment of time = ( )>0 is called Markov moment with respect to the system 
of t, t>0, if event { : ( )<t} t for any t>0 where  is an element of the set .  Here -
algebra t represents a set of all events whose occurrence or non-occurrence up to the moment t are 
uniquely predictable.  In other words, the sense of this statement is the following: a random moment 

 is Markovian if, for any t, the answer about the occurrence an event { <t}, based on the 
prehistory of the process before the moment t, is unique. 
 Each Markov moment, , corresponds to a -sub-algebra  which is a set of all 
events occurrences which are uniquely predictable at the moment .  This -subalgebra  
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includes all events A  such that the event A { <t}  for any t>0.  If some r.v. = ( ) is 
measurable with respect to the -algebra , it means that at the moment t the meaning of this r.v. 
is known.  (More detail may be found in Doob(1953) or Shiryaev (1980).) 
 
4.8.2  Markov Censored Test Model without Renewal 
  
 Assume that at the moment t=0,  N identical and independent units enter testing. Each unit 
has continuous d.f. F(t) of a random TTF, .  At some moment of time, 1>0, a group of n1 units 
has terminated the test, then at 2> 1 a group of n2 units has exit the test, and so on.  Any exit 
moment can be arbitrarily chosen depending on the information about the "prehistory" of the testing 
at the current moment t but does not depend on the "future trajectory" of the testing process, i.e., for 
t> k.  The number of units in a group, nk,  whose test are terminated its test at the moment k, is 
also random and can be chosen on the basis of the same information. 
 Let D(t) be the number of failures on the interval [0,t], or, in other words, it is the number of 
moments tj such that tj<t where tj is the moment of the jth failure.  Let L(t)=

k: t
k

k

n
 
 389  be the 

number of units whose test has been terminated on the interval [0,t] and N(t)=N-D(t)-L(t) be the 
number of units testing at the moment t.  Let ( , , P) be the main probabilistic space where the 
stochastic process xt={N(t),D(t)}, t>0, is defined in correspondence to the non-decreasing family of 

-algebras t , t>0.  The stochastic functions N(t) and D(t) are continuous from the left in t.  
Assume that the moment of the test termination of the units groups 
 1< 2< ... < k< ... 
are Markovian with respect to the family t, t>0, and a r.v. nk=0, 1, 2, ... N is measurable in respect 
to -algebra k  relating to the Markov moment k, k=1, 2, ... .  The moment of the entire test 
termination is denoted by .  We assume that this moment also is Markovian relating to the family 

t, t>0.  Since the initial  umber of units is N=N(0), we might say that the total number of 
termination moments, k, does not exceed N.  Thus in this model it is enough to consider the finite 
sequence of N Markov moments 
 1< 2< ... < N< . 
 The number of "real" termination moments, i.e., such moments for which nk>0, might be 
fewer than N.  So, r is a r.v., r=1, 2, ... ,N. Thus the test model is defined by the following set 
 M = {( 1, n1), ( 2, n2), ... ,( N, nN), } (3.35) 
 We call this test model Markovian to emphasize that any intervention into the process (test 
termination of a group of units or entire test) bears the Markovian character. 
 This model does not assume additional switching on new units for testing.  More general 
models that take this factor into account will be considered in Section 3.7.8. 
 
 
 
4.8.3 Unbiasedness of estimate (3.12)   
 
 Let us show that if condition (3.13) holds for the model [MMU], then 
 E{r0} = NF(t) (3.36) 
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that is, the estimate (3.12) is an unbiased estimate of the reliability function P(t)=1-F(t) for fixed 
t>0.  This model is defined by (3.35).  Notice that since the initial number of units equals N, and nk 
might take the value of 0, we can say that the last moment of test termination of a group of units, , 
coincides with the moment of the complete termination of the entire test, i.e., n .  Therefore the 
model is defined by the set 
 M = {( 1, n1), ( 2, n2), ... ,( N, nN)}. 
 Consider first the case where the moments of test termination, k, take discrete values, tk: 
 0=t0<t1< ... <tm<tm+1=t<tm+2< ... . 
 For the sake of simplicity, let t be the moment for which the reliability function P(t) is 
estimated coincides with tm+1.  Introduce the following test model   
 M* = {( 1

*, n1
*), ( 2

*, n2
*), ... ,( N

*, nN
*), ... }. 

where i
* ti, and 

i
*

k N
k k in  =  n I = t ,  i = ,...

1
1 2

 
 ( ) ,  

where I(A) is the indicator for the event A.  In discrete case both models M and M* are equivalent.  
The model M* is another definition of the model M where all moments i

* are deterministic and 
exhaust all possible discrete set of {ti} and the model is defined by the numbers of units for which 
the test has been terminated at these moments ni

*, i=1, 2, ... .  Since the r.v. nk is measurable with 
respect to the -algebra k  corresponding to the Markov moment k (k=1, 2, ..,N), ni

* by 
definition is measurable with respect to the -algebra ti ,  i= 1, 2, ... . Let us introduce the 
following notation for the model M*: Ni=N(ti), N'i=Ni+ni

*, di=Ni-N'i+1=D(ti+1)-D(ti), i=0, 1, 2, ... .  
The recurrent procedure (3.11) for the discrete model M* has the form 
 

m m
m

m
m

m m m m

r = N  
d
N

,  if  N >

r = ,  if  N = N = d =






 









0

0 0
 

i i
i i

i
i

i i i i

r = N  
d r

N
,  if  N >

r = ,  if  N = N = d r =






 

 











1

0 1

0

0 0
 

 
     0< i < m-1. 
 
Let us introduce quantities 
 

i
i i+

i
q =

P t - P t
P t

( ) ( )
( )

1  

and 
 

i
i

i
Q =

P t - P t
P t

( ) ( )
( )
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equal to conditional probabilities of unit's failure on intervals (ti, ti+1) and (ti, t), respectively, under 
condition that the units has not failed before the moment ti.  These quantities are related to each 
other as 
 Qi=qi+(1-qi)Qi+1,  i=0, 1, ... ,m (3.37) 
where Q0=F(t) and Qm+1=0. 
 In the discrete model m*, the group of unit test terminations might occur only at moments ti, 
i=1, 2, ... .  Thus on each interval (ti, ti+1) there is no "intervention" in the testing process (no 
termination).  It means that on this interval of time the conditional distribution of the number of 
failures, di, is a standard binomial one with parameters Ni (the number of tested units) and qi (the 
probability of failure).  It follows that the conditional mathematical expectation can be written as 
 

E{ i t i id | = N q ,  i = ,... ,m.i } ,0 1    (3.38) 
Here we omit the standard remark that the equality for the conditional mathematical expectation is 
correct with accuracy of to sets A  with the null measure P.  Notice also that the probabilistic 
measure P and corresponding mathematical expectation by this measure on ( , ) essentially 
depend on the estimated function F=F(t), that is P=PF and E=EF.  Subscript F is omitted for the 
sake of brevity.  In the future we will use a shorten notation: i t= .

i  390 
 Let us show that the conditional mathematical expectation is 
 

E{ m m m m m mr | = N q = N Q .  }  
 
For N'm=0 this equality directly follows from the definition of r.v. rm.  Let N'm>0.  Then by the 
condition (3.13) the inequality Nm>0 holds.  Since quantities N'm and Nm are m-measurable, then 
 

E{ E{ E{m m m
m

m
m

m

m
m mr | = N

d
N

| =
N
N

d |  


} } }  

 
and with taking into account (3.38), it follows 
 

E{ m m m m m mr | = N q = N Q .  }         (3.39) 
 
Let us show now that the equality 
 

E{ r | = N Qi i i i{ }          (3.40) 
  
follows from the equality 
 

E{ }i+ i+ i+ i+r | = N Q1 1 1 1  .      (3.41) 
  
(Here i = m-1, m-2, ... ,1, 0.)  Since N'0=N0=N, and taking into account(3.39), one has the proof of 
the equality (3.36) for the discrete model M*. 
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 Let (3.40) hold.  Then for N'i=0 the equality (3.41) directly follows  from the definition of 
r.v. ri.  Let N'i>0.  From condition (3.13) the equality Ni>0 also holds.  Since the r.v. N'i and Ni are 

i-measurable, using (3.38) we have 

E{ E{ E{

E{ E{ E{

i i i
i i+1

i
i

i

i
i i+ i

i

i
i i

i

i
i+ i i i

i

i
i+ i

r | = N
d + r

N
| =

N
N

d + r |

 

=
N
N

d |  +  
N
N

r | = N q +
N
N

r | .

  








 




} } }

} } }

1

1 1

   (3.41) 

 
Since i i+1, then the following equality holds for the conditional mathematical expectation 
 

E{ E{E{ E{

E{

i+ i i+ i+ i i+ i+ i

i+ i i i i+ i i i

r | = r | | = N Q |
 

= Q N - d |  = Q N - N q .

1 1 1 1 1

1 1

    



} } } }

} ( )
 

Taking (3.37) into account, we have 
 

E{ i i i i i+ i i ir | = N q + Q - q = N Q  } [ ( )]1 1  
 

where i=m-1, m-2, ... ,1, 0.  It proves (3.36) for the discrete model. 
 In general case, let us consider a sequence of dividing of the time axis by discrete moments: 
 Sj= {0=t0j<t1j< ... <tij<...} 

where ij jt = i h
2







391, i=0, 1, ...; h = t
L

392; L is an arbitrary integer positive number, Sj Sj+1, j=1, 

2, ... .  Let for the jth dividing  
be 

kj

*
k

j

j=
h

h


 2
2














  

 
where [z]* denotes the closest integer more than (or equal to) z.  Consider the process y(t) which 
denotes the total number of units being tested (including those whose testing has been terminated) 
and have not failed up to the moment t.  By definition, the trajectory of this process is continuous in 
t on the right.  Let us introduce the event 
 

kj k kjB = y = y{ ( ) ( )}  , 
 
which corresponds to the fact that there is no failure on interval ( k, kj] including those whose 
tests have been terminated.  Since the trajectory of the process y(t) is monotone decreasing, 
 

kj k, j+B   B ,   j = ,... . 1 12,   
Then let us set 



 

136 
 

 
 nkj = nkI(Bkj),  k=1, ... ,N;  j=1, 2, ... . 
 
R.v. nkj is measurable relative to a -algebra 

kj 393 which is tied to the Markov moment kj 
because k< kj and  

k kj
  .    394  

 Now introduce the Markov test model 
 
 Mj

* = {( kj, nkj),  k=1, .. , N }. 
 
For this model moments of intermediate terminations kj might take only discrete values tij,  i=1,2, 

... which corresponds to the jth division of Sj.  Let 1-
r
N

0j





395 be the estimate of the reliability 

function P(t) for model Mj
*.  Then, as it was proved before, for any j=1, 2, ... the following equality 

 
 E{r0j} = NF(t) 
 
holds.  The sequence r0j r0 as j  everywhere on the set 

 
Because of the continuity of trajectories of the process y(t) on the left in t, the set B has the 
probability 1.  Taking into account the restrictiveness of the sequence 0j:  0<r0j<N, it follows that  
 E{r0} = NF(t). 
 
 
 
 
 
4.8.4 The Proof of Formula (3.18) 
 
 Parameter qj can be written in the form j

-zq = - e j1 397 where 

  

 B =   B y k = y k + ),  k = ,...,N .
j< j< k N

kl
1 1 1

0 1
     

   { ( ) ( }   

 

 j
jh

jh+h

z = (u)du,   j = ,... , M - .  0 1 1,         (3.42) 
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From the continuity of function (u) its bounds on interval [0, t] follows:  (u)<C< for all 

0<u<t.  It gives, taking into account (3.42), that zj<Ch for all j=0, 1, ... ,M;  h = t
M

, 399 M=1, 2, ... .  

It follows 
 

j j jq = z +  

where <C'h2, C =
C2

2
400 for all j=0, 1, ..., M-1, h = t

M
401, M=1, 2, ... .  Summation in j of 

the left and right sides of (3.42) gives 
 

( )t =  z =  q  +  
j M -

j
j M -

j
0 1 0 1   
    

where 
 

| |   | | C Mh =C h
j M -

j
2    

 


0 1
 

 
where in turn, C”=C't which proves (3.18). 
 
 
4.8.5 Non-Parametric Confidence limits for Test Markov Model [MMU]  
 
 We further assume that the (t) is continuous in t>0.  The class of all such functions is 
denoted by W.  Let us also denote :  ={ (t), t>0}.  The probabilistic measure on ( , ) for 
given W is denoted by P  and the mathematical expectation (by measure P  by E . 
 Let  
 xt={xu, 0<u<t} = {[N(u), D(u)],  0<u<t } 
 
be a collection of all observed statistical data at the moment t, that is, the trajectory of the process 
xu=[N(u), D(u)] on interval [0,t].  For the test model xt, it is a set of all failure moments, tj, 
intermediate termination, k, and respective numbers of nk, which are observed up to the moment t.   
 Assume that at any current moment of time, we construct the confidence set on the basis of 
information xt  
 Ht=Ht(xt) W (3.43) 
for W.  A collection of all sets (3.43) is called a system of -confidence sets for  if the 
following conditions hold: 
(1) For any trajectory of the testing process  xt, 0<t<  and any moments of time u<t the relation  
 

t
t

u
uH x   H x( ) ( )  

 
holds, that is the confidence set Ht becomes monotonically narrower with t increasing for any 
trajectory of observation. 
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(2) For any Markovian (in respect to the family t, t>0) termination moment , such that 
P (< )=1 for all W, the inequality 

 
  P H   ( )   

 
holds for all W where H =H (x ) is the confidence set  constructed up to the moment .  The 
sense of this condition is in the fact that we can terminate the entire test at any moment  and the 
set H  constructed up to this moment is -confidence for . 
 Now we give the procedure of construction of the system of sequential confidence sets for 
the considering model of censored tests (see Pavlov (1982, 1983a, 1983b)).  Let A(t) be a stochastic 
function related to the family t, t>0, and satisfying the conditions: 
(1) A(t)<1 for all t>0. 
(2) A(t) is linear-spline function continuous on the right and having finite limits on the left at any 
point t>0. 
(3) On any finite interval 0<u<t function A(u) is restricted from below: 
 P {A(u)>C> -   for all 0<u<t} = 1 
for all W. 
 Let  be the given level of the confidence coefficient, 0< <1.  Let each W corresponds 
to a set of events 

t
t, t>0, where events 

t is defined in the following way: 
 


t = A u N u u du + - A t   | - |  for all s t .

0

t

j D(s)
j
-{ ( ) ( ) ( ) ln[ ( )] ln( ) } 

 

  
12

1 1  

 (3.44) 
Introduce subsets 
 

tH W,  t > 0     (3.45) 
  
which we define on the basis of events  t, t>0, as follows 
 

t
tH  =  W   I( ) ={ : }   1  

 
where I(

t) is the indicator of event 
t.  So, Ht is the set of all W such that event 

ttfor 
this trajectory of the testing process takes place.  In accordance with this definition, the set Ht is 
written as 
 

t
0

s

j D(s)
J
-H = :  A u N u u du +  - A t | - |  for all s t }.{ ( ) ( ) ( ) ln[ ( )] ln( )   

 
 

1
1 1  

 
Let us now show that the system of sets (3.45) constructed in this way is the system of sequential -
confidence sets for W.  For this it is enough to show that 
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 P H = Pt( )   (
t)>  (3.46) 

  
for any W and any fixed finite t>0.  Indeed, the events 

t and Ht are equivalent by 
construction.  Then let for some W the inequality (3.46) holds for any t>0.  Let us show that then 
 

  P H( )   
for any Markovian moment of the total termination  such that 
 

 P < =( ) . 1   (3.47) 

 
Introduce event 

t  which is defined as 
 

=
t

lim 
t = 

t0
 

t 

From (3.46) it follows that 

P()=
t
lim P(

t) 

 
For any finite t>0, the relation 

t402 holds, and it follows that 

 
Besides, due to equivalency of events 

t404 and Ht, the relation 

 
holds.  Taking into account (3.47), we have 

  ( ) < 
 ( ) < . 

 
 

 ( )  H  ( ) <  =
 ( ) <  

 
 

     P H = P H( ) {( )   ( ) < = 
 

P{
 ( ) < } > P{ ( ) < }= P{} > . 
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Notice that in the considered model, the condition P ( < )=1 automatically holds if F( )=1, 
because any total test termination does not last beyond the failure of the last unit. 
 Thus, it is enough to show that inequality (3.46) holds for any fixed, finite t>0 and for any 

W.  Let us first prove this inequality for a discrete model Mj
* introduced in Section 3.7.3.  For 

this model, the intermediate termination moments, k, might take only discrete values tij, i=1, 2, ... , 
j=1, 2, ..., n. Introduce the following additional notation for this model: 
 Nj(t) is the number of units on test up to the moment t; 
 dij is the number of failures on the interval (tij, ti+1,j), 
   1 if dij>0, 
            ij= 
        0 if dij=0 
 
is an indicator showing that at least one failure has occurred on this interval; 
 

ij
ij i+ , j

ij t

t

q =
P t - P t

P t
u du

ij

i+1, j

( ) ( )
( )

exp ( )1 1  
















                        (3.48) 

 
is the conditional probability of the unit failure on the interval (tij, ti+1,j) under condition that until the 
moment tij the unit has not failed, and 
 

ij ij t ij t= P = | = |ij ij   ( ) ( )1 E    (3.49)      
 
is the conditional probability of at least one failure on the interval (tij, ti+1,j) under condition that 
there is information about entire previous trajectory of the process on interval [0,tij]. 
 In discrete model Mj

*, the testing process develops without external interventions 
(intermediate test terminations) on each interval (tij, ti+1,j).  It means that the conditional distribution 
of the number of failures dij on this interval (under condition that all previous information about 
process on interval [0,tij] is known) has the standard binomial distribution with two parameters: the 
number of trials, Nj(tij), and the probability of failure, qij.  Thus the conditional probability (3.49) is 
defined as 
 

ij ij
N ( t )

j= - - q = - N tij
t

t
u duij ij

ij

i+1

 1 1 1
1

( ) exp ( ) ( )
















        (3.50) 

  
Introduce the following random sequence for the discrete model Mj

* 
 

nj
i n-

ij ij ij= + A t - ,  n = ,...  
1 1

1 1 2
 
 [ ( )( )] ,         (3.51) 
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with 1j=1. 
In accordance with (3.49) the following equality 
 

  E ( ) ,n+1, j t nj| = ,  n = ,...  .nj 0 1  
 

holds.  Thus the sequence of nj, n=1, 2, ...  forms a martingale in respect to the family 
njt 407, 

n=1, 2, ... with the mathematical expectation E nj=1,  n=1, 2, ... . Because of continuity of (u) 

this function is restricted on each finite interval for 0<u<t and it follows that ij j
C h

2
  





408 for all 

i=0, 1, ... ,rj where rj=L2j and C is a constant.  Taking into account that A(t) is restricted and ij<1, 
it follows that the martingale (3.51) is non-negative beginning from some subscript j1:  ij>0,  j>j1 
for all n=1, 2, ... ,rj.  Using known Doob-Kolmogorov inequality (see, for instance, Doob(1953) or 
Shiryaev (1980)), we find for j>j1 

 

 P b
bn l

nj
j

{ }max
1

1

 
   

 

where level b>0. Taking in this inequality b 

1

1 
, we obtain 

 

 


P
n r j

nj1

1
1 



















max          (3.52) 

  
Let us introduce an event 
 

,j
t =

1

1

1 















n r

nj
j

max


 

and let 

t 409and 410   , j
t   be complementary events to 

t 411 and  ,j
t412  respectively.  

Let the event 

t 413 take place, that is, 

I(

t )=1  (3.53)  
 
The latter equality is equivalent to the condition that for some s<t the inequality 
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0

s

j D(s)
j
-A u N u u du + - A t >| - | 

 
( ) ( ) ( ) ln[ ( )] ln( ) 

1
1 1   (3.54) 

 
holds. 
 Let us now show that beginning from some j2 the event   , j

t  414 takes place: 
 

I(  , j
t )=1,  j>j2   (3.55) 

 
In other words, we need to show that (3.53) implies (3.55).  It will follow that for j  
 



t
 lim inf   , j

t  

 
or 
 


t 415 lim sup ,j

t 
 
which, with (3.53), proves the inequality (3.46). 
 Introduce a value 
 

n j =
s
h

*j

( )
2







   

where s is defined in (3.54).  It is enough to show that if (3.54) holds, then from some j3 the 
inequality 
 
 n(j),j>(1- )-1,  j>j3 (3.56) 
 
This inequality can be rewritten in the following form 
 

j j+ " >| - |  ln( )1    (3.57) 
 
where the first sum equals 
 

 j
i n j

ij

'

( )


  



1 1

0

 ln [1+A(tij)ij], 

 
where the sum is taken for all indexes i=1, ... ,n(j)-1 for which ij=0, and the second sum equals 
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 j
i n j

ij

''

( )


  



1 1

1

 ln [1+A(tij)(ij-1)], 

 
where the sum is taken for all indexes i=1, ... ,n(j)-1 for which ij=1. 
 Let us now show that for j  the left side of (3.57) converges to the left side of (3.54) 
everywhere on the set B introduced in Section 3.7.3.  Since this set has probability equal to 1, the 
following statement follows.  From (3.50), function (u) is restricted on the interval 0<u<t, and 
values N(u) and Nj(u)are restricted by constant N(0), the following equality 
 

ij j ij
t

t

= N t u du+
ij

i+1, j

  ( ) ( )       (3.58) 

 

holds where <C 2, C is some constant, and =ti+1,j-tij=
h

.j2
416  So, the first sum, with the 

conditions that A(u) is restricted, can be written as 
 

j

s

j= A u N u u du+ 
0

1( ) ( ) ( )   

 
where 1 <C1 .  Taking into account that, on set B, the value of Nj(u) differs from N(u) 
beginning from some j only on some finite number of intervals of length ,  we can write 
 

j

s

j= A u N u (u)du + 
0

2( ) ( )   

for j>j4 where 2 <C2 .  Thus, for j , the first sum converges 
 

j

s

jA u N u u du  
0

( ) ( ) ( )  

 
everywhere on the set B. 
 Further, from (3.58) it follows that ij<C3  for all i=1, ... ,rj.  Taking into account the 
restrictiveness of A(u) on the interval 0<u<t, we have 
 

 j ij
i n j

A t
ij

"

( ) ;
ln[ ( )]  

   
 1 3

1 1 1



 

 
for j>j5  where 3 <C4 .  Thus, for j , on the set B the second sum converges 
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j
j D(s)

j
-" - A t . 

 


1
1ln[ ( )]  

 
It proves the initial statement. 
 
Remark 3.7.1  Main condition on which the above proof is based is the formula (3.50) for the 
conditional probability (3.49).  In more descriptive form, it means the following:  Let we know that 
the intermediate termination cannot be performed on the time interval (t, t+h).  Then the conditional 
probability of unit failure on this interval under condition that it has not failed on interval (0, t] 
equals 
 

q t, t + h =
P t - P t + h

P t
= - (u)du

t

t+h

( )
( ) ( )

( )
exp1 









   

 
independent of the "prehistory" of the testing process up to the moment t.  In other words, there is 
no dependence on the intermediate termination or failures of other units on interval (0,t].  This and 
the assumption of the independence of tested units gives us that the conditional distribution of the 
number of failures d=D(t+h)-D(t) on this interval is binomial with parameters N=N(t), the number 
of independent trials, and q=q(t,t+h), the probability of failure.  The same condition (formula (3.38)) 
was the key for the proof of unbiasedness of the estimate ( )P t 417 in Section 3.7.3. 
 
Remark 3.7.2.  For the more general test model, [MMR], where new tested units might appear at 
moments 1, 2, ... (see Section 3.6), the analogous statement is as follows.  Let it be known that on 
the time interval (t, t+h) no external interventions are possible (no intermediate termination, no 
addition of new units).  Then the conditional probability of unit failure under condition that it has 
not failed or its testing has not been terminated up to this moment equals 
 

q =
P S t - P S t + h

P S t
= u du

S(t)

S(t)+h[ ( )] [ ( ) ]
[ ( )]

exp ( )1 












   

 (3.59) 
where S(t) is the time for which the unit was operating up to the moment t, that is, S(t)=t-  where  
is the moment when this unit began to be tested.  On the basis of this condition, the proof of the 
confidence limits (3.33) and (3.34) for the model [MMR] can be performed in the manner 
completely analogous to [MMU].  The only additional condition for this case  is E B(t)< ,  W 
for all t>0 where B(t) is the number of new units which began to be tested on the time interval [0,t]. 
 
 
4.8.6 Consistency of Confidence Limits (3.24) and (3.25) 
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 Let t>0 be some fixed moment.  Consider a sequence of Markov test models [MMU]r, 
r=1, 2, ... .  Characteristics for the rth model is denoted by subscript r:  Nr(t), Dr(t), and so on.  Let 
the initial number of tested units be 
 

r rN = N ( )0    
 
for r , with the following condition (for fixed t) 
 

N N
N t

.r l

r
-

p
2 0
( )          (3.60) 

 
Assume that the intermediate termination moments can take only discrete values vj=ih, i=1, 2, ... 

with some fixed infinitesimally small h>0.  For the sake of simplicity, assume that h =
t
K

418 

where K is an integer number.  Set =1-  and choose function A(t) as follows 
 

A(t) = -
a N
N t

,  tr

r ( )
 0  

 
where a is a positive constant.  From (3.24) we have the following lower (1- )-confidence limit for 
the resources function 
 

l
r r 1 j D (t)

r

r j
-t = -
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        (3.62) 

  
In an analogous way, setting =1-  and 
 

A t =
b N

N t
,  t

r

r
( )

( )
 0       (3.63) 

  
where b is a positive constant, we obtain the following upper (1- )-confidence limit for the 
resource function  
 

r
r r j D (t)

r

r j
-t =

| |
b N

 
b N

-
b N
N t

.
l

 ( )
ln

ln
( )

 










 
 1

1
1

     (3.64) 

 
Let us show that for r  there is the following convergence 
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r
p

t   t ( ) ( )         (3.65) 

 
r

p
t   t ( ) ( )      (3.66) 

 
First let us prove (3.65).  The first term in (3.62) is a constant converging to 0.  The second term 
after some transformations can be rewritten as 
 

1
1

1a N
+

a N
N ( t )

= t +
r j D (t)

r

r j
- r

l 














ln  ( )   

where 


( )
, r

j D (t) r j
-

l N t1

1
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From the latter inequality, taking into account that Nr(tj

-)>Nr(t-) for all j=1, ... ,Dr(t), we have 
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a N D t
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2 2
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Thus now it is enough to show that  
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r
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D t N
N t
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r

p
t   t . ( ) ( )       (3.69) 

 

 
Convergence of (3.68) directly follows from the condition (3.60) if one takes into account that 
Dr(t)<Nr.  Let us show the convergence of (3.69).  The value r t ( ) 421 can be written in the form 
 

 ( ) t =
i K

i
1 
   ,       (3.70) 
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where 

i
j J r j

-=
N ti



 1

( )
 

 
and the sum is taken over the set of subscripts 
 

i i j iJ = j:   v - h < t v ,  i = ,...,K.{ } 1  
 
So, it is enough to show that 
 

i
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for all i=1, ... ,K.  Since on the interval (vi-h, vi) there are no intermediate terminations,  
 

i
N n N

=
n

i
<

i
+


_  
 1

 

where Ni
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+=N(vi-h) .  For this value the following limits 
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Denoting the number of failures on the interval (vi-h, vi) by di=Ni
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-, we have 
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For assumed conditions, i

-

p
N    422 and i

+

p
N    423, i=1, ... ,K, it follows 
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0
i
-

pN
   424, i

i
+

p
i

d
N

  q 425 (3.72) 

where qi=1-exp[ (vi-h)- (vi)] is the conditional probability of unit failure on the interval (vi-h, vi) 
under condition that up to that interval the unit has not failed.  From (3.71) and (3.72) it follows the 
convergence of (3.69) and (3.65). 
 The proof of the convergence of (3.66) is completely analogous. 
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Remark 3.7.3  The main condition (3.60) for the consistency of the confidence limits means that 
the number of units whose testing has been terminated up to the moment t must not be too large, or, 
in other words, Nr(t-) must grow to  faster than N r

( / )3 4 .426  This condition automatically holds for 
the model of independent random censoring ("concurrent risks") for all t such that [1-F(t)][1-
G(t)]>0, because in this case 
 

r
-

r p

N t
N

 - F t - G t
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[ ( )][ ( )] 1 1  

 
from where it follows that 
 

r r
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Notice that in the conditions mentioned above, the estimate of the resource function  ( ) t 427 and 
reliability function ( )P t 428 are consistent for Nr , though for their consistency more weak 
condition is satisfactory: r

-

p
N t   ( )  429, or, in other words, 

 P {Nr(t-)<C}  0 for any finite C. 
 
4.8.7 Markov Test Model [MMR] with Censorship and Renewal 
 
 Let us add to the model [MMU] the following two sequences: 
 1< 2< ... < i< i+1< ... 
 m1, m2, ... , mi,mi+1, ... 
where i is the sequence of monotonically increasing Markov (in respect to the family t 430, t>0) 
moments, and mi=0, 1, 2, ... is i 431-measurable r.v., i=1,2, ... .  Here i is a moment of adding mi 
new identical units to the tested ones. 
 The total test termination moment, , is also Markovian in respect to the family  t 432, 
t>0, such that P ( < )=1,  W.  Thus, this model is defined by the following set 
M={( 1, n1), ... ,( k, nk), ...; ( 1, m1), ... ,( i, mi), ...; } 
 (3.73) 
where k is the moment of the testing termination for a group of nk units, k=1, 2, ... (see Section 
3.7.2). 
 One more difference of this model from [MMU] is in the fact that the sequence ( k, nk), as 
well as the sequence ( i, mi), is, in general, infinite. 
 It is clear that the model [MMR] includes the model [MMU] as a particular case for mi=0, 
i=1, 2, ... . 
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 Notice also that in the model [MMU] all operating units at any moment t have the same 
"age" (operational time) equal to t.  In the more general model [MMR] N(t) units currently testing at 
the time moment t have different "age" 
 Se(t),  e E(t) 
where e is the subscript of the unit, Se(t) is the 'age' of the eth unit at time t, E(t) is the set of 
subscripts of the units testing at moment t.  The set E(t) consists of N(t) subscripts, so for defining 
the test model, the set (3.73) must be widened:  for each intermediate termination moment, k, we 
need to specify the set of the unit's subscripts rather than just their quantity, nk: 
 {er( k),  r=1, ... ,nk} 
where er( k) is the subscript of the rth unit whose test has been terminated at the moment k, 
er( k) E( k

-).  Of course, it is possible to show the "age" of all units which are still being tested 
after the moment k: 
  Se( k), e E( k) E( k

-).
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Problems for Chapter 3 
 
Exercise 3.1  Prove the formula for the reliability function 
 

P t = - q
j M -

j( ) ( )
0 1

1
 
          (3.74) 

 
where t=Mh, 
 

jq = P jh < jh+ h| > jh =
P hj - P hj + h

P jh
( )

( ) ( )
( )

   

 
j=0, 1, ... ,M-1, i.e., qj is the conditional probability of unit failure on the interval (jh, jh+h] under 
condition that up to the moment jh the unit has not failed.  (Here  denotes unit's TTF.) 
 
Exercise 3.2  In the conditions of Example 3.3.1 calculate the estimate of the reliability function 
P(t) for t=300 with the help of the recurrent procedure (3.11). 
 
Exercise 3.3  In the conditions of Example 3.3.1 calculate the estimate of the reliability function 
P(t) for t=375 with the help of the recurrent procedure (3.11). 
 
Exercise 3.4   Consider the following Markov test model [MMU] with censorship and without 
renewal.  At moment t=0 fifteen identical units are tested (N=15).  The test results are represented in 
Tables 3.3 and 3.4.  To find the estimate of the reliability function P(t=200). 
 

Table 3.3 
  

Table 3.4 
  
Exercise 3.5  In the conditions of the previous Exercise find the estimate for the reliability function 
P(t=120). 
 
Exercise 3.6  In the conditions of Exercise 3.4 find the estimates for the reliability function 
P(t=150) and resource function (t=150). 
 
Exercise 3.7  In the conditions of Example 3.3.1, using asymptotically normal approximation (see 
Section 3.4), construct the lower confidence limit with confidence coefficient =0.95 for the 
reliability function P(t=160). 
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Exercise 3.8  In the conditions of Exercise 3.4, using the method described in Section 3.5,  find 
the lower confidence limit with the confidence coefficient =0.9 for the reliability function 
P(t=150) and resource function (t=150). 

 
5. Bayes Methods of Reliability Estimation 
 
5.1 Introduction 
 
 To illustrate the main idea of the Bayes method we consider  the following standard case.  
Let we have a unit with d.f of TTF F(t,) and density f(t,) where =(1, ... , m) is parameter (in 
general case, a vector) from some space .  Let z be a vector of test results obtained on the basis of 
some test plan, and L(z|) is a likelihood function or, in other words, the density of distribution of 
test results z for given value of parameter . For instance, if z  is a complete sample of size n, that is, 
z=(x1, ... ,xn) where xi are independent values of observed TTF, then likelihood function has the form 
 

L f xi
i n

( | ) ( , )z 
 

1

 

 
 Following Bayes approach we consider parameter  a r.v. with some density  h()  which is 
called a prior density of distribution.  This density, roughly speaking, reflects our prior (before 
testing) knowledge about the parameter .  The main idea of the Bayes approach consists in finding 
conditional density of distribution h( |z)   under condition that the test results is z: 
 

h z
h L z

z
( | )

( ) ( | )
( )


 


    (4.1) 

where (z) is density of distribution of z, taking into account a prior distribution h(): 
 

   ( ) ( ) ( | )z h L z d 


 

 
In formula (4.1) function h L z( ) ( | )   is a joint density of distribution of a pair (,z), and function 
(z) is marginal density of distribution of z.  For given fixed test results z, the value of function 
h(|z) is proportional to the product of the prior density and likelihood function, h L z( ) ( | )  . Value 
of (z)  is a norm multiplier which is chosen in such a way that the integral of function h(|z)  by 
parameter  is equal to 1. 
 Relation (4.1) is the basis one for the Bayes method.  Function h(|z)  is called a posterior 
density of distribution of parameter   for given test results z.  This density reflects our knowledge 
about parameter   after the test.  For instance, if D is some area in parameter space, then value  

h z d
D

( | )   can be interpreted as a measure of our assurance in the fact that parameter   belongs to 

the area D if the test results is z. 
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 A posterior density (4.1) is the basis for obtaining statistical decisions about parameter .  
We will consider the construction of Bayes estimates and confidence limits. 
 
5.2 Point Estimates and Confidence Limits 
 
5.2.1 Bayes Point Estimates 
 
 Let R=R() be a unit reliability index which is a function of vector parameter . Let 
 ( )R R z  be a point estimate for R.  A natural measure of quality of estimate R  can be chosen to 

be the mathematical expectation of the square of deviation of estimate R  from R, that is, value 
 

E R R h d R R L d
Z

(  ) ( ) [ ( ) ( )] ( | )  2 2   z z z


  (4.2) 

 
where Z is a set of possible test results z.  The problem is to find function ( )R z  for which value 
(4.2) is minimum. 
 Taking into account the definition of the posterior density (4.1), we can present (4.2) in the 
form 
 

E R R d R R h d
Z

(  ) ( ) [ ( ) ( )] ( | ) .  2 2   z z z z


 

 
 Hence, for solving the problem formulated above, we need to find, for each fixed test results 
z, minimum in R  of function  
 

G R R R h d(  ) [  ( )] ( | )    2 z


 

 
This function can be written in the form 
 

G R R R R h d R h d( )   ( ) ( | ) ( ) ( | )   2 22      z z
 

 

 
Calculating derivative  G R' ( )  and setting it equal to 0, we see that minimum  of function G R( )   is 
reached at 
 

 ( ) ( | )R R h d    


z    (4.3) 
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The right side of this equation is a posterior mathematical expectation for R().  Thus the best 
Bayes point estimate of reliability index R=R(), which minimizes the standard deviation (4.2) of 
R() for given test results z. 
 Notice that the choice of the type of measure of quality of estimate R  essentially influences 
on the type of "the best" est.  For instance, if we choose the mathematical expectation of module of 
deviation of estimate R  from R, as the measure of quality, that is, value 
 

E R R h d R R L d
Z

|  | ( ) | ( ) ( )| ( | )      z z z


 

 
then we can show that the best Bayes point estimate of  R = R (z) is the median of the posterior 
distribution of R()  for fixed test results z (see below the Problem 4.1 to the chapter). 
 
5.2.2 Sufficient Statistics 
 
 Let T=T(z) be a sufficient statistic, then (see Section 1.3.4) likelihood function can be 
written in the form of product of two multipliers 
 

L(z|)=C(z) g[T(z), ] 
 
where  function C(z) depends only on the test results z but does not depend on parameter , and 
function g[T(z), ] depends on parameter  and test results z via statistic T(z). Substituting this 
expression into (4.1), we have the following formula for the posterior density of distribution: 
 

h
h C g T

C h g T d
h g T
h g T d

( | )
( ) ( ) [ ( ), ]
( ) ( ) [ ( ), ]

( ) [ ( ), ]
( ) [ ( ), ]


 

  

 

  
z

z z
z z

z
z


 




 
 

 

 
From here it follows that the posterior distribution density depends on test results z via a sufficient 
statistic T=T(z).  In other words, if different test results, z1 and z1 are such that T(z1)=T(z1), then the 
posterior distribution densities h(|z1) and h(|z2) coincide.  Thus all Bayes statistical inferences 
(point estimates, confidence limits, etc.) depend only on sufficient statistic T=T(z).  For instance (see 
below Section 4.4), in the "exponential model" below, two-dimensional statistic T=(d,S) is 
sufficient.  (Here d is the number of failures during the test and S is the total test time.) 
 
5.2.3 Bayes confidence limits 
 
 Let R=R() be a reliability index.  Introduce function 
 

( | ) { ( ) | } ( | )
( )

t P R t h d
R t

z z z  

  


  (4.4) 
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which represents a posterior d.f. of reliability index R() for a given test results z.  Bayes 
confidence limits for R() are determined as corresponding quantiles of d.f. (4.4).  Namely, Bayes 
Lower Confidence Level R=R(z) with confidence coefficient 1-  for R() can be found from the 
solution of equality 
 

( | )R z     (4.5) 
 
Bayes UCL R R ( )z  with confidence coefficient 1-  for R() is found from 
 

( | )R z  1    (4.6) 
 

From (4.5) and (4.6) also follows that the following equation is true: 
 

P R R R h d
R R R

{ ( ) | } ( | )
( )

     
 
    


z z 1  

  
that is, interval ( , )R R  is Bayes confidence limit for R() with confidence coefficient =1- - . 
 Let us now consider some applications of Bayes method. 
 
5.3 Binomial model 
 
 In the result of the test we know the number of failures in N independent tests, z=d.  
Parameter =q is the probability of failure in a single test.  In this case likelihood function, that is, 
the probability of observation of d failures in a series of N trials, has the form 
 

 L L d q q qN
d d N d( | ) ( | ) ( ) .z    1  

 
 Let a prior distribution density, h(q), of parameter q be given.  By the main formula (4.1) the 
posterior distribution density of parameter q for fixed d is determined as 
 

h q d
h q q q

h q q q dq

d N d

d N d

( | )
( ) ( )

( ) ( )










1

1
0

1   (4.7) 

 
where 0<q<1.  Let a prior distribution h(q) have the form of the standard beta distribution with 
parameters (a, b), that is, 
 

h q
q q

B a b

a b

( )
( )
( , )


 1 11

  (4.8) 
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where B a b t t dta b( , ) ( )   1 1

0

1

1  is beta function. 

 Substituting (4.8) into (4.7), we obtain 
 

h q d
q q
B a d b N d

a d b N d

( | )
( )

( , )



  

    1 11
 ,  (4.9) 

 
that is, posterior distribution density (4.9) in this case is also  a density of beta distribution though 
with new parameters (a+d, b+N-d).  It shows in a very transparent form how test results (N, d) 
influences on the prior distribution (4.8). 
Remark.  If prior and posterior distributions belongs to the same family of distributions, such a 
family is called adjoin.  For the "binomial model" a family of beta distributions is adjoin.  In 
"exponential model" such adjoin distribution family is gamma (see Section 4.4 below). 
 Applying (4.3), we obtain Bayes point  estimate q , a posterior mean of parameter q: 
 

 ( | )q qh q d dq
a d

a b M
 


 

0

1

  (4.10) 

 
Formula for variance of the posterior distribution of parameter q can be also easily obtained: 
 

E q q d q q h q d dq
a d b N d

a b N a b N
[( ) | ] ( ) ( | )

( )( )
( ) ( )

.   
  

    2 2
2

0

1

1
 

 
Using (4.5) and (4.6), we obtain that Bayes LCL, q, with confidence coefficient 1-  and Bayes 
UCL, R , with confidence coefficient 1-  for parameter q can be found from 
 

I a d b N dq ( , )       (4.11) 

 
I a d b N dq ( , )    1    (4.12) 

 
where Iq(a,b) is incomplete beta distribution with parameters a and b : 
 

I a b
B a b

t t dtq
a b

q

( , )
( , )

( )  
1

11 1

0

  (4.13) 

 
Notice that standard Clopper-Pearson confidence limits for binomial parameter q are found from 
(see Section 1.4.6 above) from 
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 N
j

d j N

j N jq q
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 N
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j d

j N jq q
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1
 

  ( ) .  

 
Taking into account  
 

 N
j

j d

j N j
qq q I d N d

0
1 1 1

 

     ( ) ( , ),  

 
we can express Clopper-Pearson equations via incomplete beta function in the form 
 

I d N dq ( , )  1    (4.14) 
 

I d N d
q
( , )   1 1    (4.15) 

 
Solution of these equations calculated on the basis of statistic (d, N) are denoted by q N d

1
( , )  and  

 
 
 
 
 
 
 for Clopper-Pearson LCL (with confidence coefficient 1- ) and UCL (with confidence coefficient 
1-), respectively.   Notice that left sides of theses equations are defined not only for integer values 
of N and d. 
 From comparison (4.11) and (4.12) with (4.14) and (4.15), we see that Bayes confidence 
limits q  and q  relate to the Clopper-Pearson confidence limits as follows: 
 

q q N a b d a    
1

1


( , )   (4.16) 

 
q q N a b d a     1 1 1 ( , )   (4.17) 

 
These equations allow us to calculate Bayes confidence limits with the help of standard tables of 
binomial distribution (or tables of beta functions). 
 Formulas (4.61) and (4.17) can be interpreted in the following way.  A knowledge of the 
prior distribution (4.8) of parameter q, roughly speaking, is equivalent to a situation  where we have 
information about a+b-1 additional trials with a observed failures. In the case of calculation of the 
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upper confidence level, q , we have information about additional a+b-1 during which a-1 failures 
have occurred.  In an analogous way, the point Bayes estimate (4.10) can also be interpreted. 
 
Example 4.3.1.  Let the parameters of the prior beta distribution be a=2 and b=9 and test results be 
the following: N=8 and d=1.  Using (4.10), we obtain  in this case that Bayes point estimate q  for 
reliability index q (the failure probability) is 
 

 . .q
d a

N a b



 

 
3

19
0158  

 
Using formulas (4.16) and (4.17) and table E.14 of Appendix, we found that 0.99-confidence limits 
( , )q q  for parameter q (for = =0.005) are: 
 

q q N a b d a q     
1 0 995

1


( , )
.,

(18, 3)=0.020   

q q N a b d a q      1 0 9951 1 ( , ) . (18, 2)=0.422  
 

 
Remark. The examples above illustrate both advantages and disadvantages of Bayes approach.  

Indeed, if we could choose an prior distribution (4.8) so that ratio 
a

a b
 is close to the real value of 

parameter q, then we obtain, roughly speaking, an equivalent number of trials N+(a+b-1) instead of 
initial value of N. However, if this choice is not felicitous, then we need a large number of trials N to 
correct the results due to the wrong choice. 
 
5.4 Exponential Model 
 
 Let unit TTF have exponential d.f. F(t, )=1-e- t.  In this case =. Assume that test was 
performed by plan [N U r], that is, for the number of failures fixed in advance(see Section 2.1).  In 
this case test results are expressed as z=S where S is the total test time determined by formula (2.4) 
and likelihood function is 
 

L(S|)=Cre-S 
 
where C is a norm constant (see Section 2.2.1 above). 
Assume that a prior distribution density h( ) of parameter  is given.  Then in accordance with 
(4.1), the posterior distribution density of  has the form 
 

h S
h e

h e d

r S

r S

( | )
( )

( )


 

  












0

  (4.18) 
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Take the standard gamma distribution  (see Section 1.2 above and Table 1.1) with parameters (U,a) 
as a prior distribution h( ), that is, 
 

h
u

a
e

a a
u( )

( )


 



1


  (4.19) 

 

where ( )a t e dta t  


 1

0

 is gamma function. Then from (4.18), we obtain that the posterior 

distribution density is 
 

h S
u S e

a r

a r a r u S

( | )
( )

( )

( )


 






    1


 

 
from where we see that it is also gamma distributed with parameters (u+S, a+r). Thus, the 
exponential family is adjoin for the "exponential model" considered above. 
 Using (4.3) we obtain that Bayes point estimate (the posterior mean) for parameter  has 
the form 
 

 ( | )    





 h S d
a r
u S0

  (4.20) 

 
From (4.5) and (4.6) we find that Bayes LCL  (with confidence coefficient 1- ) and Bayes UCL 
  (with confidence coefficient 1- ) for parameter  can be found as 
 

 



 ( , )

,
1 a r
u S

        





1 1( , )a r

u S
 

 
where (1,a+r) is the quantile of level  for gamma distribution with parameters (1, a+r).  These 
confidence limits can be also expressed via quantiles of chi square distribution (see Section 1.2.3 
above): 
 







2 2 2
2
( )
( )

,
a r

u S
    

 





1

2 2 2
2

( )
( )

,
a r

u S
  (4.21) 

 
where 2(m) is the quantile of level  for chi square distribution with m degrees of freedom. 
 Comparing these formulas with the analogous ones in Section 2.2.1, we see that using prior 
distribution (4.19) with parameters (u,a) corresponds to additional tests with the total test time u and 
the number of failure a.   
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Example 4.4.1  Let the parameters of the prior distribution be u=150 hours and a=1, and test 
results be  S=295 hours and r=1.  Using (4.20) and (4.21) we obtain that Bayes point estimate (the 
posterior mean) for parameter  is equal to 
 

 








a r
u S

1 1
150 295

4510-4 (1/hour) 

 
Bayes 0.9-LCL, , and 0.9-UCL,  , for parameter  are 
 







   0 1
2

44
2 150 295
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890

12 10. ( )
( )

.
 1/hour   

 







   0 9
2

44
2 150 295

7 78
890

87 5 10. ( )
( )

.
.  1/hour 

 
Test Plan [N U T] 

 Consider now plan [N U T], that is test for time T fixed in advance time T.  In this case test 
results are given by a pair z=(S,d) where, as before, S is the total test time and d is the number of 
failures.  fl is given by the expression 
 
 L(S,d| )=C de- S  (4.22) 
 
where C=C(d)=N(n-1) ... (N-d+1) depends on the test results (d) but does not depend on parameter 

.  Consequently, pair (S,D) is sufficient statistic (see Section 2.2.2 above). 
 Let h( ) be a prior distribution density of parameter . Then from (4.1) and (4.22) follows 
that the posterior distribution density has the form 
 

h S d
h e

h e d

d S

d S

( | , )
( )

( )


 

  












0

  (4.23) 

 
It is easy to see that posterior densities (4.18) and (4.23) coincide if to take d=r.  It means that all 
results for plan [N U r ] considered above can be extended to plan [N U T] for d=r. 
 

Other test Plans. 
 The same conclusions can be obtained for other test plans of type U (no renewal) and type R 
(with renewal).  Indeed, for these plans likelihood function has the form 
 
 L(S,d| )=C de-S   (4.24) 
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where C is a constant or a function depending on the test results but does not depend on parameter 
 (see Section 2.2).  Notice that for plans [NUr} and [NRr], where tests continue until the number 

of failures equal to r, fixed in advance.  We assume d=r.  From (4.1) and (4.24) follows that for all 
these test plans a posterior distribution density of parameter  has the same form (4.23).  
Respectively, the conclusion made on the basis of the posterior distribution density, in particular, 
formulas (4.20) and (4.21) for Bayes point estimate and confidence limits for test plan [NUr], can 
be expanded on test plans mentioned above for d=r. 
 This important property of the Bayes approach ("insensitivity" in respect to the test plans) is 
expanded onto a more general case where a distribution of TTF is not necessarily exponential. 
 
5.5 General Parametric Model 
 
 Consider a general case where TTF has d.f. F(t,)  with density f(t,)  where  is some (in 
general case, a vector) parameter taking its values from set .  Let us denote F (t,)=1- F(t,) a 
complementary distribution function (in other terms, reliability function).  For all test plans of type 
U (no renewal) and type R (with renewal), considered above, likelihood function has the form (see 
Section 2.4): 
 

L z C f s F ui j
ji d

( | ) ( , ) ( , )  


 
  


11
  (4.25) 

 
where z=(d, s1, ... ,sd, , u1, ... u)  is a set of all test results, 
    Si are complete intervals of observations (i.e. those which are terminated by a failure), 1<i<d, 
    uj are incomplete intervals of observations (i.e. those which are terminated before failure has 
occurred), 1<j< , 
 d is the number of failures (coincides with the number of complete intervals of 
observations), 
  is the number of units whose test was terminated before  failure (coincides with the 
number of censored test intervals), 
 C is a function which can depend on the test results but does not depend on parameter . 
 Numbers d and  might be determined in advance or random depending on the test plan 
(see Section 2.4). 
 Assume that a prior distribution density h() of parameter  is given.  From (4.1) and (4.25) 
we can obtain that for all mentioned test plans the posterior distribution density h(|z) of parameter 
 for a given test results z has the same form: 
 

h
h

f s F ui j
ji d

( | )
( )
( )

( , ) ( , )



 


z
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11
  (4.26) 

 
 
where 
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( ) ( ) ( , ) ( , ) .z   
  

h f s F u di j
ji d 11

   

 
 
 Thus, for fixed test results z the posterior distribution density (4.26) and all statistical 
inferences do not depend on the test plan.  So, the Bayes approach is insensitive to test plans. 
 In conclusion, notice that the Bayes approach possesses of some essential advantages: 
simplicity, universality and inner logic.  However, this method has its weak sides, determined by an 
arbitrary choice of prior distributions. 
 Since the choice of the prior distribution is completely in the hand of researcher, there is a 
possibility of "adapting" the final numbers to almost any "needed" results. This dependence on 
subjective viewpoint of a researcher is a serious disadvantage of the method.  At the same time, this 
method very effective for "aggregation" of statistical data obtained from different sources. The 
problem of choice of a prior distributions discussed in detail by Cox and Hinkley (1978). 
 Bayes approach is widely discussed last years. Probably, first intensive wave of works 
dedicated applications of the Bayes approach to reliability problems began in late 60's and 70's: 
Springer and Thompson (1966, 1967,1968), Fergusson (1973), Cole (1975), Mastran and 
Singpurwalla (1976, 1978) Smith and Springer (1976).  Among recent works, we would like to 
mention Barlow (1985), Martz and Waller (1982, 1990), Martz, Waller and Fickas (1988).  Some 
monographs on the theme also could be mentioned: Mann, Schaefer and Singpurwalla (1974), 
Belyaev (1982), Savchuk (1989). 
 
Problems to Chapter 4 
4.1.  Find Bayes point estimate  ( )R R z  for R=R() which minimizes the posterior mathematical 
expectation of module | R -R|. 
 
4.2. Let (see Section 4.3) a prior distribution parameter q (failure probability) in a "binomial model"  
be uniform in interval (0, 1).  For this case find the Bayes posterior distribution, point estimate 
(posterior mean) and confidence limits for parameter q. 
 
4.3.  Assume that in a "binomial model" we know in advance that failure probability q satisfies 
inequality q<q* where q*<1.  A prior distribution of parameter q is chosen uniform in interval (0, 
q*).  Find for this case Bayes point estimate and confidence limits for parameter q. 
 
4.4. Let a prior distribution parameter q (failure probability) in a "binomial model"  be uniform in 
interval (0, 1) and test results be the following: d=1 (number of failures) and N=10 (number of 
tested units).  Find Bayes point estimate and confidence limits with confidence coefficient 0.95 for 
parameter q. 
 
4.5.  Solve the previous problem for the same test results if it is known in advance that failure 
probability q satisfies inequality q<q*=1/2 and a prior distribution of parameter q is chosen uniform 
in interval (0, q*). 
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4.6.  Let a prior distribution of parameter  (failure rate) an "exponential model" be gamma (4.19) 
with parameters u=200 hours and a=2.  The test results are the following: S=400 hours and d=1. 
Find the posterior distribution density,  Bayes point estimate and confidence limits with confidence 
coefficient 0.9 for parameter . 

 
 
 
6. ACCELERATED TESTING 
  
6.1 INTRODUCTION 
 
 The true level of modern hardware reliability can be estimated only on the basis of tests 
under specified conditions, or on the basis of real data. To estimate the reliability of a large 
population of items, one needs to test a number of items and to treat the data thus obtained using 
statistical methods. This seemingly straightforward way of reliability estimation is often difficult 
in practice due to monetary and time restrictions. Let us assume that an item has the exponential 
TTF distribution with parameter l = 10-9 1/hour. For satisfactory statistical estimation, one needs 
to observe, say, 10 failures. To obtain 10 failures, approximately, 1010 item-hours are required. 
Thus, one unit should be tested for approximately 10 million years (!); or one million items 
should be tested for10 years (!). Neither approach makes any practical sense. 

As another example, consider an item with an extremely stable performance parameter 
which determines the item’s reliability. (For instance, it can be a quartz timer in a synchronized 
system.) To estimate a time when the examined parameter deviates from its tolerance, one also 
needs either many items tested or enormous testing time. 

Such situations lead to the need for development of some special methods for reliability 
estimation. One of the most important practical methods, used in these situations, is the so called 
accelerated life testing (ALT). 

There are two main ways to accelerate tests: 
 to put the test items under conditions much more severe than the nominal (operational) 

ones, which will result in faster failure occurrence; 
 or/and to choose much more rigid tolerances and consider crossing of these limits as a 

degradation (conditional) failure. 
 
    These approaches are based on the natural assumption that increasing stress (as well as 
rigid tolerances) results in decreasing the time of failure-free operation. Both approaches need 
credible techniques for extrapolation from the “accelerated domain” into “the normal domain” 
and they are based on the hypothesis of similarity of the item behavior under accelerated and 
normal (use) stress conditions. In mechanics, for instance, there exists a special approach, the so-
called, similarity theory, which is dedicated to such theoretical constructions and has many 
practical applications. Unfortunately, a hidden danger of erroneous conclusions always exists if 
one makes “too brave” an extrapolation.  

Indeed, increasing the stress factors (shock, vibration, temperature, humidity) we can 
completely change the failure mechanisms, so that all of our predictions might turn out to be 
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useless. 
For the case of rigid tolerances we meet analogous situations. A parameter of interest can 

be very stable within a narrow band around the nominal level, and, at the same time, there might 
be a catastrophic failure mode because of various influences of positive feedback. 

In this chapter we will formally consider the first mentioned above case, though some 
results might be naturally extended to the second case. 
 
6.2 Basic Notions and Probabilistic Model 
 
6.2.1  TTF Distributions and Accelerated Life Reliability Model 
 
A reliability model in accelerated life testing (AL reliability model) is usually defined as a 
relationship between the time to failure (TTF) distribution of a device and stress factors, such as 
load, cycling rate, temperature, humidity, voltage, etc. The AL reliability models are based on 
the considerations of physics of failure. From the mathematical point of view, an AL reliability 
model can be considered as a deterministic transformation of TTF. 
 
 
6.2.2 Stress Severity in Terms of TTF Distribution  
 
 Let F1(t;z1) and F2(t;z2) be time to failure cumulative distribution functions (CDF) of the 
item under the constant stress conditions z1 and z2 respectively1. The stress condition z2  
 

2 2 1 1F t;z  >  F t;z( ) ( )      (5.1) 

 
is more severe than z1, if for all values of t  

This inequality means that a more severe stress condition accelerates the time to failure, 
so that the reliability of the item under stress condition z2 is less than the reliability under stress 
condition z1.  

 
 

6.2.3 Time-transformation Function for the Case of Constant Stress 
 
For monotonically increasing CDFs F1(t;z1) and F2(t;z2), if constant stress condition z1 is less 
severe than z2 and t1 and t2 are the times at which F1(t1;z1) = F2(t2;z2), there exists a function g 
(for all t1 and t2) such that t1 = g(t2) and  

2 2 2 1 2 1F t ;z =  F (g t ,z( ) ( ) ) (5.2) 
 

                     
     1Stress condition, z, in general case is a vector of the 
stress factors. 
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Because F1(t;z) < F2(t;z), g(t) must be an increasing function with g(0)=0 and  
t

g t


 lim ( ) .   

The function g(t) is called the acceleration or the time transformation function. 
As it was mentioned above, AL reliability model is a deterministic transformation of time 

to failure. Two main time transformations are considered in Life Data Analysis. These 
transformations are known as the Accelerated Life (AL) Model and the Proportional Hazards 
(PH) Model. 
 
6.2.4 Accelerated Life Model (Linear Time-transformation Function)  
 
Without loss of generality, one may assume that z = 0 for the normal (use) stress condition. 
Denote a failure time CDF under normal stress condition by F0(). The AL time transformation is 
given in terms of F(t;z) and F0() by the following relationship [Cox and Oaks, 1984] 
 

F t;z  =  F t z, A( ) [( ( )]0         (5.3) 
 
where y(z,A) is a positive function connecting time to failure with a vector of stress factors z; and 
A is a vector of unknown parameters; for z = 0, y(z,A) is assumed equal to 1. 

The corresponding relationship for the probability density function is given by 
 

f t; z  =  f t z, A z A( ) [ ( )] ( , )0            (5.3’) 
 

Relationship (5.3) is a scale transformation. It means that a change in stress does not result in a 
change of the shape of the distribution function, but changes its scale only. Relationship (5.3) can 
be written in terms of the acceleration function as follows: 
 

g t  =  z, A t( ) ( )      (5.4) 
 
In other words, relationship (5.3) is equivalent to the linear one with time acceleration function. 

The distributions considered are geometrically similar each other. They are called 
belonging to the class of TTF distribution functions which is closed with respect to scale 
[Leemis, 1995]. The similarity property is extremely useful in physics and engineering. Because 
it is difficult to imagine that any change of failure modes or mechanism would not result in a 
change in the shape of the failure time distribution, the relationship (5.3) can be also considered 
as a principle of failure mechanism conservation or a similarity principal. The analysis of some 
sets of real life data using the statistical procedures described below (Criteria of Linearity of 
Time Transformation Function) often show that the similarity of time to failure distributions 
really exists, so that a violation of the similarity can identify a change in a failure mechanism.  

The relationship for the 100pth percentile of time to failure tp(z) can be obtained 
from (5.3) as 

t z B
t
z Ap

p( , )
( , )


0


      (5.5) 
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where tp

0 is the 100pth percentile for the normal stress condition z = 0.  
The relationship (5.4) is the percentile AL reliability model and it is usually written in the 

form  
 

pt z,B  =  z,B( ) ( )      (5.6) 
 

The AL reliability model is related to the relationship for percentiles, (5.5), as 
 




( )
( )

z,B  =
t
z, A
p

0

     (5.7) 

 
 
Corresponding relationship for failure rate can also be obtained from (5.3) as 
 

   ( ) ( ) [ ( )]t;z  =  z, A t z, A ,0       (5.8) 
 

It is easy to see that the relationship for percentiles is the simplest; that's why it is being 
used in the following sections on AL data analysis. 

 
6.2.5 Cumulative Damage Models and Accelerated Life Model  
 
 Some known cumulative damage models can result in the similarity of TTF distributions 
under quite reasonable restrictions. As an example, consider the Barlow and Proschan model 
resulting in an aging TTF distribution. They consider an item subjected to shocks appearing 
randomly in time, is considered. Let these shocks arrive according to the Poisson process with 
constant intensity l. Each shock cause a random amount xi of damage, where x1, x2,... are 
independently distributed with a common cumulative distribution function, F(x), (damage 
distribution function). The item fails when accumulated damage exceeds a threshold X. The TTF 
CDF is given by 
 

H t = e F X
t

kk=

- t (k)
k

( ) ( )
( )

!0



  
 

 
where F(k)  is k times convolution of F(x).  It was shown by Barlow and Proschan that for any 
damage distribution function F(x), the TTF distribution function has increasing failure rate on the 
average (IFRA). 

Now consider an item under the stress conditions characterized by different stress 
intensities i and different damage distribution functions Fi(x).  It can be also shown that the 
similarity of the corresponding TTF distribution functions, Hi(t), (or the failure mechanism 
conservation (Equation (5.3)) will hold for all these stress conditions (i, Fi(x)), if they have the 
same damage CDF, Fi(x) =F(x), i = 1, 2, . . . A similar example from fracture mechanics is 
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considered in [Crowder et al, 1991]. 
 
6.2.6 Proportional Hazards Model 
 
 For the PH model the basic relationship analogous to (5.3) is given by 
 

F t; z  =  F t ,(z,A)( ) [ ( ) ]1 1 0         (5.9) 
 
or, in terms of reliability function, R, as 
 

R t;z  =  R t (z,A)( ) ( )0       (5.9’) 
 
The proper proportional hazards model is known as the relationship for hazard rate, which can be 
obtained from (5.9) as 
 

  ( ) ( ) ( )t;z  =  z, A t ,0     (5.10) 

 
where y(z, A) is usually chosen as a log-linear function. 

The PH model does not normally retain the shape of the CDF, and the function (z) no 
longer has a simple relationship to the acceleration function, nor a clear physical sense. That is 
why the PH model is not as popular in reliability applications as the AL model. 

Nevertheless it can be shown [Cox, and Oaks, 1984] that for the Weibull distribution (and 
only for the Weibull distribution) the PH model coincides with the AL model. 

It should be noted that the AL model time transformation is more popular for reliability 
applications, while the PH model is widely used in biomedical life data analysis.  

 
6.2.7 Some Popular AL (Reliability) Models for Percentiles 
 
Most commonly used models for the percentiles (including median) are log-linear models. Two 
such models are the Power Rule Model and the Arrhenius Reaction Model. The Power Rule 
Model for 100pth percentile is given by: 
 

p ct x  =
a
x

,   a > , c > , x > ,( ) 0 0 0    (5.11)     

 
where x is a mechanical or electrical stress, a  and c are constants. In reliability of electrical 
insulation and capacitors, x is, usually, applied voltage. In estimating fatigue life the model is 
used as the analytical representation of the S-N or Wöhler curve, where S is a stress amplitude 
and N is life in cycles to failure, i.e., in the form: 
 

N =  k S ,-b
    (5.11’)     
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where b and k are material parameters estimated from test data. Because of probabilistic nature 
of fatigue life at any given stress level, one has to deal with not one S-N curve, but with a family 
of S-N curves, so that each curve is related to a probability of failure as a parameter. These 
curves are called S-N-P curves, or curves of constant probability of failure on a stress-versus life 
plot. It should be noted that relationship (5.11') is only empirical. [Sobczyk and Spencer, 1992]. 

The Arrhenius Reaction Rate Model is the following relationship between life and 
absolute temperature, T: 

 

p
at T  =  a

E
T

,( ) exp

       (5.12) 

 
 

where Ea is activation energy. This model is the most widely used one to examine the effect of 
temperature on reliability. Originally, it was introduced as a chemical reaction rate model. 

The model combining the above models is given by 
 

p
-c at x,T  =  a x

E
T

,( ) exp

       (5.13) 

 
In the fracture mechanics of polymers this model is known as Bruhanova's and Bartenev's model. 
It is also used as a model for the electromigration failures in aluminum thin films of integrated 
circuits; in this case x is current density. 

Another popular AL reliability model is Jurkov's model: 
 

p 0
at x,T  =  t  

E  -  x
T

( ) exp




         (5.14) 

 
 

This model is considered as an empirical relationship reflecting the thermal fluctuation character 
of long-term strength [Regel, et. al., 1974; Goldman, 1994]. For mechanical long-term strength, 
parameter t0 is a constant which is numerically close to the period of thermal atomic oscillations 
(10-11 - 10-13 s), Ea is the effective activation energy numerically close to vaporization energy for 
metals and to chemical bond energies for polymers, and  is a structural coefficient. The model is 
widely used for reliability problems of mechanical and electrical long-term strength.         

The a priori choice of a model (or some competing models) is being made using physical 
considerations.  Meanwhile, statistical data analysis of ALT results and failure mode and effects 
analysis (FMEA) afford to check the adequacy of the model chosen, or to discriminate the best 
model among the competing ones.         
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6.2.8 Accelerated Life Model for Time-dependent Stress  
 
 Models considered in the previous section are for stress constant in time. The case of 
time-dependent stress is not only more general, but also of more practical importance because of 
applications in engineering reliability are not limited to ALT problems. As an example, consider 
the time-dependent stress analog of the model (5.11’). The stress amplitude, S, experienced by a 
structural element often varies during its service life, so that the straightforward use of Equation 
(5.11’) is not possible. In such situations the so-called Palmgren-Miner rule is widely used to 
estimate the fatigue life. The rule treats the fatigue fracture as a result of a linear accumulation of 
partial fatigue damage fractions. According to the rule, the damage fraction,  i, at any stress 

level Si is proportional to the ratio 
n
N

i

i
, where ni is the number of cycles of operation under 

stress level Si , and Ni is the total number of cycles to failure (life) under the constant stress level 
Si , i.e., 
 

i
i

i
i i =  

n
N

,    n   N . 
 

 
Total accumulated damage, D, under different stress levels Si ( i=1, 2 , . . .) is defined as 
 

D =  
n
Ni

i
i

i

i
 =   

 
 
 It is assumed that failure occurs if D > 1. 

Accelerated life tests with time dependent stress such as step-stress and ramp tests are 
also of a great importance. For example, one of the most common reliability tests of thin silicon 
dioxide films in metal-oxide-semiconductor integrated circuits is the so-called ramp-voltage test. 
In this test, the oxide film is stressed to a breakdown by a voltage which increases linearly with 
time [Chan, 1990].  

Let z(t) be a time-dependent stress vector such that z(t) is integrable. In this case, the 
relationship (5.3) can be written in the form: 

 

F t; z  =  F t{ [ ( )]} [ ( )] 0            (5.15) 

where 

( ) [ ( ) ](z)
t

t  =  z s , A ds
(z)

0
  

 
and t(z) is the time related to an item under the stress condition z(t). 

The relationship (5.15) was given by D. R. Cox [Cox, 1984]. Based on this relationship 
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Cox also obtained the analogous relationships for the probability density function and hazard 
rate function. 

The corresponding relationship  for the 100pth percentile of time to failure tp[z(t)] can be 
obtained from (5.15) as 

 

p

t [z(t)]

t  =  z s , A ds.
p

0

0
 [ ( ) ]  

 
Using (5.6) and (5.7) the last relationship can be rewritten as 
 

1
1 1

0
0 1

0

 =  
t z s , A

ds  
z s ,B

ds
p pt [z(t)]

p

t [z(t)]

  
{ [ ( ) ]} [ ( ) } 

    (5.16) 

 
  

6.2.9 AL Reliability Model for Time-dependent Stress and Miner's Rule 
 
It should be noted that relationship (5.16) is an exact nonparametric probabilistic continuous 
form of the Palmgren-Miner rule mentioned in the previous section.  So, the problem of using 
AL tests with time-dependent stress is identical to the problem of cumulative damage addressed 
by the Palmgren-Miner rule. Moreover, there exists a useful analogy between mechanical 
damage accumulation and electrical breakdown; for example, Jurkov’s model is used as the 
relationship for mechanical as well as for long-term electrical strength. 

In the theory of cumulative damage, a certain damage measure D(t) is introduced 
(0<D(t)<1). 

 Assuming that D(t) depends on its value at some initial time t0 and on an external action, 
Q(t), the following general equation for D(t) is being postulated [Sobczyk and Spencer, 1992]: 

 

dD t
dt

 =  f D t ,Q t
( )

[ ( ) ( )]             (5.17) 

 
 

where f(D,Q) is a nonnegative function which satisfies the conditions ensuring the existence and 
uniqueness of the solution of Equation (5.17). The equation is regarded as a kinetic equation for 
damage evaluation [Bolotin, 1989]. 
 

If the right side of Equation (5.17) is independent of D(t),  
the solution of the equation with the initial condition D(0) = 0 is the linear damage 

accumulation model given by  
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D t  =  f Q d
t

( ) [ ( )]
0
      (5.18) 

 
  

The time T at which the damage reaches its critical value corresponds to the condition 

D(t) = 1. Using the notation t(q)=
1

f Q( )
, one gets 

 

0

1
T d

t Q
 =  


[ ( )]

           (5.19) 

 
 
Equation (5.19) formally coincides with Equation (5.16), so it is clear that AL Model is 

the linear damage accumulation model. Nevertheless Equation (5.19) is deterministic and, from 
engineering point of view, it is also not clear how to measure or estimate the external action, 
Q(t), what the function f[Q(t)] is, and how to validate the correctness of Equation (5.19).  

On the contrary, Equation (5.16) depicting the general case of time-dependent stress 
accelerated life model, is expressed in terms of quantiles of time to failure and usual (constant 
stress) AL reliability models. The correctness of the equation can be tested using the statistical 
procedures considered in Section 5.2.  

There could be two main kinds of application of Equation (5.16):  fitting an AL reliability 
model (estimating the vector of parameters, B, of percentile reliability model, (z, B ), on the 
basis of AL tests with time-dependent stress), and reliability (percentiles of time to failure) 
estimation (when the model is known) for the given time-dependent stress, in the stress domain, 
where the similarity of time to failure distributions exists (conservation of failure mechanisms 
holds).  

 
6.3 Accelerated Life Test Data Analysis 
 
6.3.1 Exploratory Data Analysis (Criteria of Linearity of Time Transformation Function for 
Constant Stress) 
 
 The possibility to verify the correctness of relationship (5.3) experimentally is not only 
important for failure mechanism study but it has a great practical importance, because almost all 
the statistical procedures for AL test planning and data analysis (for both the constant and time 
dependent stress) are based on the assumption (5.3). 

Several techniques can be used for verification of the linearity of the time transformation 
function or the verification of the PM rule. Let's start with the historically first criterion which 
shows similarity of TTF distribution functions and the linear damage accumulation model. This 
criterion requires two special tests [Gugushvili et al., 1975]. During the first test a sample is 
tested at z1 constant stress level for a time t1 at which z1 is changed to a constant stress z2 for a 
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time t2. During the second test another sample is first tested under z2 for t2 and then it is tested 
under the stress level z1 for time t1. The time transformation function will be linear in time, if the 
reliability functions of the items after the first and the second test are equal, i.e., a change of 
loading order does not change the cumulative damage. We will come back to this criterion while 
considering exploratory data analysis for the case of time-dependent stress, because this test is 
based on the time-dependent loading. 

The second criterion is associated with the variation coefficient (i.e., standard deviation 
to average ratio, s/m) of TTF. It is easy to show that if the time transformation function is linear 
for the constant stress levels z1, z2, . . . , zk, the variation coefficient of TTF will be the same for 
all these stress levels. Let x be TTF under stress condition zi and y be TTF under stress condition 
zj . Under the basic AL model assumption (5.3) these random variables are related to each other 
as y = kx, where k is a constant. The corresponding mean values, E(x) and E(y) are related to 
each other as E(y) = kE(x). The analogous relationship for the standard deviations, s(x) and s(y) 

is, obviously: s(y) = ks(x), so that the variation coefficients, 
s y
E y

( )
( )

 and 
s x
E x

( )
( )

 are equal. 

Thus, the analysis of the variation coefficient not only provides information about aging 
of the TTF distribution but it helps one to understand if the conservation of failure mechanisms 
holds true. (Recall that s/m < 1 for IFR and IFRA TTF distributions, s/m = 1 for the exponential 
distribution, and s/m > 1 for DFR and DFRA distributions). Analogously, it can be shown that 
under the same assumption, the variance of the logarithm of times to failure will be the same for 
these stress levels. Consider the times to failure x (under stress condition zi ) and y ( under stress 
condition zj ). Under AL model assumption (5.3), the logarithms of these random variables are 
related to each other as 

 log y = log x + log k,  
 

where k is the same constant. Taking variances of both sides of the equation above, one gets 
Var(log y) = Var(log x).   

 
If TTF is lognormal, the Bartlett’s and Cochran’s tests can be used for checking if the variances 
are constant. 

The third criterion is based on the use of quantile-quantile plots. The quantile-quantile 
plot is a curve, such that the coordinates of every point are the TTF quantiles (percentiles) for 
investigated pairs of stress conditions. If the time transformation function is linear in time (i.e., 
(5.3) holds), the quantile-quantile plot will be a straight line going through the origin. The 
corresponding data analysis is realized in the following way. All sample quantiles of a given 
constant stress condition are plotted on one axis and the sample quantiles of another stress 
condition are plotted on the other axis. Using the points obtained (a pair of quantiles of the same 
level gives a point), the straight regression line can be fitted. The time transformation function 
will be considered as linear, provided one gets linear dependence between the sample quantilies, 
and if the hypothesis that the intercept of the fitted line is equal to zero, is not rejected. 

 
Example 5.1 (Fatigue Life Data)  
Consider the Birnbaum-Saunders et al. data [Bogdanoff and Kozin, 1985]."The test specimens 
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were 6061-T6 aluminum strips, 0.061 in. thick, 4.5 in. long, and 0.5 in. wide. The specimens 
were cut parallel to the direction of rolling of the sheet stock. The specimens were mounted in 
simple supported bearings and deflected at the center with a Teflon clamp in reverse bending. 
The center was deflected 18 times per second and three stress amplitudes were used; these 
amplitudes were 21, 26, and 31 Kpsi. There were 101 specimens at 21 Kpsi, 102 specimens at 26 
Kpsi, and 101 specimens at 31 Kpsi. Specimens were tested to failure. Life in 103 units were 
recorded." The sample means, m, the sample variations, s2, and the sample variation coefficients, 
s/m, are summarized in Table 5.1.  
 
Table 5.1 
 

First of all, note that all the sample variation coefficients are less than 1, so the time to 
failure distributions for all the stress levels might be considered as aging (IFR or IFRA). The 
variation coefficients for the amplitude 26 and 31 Kpsi are approximately equal, so these stress 
conditions might be considered as leading to the same failure mechanisms. This conclusion can 
be supported by quantile-quantile plot analysis: all the quantile-quantile plots show strong linear 
dependence (all the sample correlation coefficients are about 0.99), but zero (insignificant) 
intercept gives the quantile-quantile plot for the amplitudes 26 and 31 Kpsi only. Thus the TTF 
distribution functions for these amplitudes are similar (AL model is applicable) and the failure 
mechanism conservation takes place in the amplitude range (26 - 31) Kpsi. ■ 
 
6.3.2 Statistical Methods of Reliability Prediction on the Basis of AL Tests with Constant Stress  
 
Statistical methods of reliability prediction on the basis of AL tests can be divided into 
parametric and nonparametric ones. In the first case TTF distribution is related to a particular 
parametric distribution - Normal, Exponential, Weibull; in the second case the only assumption 
is the assumption about a particular class of TTF distribution - continuous, IFR, IFRA.  

The most commonly used parametric methods are the parametric regression (Normal and 
Lognormal, Exponential, Weibull and Extreme Value), Least Square Method and Maximum 
Likelihood Methods [Lawless, 1982; Nelson, 1990; Leemis, 1995], which are briefly discussed 
below.  We also consider the nonparametric regression procedure for the percentile AL reliability 
model fitting for the cases of constant stress and time-dependent stress [Kaminskiy, 1994]. 
 

Maximum Likelihood Approach 
Consider the ML approach to statistical analysis of AL models based on the Weibull TTF 
distribution as a typical example. 

The reliabilty function for the Weibull distribution is given by: 

R(t) =  -
t

exp



















        (5.20) 

where  is a scale parameter and  is a shape parameter. 
Under the AL model assumption, the scale parameter is considered as a function of stress 

factors, z. Consider the case when this function (reliability model) is log-linear one, i.e.: 
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log ( ) Z,B  =  ZB       (5.21) 

 
where Z = ( z0, z1, . . . , zp) is a vector of stress factors, and B = (b0 , b1, . . . , bp)T is a vector of 
model parameters, z01. 

For the following discussion it is better to deal with logarithm of TTF.  Denote y = log t. 
It is easy to show that y has the Type I (Gumbel) Extreme value distribution for minimum. The 
PDF of the distribution is given by: 

 

f y  =  
y -

/
y -

/
( ) exp

log
exp

log1
1 1
























 ,       (5.22) 

-<y<. 
 
Using the AL model in the form of Equation (5.3'), the stress-dependent PDF can be written as 
 

f y z  =  
y - ZB y - ZB

,

 =  

( ) exp exp_
1

1
  





















       (5.23) 

 
Let yi be either a logarithm of time to failure or a logarithm of censoring time associated with a 
stress condition Zi.  Denote the sets of observations for which yi is a logarithm of TTF and a 
logarithm of right censoring time by U and C respectively. The likelihood function for the given 
observations and PDF (5.23) is [Lawless, 1982 ]: 
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The maximum likelihood equations are 
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The likelihood function can also be used for discriminating between two competing 

models [Crowder, et al., 1991]. Let us have a model M1 with p1 parameters and a model M2 with 
p2 parameters, and let p2 > p1 . Let L1 and L2 be the maximized value of log L for the models M1 
and M2 respectively. The likelihood ratio statistic W = 2 (log L1 - log L2) has an approximate 2 
distribution with (p2 - p1) degrees of freedom. Large values of W provide evidence against the 
null hypothesis that both models supply the same goodness of fit. 

To get the observed variance-covariance matrix (or the observed information matrix) 
after solving the system (5.25), one needs the second derivatives of the loglikelihood function 
considered, which are given by  
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The system (5.25) can only be solved numerically. The Newton-Raphson method is 

usually recommended. It is not as simple a problem as it is sometimes stated [Lawless, 1982 ]. 
Moreover, using different software realizations of the same optimization method, one usually 
gets different solutions. In the following section the least square method as a shortcut procedure 
for AL data analysis is discussed. This method is not as effective as the maximum likelihood 
one, but it is robust in the sense that it is not associated with numerical optimization, so using 
different software realizations one always gets the same results. Moreover, even if a good 
software tool for the maximum likelihood method is available, it is very important to have good 
starting values; the least squares estimates can be used as such starting values.   
 

Least Squares Estimation  
 

The relationship (5.5) from Section 5.1.4 can be written in terms of random variables as  
 

T =
T

z
0

 ( )
 

 
where T0 has TTF CDF F0().  Denote the expectation of log T0 by 0. Using the equation above 
one can write 
 

log log ( )T =   -  z  +  0            (5.27) 
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where  is a random error of zero mean with a distribution not depending on z. 

If log (z) is, again, a linear function (the case of loglinear reliability model), i.e., 
 

log ( ) Z,B  =  ZB      (5.28) 

 
 

Equation (5.27) can be written as 
 

logT =   -  ZB +  0        (5.29) 

 
 
which is linear model satisfying the conditions of Gauss-Markov Theorem. 

When TTF samples are uncensored, the regression equation for observations Ti, Zi (i = 1, 
2, . . . , n) is  

 

log i i iT  =    Z B +  0        (5.30) 

 
 

where for any TTF distribution ei ( I =1, 2, . . . ,n) are independent and identically distributed 
with an unknown variance and known distribution (if the distribution of TTF is known). Thus, on 
one hand, the Least Squares technique for AL data analysis can be used as a nonparametric one, 
on the other hand, if TTF distribution is known, one can try a parametric approach. The 
Lognormal TTF distribution is an example of the last case, which is reduced to standard normal 
regression, which makes clear the popularity of the Lognormal distribution in AL practice. 
 
Example 5.2. (Class-H Insulation Data [ Nelson, 1990]) 
The data are hours to failure of 40 units which were divided in four samples of equal size (10).  
The samples were tested at 190, 220, 240, and 260o C. The test purpose was to estimate the 
median life at the design temperature 180o C. The test results are given in the following table. 
 

Table 5.2 
 

In Table 5.3 some statistics useful for the exploratory data analysis are summarized.  
 

Table 5.3. 
 
It should be noted that the data considered are not distinct times to failure but grouped 
(inspection) data, nevertheless, the test results under 260 o C look suspicious. If the data were 
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treated as having the lognormal distribution the Bartlett’s test would immediately show that this 
stress level (260 o C) results in significantly greater variance compared with other stress levels. 
Analysis of failure modes for this insulation shows that failure mode at 260 o C is different 
compared with failure modes under lower temperatures [Nelson, 1990].  

The Arrhenius model for the logarithms of time to failure can be easily fitted using any 
software tool having linear least squares or regression procedure.  Using the four temperature 
levels, the fitting results in the following estimates of the model parameters:  
a = 6.90 10-4 hours, and the activation energy Ea = 7531o K » 0.65eV, which give the prediction 
for median life at the design temperature 180o C, t50% (180o C) » 11500 hours. The proportion of 
the variance of logarithm of TTF explained by the model (adjusted R2 ) is 91%. Deleting the 
sample obtained under 260o C (which is quite reasonable) results in the following estimates of 
the model parameters: a = 1.50 10-4 hours, and the activation energy Ea = 8260o K » 0.71eV, 
which give a little more optimistic prediction for the median life at the design temperature 180o 

C, t50% (180o C) » 12500 hours and better proportion of the variance explained by the model 
(adjusted R2 ) is 95%.■ 
 

Simple Percentile Regression 
 The procedure is based on the following formal assumptions: 

1. AL time transformation (5.3) is true and the AL reliability model, (z,B), for a 
quantile, tp, (100pth percentile) is a given function of the stress factors z with an unknown vector 
of parameters, B, (Equation (5.6)).  

2. The TTF distributions for all the stress conditions zi (i = 1, . . . , k) are IFRA 
distributions having continuous density functions f(t;zi). 

3.  The test results are Type II right censored samples, whith the number of uncensored 
failure times ri (i = 1, . . . ,k) and the sample sizes ni are large enough to estimate the 
tp as the sample percentile pt  : 

 
       t n pi([ ])  if nip is not integer 

     t p     
                  any value from interval [ t n pi( ) , t n pi( )1 ] if nip is                 integer 
 
where t(×) is the failure time (order statistic), and [x] means the greatest integer which  does not 

exceed x. 
4. The sample sizes are large enough that the asymptotic normal distribution of the above 

estimate can be used.  This normal distribution has the mean equal to tp, and the variance equal to 
p p
nf t p

( )
( )

1
2


, where n is the sample size.  

The goal is to estimate vector B of the parameters of model (5.6) and to predict the 
percentile at the normal (or any given) stress condition on the basis of AL tests at different 
constant stress conditions z1, . . . ,zk , where k is greater than the dimension of the vector B, i.e. (k 
> dim B). 
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Based on the preceding assumptions, the statistical model corresponding to Equation 
(5.6) can be written in a typical regression form as 

 
p i i it z ,B  =  z ,B +  , ( ) ( )       (5.31) 

 

where i are normally distributed with mean 0 and variance 
p p
n f ti p

( )
( )

1
2


,i.e., using standard 

notation N , 
p  p
n f ti

2
p

0
1( )

( )








 . Note that the distribution of error,  , is dependent (through TTF 

probability density function, f(tp)) on the particular TTF distribution, i.e., the model is not 
distribution free. 

Rewrite the model (5.31) in the following multiplicative form  

p i it z ,B  =  z ,B , ( ) ( )         (5.32) 

 
where  has distribution 
 

 N , 
p  p

n z ,B f z ,Bi i i
1

1
2 2

( )
( ) [ ( )]











 
 

 
 

Now we try to transform the multiplicative model (5.32) to the model with normally 
distributed additive error, i.e., to the standard normal regression. 

Taking the logarithm2, model (5.21) can be written as 
 

log  ( ) log ( ) log( )p i it z ,B  =  z ,B  +  +  , 1 1      (5.33) 

 
 

where 1 has distribution 
 

 N , 
p  p

n z ,B f z ,Bi i i
0

1
2 2

( )
( ) [ ( )]











 
    (5.34) 

Using AL model relationships for the probability density function (5.3`) and for percentiles (5.5), 
it is easy to show that (z,B)f[(z,B)] is a constant, so, if the sample sizes ni (i = 1, 2, ..., k)  are 
                     
     2Percentile reliability models, (z, B), usually are not 
linear, but loglinear. 
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equal, the variances in (5.34) are also equal. 
To avoid the distribution dependence on the variance in (5.34), let’s find the 

nonparametric nonrandom lower bound for f(tp). The bound is given by the following 
Corollary. If F(t) is IFRA cumulative distribution function with probability density f(t) 

and F(tp) = p, then  
 

f t   
 p  p

tp
p

( )
( ) log( )

 
 1 1

 

 
Proof. Consider the function 
 

G t  =   t( ) exp( )1   
where 
 

 =  
-  p

t p

log( )1
 

 
By Theorem 5.3, Vol.1, [Barlow and Proschan, 1975] the function F(t) - G(t) has not more than 
one change of sign. If this change occurs, plus will be changed for minus. Since F(t) and G(t) 
have the same percentile tp, this change of sign can occur at the point tp only. The result follows. 
Now demand the satisfying of the inequality 1<<1.  The inequality will be satisfied, if the 
standard deviation of 1 is much less than unity, i.e., for each ni (i = 1, 2, . . . , k) 
 

1
2

21 1
1

p
n   p   p

  
i ( ) log ( ) 









     (5.35) 

 
 
In this case model (5.32) can be written as 
 

log  ( ) log ( )pt z,B  =  z,B  +    2        (5.36) 

 
 

where 2 has distribution N(0,2) and 2 is unknown constant, if the sample sizes ni (i = 1, 2, . . . , 
k) are equal, otherwise the weights proportional to the values of ni should be used.  

Thus the multiplicative model (5.32) can be transformed to the model with additive 
normally distributed error (i.e., to the standard normal regression model), if inequality (5.35) is 
satisfied. This inequality is the restriction superimposed on the test sample size. As far as the 
procedure considered is already based on the asymptotic properties of sample percentile 
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distribution this restriction should be easily satisfied. So, the problem of the reliability 
prediction is reduced to the estimation of the parameters of a normal regression followed by 
point and interval predicting, ranging the stress factors according to their influence on reliability 
using stepwise regression methods, etc. Using this approach the standard regression experiment 
design can be applied to AL test planning.    
Example 5.3. (Capacitor Breakdown Data) 
Certain capacitors were tested by using voltage in conjunction with temperature as accelerating 
stress factors. One hundred capacitors were tested at each voltage-temperature combination and 
each test was terminated after not less than 11 failures had been observed. The purpose of the test 
was to predict the 10th percentile of TTF distribution under the stress condition 63 V and 1000C. 
The test plan and results are given in Table 5.4. 
 

Table 5.4 
 

Model (5.14) was used as the relationship between the 10th percentile and the stress 
factors (voltage and temperature) The estimation of the model parameters resulted in the 
following relationship: 

 

p
at V,T  =  a 

E  -  BV
T

( ) exp

  

 
where a = 7.735 10-15 1/hour; Ea = 16099 oK (or 1.39eV); B = 4.6256 0K/Volt; V is voltage in 
Volts and T is temperature in 0K. 

The results of prediction obtained on basis of this model are given in the right column of 
Table 4. The multiple correlation coefficient for this model is greater than 0.99. To estimate the 
influence of the voltage on the capacitor’s life, the Arrhenius model was fitted for the same data 
set. The correlation coefficient for the fitted Arrhenius model turned out to be 0.633 only. So, it 
is easy to conclude that both factors, the temperature and the voltage, are significant. The same 
conclusion could be drawn using F-ratio for residual variances for these models. This example is 
a simple illustration of step-wise regression idea. ■ 
 
6.3.3 Exploratory Data Analysis for Time-Dependent Stress 
 
The first criterion considered in Section 5.2.1 is the criterion for the particular time-dependent 
stress.  In general case, the value of the integral in Equation (5.16) does not change, when a 
stress history z(s), tp>s>0, has been changed for z(tp - s), tp>s>0; it means that time is reversible 
under AL Model. Based on this property, it is not very difficult to realize the verification of the 
AL Model. For example, each sample which is going to be tested under time-dependent stress 
can be divided in two equal parts, so that the first subsample could be tested under forward stress 
history, meanwhile the second subsample is tested under the backward stress history.               
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6.3.4 Statistical Estimation of AL Reliability Models on the Basis of AL Tests with Time-
dependent Stress  
 
 Using Equation (5.16) the time-dependent analog of the model (5.32) can be written as 
 

p

t [z(t)]

t  =  z s , A ds
p

0

0



[ ( ) ]      (5.37) 

 
where pt z t [ ( )] is the sample percentile for an item under the stress condition (loading history) 
z(t). 

The problem of estimating the vector A and tp
0 in this case cannot be reduced to 

parameter estimation for a standard regression model as in the previous case of constant stress. 
Consider k different time dependent stress conditions (loading histories) zi(t), i = 1,2, . . . 

k, ( k > (dim A) + 1), under which the test results are (as in the previous case) Type II censored 
samples and the number of uncensored failure times and the sample sizes are large enough to 
estimate the tp as the sample percentile pt . In this situation the parameter estimates for the AL 
reliability model (of the vector A and tp

0) can be obtained using a least square method solution of 
the following system of integral equations: 

 

p

t [ z (t)]

it  =  z s , A ds,
p i

0

0



[ ( ) ]           (5.38) 

i = 1, 2, . . . , k.           

 
Example 5.4. 
 Assume a model (5.13) for the 10th percentile of time to failure t0.1 of a ceramic capacitor 
in the form 
 

0 1. ( ) expt U,T  =  a U
E
T

,-c a



            (5.39) 

 
where U is applied voltage and T is absolute temperature. 

Consider a time-step-stress AL test plan using step-stress voltage in conjunction with 
constant temperature as accelerating stress factors. A test sample starts at a specified low voltage 
U0 and it is tested for a specified time t. Then the voltage is increased by U, and the sample is 
tested at U0 + U during t etc., i.e., 

 

U t  =  U  +  UEn t / t( ) ( )0    
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where En(x) means "nearest integer not greater than x". The test will be terminated after the 
portion p>0.1 of items fails. So, the test results are the sample percentiles at each voltage-
temperature combination. The test plan and simulated results with U = 10V, t = 24h are given 
in Table 5.5. 
 

Table 5.5 
 

For the example considered the system of integral equations (5.38) takes the form: 
 

a =  
E
T

U s ds,

i = .

0.1it
a

i
i

c

0

1 2 3 4

 






exp [ ( ) ]

, , ,
 

 
Solving this system for the data above yields the following estimates for the model (5.39):  
a = 2.23 10-8 hV1.88, Ea = 1,32 104K, c = 1.88, which are not bad compared with the following 
values of the parameters used for simulating the data: a = 2.43 10-8 h/V1.87, Ea = 1,32 104K, c 
= 1.87. ■ 
 
Part 2: 
System Reliability Estimation 
=========================================== 
7.  TESTING WITH NO FAILURES 
 
7.1  Introduction 
 
 One of the main problems in reliability engineering is  estimating the system's reliability in 
early phases of design.  At this stage a designer only knows the results of reliability tests on separate 
parts and components of the system.  This problem is also very crucial if a designer deals with a 
continuously developing system such as telecommunication or power networks.  Its parts 
(subsystems, interfaces, terminals, etc.) are operating within an existing system and reliability data 
are collected.   New items can be specially tested in advance.  Thus different statistical data 
concerning units are available.  The problem is to figure out how the system reliability will change 
if the system changes its configuration or incorporates some new units. 
 This chapter is dedicated to the investigation of highly reliable systems or equipment. In this 
case, one knows the total testing time for each of the system's parts and that there were no failures 
for any of the considered system's part, or unit.  A significant factor in this case is the possibility of 
obtaining best lower confidence limits for a wide class of complex structures. 
 
7.2 Series System  
 
 One of the most commonly used and theoretically well investigated test plans is the 
binomial test plan.  This plan is described in the following way.  Assume that a system has m 
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different units and pi is the probability of failure-free operation (PFFO) of unit i during the 
specified time period, t.  A system reliability index R can be defined as a function R=R(p), which 
depends on unit reliability values pi, where  p=(p1,...,pm).  Values of pi's are a priori unknown, but 
we know the results of tests: Ni units of type i were tested, and di failures were observed.  We are 
interested in the estimation of an unknown index R by test results d=(d1,...,dm). 
 A value =(d), which depends on test results, is called a point unbiased estimate of R=R(p) 
if for all possible p 
 Ep{}=R(p) 
where Ep{} is the mean of the estimate  for a given p.  Usually, one uses the variance of an 
unbiased estimate of   
 Dp{}=Ep{[-R(p)]2} 
as a measure of its effectiveness.  The variance characterizes a deviation of the estimate around a 
real value of R (which is unknown). 
 One often uses confidence intervals also.  Remember that an interval [(d),  (d)] is called 
the confidence interval with the confidence level  for R(p) if for all p 
 Pp{(d)<R(p)<  (d)}> . 
 Sometimes the main interest is only in one sided limit of the confidence interval which 
guarantees the value of the reliability index.  So, for many systems, it is important to be sure that the 
PFFO is not lower than some specified level.  Another example is the coefficient of unavailability, 
which is expected to be not larger than some given level.  Value (d) is called a one-side lower -
confidence limit for R(p), if for all p 
 Pp{(d)<R(p)}> . 
In an analogous way, value  (d) is called a one-side upper -confidence limit for R(p), if for all p 
 Pp{R(p)<  (d)}> . 
 As a sample, let us consider one of the simplest system structures - a series connection of 
units (see Figure 6.1).   
 

Figure 6.1 
 
Such a system fails if any of its unit has failed, that is, if a system consists of independent units 
 

R  =  p
i m

i .( )p
1 
  

The most effective unbiased estimate for the PFFO of unit i, pi, is a value 
 

i
i

i
p  =   -  

d
N

. 1  

An unbiased estimate with the minimal variance for the system PFFO is defined as 
 

 ( )P =   -  
d
N

.
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 In practice, a system with highly reliable units are  typical, and, consequently, numbers of 
failures, di, are small.  This leads to large values of the variance of the point estimate, which means 
that the resulting point estimate is very unstable: values may significantly changed from test to test.  
Notice that a value of a point estimate has no information about a confidence of the obtained result.  
For instance, the same unbiased estimate will be obtained for two different cases: (a) 1 failure is 
observed per 10 tested units and (b) 10 failures is observed per 100 tested units.  However, even a 
simple common sense tells us that the second case delivers more confidence in the results. 
 It leads to the necessity of characterization by confidence limits in addition to unbiased 
estimates.  But, if constructing of unbiased estimates is a standard task, then the construction of 
confidence limits is more sophisticated.  
 In this chapter we are dealing with a no-failure-test case:  d=0, i.e., where each di=0.  At the 
same time, numbers of tested units of different types, Ni, are different. 
 Probably, the first strong solutions of this problem was obtained by Mirnyi and Solovyev 
(1964).  They constructed the lower confidence limit for a series system (see Figure 6.1) for no-
failure-tests.  In this case, the lower confidence limit R* with the confidence level  for the system's 
PFFO is defined as 
 

R =  p
i imin         (6.1) 

 
where 
 

 p =   -  
i

N i( )1
1

  
 
is the standard lower -confident Clopper-Pearson's limit for a single unit i (see p.1 in Appendix to 
the chapter).  It is clear that this produces 
 

R =   -  N( ) *1
1

         
 
where 
 

N =   N
i

i
* min  

is the minimal number of tested units. 
 At a first glance (6.1) seems paradoxical.  For an explanation of this result on an intuitive 
level, let us imagine the following situation.  We are testing Ni units of each of m types, 1<i<m, and 
no failure has occurred.  Now, let as assemble series systems so that each system consists of units of 
different types.  We are able to assemble only N* complete series systems, that is, the number of 
such completed systems, consisting of required units, cannot exceed the minimum number of units.  
Imagine that we have tested these units assembled in system instead testing of separate units.  Then 
none of these system would have failed during tests.  (We suppose that assembling into a system 
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does not worsen units' reliability.)  All of the remaining units, which cannot be assembled into a 
complete system, give us no additional information about a possible system behavior.  Thus, the 
above described no-failure-test of N=(N1,  N2, ... ,Nm) units is equivalent to the no-failure-test of N* 
series systems.  These arguments explain the Mirnyi-Solovyev's result. 
 Now consider the construction of a lower confidence limit of the PFFO for more complex 
systems when no unit failures are observed. 
 
 
7.3 General Expression for Best Lower Confidence Limit 
 
7.3.1 Systems With a Monotone Structure  
 
 The state of unit i of a system at moment t, t>0, can be described with the help of a Boolean 
variable Xi(t), such that  Xi(t)=0, if the unit is failed, and  Xi(t)=1 if the unit is operational.  A system 
state can be described with a vector X=(X1,...,Xm), which is defined in space  consisting of 2m 
discrete points.  For independent units, the probability that the system is in state X is defined as 
 

P    =  p - p
i m

i
x

i
- Xi i{ } ( )X

1

11
 
  

 
where pi=P{Xi=1}=E{Xi} is the ith unit's PFFO, and  E{Xi} is the mean of Xi.  Introduce now the 
structural function of a system (X), such that (X)=1, if a system is operational, and  (X)=0 
otherwise.  Of course, such a description of a system is possible only if the system's failure criterion 
is strictly defined.  In this case, all space  can be divided into two disjoint subspaces G and G , 
such that 
 

( )X
X

X

 =   
  if  G

 

  if  G.

1

0













 

 
 Such a description of complex system reliability is used by many researchers.  For example, 
see [2-5].  In [5] a system structure is called monotone, if it satisfies the following conditions: 
1) (X)> (Y) (6.2) 
if Xi>Yi for all 1<i<m, i.e., a unit failure cannot lead to a system state improvement. 
2) (1)=1,  (0)=0 
where 1=(1, ..., 1) and 0 =(0, ..., 0).  In other words, if all of the system units are operational, the 
system itself is operational; if all of the system units have failed, the system itself has failed. 
 The system's PFFO is determined by the vector p=(p1,...,pm) and can be expressed with the 
help of the structural function, as follows 
 



 

185 
 

R  =  Pr G  =   =  p  - p
i m

i
X

i
- Xi i ( ) { } ( ( ( )p X E X) X)

X


  
  

 1

11      (6.3) 

 
It is clear that condition (6.2) leads to the monotonicity of the system's PFFO R(p) by each pi. This 
fact can be shown in the following way.  Let us fix all parameters except p1. Expression (6.3) can be 
presented in the following form: 
 

R(p)=p1[C1(p2. ... ,pm)-C0(p2, ... ,pm)]+C0(p2, ... ,pm) 
  

where 
 

C0(p2, ... ,pm)= ( , ,..., ) ( )
,...,

0 12
1
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x x p pm i
X

i
X

i mX X

i i

m

 

 
  

 
is the reliability function under condition that the first unit is absolutely unreliable, and 
 

C1(p2. ... ,pm)= ( , ,..., ) ( )
,...,

1 12
1

22

x x p pm i
X

i
X

i mX X

i i

m

 

 
  

  
is the PFFO under the condition that unit i is absolutely reliable. By condition (6.2), C1>C0 and, 
consequently, R(p)  monotone increases when pi increases.   
 Examples of a system with a monotone structure are considered below. 
 
7.3.2 Best Lower Confidence Limit for No-Failure-Test  
 
 Assume again that Ni units of type i, i=1,2, ... ,m, were tested and no failures have been 
observed for any units, that is, di=0, 1<i<m.  The lower -confidence limit (R) for the system's 
PFFO can be found as the solution of the following optimization problem (see details in Section 
2.2): 
 

p
p

 0H
 R  = Rmin ( )       (6.4) 

 
where the minimum is taken from set H0 of points p=(p1,...,pm) which  

1
1

 
  

i m
i
N ip    (6.5) 

 
0<pi<1 ,  1<i<m. (6.6) 

 
 In corresponding with inequality (6.5), set H0, where we search minimum of R(p), is such 
that for all values of the parameters, included in set H0, the probability to observe the event of type 
d1= ... =dm=0 is not less than the level of significance =1- .  Inequalities in (6.6) are obvious and 
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follows from the definition of parameters pi.  As the lower confidence limit for the system PFFO, 
we take a minimum possible value R(p) in set H0. 
 Assume that function  R(p) is monotone in each pi.  One can show (see p.2 of Appendix) 
that R found in (6.4) is the best - 
confidence lower limit for R(p) under the condition that d1=...=dm=0. 
 Monotone increments in the system's structural function by each parameter means that, in 
principle, the best lower confidence limit can be found as the solution of the above-mentioned non-
linear optimization problem (6.4).  It is interesting to note that the only upper confidence limit for 
PFFO is trivial: R = 1. 
7.4 Structures with Convex Cumulative Hazard Function 
 
 To find the maximum limit in (6.4)-(6.6), it is convenient to introduce variables 
 

i
-zp  =  e ,   i m.i 1        (6.7) 

 
For systems with PFFO equal to R(p), let us introduce the function 
 

f  =  f z , ... ,z  =  -  R e , ... ,em
-z -z1 m( ) ( ) ln ( )z 1  (6.8) 

 
which is called a cumulative hazard function.  Transformation (6.8) is used in [3, 4] for the analysis 
of systems with complex monotone structures.  A cumulative hazard function is increased in each zi, 
if PFFO R(p) is increased in each pi. 
 Transformations from (6.7) through (6.8) have the following meaning.  Let all of the 
system's units have an exponential distribution of time-to-failure (TTF):  
 

i
- tp t  =  e i( )    

 
where i is the failure rate of unit i, 1<i<m.  In this case zi's coincide (with accuracy to the 
coefficient t) with parameters i's. Now let us express the system's PFFO with the help of 
parameters i: 
 

R =  e .-f( t, ... , t)1 m   
 
From the latter expression, one can see that the cumulative hazard function has the meaning of 
system's failure rate, which is expressed via unit parameters.  Thus, for a series system, we can write 
 f(z) = z1+ ... +zm (6.9) 
 
which corresponds to the well-known fact that the failure rate of a series system equals the sum of 
the unit's failure rates. 
 If units have a distribution of TTF differing from  exponential, the meaning of the system's 
cumulative hazard function remains the same if, instead of parameters i, one uses parameters of a 
type 
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i
0

t

i =  
t

u du
1
  ( )  

 
where i(t) is the failure rate of unit i.  A value of i has the meaning of the average failure rate of 
unit i on time interval (0, t). 
 The optimization problem (6.4)-(6.6) is quite easy to solve if the system's cumulative hazard 
function is convex in z=(z1, ... ,zm).  With the use of new variables z, the problem (6.4) can be 
written as follows: 
 
 to find R=min e-f(z) (6.10) 
 
under linear restrictions 
 

 
1

0
 
 

i m
i i iN z   A,  z > , (6.11) 

where A=-ln (1- ).  As soon as function e-f monotone decreases by f, computation of minimum in 
(6.10) is equivalent to the problem of finding  
  f = max f(z) (6.12)  

with the same restrictions.  The lower confidence limit R after this  can be found as  R f exp( ).    
A region given by restrictions (6.11) is convex.  If, in addition, the cumulative hazard function f(z) 
is also convex, then in correspondence with the well-known results of convex programming (see p.3 
of Appendix),  the maximum of (6.12) under the restrictions of (6.11) is located in one of m 
"corner" points of  type 

i

i- i n i
z  =  , 

A
N

,  ,   i m,( ,..., ,..., )
1

0 0 0 0 1


   

 
where all coordinates, except one, are 0's.  Thus, for systems with a convex cumulative hazard 
function, the solution is given by a simple expression 

 f =   f , 
A
N

, ),
i i-1 i n-i

max ( ,..., ) ( ,...,0 0 0 0  

 
from which we obtain  
 

R =   R , ... , , p , , ... , ,
i i-

i
n-i

min ( )
1

1 1 1 1      (6.13) 

where 
 

p =  e  =   -  
i

-
A
N Ni i( )1

1
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is the -confidence Clopper-Pearson limit for pi.  The results of the previous section are as follows:  
limit (6.13) is the best -confidence Clopper-Pearson limit for the system's PFFO R(p). 
 By its nature, (6.13) is similar to the Mirnyi and Solovyev result for a series system and 
includes the latter as a particular case.  The procedure can be described in the following way: first, 
one computes m estimates for the system under the condition that unit i, 1<i<m, has the PFFO equal 
to its lower -confidence limit pi; then the lowest value is considered as the lower -confidence 
limit for the system's PFFO. 
 Let us now consider the main cases when the cumulative hazard function of the system is 
convex.  We have already mentioned that  the Mirnyi-Solovyev's result is valid for a series system 
where reliability function is R pi

i m
( )p 

 


1
. 

 
7.4.1 Series connection of groups of identical units 
 
 Let a system consists of several groups of units in series. Different groups consist of 
different units but each group includes identical units in series: there are ni units of type i, each of 
them with PFFO equals to pi.  In this case 
 

R  =  p
i m

i
n i( )p

1 
  

 
where m is a number of different types of system's units.  The cumulative hazard function of the 
system 
 

f  =  n z
i m

i i( )z
1 
   

 

is linear as it was in the previous case.  For this case, (6.13) gives  R =    -  .
i m

n
N

i

i

1
1

 
min ( )  

 
 
7.4.2 Series-Parallel System with Identical Redundant Units 
 
 Consider a system consisting of m series redundant groups. Each group i, 1<i<m, consists of 
ni parallel identical units with PFFO equals to pi (see Figure 6.2).  The system fails if at least one 
redundant group has failed.  A redundant group fails if all of its units have failed.   
 

Figure 6.2 
 
In this case 
 

R  =   - p ,
i m

i
ni( [ ( ) ]p)

1
1 1
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f  =  
i m

i( ) ( )z z i
1 
   

 
where 
 

i i
-z nz  =  -  -  - e .i i ( ) ln [ ( ) ]1 1  

 
By direct differentiation, one can show that i

"(zi)>0, 1<i<m, and, consequently, the cumulative 
hazard function f(z) is convex because it is a sum of convex functions.  In this case, the general 
expression (6.13) gives the best lower -confidence limit for the PFFO of a series-parallel system: 
 

 R =    -   -  -
i m

N
n

i
i

1

1
1 1 1

 
min { [ ( ) ] }  

 
 
This result was obtained in [6]. 
 
7.4.3 Series Connection of "K out of N" Subsystems 
 
 A more general case, in comparison with the previous one, concerns a system in which the 
redundant group i fails if at least Ki of its ni units have failed.  The previous structures are specific 
examples of this general case: Ki=1 in the first case and Ki=ni in the second case, 1<i<m.  In this 
general case 
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As previously, by a direct differentiation, one can show that i

"(zi)>0 for all 1<i<m, and, 
consequently, the cumulative hazard function f(z) is convex, being a sum of convex functions.  
Expression (6.13) in this case gives 
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j
- p p .
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 When the system's cumulative hazard function is not convex, the problem becomes more 
difficult. 
 
 
7.5  Series-Parallel Structure with  Different Redundant Units 
 
 A system consists of m series connection of redundant groups (see Figure 6.2).  Group i 
consists of ni units each of them with its own PFFO:  
 

1 2
1 2n n

m
np , p , ... , p m  

 
The failure criteria for a redundant group and for the system remain the same as before.  As one can 
see, here we rejected an assumption about the units identity within a redundant group.  The PFFO 
and the cumulative hazard function of the system are 
 

R  =    - p ,
i m j n

i
j

i

( ) [ ( )]p
1 1

1 1
   
   

(6.14) 
f  =  -     - e ,

i m j n

-z

i

ij( ) ln [ ( )]z
1 1

1 1
   
   

 
The problem reduces to the computation of the maximum of the cumulative hazard function of 
(6.14) under the following restrictions: 
 zij>0,    1<j<ni,  1<i<m;   
 

1 1
1

   
  

i m j n
ij ij N z   -  -

i

ln ( )     (6.15) 

 
where Nij and pi

j are the numbers of tested units and the PFFO for unit i within redundant group j, 
respectively; zij=-ln pi

j, 
p={pi

j}, z={zij}. 
 We use an auxiliary problem:  To find 

i i
j n

i
jx  =   - p

i

 ( ) max ( )
1

1
 
     (6.16) 

 
under the restrictions 
 
 0<pi

j<1,    1<j<ni,    

1
1

 
 

j n
i
j N -x

i

ij ip   -  e .( )       (6.17) 

 
An equivalent problem in variables zij is:  To find 
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i i
j n

-zx  =   - e
i

ij ( ) max ( )
1

1
 
      (6.18) 

 
under restrictions 
 
 zij>0,  1<j<ni; 

 

1 


j n
ij ij i

i

N z  =  x .       (6.19) 

 
 Directly, from the definition of the auxiliary problem (6.16)-(6.19), it follows that the 
desired maximum of function (6.14) under restrictions (6.15) can be computed as 
 

z x
zmax max( ) ln [ ( )] f  =   - x  

i m
i i







 


1

1          6.20) 

 
where maximum is found under restrictions 
 
 xi>0,    1<i<m, 

1
1

 
 

i m
ix  -ln ( )  (6.21) 

 The following statements are formulated in the form of theorems for purpose of brevity. 
 
Theorem 6.1   Solution of auxiliary problem (6.18)-(6.19) has the form: 
 

i i
j n

i

i ij
x  =  

t x
t x  +  Ni

 ( )
( )

( )1 
      (6.22) 

 
 
where t(xi) is the solution of equation 
 

1
1

 


j n
ij i

i

N   +  
t

ijN
x  =  ln ( )  (6.23) 

 
relatively to t>0.  (For proof of the theorem, see p.4 of the Appendix to the chapter.) 
 
Theorem 6.2   Function i(xi)= -ln [1-i(xi)] is monotone increasing and convex for xi>0, 1<i<m.  
(For proof of the theorem, see p.5 of the Appendix.) 
It is easy to see that Theorem 6.2 provides the solution of the problem (6.14) - (6.15).  Indeed, by 
the theorem, the function in the right side of (6.20) is convex in x=(x1, ... ,xm) being a sum of convex 
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functions and, consequently, the maximum of (6.20) is reached at one of m "corner" points of the 
type  
 
 (0,...,0 -ln(1- ),...,0,...,0). 
Thus, 

z
zmax min( ) ln { [ ( ln ( ))]} f  =  -       

i m
i

1
1 1

 
     

 
 
and the final form of the best lower -confidence limit for the system's PFFO follows from this: 
 

R =      
i m

i
1

1 1
 

  min { [ ln ( )]}              (6.24) 

 
where i() is defined from (6.22)-(6.23).  Since the left side of (6.23) is monotone increasing for 
t>0, numerical computation of (6.23) and the further computation of i is not a difficult task. 
 
7.5.1 Parallel connection 
 
  Let us separately consider an important particular case of a parallel system, which 
represents the above-considered system for m=1 (see Figure 6.3).   
 

Figure 6.3. 
 
The system's PFFO of n units connected in parallel is defined by  
 

r  =   -  - p
j n

j( ) ( )p 1 1
1 
  

where pj is the jth unit PFFO.  From (6.22) - (6.24) for m=1, ni=n, and Nij=Nj, we obtain that the best 
-confidence limit for r(p) is determined as 

 

*
j n j

r  =      =   -  
t

t + N
1 1 1

1
  

 
[ ln ( )]            (6.25) 

where Nj is the number of tested units of type j, and value t is determined from equation 
 

1
1 1

 


j n
jN  +

t

jN
 =  -  - ln ( ) ln ( )  (6.26) 

 
with the left side monotone increasing in t. 
 In a specific case of equal numbers of tested units, Nj=N,  1<j<n, the result obtained from 
(6.25)-(6.26) in [7] is as follows: 
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r  =   -   -  - nN
n

* [ ( ) ]1 1 1
1

  (6.27) 
 
for the lower -confidence limit of the PFFO of a parallel system under the condition of equality of 
all Ni. 
 Note that the value of r*=1-i[-ln (1- )] in (6.24) gives the best lower -confidence limit 
for the PFFO of each separately considered redundant group i.  Thus, (6.24) has the following 
meaning.  For computation of the best lower -confidence limit for the PFFO of a series-parallel 
system, one needs to compute the best -confidence limit of the type (6.25) - (6.26) for each 
redundant group and then to take the minimum among them.  In this sense, the procedure remains 
similar to the Mirnyi-Solovyev's procedure for a series system, including the latter as a particular 
case for ni=1,  1<i<m. 
 
Example 6.1   A system consists of three series redundant groups.  The number of redundant units 
in these groups are: n1=2, n2=3  and n3=3.  The system as a whole was tested N=6 times and no 
failures were observed.  The lower 90%-confidence limits of the PFFO of different redundant 
groups by (6.27) 
 

i* Nn
nr  =   -   -  - ,   ii

i1 1 1 1 3
1

[ ( ) ]    
 
are 0.970, 0.998 and 0.998, respectively.  The smallest number gives us the best lower 90%-
confidence limit for the system's PFFO, i.e., R=0.970. 
 Let us consider a case when all of unit within the group are identical: p11=p12=p1,  
p21=p22=p23=p2,  p31=p32=p33=p3.  In this case, the best lower -confidence limit for the system's 
PFFO is computed by (6.14) 
 

R =       )
i m

N
n

i
i

1

1
1 1 1

 
  min { [ ( ] })  

 
where one needs to take Ni=Nni, because this is a total number of tested units of type i.  The limit 
obtained in this case obviously coincides with the value of R=0.97 computed above.  This means 
that in this case an assumption about identity of redundant units did not improve the confidence 
estimate of the system's PFFO. 
 
7.5.2 Parallel-series system  
 
 Let us consider a system consisting of m series subsystems connected in parallel (see Figure 
6.4).   
 

Figure 6.4 
 
Subsystem i consists of ni units.  The system's PFFO can be determined by: 
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R  =      p
i m j n

ij
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( ) [ ]p 1 1
1 1

 
   
   

 
where pij is the PFFO of unit j within series subsystem i, 1<i<m;  1<j<ni. 
 The problem is to find the minimum of function R(p) under the  restrictions of type (6.5)-
(6.6), or in variables of type 
zij=-ln pi

j 

 

max exp  -  
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z
i m j

ij
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1 1
1

   
 

























 (6.28) 

 
 
with restrictions (6.15) where Nij is the number of tested units with subscript "ij".  Let us denote 
 

i i
j n

ijg x  =   z
i

( ) max
1 
  (6.29) 

 
where the maximum is taken under the following restrictions: 
 
 zij>0,  1<j<ni; 
 

1 
 

j n
ij ij i

-
i

i

N z  N x  (6.30) 

where 
i
-

j n
ijN  =   N

i1 
min  

is the minimal number of tested units within series subsystem i. 
 Computation of maximum in (6.28) under restrictions (6.15) is reduced to the problem:  find 
 

max [ ]  -  e
i m

-g ( x )i i

1
1

 
  

 
under restrictions 
 
 xi>0,   1<i<m; 
 

1
1

 
 

i m
i
-N xi   -  -ln ( )  (6.31) 

In correspondence with (6.29)-(6.30), and gi(xi)=xi, the problem is reduced to the computation of 
 

max [ ]  -  e
i m

-xi

1
1

 
  (6.32) 
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under restrictions (6.31).  This problem was solved in Theorem 6.1. Hence, the lower confidence 
limit of the system's PFFO can be written in the following form: 
 

R =     -1 1 [ ln ( )]  (6.33) 
 
where 
 

( )
( )

( )
u  =  

t u
t u + Ni m i

-
1 
  

 
and t(u) is the solution of equation 
 

1
1

 


i m
i
-N   +  

t

i-N
 =  u. ln ( )  

 
 Thus the best lower confidence limit for the PFFO of a parallel-series system is found as the 
limit of type (6.25)-(6.26) for a parallel system when a number of tested units of type i equals the 
minimum number of tested units within series subsystem i of the original system.  Particular cases  
for m=1 (a series system) and for n1=...=nm=1 (a parallel system) completely coincide with the 
results of [1] and [7]. 
 
7.6 Systems with a Complex Structure (Identical Tests) 
 
 All of the structures considered above can be easily analyzed because of the specific nature 
of their reliability functions.  In general, for systems with an arbitrary monotone structure there is no 
solution.  But, nevertheless, a solution exists for a wide class of complex structures K' (see 
Definition 6.4 below) for a very important practical case where the number of tested units of each 
type is the same (N1=...=Nm=N).  Note that this  case coincides with N tests of the entire system.  Of 
course, a system can be tested in an incomplete structure (not all units can be installed).  It can occur 
if the system develops in time and enlarges from stage to stage during the practical utilization (for 
instance, telecommunication networks, power systems, etc. which are continuously developing).  
Later, new units that will be installed in the system are separately tested and the statistical data 
obtained is incorporated with the previously available data. 
 Let m equal the total number of the system's units and S=(i1,...,in).  There are some subsets of 
the system's units, n<m.  Denote a vector of a system state e(i1,...,in), if units i1, ... ,in  are operational 
and the remaining havefailed, and  a vector of a system state e (i1,...,in), if units i1, ... ,in  have failed 
and remaining are operational.  (In some sense these two types of states are "mirror".)  The 
following two definitions are well-known [4]: 
 
Definition 6.1   A subset of units A=(i1, ... ,in) is called a path of a two-pole graph if [e(i1,...,in)]=1, 
i.e., a system is operational if all units of the path are operational. 
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Definition 6.2   A subset of units B=(i1, ... ,in) is called a cut of a two-pole graph if [ e (i1,...,in)]=0, 
i.e., a system is failed if all units of the cut have failed. 
 
 Let us select the system cut that contains the smallest number of units.  We will call this cut 
a main cut S' and we denote a number of its units as b.  Let us consider a structure which is obtained 
as a parallel connection of all units of the main cut. This structure corresponds to the initial system 
under the assumption that all of its remaining units are absolutely reliable. It is clear that because of 
the monotonicity property, the new structure is more reliable than the original one: 
 

R R  =   -  p
i S

i( ) ( )p p 
 
1  (6.34) 

 
for any values of unit reliability parameters p=(p1, ... ,pm). 
 We now find a substructure of the original system structure which deliver the lower limit. 
 
Definition 6.3  Paths A1, ... ,Ak are called independent (non-overlapping) if they do not contain 
common units, i.e., 
 

i jA A  =     
 
for any ij, (i,j){1,2,...,k}. 
 Among all of the sets of independent paths we select one which contains a maximal number 
of independent paths.  We denote this number a.  There may be several such sets of independent 
paths.  We denote a set of all of such sets of independent paths by .  We denote set k of 
independent paths by A1

k, ... ,Aa
k, where k belongs to .  Now consider a structure that is obtained as 

a parallel connection of these independent paths.  This structure can be obtained from the original 
one by the assumption that all of the remaining units of the original structure are absolutely 
unreliable.  (The same assumption can be obtained if these units are deleted from the original 
structure.) Again, it follows from definition of the system monotonicity that we obtain the lower 
limit 
 

( ) ( ) [ (k
i a j A

jR  =   -   -  p   R
i
k

 
  
 p p)1 1
1

 (6.35) 

 
Inequalities (6.34) and (6.35) are true for all values of reliability parameters p=(p1,...,pm), thus it 
follows that 
 

j H
(k)

H H
  R"    R    R


  


max min min min( ) ( ) ( )

0 0 0

p p p  

 
where H0 is a set given by restrictions (6.5) and (6.6). Consequently, 
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 R” 
"< R < R’ 

 
where R”, R’ and R are the best -confidence limits of the two majorant structures and the original 
one, respectively.  Note that values of R' and R” can be easily computed with the use of previously 
obtained results.  Using (6.27) and (6.33) we can finally obtain  
 

1 1 1 1 1 1
1 1

 -   -  - )  R  -  -  -na
a

Nb
b[ ( ] [ ( ) ])    (6.36) 

 
where the left and right sides are the lower -confidence limits for a parallel system consisting of a 
and b units, respectively. 
 Obviously, a number of units in the main cut coincides with a maximal number of 
independent paths.  
 
Definition 6.4   Let us call a system structure K', if 
 
 a=b. (6.37) 
 
For a structure of class K’ inequalities (6.36) give the best lower -confident limit for the system's 
PFFO: 
 

R =   -   -  -  Na
a1 1 1

1

[ ( ) ]  (6.38) 
 
which coincides with a similar limit for the main cut of a system. 
 It is easy to find that class K' includes all of the above-considered structures of series-parallel 
and parallel-series types. Condition (6.37) is not true for all monotone structures. For instance, in 
Section 6.2 we considered so-called "k out of n" structure.  For a structure with n=3 and k=2, we 
have a=1 and b=2. But for most monotone structures this condition is true. 
 
Example 6.1   Consider a system represented in Figure 6.5.  
 

Figure 6.5 
 
 One can find from this figure that a=b=3.  The main cut of a system is represented in the figure by 
shadowed units.   
 
Example 6.2  A radial-ring structure is represented in Figure 6.6. 
 

Figure 6.6. 
 Let us consider the probability of a successful transmission of a signal between the central unit and 
the shadowed peripheral unit  as a system reliability index.  In this case a=b=4, if transmission is 
possible in both directions, and a=b=3, if transmission is possible only from a peripheral unit to the 
central one.   
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Example 6.3  A lattice-type structure is represented in Figure 6.7.  
 

Figure 6.7. 
 

Let us consider the probability of a successful transmission of a signal between two shadowed units 
as a system's reliability index. In this case a=b=2.   
 
 All of these non-trivial structures allow us to use a simple expression (6.38) to obtain the 
best lower confidence limit.  Notice that, in these cases, direct attempt to solve the optimization 
problem (6.4)-(6.6) lead to huge calculations and usually are unsuccessful. 
 
7.6.1 Computation of Confidence Limit for a System Bases on a Known Limit for another 
system 
 
 Assume that the same set of units with reliability parameters p=(p1, ... ,pm) is used to build 
two different structures with reliability functions R(p) and R'(p).  Let us call these structures main 
and auxiliary, respectively.  Assume that for the PFFO of the auxiliary system we know lower -
confidence limit 
 
 R’(d)=R’(d1, ... ,dm). 
 
This limit can be found by any known method. 
 We will consider the following problem: to find the lower -confidence limit R* for the 
PFFO of the main system if the limit for the auxiliary  system is known. 
 Let us introduce a system of sets 
 
 Hd={p: R'(p) > R'(d)}.  (6.39) 
 
 
By definition of a -confidence limit R'(d), the following inequality is true for all p=(p1, ... , pm) 
 

p d pp d pP H   =  P R   R   { } { ( ) ( )}'           (6.40) 
 
from where it follows that sets (6.39) form a system of -confidence sets, and value 
 

 R  =   R
H

( ) ( )mind p
d

 (6.41) 

 

gives the lower -confidence limit for the main system's PFFO. Notice that all of these arguments 
are correct not only for binomial test plans and results in the form d=(d1, ... ,dm), but they are also 
correct for arbitrary plans with results xX with substitution in (6.39)-(6.41) notation d for x.  
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 Let us consider a case when the auxiliary structure is  series with the reliability function 
 


 
R  =  p

i m
i .( )p

1
 

 
By (6.39)-(6.41), the problem of construction of the lower -confidence limit for the main system's 
PFFO is equivalent to the problem of finding the following minimum: 
 

R =   R
p

pmin ( )  

 
 
under restrictions 
 0<pi<1,  1<i<m; 

1 
  

i m
ip R  . 

 
 Thus, from a formal viewpoint, this problem is completely equivalent to problem (6.4)-(6.6) 
of computing the best lower confidence limit for R(p) under binomial tests with no observed failure.  
Using the previous results, we can write  expressions for the lower -confidence limit for the main 
system's PFFO, if this system is series, parallel, series-parallel, parallel-series or has a structure 
belonging to class K'.  For the most general class, namely, K', we have from (6.38) 
 

R =   -   -  R ,b
b1 1

1
[ ( ) ]'  

 
where R' is the known lower -confidence limit for the auxiliary system and b is a number of units 
in the main cut of the main system.  (For a parallel structure b equals a number of the system's unit; 
for a parallel-series structure b equals a number of parallel connected series subsystems; for a series-
parallel structure b equals a number of units in the smallest redundant group, etc.) 
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7.7 APPENDIX 
 
7.7.1  Confidence Clopper-Pearson Limits for Parameter of  Binomial Distribution 
 
 Let us observe d failures in sequence of N independent tests. Then the lower -confidence 
limit p for the PFFO can be found fromthe following equation: 
 

0
1 1

 

 







k d

k N kN
k

- p  p  =  - .( )   

 
The upper -confidence limit p  for the same conditions can be found from equation: 
 

0
1 1

 
 








k N -d

k N -kN
k

- p  p  =  - .( ) ( )   

 
In particular, the lower -confidence limit for case d=0 is found in equation 
 pN=1- . 
 
Tables for p and p  are given in Appendix of the book. 
 
7.7.2 Best Lower Confidence Limit for the PFFO in Case of No-Failure-Test 
 
 Let us consider all possible lower limits for PFFO R(p) with the confidence level of not less 
than , i.e., all of possible functions of observed data (d)= (d1, ... ,dm) such that 
 Pp{(d)<P(p)}>  
for all of p  where ={p: 0<pi<1, 1<i<m} is a set of all of the possible values for parameters 
p=(p1, ... ,pm). 
 
Theorem 6.3   Let the function R(p)=R(p1, ... ,pm) be a monotone non-decreasing for each 
parameters and continuous for p .  Then any lower confidence limit (d) with the confidence 
level of not less than  for R(p) at the point d=(0,0, ... ,0) satisfies the inequality 
 (0, 0, ... ,0)< R 
 
where R is the lower confidence limit (6.4). 
 
Proof   Assume the opposite: (0)>R.  From continuity of function R(p) in H0, the minimum in 
(6.4) is reached at some point 
 

~ ( ~ ~ )p =  p , ... , p H .m 01   
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Because of the monotonicity of R(p), the minimum  in (6.4) is reached on the border of the area 
H0, and 
 

1
1

 


i m
i
N  p  =  - .i~   

 
Let us consider an interval between points ~p  and p'=(1, 1, ... ,1) which can be given in a 
parametrical form as a set of points 
 
 p= ~ ( ~)p t p p    (6.42) 
 
where t is a parameter, 0<t<1.  Because of the convexity of region H0, this interval belongs to this 
region.  Consider the function R(p) on  interval (6.42).  Let us introduce function 
 

g t  =  R p + t p -p ,   t .( ) {~ ( ~)]  0 1  
 
Under our assumptions, function g(t) is continuous and monotone non-decreasing by t.  Note that 
from 
 

g R p = R < R , , ... , = g .( ) ( ~) ( ) ( ) ( ) ( )0 0 0 1 1 1 1   
 
follows that such point t', 0<t'<1,  exists that 
 
 g(t’)= (0); 
 g(t)< (0, 0, ... ,0),    0<t<t'. (6.43) 
 
Now consider the probability Pp{(d)<R(p)} where p belongs to  interval (6.42) and 0<t<t'.  
Because of the monotonicity of (6.43), we have 
 

g R p = R < R , , ... , = g .( ) ( ~) ( ) ( ) ( ) ( )0 0 0 1 1 1 1   

p p m
i m

i
NP   R  - P d =  ... = d =  =   -  p i .{ ( ) ( { } d p)} 

 
1 0 11

1
 

 
From the strong monotone increments of function 
 

h t  =  p + t - p
i m

i i
N i( ) [ ~ ( ~ ) ]

1
1

 
  

 
in t and h(0)=1- , it follows that the probability 
 

pP  R  <  { ( ) ( d p)}  
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in all of the internal points p of interval (6.42) for parameter 0<t<t'.  Thus, the confidence limit  
(d) has the confidence level strictly less than , which contradicts the theorem's conditions.  
Consequently, 
 (0) < R. 
 
7.7.3 Maximum of Convex Function on a Convex Set 
 
 An area  in m-dimensional Euclidean space Rm is convex if for each of its two points 
x=(x1, ... ,xm) and  y=(y1, ... ,ym), this area also contains an entire interval between these points.  In 
other words, any point of a type z= x+(1- )y, where 0< <1 belongs to this area.  A function of m 
variables f(x)=f(x1, ... ,xm) is called convex (strictly convex) if 
 
 f[ x+(1- )y] < (<) f(x)+(1- )f(y) 
 
for any x, y, 0< <1. 
 A point x is called an inner point of a convex area , if it belongs to an interval which lies 
totally inside the area.  The "surface" point is any point of the area  which is not inner. 

Let  be a closed convex region and f(x) be a continuous and strictly convex function.  Then 


max ( ) f x  is reached at a "surface" point of the area  and the point in which maximum is 

reached is unique.  To prove it, assume the opposite: the maximum is reached at the inner point 
z.  Then there exists such points x and y belonging to  and such 0< <1 that z= x+(1- )y , 
and, consequently, f(z)< f(x)+(1- )f(y) and from this f(z)<max [f(x), f(y)].  But the latter contradicts 
the statement that max f(x) is reached at point z.  If function f(x) is convex (not necessarily strictly 
convex), then 


max ( ) f x  is reached in a "surface" point of , but such point might be not unique. 

(See details in [11].) 

 Let us consider, for example, the problem of finding the maximum in (6.12) under the 
restrictions of (6.11).  Because function f(z) monotone increases in each of its variables, its 
maximum value is reached on such points at which the first inequality in (6.11) turns into equality, 
and, consequently, we can choose restrictions of the type 
 

1 


i m
i iN z  =  A,  (6.44) 

 
 zi>0,   1<i<m. 
 
 Surface points (corner) of the convex area  determined by restrictions (6.44) are points of 
the type: zi=(0, ...,0, A/Ni, 0,... ,0) where all coordinates except a single one are 0's.  The simplest 
way to check this is to turn to Figure 6.8 where (for two-dimensional case) we marked in bold the 
two unique corner points. 
 

Figure 6.8 
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7.7.4 Proof of Theorem 6.1 
 
 Maximization of function (6.18) is equivalent to maximization of function 
 

h z  =    -  e
j n

-z

i

ij( ) ln ( )
1

1
 
  (6.45) 

 
under the same restrictions (6.19).  Function (6.45) is monotone increased by each of its variables 
and is strictly concave.  It follows that inside the area 
 

{ : }ij
j n

ij ij i ijz  N z  =  x ,   z
i1

0
 
   (6.46)  

 
there is a unique conditional local minimum which, at the same time, is the global one and is 
determined by a system of Lagrange equations 
 




 
h
z

 =  
e -

 =  N ,   j n
ij

z ij iij

1
1

1  (6.47) 

 
where  is a Lagrange's multiplier.  (It is not necessary here to investigate if the maximum belongs 
to the border of area (6.46) or not because h(z)=-  for zij=0.)  Expressing  zij  from (6.47) through  
and substituting this expressions into condition (6.46), we obtain the statement of Theorem.  (For 
the sake of convenience, we use the denotation t=1/ .) 
 
7.7.5 Proof of Theorem 6.2 
 
 From (6.22) and (6.23), after simple transformations, we obtain the following expression for 
the derivative: 
 

i i

n -
i

j n
ij i

n
i

( x ) =  
t x

N + t x - t x

i

i

i


 


1

1

( )
[ ( )] ( )

 (6.48) 

 
where t(xi) is determined by (6.23).  Since the denominator of (6.48) is a polynomial of t(xi) with the 
power ni-1 and with positive coefficients, then (6.48) is monotone increasing in xi. Function t(xi), in 
its turn, is increasing in xi, and it follows that i’(xi)is increasing in xi and i(xi) convex. 
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Problems to Chapter 6 
 
Exercise 6.1 
Consider a system depicted in Figure 6.9.   
 

Figure 6.9 
 
This system consists of two groups of redundant units connected in series.  The first group consists 
of two parallel units with parameters p11 and p12, and the second one consists of three parallel units 
with parameters p21, p22  and p23.  Al these parameters are unknown.  Units within each group are 
not assumed identical.  The system's probability of failure free operation is expressed as 
 
 R=[1-(1-p11)(1-p12)][1-(1-p21)(1-p22)(1-p23)] (6.49) 
 
During eight tests of the system (N=8) there was no failure. 
 Construct the lower 90%-confidence limit for the reliability function (6.49). 
 
Exercise 6.2 
 The problem almost completely coincides with the previous one.  The difference is in the 
fact that the units within each group are identical:  
 
 p11=p12=p1, and p21=p22=p23=p2.   (6.50) 
 
 Construct the lower 90%-confidence limit for the reliability function  
 
 R=[1-(1-p1)2)][1-(1-p2)3] (6.51) 
 
Exercise 6.3. 
 Solve the previous problem if it is known that 
 
 p1>p2. (6.52) 
 
 Construct the lower 90%-confidence limit for the reliability  function (6.51). 
 
Exercise 6.4  Let us say that a series-parallel system has a structure of type (n1, n2, ... ,nm) if it 
consists of m groups of redundant groups and the ith one consists of ni identical units, each with 
parameter pi.  In other words, this system has the following reliability function  
 

R = - - p .
i m

i
n i

1
1 1

 
 [ ( ) ]  

 
 Let the system with the structure (2, 3) depicted in Figure 6.10, was tested eight times (N=8) 
with no failures. 
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 Construct the lower 90%-confidence limit for the reliability  function of the system with 
structure (3, 2).  In other words,  we need to estimate the system reliability of one system on the 
basis of the test results of another system consisting of the similar units. 
 
Exercise 6.5.  Under the condition of the previous exercise, find the structure (n1, n2) with the 
maximum lower 90%-confidence limit if the numbers of units are subjected to the following 
restrictions: 
 
 n1+n2<5; n1>1, n2>1. (6.53) 
 
This task represents one of variants of optimal redundancy problem where we should choose the 
optimal structure of structure (n1, n2) with restrictions (6.53) on the basis of test of system (n1=2, 
n2=3).  Notice that this problem cannot be solved using point estimates because in this case all 
variants of the system have a trivial estimate equals 1. 
 
Exercise 6.6.  A "bridge system" (see Figure 6.10) was tested four times (N=4) with no failures.  All 
units are not assumed identical.  
 
 

Figure 6.10  
 

 Construct the lower 0.95-confidence limit for the system reliability function. 
 

8. System Confidence Limits Based on Unit Test Results 
 
8.1 Introduction 
8.1.1 Practical Applications 
 
 In real world situations we often need to estimate the system reliability before it has been 
designed.  We are thus forced to predict system behavior based on statistical information obtained 
from unit (components or subsystems) testing.  The goal is to use this information in such a way that 
the result will be adequate to what may be obtained from testing the system as a whole.  The same 
situation arises when testing the entire system, for some reason, is very difficult or even impossible 
at developmental phase. An analogous circumstance appears if we are only able to test a system in a 
truncated configuration; perhaps on some “pilot model” of the system. We wish to make a realistic 
confidence prediction of the prospective system on the basis of testing a truncated configuration, 
and results of testing its separate units. At the other extreme, units and truncated configurations is all 
we have for a continuously developing system.  
 Sometimes unit tests are more effective than a test on the entire system.  Assume that the 
system has a high order of redundancy.  Such a system can be highly reliable and is protected 
against the failure of single units.  In this case the total test volume measured as 

 (testing hours) x (number of tested units)  
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can be less for units tests rather than for system test.  Of course, this situation can be transformed: 
we can test the system but collect all information about unit failures, and use the full set of results 
for system reliability estimation. 
 Notice that in all these cases a new problem of aggregating of statistical data arises: different 
units can be tested differently, i.e., by different testing plans (different numbers of tested units, 
different time of testing, truncation of test, etc.).  Thus, the problem of constructing of confidence 
limits for the system on the basis of unit test data is of great practical interest. 
 
8.1.2 Formulation of the Problem 
 
 We showed in the previous chapter that the problem of finding the best confidence limits for 
the system from unit data of no-failure test can be easily solved analytically.  In other cases, (for the 
problems listed 7.1.1) solving this problem is rather complicated. 
 In general, the problem of constructing the confidence limits for the PFFO of a complex 
system, based on the unit testing can be formulated in the following way.  Let m be the number of 
different types of units, and =( 1, 2, ... , m) is a vector of reliability parameters of these units.  
(Here i is a reliability parameter of a unit of the ith type.)  A set of all possible values of the vector 

 we denote .  Let R be the system PFFO which depends on the unit parameters: 
 
 R=R( )=R( 1, 2, ... , m). (7.1) 
 
 We assume that dependence (7.1) is known but the units parameters are unknown though we 
possess the test results xi for each unit of the ith type, i=1, ... ,m.  Test results xi for each unit can be 
obtained by either of the two methods:  (1) individual testing of units or (2) individual registration of 
unit failures during the test of the system as a whole.  A set of all available test data is denoted by 
x=(x1, x2, ... ,xm).  This vector is random and its distribution P {x} depends on the set of unknown 
parameters . 
 Let R = R( )x 459 and R = R( )x 460 be the lower and upper confidence limits for each test 
outcome x.  Both  R 461 and R 462 depends on random outcomes.  Consequently, they are random 
variables themselves. This interval [ R 463, R 464] is said to have the confidence probability  for 
the unknown value R=R( ) if 

  P R R R{ ( ) }    (7.2) 
 
for all .  The maximum possible value of , satisfying (7.2) for all , is usually called the 
confidence coefficient.   In an analogous way, a function (x) of test outcomes is called the lower 
(upper) confidence limit with the confidence coefficient   
for R( ) if for all  
 

   P R R{ ( ) ( ) ( ) }x    .   (7.3) 
 
 Let us consider the requirement for validation of inequalities (7.2) and (7.3) for all possible 

 in more detail.  As we have mentioned above, the distribution of outcomes x depends on .  
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Therefore the confidence probability in (7.2) and (7.3), may also depend on . Thus, (7.2) 
guarantees that the confidence interval is valid for any .  However, if we know that  belongs to a 
narrower subset 0, 0 , then the confidence interval will also be narrower. 
 
8.2 Calculation by Direct Substitution 
 
8.2.1 Point Estimates for Units 
 
 Assume that test results xi for different units are independent and for each parameter we can 
find a point estimate (for instance, maximum likelihood), i i i= x  ( )  467.  The point estimate, R
468, for the system PFFO, R, is most often obtained by substitution of the point estimates of 
parameters i

  469into the function (7.1), that is, 
 (    )R = R , ,.... m1 2       (7.4) 

 
In some cases such a procedure delivers an unbiased estimate of R, if the estimates i

 471 were 
unbiased themselves (see Example 7.1 below).  However, even if the estimate (7.4) is biased, it 
usually possesses asymptotically optimal properties (unbiased and efficient), if estimates i

 472 
possess these properties. The latter statement is illustrated in Example 7.2. 

 
Example 7.1  (Series system, Binomial test) 
  Consider a series system of m different units.  Let us assume that we apply the binomial 
testing plan.  The system PFFO is expressed as 

R = p
i m

i
1 
  

 
where pi is the PFFO of the ith type unit.  Each unit is assumed to be tested separately.  The number 
of tested units, Ni, and the number of failures, di, for unit of each type are known.   
 
 In this case i=pi and xi=di.  The standard unbiased point estimate for parameter pi is 
 

i
i

i
p = -

d
N

. 1  

 
Corresponding estimate for the system PFFO like (7.4) is 
 

 R = p - d
N

.
i M

i
i m

i

i
=

1 1
1

   
  





 

 
Since the test results di were assumed to be independent, this estimate is unbiased for R. 
 
Example 7.2  (Series-parallel system, binomial test) 
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  Consider a series-parallel system of m redundant groups.  The ith group consists of ni 
redundant units connected in parallel (loaded regime of redundant units).  We again assume that the 
binomial testing plan is applied. 
 
 The system PFFO has the form 
 

 R = - - p .
i m

i
ni

1
1 1

 
 ( )  

 
Suppose Ni units of each type were tested di failures have been observed.  The number of tested 
units does not depend on the size of redundant group.   
 In this case we generally use the following point estimate for the system PFFO: 
 

  (  )R = - - p = - d
N

.
i M

i
n

i m

n
i

i

i

i

1 1
1 1 1

   
  

















 

 
This estimate is biased for ni>1.  This is because 
 

E
i

i

n
i

i
i

nd
N

- p .





 ( )1    

 
8.2.2 Confidence Limits 
 
 Thus, the problem of system point estimator construction can be easily solved by a direct 
substitution of point estimates of unit parameters into the system reliability function (7.1).  Finding 
the confidence limits this point estimate (7.4) is more complex problem.  To illustrate this, let us try 
to construct the lower limit for the system PFFO defined in (7.1) by direct use the lower confidence 
limits of unit parameters i.  Assume that the function R( )=R( 1, 2, ... , m) is monotonically 
increasing in each i.  This assumption translates to a natural condition that the system PFFO 
improves with the growth of units’ reliability.  Assume further that the lower -confidence limit 

i i i= x  ( ) 473 is constructed for each parameter i on the basis of test results xi, that is, 

   P ,   i = ,m.i i( )  1  (7.5) 
 

 Let us now find the lower confidence limit R for the system PFFO, R, by direct substitution 
of confidence limits i into (7.1), 
 R=R( 1, 2,..., m). (7.6) 
 
 Monotonicity of function R( ) implies: 
 

{ } { ( ) ( )}       i i
i m

m mR , ,..., R , ,..., .  
 1

1 2 1 2  
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 From this, equation (7.5), and the independence of test results, we have 
 

       P R R P = P
i m

i i
i m

i i
m.{ ( )} ( ) ( )  









 
   


1 1
  

 
Thus, the only statement we can make is that the lower confidence limit (7.6) possesses the 
confidence coefficient not less than m. 
However, we don’t know to what real value of it corresponds.  Moreover, this value decreases 
very fast with the growth of the number of redundant groups.  This confidence interval is too 
conservative and ineffective even for small m.  For instance, for m=10 and =0.9, m 35.  It 
means, in particular, that if we need to construct the confidence limit for the system PFFO with the 
confidence coefficient not less than 0.9, we should increase individual unit confidence limits up to 

0.99. Thus, the more the number of redundant groups in the system, the lower is the system 
PFFO estimate from direct substitution. 
 Thus, an attempt to solve the problem via direct substitution of units’ confidence limits is 
ineffective.  The problem attracted the attention of American and Russian researchers in the past 
two decades and some proper approaches were discovered.  Some of these approaches are described 
in the following section. 
 
8.2.3 General Method  
 
 The method of constructing the confidence limits for a function of several arguments 
R=R( )=R( 1, 2, ... , m) is a natural generalization of the method developed for a function with 
one argument(see Section 1.4).   

Belyaev Method    
 The following simplified method was considered in [Belyaev, 1966, 1968].  Let S be a 
system statistic, or some function of test results: S=S(x)=S(x1, ... ,xm).  We can use as such a statistic 
as a point estimate of R, that is, S = R 475.  Consider the plane (R,S) represented on Figure 7.1. 
 
 
 
As we did in one dimensional case (see Figure 1.2), let us find (for each fixed value R) a 
corresponding  -zone of HR on the S-axis.  Probability that statistic S will occur in HR will be not 
less than .   
 Unlike an one-dimensional case, a multi-dimensional case may be degenerate in the sense 
that different values of a vector of parameters might correspond to the given fixed value R=R( ).  
Let us denote 
 
 AR={ :  R( )=R} 
 

Figure 7.1 
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the set of values of parameters-vector , for which the value of the reliability function, R( ) is 
equal to R.  The distribution function of r.v. S for the given value of a vector of parameters  is 
denoted by 
 
 F(t, )=P (S<t). (7.7) 
 
For the sake of simplicity, let us assume that function (7.7) is continuous and strictly monotonic in t. 
 For a given fixed , let us choose t1( ) and t2( ) in the same manner as in the one 
dimensional case (Section 1.4): 
 

F t , = ,
 

F t , = -

( )

( )

1

2 1

 

 









 (7.8) 

 
that is, t1( ) and t2( ) are respective quantiles of levels  and  of distribution (7.7).  By 
construction, the probability that statistic S will be covered by the interval [t1( ), t2( )] is equal to 

=1- - . For a fixed value of the reliability index R, we construct the interval [K1(R), K2(R)] by 
joining all intervals [t1( ), t2( )] for different  from AR.  This interval is considered as a -zone 
HR of the reliability index, R.  The lower and the upper limits of the -zone has the form (see Figure 
7.1):  

1 1K R =  t ,
RA

( ) ( )min





 

 2 2K R =  t ,
RA

( ) ( )min





 (7.9) 

 
Thus, the probability that the -zone HR covers statistic S satisfies the inequality 
 

  P S H = P K R S K RR{ } { ( ) ( )}   1 2  (7.10) 
 
for each AR and for any values of R. 
 Let x*=(x1

*, ... ,xm
*) denote the value of a random vector x=(x1, ... ,xm) obtained as a test 

result, and S*=S(x*) denote the corresponding statistic S=S(x).  We call values x* and S* the 
observed value of vector x and the observed value of statistic S respectively.  We assume further that 
the limits of -zone, K1(R) and K2(R), are continuous and monotonically increasing in R.  The 
lower and upper limits for R=R( ) are defined from conditions 
 

2 1K R = S ,   K R = S* *( ) ( ) , (7.11) 
 
where S* is the observed value of statistic S (see Figure 7.1).  Then, by construction and taking into 
account (7.10), we have 
 

   P R R R = P S H = P K R S K R*
R

*{ ( ) } { } { ( ) ( )}     1 2  
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for each AR and for any allowed value of R.  From here it follows that 

  P R R R{ ( ) }    
 
for possible values of .  It means that the interval [ ]R,R 480 is the confidence interval for R=R( ) 
with the confidence coefficient not less than =1- - . 
 If the limits of the -zone monotonically decreases in R, we can write, repeating above 
arguments, that the lower and upper limits can be found from the equations: 
 

1 2K R = S ,   K R = S .* *( ) ( )  (7.11) 
 
 

Bol’shev-Loginov Method 
  
 A closely related approach was suggested in [Bol'shev (1965), Bol'shev and Loginov 
(1966)].  In Belyaev approach, the main idea was to find the maximum limits of the -zone for each 
fixed value of R.  It is also possible to find these limits in another way; namely, for each given test 
result S.  Roughly speaking, we are finding the limits for a given fixed R in the vertical direction, 
(i.e., along S-axis on Figure 7.1) in the first case. In the second case, for the given fixed S*, the limits 
are found along the R-axis. Let us introduce functions 

1 ( ) ( )min*

A

*S ,R = F S ,
R




              

2 ( ) ( )max*

A

*S ,R = F S ,
R




      (7.12) 

Assume that these functions are continuous and strictly 
monotonically decreasing in R.  Then (7.13) gives the lower (R)and upper ( R ) limits 482of the 
confidence interval for R( ) obtained 
 

1 1 ( )R,S = -*    
 2 ( )R,S = .*   (7.13) 

 
from the test results S*. 
 If these functions are monotonically increasing in R, then the lower and upper limits of the 
confidence interval can be found from the following equations: 

1 ( )R,S =*   
 2 ( )R,S = .*     

  
 
 

 Neumann Method     
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A general approach to constructing confidence sets, which includes Belyaev and Bol’shev-
Loginov methods as particular cases, originates from well known works [Neumann(1935), (1937)].  
Let S=S(x) again be some statistic.  The set C  of values of statistic S defined as 
 

  C = S:  t S t{ ( ) ( )}1 2   (7.14) 
 
corresponds to some possible value of parameter =( 1, ... , m).  As done previously, t1( ) and 
t2( ) are chosen under condition (7.8).  The following equality can be established for each  
 

  P S C ={ }  (7.15) 
 
 (Here, as above, =1- - .)  Let S* be an observed value of statistic S from the test.  Each S has its 
reflection on set H(S*)of parameter  such that value S* belongs to the set C : 
 

H S = :  S C .* *( ) { }   
 
Owing to (7.14), the set H(S*) is given by the following conditions: 

2t S .*( )   (7.16) 
1t S*( )   

 
Taking into account the definition of t1( ) and t2( ), the inequalities (7.16) can also be written 
directly via the distribution function of statistic S in the following form: 

F S , ,*( )                        
1 F S , ,*( )                (7.17) 

 
For each fixed , events { H(S*)} and {S* C } are equivalent by construction.  It follows 
from (7.15), that for any   equality holds. 

  P H S =*{ ( )}              (7.18) 
 
A collection of sets H(S*), which satisfies (7.18) for all possible , is called a collection of -
confidence sets for . 
 
 Let us now determine the lower and upper limits of R=R( ). 

R = R ,
H( S )*




max ( )              

R = R ,
H( S )*



min ( )       (7.19) 

The minimum and maximum are taken in the confidence set H(S*). (We have assume that the 
minimum and maximum attained on the set H(S*). If it is not the case, one must use infimum and 
supremum instead of min and max, respectively.)  For each fixed  the following relationship is 
valid: 
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{ ( )} { ( ) }    H S R R R .*  

 
Taking (7.17) into account, we have 
 

  P R R R .{ ( ) }    
 
It means that the interval ( )R,R 488 thus constructed, is the confidence interval for R=R( ) with 
the confidence coefficient not less than =1- - . 
 
Remark 7.1   Under some additional monotonicity and continuity assumption on R( ), which 
almost always hold in reliability problems, all three approaches considered above are can be 
shown  to be factually equivalent.  In other words, expressions (7.11), (7.13) and (7.19) give the 
same confidence interval ( )R,R 489 if one uses same ,  and statistic S (see Pavlov, 1982, 
pp.82-83) under these restrictions.  From a computational viewpoint, these different methods are 
dual descriptions of mathematical programming problems (conditional optimization problems). 
Thus, the function F(S*, ), for which extremum in (7.12) is searched, represents restrictions in 
(7.17) for the last approach. The function R( ), for which extremum in (7.19) is searched, 
represents restrictions of the type R=R( ) in the Belyaev and Bol’shev-Loginov approaches (for 
more details, see [Pavlov, 1982]).  
 
8.2.4 Arbitrary Distribution of Statistic S 
 
 Previously we assumed in the previous sub-section that statistic S has continuous 
distribution.  Now we consider a more general case where the distribution of test results x=(x1, x2, ... 
,xm) and the statistic S=S(x) are arbitrary (possibly, discrete).  In this case let us denote 

1t = t: P S < t ,( ) { ( ) }sup          

 2t ( ) = t: P S > t , inf { ( ) }  (7.20) 

 
where + < 1.  Let us introduce the set 
 

  C = S:t S t .{ ( ) ( )}1 2               (7.21) 
 
Continuity of the function P (S>t) from the right and of the function P (S<t) from the left, together 
with (7.20) imply the inequality 
 

     P S C = P t S t{ } { ( ) ( )}   1 2         (7.22) 
 
is valid for each fixed  where = 1- . 
 Let S* be an observed value of statistic S.  Let the set 
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H S = :S C* *( ) { }   (7.23) 

 
correspond to each value of S*. In accordance with (7.21) this set is given by the inequalities 
 

1

2

t S
 

t S .

*

*

( )

( )

















 (7.24) 

 
Due to (7.22), the inequality 
 

   P H S = P S C* *{ ( )} { }    (7.25) 
 
holds for each fixed .  In other words, sets H(S*) form a collection of confidence sets for  with 
the confidence coefficient not less than . 
 Let us again determine the lower and upper limits R and R 496 as the minimum and 
maximum values of the function R( ), respectively, for all values of parameter  which belong to 
the confidence set H(S*).  It can be shown (see p.1 of the Appendix to this chapter) that the final 
expressions for the confidence limits have the form 
 

R = R ,   R = Rmin ( ) max ( )   (7.26) 
 
where minimum and maximum are taken for all values of the parameters =( 1, ... , m) which 
satisfy the following inequalities: 
 









P S S
 

P S S .

*

*

( )

( )

 

 









 (7.27) 

 
The interval ( )R,R 499 is the confidence interval for R=R( ) with the confidence coefficient not 
less than =1- - .  Formulas (7.26) and (7.27) include previously considered confidence limits as 
particular cases. 
 From formulas (7.26) and (7.27) we can easily obtain one-side confidence limits for 
R=R( ).  For instance, let the reliability function R( )=R( 1, ... , m) be monotonically increasing 
in each argument i and the function P (S<S*) [P (S>S*)] is monotonically decreasing (increasing) 
in each i. Setting = 1-  and = 0, and from (7.26) and (7.27), we obtain the lower -
confidence limit for R: 

R = Rmin ( )  (7.28) 
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where minimum is taken for all parameters  satisfying the inequality 
 

 P S S - .*( )  1  (7.29) 
 
In correspondence with  (7.12) and (7.13) the value R is determined from the following equation in 
respect to R: 
 


 




RA
P S *S = - .max ( ) 1  (7.30) 

 
where the maximum is taken in the set AR of parameters for which R( )=R. 
 In an analogous way, setting =1-  and =0, we obtain from (7.26) and (7.27) the upper 

-confidence limit for R: 
 

R = Rmax ( )  (7.31) 

 
where the maximum is taken for all parameters  satisfying the inequality 
 

 P S S - .*( )  1  (7.32) 
 
The value R 505 is determined from the following equation: 
 


 




RA
P S *S = - .max ( ) 1  (7.33) 

 For the chosen statistic S=S(x), the lower and upper confidence limits of (7.33) can not be 
improved for more general conditions [see (Pavlov, 1977, a,b)].  Different statistics S’=S’(x) 
generate different confidence limits.  The problem of choosing the best initial statistic is still open. 
 
Example 7.3 (Binomial test) 
 Let us consider a standard binomial test scheme. The system consists of m types of units, 
and the reliability index of the ith type unit equals pi.  The system PFFO, R, is the function of the 
vector of units reliability parameters p=(p1, ... ,pm): 
 
 R=R(p)=R(p1, ... ,pm). (7.34) 
 
We assume that this function is increasing in each parameter pi, that is, the system PFFO increases if 
the unit reliability increases.  The Bernoulli test is invoked for determining each parameter pi.  
During testing Ni units were tested and di failures have been observed.  All tests are supposed to be 
independent.   
 In this case the vector of unknown parameters  is the vector of binomial parameters p, and 
the vector of test results x is the vector of the numbers of failures for units of different types, d=(d1, 
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... ,dm).  We need to construct the lower confidence limit with the confidence coefficient not less 
than the given on the basis of the test results d.  
 Let us take the point estimate of the system PFFO for the initial statistic S=S(x), that is, 
 

S = R = R p , p ,..., pm
 (    )1 2  (7.35) 

 

where i
i

i
p = -

d
N

 1 508 is the standard point estimate of the parameter pi, 1,m 509.  Let d*=(d1
*, ... 

,d*
m) be the observed value of the vector of failures, and S*=S(d*) be the corresponding observed 

statistic S. From (7.28) and (7.29) we obtain the following formula for the lower confidence limit 
(for R with confidence coefficient not less than : 
 R= max  R(p1, p2, ... , pm) (7.36) 

 
where the minimum is taken over all parameters p=(p1, ... , pm) which satisfy the following 
conditions: 
 

S( ) S( ) i m

i

i
i
N -d

i
d

*

i i i
N

d
p - p - ,

d d  
 









  

1
1 1( )   (7.37) 

 0 < pi < 1,  i = ,m1 511. (7.38) 
 
We notice that inequality (3.37) corresponds to (7.29). 
 In accordance with (7.30), we want to find maximum of (7.37), that is,the value of R can be 
found from the equation in respect to R 
 

p d d   
 









 

R *

i i i

A S( ) S( ) i m

i

i
i
N -d

i
dN

d
p - p = - ,max ( )

1
1 1   (7.39) 

 
where the maximum is taken over the set AR of parameters satisfying restrictions 
 
 R(p1, p2, ... , pm)=R, (7.40) 
 0 < pi < 1,  i = ,m1 513. 
 
 Sometimes it is more convenient to rewrite (7.36) in another form.  Remember that the 
statistic S(d)=S(d1, ... ,dm) is any function of test results which is monotone non-decreasing for each 
di.  For instance, S(d) can be a point estimate of R.  Let us order all possible values of the vector of 
test results, d =(d1, ... ,dm) with decreasing value of the statistic S(d).  In other words, each value of 
m-dimensional vector d =(d1, ... , dm) with positive integer coordinates corresponds to a number n = 
n(d) which is determined in such a way that for any vector K=(K1, ... , Km) with S(K) > S(d), we 
have n(d) > n(K).  Then the confidence limit (7.36) as 
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 R= min  R(p1, ... , pm), (7.41) 

where the minimum is taken under the constrains 
 

n( ) n( ) i m

i

i
i
N -d

i
d

*

i i i
N

d
p - p - ,

d d  
 









  

1
1 1( )   (7.42) 

 0 < pi < 1,  i = ,m1 515. (7.43) 
 
The difference between (7.42) and (7.37) is in the summation limit.  Here n(d)=n(d1, ... , dm) is such 
a ordering of test result vectors d that n(d) monotonically increases (non-decreases) in each di.  The 
first number is assigned to the null-vector d=(0, 0, ... , 0). The next one to vectors of the type (0, ... , 
0, 1, 0, ... ,0), and so on.  This approach, connected with the ordering of test results, was used in 
[Buehler, 1957] for a parallel system consisting of two units (see Example 7.5 below and also 
Section 7.4). 
 
Example 7.4 (Test with no failures) 
 Under conditions of the previous example, let us consider a particular case where no failure 
was observed of any unit:  d1

*=d2
*= ... =dm

*=0.  In this case the formula for the lower -confidence 
limit for the system PFFO follows from (7.36)-(7.38) or from (7,41)-(7.43). 
 R= min  R(p1, p2, ... , pm) (7.44) 

 
where the minimum is taken under the restrictions 
 

1
1

 
  

i m
i
N ip ,       (7.45) 

 0 < pi < 1, i = ,m.1 516 
 
This is the best lower -confidence limit for the system PFFO in the case of no failure test (see 
Chapter 6).  
 
Example 7.5 (Buehler Problem) Find the PFFO for a parallel system, consisting of two units.  The 
system is tested by a binomial scheme.  The index of interest is 
 

R = R p , p = - - p p .( ) ( ) ( )( )p 1 2 1 21 1 1  
 
Each vector of test results, d=(d1, d2), corresponds to some number n(d)=n(d1, n2) such that n(d)is 
monotonically decreasing in each di, i=1, 2.  The minimum number, naturally, is assigned to the 
vector (0,0).  The next one to the vectors (0,1) or (1,0), and so on. From (7.41)-(7.43) we get the 
following lower -confidence limit for the system PFFO 
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 R = - - p - p
p

min ( )( )1 1 11 2   (7.47) 

 
where minimum is take in all p=(p1, p2) which satisfy (7.42).  The solution of this problem was 
given by Buehler(1957). 
 
Example 7.6 (Series system, Binomial test)  Under conditions of Example 7.3 consider a particular 
case  where a series system consists of m  different units.  In this case the system PFFO is 
R = p

i m
i

1 
 .  Let the point estimate of the system PFFO be taken as an initial statistic S=S(d), that 

is, 
 

S = R = - d
N

.
i m

i

i
( ) (d d)

1
1

 
 





 

 
Denote the observed value of the vector d=(d1, ... ,dm) by d*=(d1

*, ... ,dm
*).  Then from (7.36)-(7.38) 

we obtain the lower -confidence limit for the system PFFO 
 

R = p
i m

imin
1 
  

 
where the minimum is taken over all parameters (p1, ... , pm) which satisfy the restrictions 
 

 

( )
R( ) R( ) i 2

i

i
i
N -d

i
d

*

i i i
N

d
p - p - ,

d d  
 









  

1
1 1    (7.48) 

 0 < pi < 1,  i = ,m1 517. 
The difference between (7.48) and (7.37) is in the limit of the summation. 
 If probabilities of failure are small, i.e., qi=1-pi <<1, and the number of tested units, Ni, is 
large, we can use the Poisson approximation for solving this problem.  In this case we can consider 
that the number of failures, di, approximately has the Poisson distribution with parameter i=Niqi, 
i = ,m1 518. 

 For conditions above, we can write an approximation for R: 
 

R = - q - q - i
iN

.
i m

i
i m

i
i m1 1 1

1
     
  







 









( ) exp exp   

 
Thus, the problem of finding the lower confidence limit of R is reduced to the problem of finding 
the upper confidence limit f 519 for the function of the Poisson parameters =( 1, ... , m): 
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f =
N

.
i m

i

i
( )



1 
  

 
It follows that the Poisson approximation leads us to an approximate lower -confidence limit for 

the system PFFO in the form R = e- f  where f =
Ni m

i

i
max

1 
 

.  The maximum here is taken over 

all parameters =( 1, ... , m) satisfying the conditions 
 

 R( ) R( ) i m

-
i
d

i*

i

i

e
d

-
!

,
d d  
 







 

1
1


  

 i > 0,  i = ,m1 520. 
 
The problem of constructing of an approximate confidence limit for the PFFO of a series system 
was considered by Bol'shev and Loginov (1966) for equal Ni's; and by Pavlov (1973) and Sudakov 
(1974) for arbitrary Ni. 
 
8.3 Series Structures 
 
8.3.1 Binomial model 
 
 Consider a series system consisting of units of m different types. The number of units of the 
ith type equals ri, i = ,m1 521.  All system's units are independent.  The system PFFO for some 
fixed operation time t0 is 
 

R = p
i m

i
r i

1 
 , (7.49) 

 
where pi is the PFFO of a unit of the ith type.  Assume that Ni units of type i have been tested during 
time t0 and di failures were observed.  The test results d1, ... ,dm are supposed to be independent.  Let 
us construct the confidence limits of the system PFFO (7.49) on the basis of the vector of test results 
d=(d1, ... ,dm).  Notice that for practical purposes, most important is the lower confidence limit. 
 
 Consider the case where the units TTFs are exponentially distributed.  The PFFO for the 
unit of the ith type during time t is given by the formula  pi(t)=exp (- it), where i is the unit's 
failure rate.  Then the system PFFO defined in (7.49) has the form 
 

R = p t re
i m

i
r -t

i m
i ii 0 .

1
0

1   
 ( )   (7.50) 
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Assume that units of the ith type were tested by plan [Ni R Ti]. This notation means that initially 
there were Ni units, failed units were replaced by new ones, and the test duration was Ti.  The 
number of observed failures equals di.  We need to construct the lower -confidence limit for the 
system PFFO defined by (7.50) on the basis of test results d=(d1, ... ,dm).  We would like to 
emphasize, in contrast to the binomial case, values Ti for different types of units may be different 
and do not necessarily coincide with the operational time t0. 
 R.v. di has the Poisson distribution with the parameter i=NiTi i, i = ,m1 524.  The problem 
is now reduced to the finding the upper  -confidence limit, f = f (d) ,525 of the following 
function of the Poisson parameters =( , ... , m)  
 

f =
r

N T
.

i m

i

i i
i( ) 

1 
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Finally the lower -confidence limit for the system PFFO can be found as 
R = f t .exp( )

0
 

 
 Notice that we meet the same problem if we use the Poisson approximation for a binomial 
model. Indeed, in accordance with well known limit theorems of probability theory, binomial 
distribution of the r.v. di can be approximated by a Poisson distribution with the parameter i=Niqi 
if qi 0 and Ni , so that Niqi remains fixed. (Here qi=1-pi is the probability of failure of a unit of 
the ith type).  It follows that for highly reliable units, that is, qi<<1, i = ,m1 526, and large number of 
tested units, Ni, the problem of approximate confidence estimate of the system PFFO (7.49) can be 
reduced to the confidence estimation of value 
 

R = - q ir iq =
r
N i

i m
i

r

i m i m

i

i

i

1 1 1
1

     
   







 







( ) exp exp .  

 
It means that the problem again is reduced to the finding the upper -confidence limit f = f ( )d
527 of the following function of  Poisson parameters: 
 

f( ) =
r
N

.
i m

i

i
i 

1 
  

 
Again the lower -confidence limit for the system PFFO can be found as R = e .- f  
 
8.3.2 Lidstrem-Madden Method 
 
 The Lidstrem-Madden method is discussed in a well known book by Lloyd and Lipov 
(1962).  At that time, the method was considered heuristic and approximate because there was no 
proof that this is indeed the lower confidence limit R for the system PFFO (7.49). The correct 
confirmation of this method was obtained by Pavlov (1973), Sudakov (1974) and others (see below 
Sections 7.6.1 and 7.6.6). 
 The main idea of this method is grounded on the hypothetical construction of possible 
outcomes of a system test based on the results of tests of individual units.  For the sake of simplicity, 
consider a simple case where m=2 and r1=r2=1, that is the system consists of two different units.  
Without any loss in generality we can assume that 
 

1
1

 i m
iN N=min  (7.51) 

 
that is, units are ordered by the increasing number of tested units. The unit test results can be given 
by two sets 

( )11 12 1 1x , x , ... ,x N  (7.52) 
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 and ( )21 22 2 2x , x , ... ,x N , (7.53) 
 
where xij is an indicator of failure of the ith unit at the jth test 
 

ijx =
 if the unit has failed,

 
    if the unit has not fail.

1

0









 

 
 Using these notations, let us try to enumerate all possible outcomes of the system tests.  For 
this purpose, for each test result of the first set, x1j  we correspond a randomly chosen test result of 
the second set, x2j.  Thus we obtain N1 pairs 
 

( )1 2j kx , x  (7.54) 
 
each of which can be interpreted as the result of testing of a system.  The number of "tested" 
systems is equal to N1 and the random number of the system failures, , is equal to the number of 
pair for which at least one unit has failed (at least one of x1j or x2j equals 1).  For a given set of test 
results (7.52) and (7.53), the number of such pairs, , is random since we chose the pairs randomly.  
Therefore, we take as the number of the system failures the value D1 (later is called "equivalent 
number of failures") which is the mathematical expectation of .  It is clear that 
 

1 1 1D = = N - RE ( )  
 
where R 532 is the point estimate of the system PFFO.  In turn, this value of R  which is calculated 
as 
 

  R = p p = - d
N

- d
N

.1 2
1

1

2

2
1 1











 

 
 Following such a heuristic procedure, we obtain N1 system tests (remember that N1 is the 
minimum number of tested units) and equivalent number of failures, D1.  The lower  -confidence 
limit R for the system PFFO is defined as 
 
 R=P (N1, D1) (7.55) 
 
where P (N, D) is the standard Clopper-Pearson lower -confidence limit [Clopper and Pearson, 
1934] for the binomial parameter p. Confidence limit (7.55) corresponds to the Bernoulli test with N 
units tested and d failures observed. 
 In the case of m>2 and r1=r2= ...  =rm=1 the lower confidence limit R for the system PFFO is 
found by formula (7.55) in analogous way. Again N1 is the minimum number of tested units defined 
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in (7.51) and D1 is the equivalent number of failures.  The latter value is calculated using the 
formula 1 1 1D = N - R( ) 533. The point estimate R 534 is calculated as 
 

R = - d
N

.
i m

i

i1
1

 
 





 

 
 Obviously, the equivalent number of failures, D1, might be non-integer. In this case P (N1, 
D1) can be calculated by interpolation of corresponding values in tables of binomial distribution or 
with the use of the beta function.  In this case the lower -confidence limit P (N1, D1) can be found 
by solving the following equation for p 
 
 p(N1-D1, D1+1)=1-  
 
p(a, b) is the beta function defined as 
 

p
0

p
a- b-

0

a-

(a,b) =
x x dx

x -x dxb










1 1

1
1

1

1 1

( )

( )

 

(The reader can find some details in Section 2 of Appendix to the current chapter.)  Corresponding 
numerical tables of P (N,d) can be found in [Pearson, 1934], [Nation Bureau of Standards, 1950], 
[U.S. Army Ordnance Corps Pamphlet, 1952], [Romig, 1953], [Bol'shev and Smirnov, 1965], 
[Sudakov, 1975], [Ushakov, ed., 1994], and others.  
 Sometimes it is more convenient to write formula(7.55) for the lower -confidence limit of 
the system PFFO as  
 

R =  P N ,D
i m

i i
1 
min ( ) , (7.56) 

where i iD = N - R( )1 536.  This expression allows us to give one more interpretation of this 
method.  For each unit i let us calculate  the equivalent number of failures Di from the condition 

 
D
N

Ri

i
 1  ,    ( )R

d
N

i

ii m
 

 
 1

1
.  (7.57) 

 
In other words, Di is defined in such a way that the point estimate of the ith unit coincides with the 
point estimate of the system as a whole. For each unit we construct the lower -confidence limit for 
the PFFO, P (Ni,Di) based on the equivalent number of failures.  The minimum of these confidence 
limits, obtained this way, is taken as the lower confidence limit  R for the entire system.  This 
interpretation allows us to expand  the method for series systems for ri>>1, i = ,m1 537, and for 
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series-parallel systems (see below Section 7.6.1).  For a series system with ri>>1, i = ,m1 538, the 
lower -confidence limit of the PFFO (7.49) is calculated by the formula 
 

R = P N ,D
i m

i i
r i

1 
min[ ( ) ] , (7.58) 

 
where the equivalent number of failures, Di, is found from conditions 

ir
i

i
- D

N
= R,1





  

 

 R = - d
Ni m

r
i

i

i

1
1

 
 





. (7.59) 

 
It means that the value of Di is chosen in such a way that  the point estimate of the PFFO of the 
subsystem consisting of units of the ith type will coincide with the point estimate of the system as a 
whole.  Formulas (7.56) and (7.58) represent a particular case of the general method of "equivalent 
tests" for series-parallel systems which will be considered below in Section 7.6.1. 
 
Example 7.7  Consider a case of no failure test where d1=d2= ... =dm=0.  
 In this case the point estimate of the system PFFO is 
 

R = - d
N

=
i m

r
i

i

i

1
1 1

 
 





 

and, correspondingly, all equivalent numbers of failure Di=0, i = ,m1 541. The Clopper-Pearson 
lower -confidence limit for this case is 
 

  P N ,D = P N , = - .i i i N i( ) ( ) ( )0 1
1

 

To be concrete, assume that 
1

1

1 





i m

i

i

N
r

=
N
r

.min 542  From (7.58), the Lindstrem-Madden method 

(method of "equivalent tests") delivers (in the no failure case) the following lower -confidence 
limit of the system PFFO: 
 

P = ( - ) = ( - )
i m

r
N

r
N

i

i

1

1

1
1 1

 
min    

 
This coincides with the best lower confidence limit obtained by Solovyev and Mirny for the same 
case (see Chapter 6). 
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Example 7.8  Consider a system consisting of units of three different types (m=3).  The number of 
units of each type, ri, and test results, Ni and di, are presented in Table 7.1.   
......................................................Table 7.1 
 We need to construct the lower confidence limit with the confidence probability =0.9 for 
the system PFFO, R=p1p2p3.  The point estimate of the system PFFO in this case equals 
 

    .R = p p p = -
d
N

-
d
N

-
d
N

= - - - = .2

2

3

3
1 2 3

1

1
1 1 1 1

1
10

1
2
40

1
1
60

084






























  

 
Minimum number of tested units equals 10 (N1=10).  Applying (7.56) and (7.57), we obtain that the 
equivalent number of failures is 
 

1 1 1 10 1 084 16D = N ( - R) = ( . ) . .   
 
The lower -confidence limit R for the system PFFO, obtained from the equation p(N1-D1, 
D1+1)=1- , is equal to R=P (N1,D1)=  
=P0.9(10, 1.6)=0.594.■ 
 
Example 7.9    Let m=2, r1=r2=1.  The test results are N1=100, d1=1 and N2=200, d2=8.  We need to 
construct the lower confidence limit with the confidence probability =0.9 for the system PFFO, 
R=p1p2.  The point estimate of the system PFFO in this case equals 
 

   .R = p p = -
d
N

- d
N

= - - = .2

2
1 2

1

1
1 1 1

1
100

1
8

200
0 95





















 

 
The minimum number of tested units equals 100 (N1=100).  Applying (7.56) and (7.57), we obtain 
that the equivalent number of failures is 
 

1 1 1 100 1 0 95 5D = N - R =( ) ( . ) .   
 
the lower -confidence limit R for the system PFFO equals 
 R=P (N1,D1)=P0.9(100, 5)=0.909. ■ 
 
Example 7.10  Consider a system consisting of three different types of units (m=3).  The number of 
units of each type, ri, and test results, Ni and di, are presented in Table 7.2.  The structure of the 
system is depicted in Figure 7.2 
 .............................................................................................................................................................. Figure 7.2 
 ............................................................................................................................................................... Table 7.2 



 

226 
 

 We need to construct the lower confidence limit with the confidence probability = 
0.95 for the system PFFO, R=p1

2p2p3.  The point estimate of the system PFFO in this case equals 
 

    .R = p p p = -
d
N

-
d
N

-
d
N

= - - = .1
2

2 3

2
1

1

2

2

3

3
1 1 1 1

4
100

1
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150
0 941


























  

 
The "minimum relative number of tested units" (that is, the number of tested units, Ni, divided on 
the number of units, ri) corresponds to the type 1: 
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= = .min  

 
From (7.58) and (7.59) we have  
 

2
1

1
-

D
N

= R1






  

 
and from here the equivalent number of failures for the units of the first type is 
 

   1 1 1 40 1 0 941 12D = N - R = - . = . .  

 
The lower -confidence limit for the system PFFO is 
 

R = P N ,D = P[ ( )] [ ( , . )] ( . ) . .. 1 1
2

0 95
2 240 12 0879 0 771  ■ 

 
 Above method can be applied to the exponential model in analogous way.  Denote the 
volume of the ith unit test (the total time of testing) by Si=NiTi.  Then the lower -confidence limit 
for the system PFFO (7.50) can be calculated by the following way: 
 

R
i m


 1

min  exp{ ( )}t r S Di i i0   .  (7.60) 




 ( )
( )

S,a =
a

S
-1 543 and, 1- (a) is the standard upper -confidence limit for the parameter of 

the Poisson distribution built by the test result a.  Therefore,  ( )S,d 544 is the standard upper -
confidence limit for the parameter of the exponential distribution built on the basis of test result 
(S,d) where S.  is the total test tine and d  is the number of failures (see Sections 1.4.8 and 2.2). 
 The equivalent number of failures Di for units of the ith type is found from the following 
condition 
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          (7.61) 

From (7.61) it follows that 
 

i
j m

i
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S
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  (7.62) 

 
Example 7.11  Consider a particular case of no failure test where d1=d2= ... =dm=0.  To be concrete 
assume that 
the first type unit has the minimum relative volume of testing:  
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 In this case, the equivalent number of failures Di=0, i = ,m.1 546  Taking into account that 

1 0
1

1- =
- 

 ( ) ln






 547, from (7.60) we obtain the following lower -confidence limit for the 

system PFFO: 
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This limit coincides with the limit obtained in Example 7.3 for the binomial model, if the volume of 

testing there equals i
i

0
N =

S
t

548, i = ,m.1 549. 

 Lindstrem-Madden method (or, the method of "equivalent testing") considered above is 
often used in practice for series systems and it delivers rather effective confidence limits for the 
system PFFO.  At the same time, its deficiency lies in its insensitivity to the test volume of units of 
any type except that of the minimum, N1.  As a simple example, let us consider  two systems 
consisting of two units.  Let us assume the following results for the first and second cases, 
respectively: N1=10, d1=0, N2=20, d2=2, and N1=10, d1=0, N2=100, d2=10.  For both cases the point 
estimate of the system PFFO is the same and are equal to 
 

 .R = - d
N

- d
N

= .1 1 0 91

1

2

2
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The lower -confidence limit (for instance, for = 0.95) is the same for the both cases : 
 R=P (N1,D1) 
 
where the equivalent number of failures is 1 1 1D = N - R( )  
550=10(1-0.9)=1, therefore R=P =P0.95(10,1)=0.606. 
 Intuitively the confidence limit in the second situation should be better than in the first one, 
because the number of tested units of the second type is essentially higher (though the point estimate 

of the PFFO of the second type unit is the same: 2
2

2
1 0 9 .p = -

d
N

= 551).■ 

 For the normal approximation, the improvement of the Lindstrem-Madden method was 
obtained by Pavlov, 1992a (see also Ushakov, ed., 1994, pp.346-350). 
 
 
8.4 Parallel Structures 
 
8.4.1 System of Different Units  
 
 Consider a parallel system consisting of m different units.  The system PFFO is 
 

R = R = - - p
i m

i( ) ( )p 1 1
1 
       (7.63) 

 
where pi is the PFFO of the ith unit.  Each unit was tested by binomial plan:  Ni units of the ith type 
were tested and di failures have been observed, i = ,m1 552.  The test results d=(d1, ... ,dm) are 
assumed to be independent. 
 Confidence limits (7.63) were obtained in [Buehler, 1957] for the case where m=2.  The 
Buehler lower -confidence limit for the system PFFO has the form 
 

R = - - p
i m

imin ( )1 1
1 








  (7.64) 

 
where the minimum is taken over all parameters of units p=(p1, ... ,pm) which satisfy the following 
inequalities 
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d
p - p - ,

 
p ,   i = ,m.          
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1 1

0 1 1
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     (7.65) 



 

229 
 

 
Here d*=(d1

*, ... , dm
*) is the observed value of the vector d=(d1, ... , dm) obtained in the result of 

testing, and  n(d)=n(d1, ... , dm) is monotone decreasing in each di and gives some ordering on the set 
of all possible results of testing. 
 As we mentioned above, for such an ordering of n(d), the lower -confidence limit R, 
defined in (7.64) and (7.65) can not be improved (see Section 7.2).  For different types of ordering 
of n(d), we obtain different confidence limits R.  The question of how to choose the best (optimal) 
ordering is still open.  We usually choose the principle of ordering basing on qualitative arguments 
or convenience of calculation. 
 The numerical solution of the minimization problem (7.64) under restrictions (7.65) is 
comparatively not difficult for small m and di

*.  For the case where m=2, the numerical values of the 
lower confidence limit R for some test results (N1,d1

*) and (N2,d2
*) (mainly, for N1=N2) are given in 

[Owen, 1962], [Steck,1957], [Lipow 1958, 1959], and [Shick, 1959].  In general case where m, Ni, 
and di

* are arbitrary an approach based on the idea that one can utilize results for series systems for 
(constructing the corresponding limits for parallel system consisting of the same units) was 
suggested in [Pavlov, 1982] and [Sudakov , 1986].   Consider this approach in more detail.  Let us 
take a supplementary (imaginary) series system consisting of the same m units.  For this system the 
PFFO has the form 
 

 
 
R = R = p

i m
i .( )p

1
 (7.66) 

 
Let  d*=(d1

*, ... , dm
*)  is the observed value of the vector of failures.  Construct the lower -

confidence limit R'=R'(d*) for the PFFO of the series system described by (7.66), for instance,  on 
the basis of the Lindstrem-Madden method: 
 R'=P (N1,D1) (7.67) 
where P (N,d) is the standard Clopper-Pearson lower -confidence limit, N1 is the minimum 
number of tested units, D1 is the equivalent number of failures determining by the formula (see 
Section 7.3 for details) 
 

1 1
1

1 1D = N - -
d
N

.
i m

i
*

i 


















  (7.68) 

 
After this, the lower -confidence limit for the PFFO of the initial parallel system, described by 
(7.63), can be found as follows 
 

R = - - p
1 i m

imin ( )1 1
 








  (7.69) 

 
Here the minimum is taken over all parameters p=(p1, ... , pm) which satisfy the following 
restrictions: 
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1

0 1 1

 





 

 

i m
ip R ,

ip ,  i = ,m.             
(7.70) 

 
 It is easy to find that the obtained value R is the lower -confidence limit for the PFFO of 
the initial parallel system.  Indeed, by construction of R the following relation 
 

{ ( )} { (  R R R Rp p)}   
 
is valid for each fixed p.  It follows that 
 

p pp p)}P R R P R R{ ( )} { (      
 
that is, R is the lower -confidence limit of the PFFO of a parallel structure, R(p). 
 Minimum of (7.69) under restrictions (7.70) can be easily found analytically.  (Notice that 
from the formal viewpoint, this problem coincides with the problem of finding the lower confidence 
limit for no failure test considered in Chapter 6.)  From the solution obtained in Section 6.4, it 
follows that minimum (7.69) is attained in the point 1 2p = p =...= p = R  m

m  557 which 
corresponds to the equally reliable units. 
 So, the lower -confidence limit (7.69) of the parallel structure PFFO is 
 

R = - - R  
m

m1 1 



  (7.71) 

 
Example 7.12  Consider a case of no failure test (d1

*=d2
*= ... dm

*=0).  The numbers of tested units 
are: N1=N2= ... =Nm=N.  From (7.67) and (7.68) we obtain that D1=0 and the lower -confidence 
limit for the PFFO of a supplementary series structure equals 
 

R = P N ,D = P N = - .N  ( ) ( , ) ( )1 1

1
0 1  

 
From (7.71) we obtain the following lower -confidence limit of the parallel system PFFO: 
 

R = - - - .
m

mN1 1 1
1

( )








  

 
This limit coincides with the best lower confidence limit (6.27) obtained in Section 6.4 above for the 
same case. 
 
Example 7.13  Consider a parallel system consisting of two units.  Test results are N1=20, d1

*=1 and 
N2=40, d2

*=4 .  We need to construct the lower confidence limit of the PFFO with the confidence 
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coefficient not less than =0.9.  Let us first construct the lower - confidence limit for the PFFO 
of a series system with the same units, i.e., R'=p1p2.  In this case the minimum number of tested 
units  is N1=20.  Applying formulas (7.67) and (7.68) for a series system, we have the "equivalent 
number of failures" equal to 
 

1 1
1

1

2

2
1 1 1 20 1 1

1
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1
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2 9D = N - -
d
N

-
d
N
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 .  

 
The lower 0.9-confidence limit for the series system PFFO equals 
 

 R = P N ,D = P ( ) ( ; . ) , ..1 1 0 9 20 2 9 0 701  
 
Applying afterwards formula (7.71), we obtain the lower 0.9-confidence limit for the parallel 
system PFFO 

   R Rm
m

      1 1 1 1 0 974
2

' . .0.701      
 
8.4.2 System with Replicated Units 
 
 Consider a parallel system consists of m different types of units.  There are ni units of the ith 
type in the system.  In this case the system PFFO has the form 
 

R = R = - - p
i m

i
ni( ( )p) 1 1

1 
  (7.72) 

where p=(p1, ... ,pm), and pi is the unit PFFO, i = ,m.1 560 
 For constructing the lower confidence limit for the PFFO of this system, let us again 
consider first a corresponding supplementary series system consisting of the same units.  For this 
series system, the PFFO is: 
 

 
 
R = R = p

i m
i
ni .( )p

1
  (7.73) 

 
Let d*=(d1

*, ... , dm
*) be an observed value of the vector of unit failures.  Applying again the results 

above to series systems, let us construct the lower confidence limit for the PFFO of a series system, 
R'=R'(d*), described by (7.73).  By formulas (7.58) and (7.59) we have 
 


 

R = P N ,D
i m

i i
ni

1
min[ ( )]  (7.74) 

 
where the "equivalent number of failures", Di, is determined from the condition 
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 (7.75) 

Then we find the lower - confidence limit for the PFFO of the initial parallel system described by 
(7.72): 
 

R = - - p
i m

i
nimin ( )1 1

1 








  (7.76) 

 
where minimum is taken over all p=(p1, ... , pm) which satisfy the following restrictions 
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0 1 1

 








 

 

i m
i
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i

ip R ,

p ,  i= ,m.            

   (7.77) 

 
The proof that this limit has a confidence coefficient not less than  completely coincides with that 
given in Section 7.4.1. 
 For finding minimum (7.76), we introduce new arguments z=(z1, ... ,zm) where zi= -ln pi, 
i = ,m1 565.  Then the problem (7.76)-(7.77) can be rewritten as follows:  to find 
 

R = - e f1  
where  

f = fmax (z) 566   (7.78) 
 
and 
 

 f = n -e
i m

i
-zi .( ) lnz

1
1

 
  

 
Maximum in (7.78) is taken under the following restrictions 
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  (7.79) 
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We can check by direct differentiating that function f(z) is monotone decreasing in each zi and 
strictly concave ("convex up") in z=(z1, ... , zm).  It follows that maximum (7.78) is attained in the 
unique point which satisfies the following Lagrange equation system  
 


















 


f
z

=
n

e -
= n ,  i = ,m.             ( )

 

n z = - R                           

i

i
z i

i m
i i

i 1
1

1

 7.80

(7.81)ln

 

 
where  is the Lagrange multiplier.  (Notice that in this case we don't need to analyze the boundary 
points of area (7.81) because f(z)=-  for any zi=0.)  This system of equations has an obvious 
solution 
 

1 2 m

i m
i

z z =...= z =
- R

n
.


 

ln

1

 

 
In the force of strong concavity of function f(z), this solution is unique.  From here it follows that 
minimum (7.76) under restrictions (7.77) is attained at a "symmetrical point" which corresponds 
equally reliable units, that is, 
 

1 2p = p =...= p = R  m
n   

 
where n=n1+n2+ ... +nm is the total number of units within the system.  Thus, the lower - 
confidence limit for the PFFO of a parallel system described by (7.72) has the form: 
 

R = - - R  
n

n1 1 



  (7.82) 

 
Example 7.14  Consider a parallel system consisting of units of two types.  The numbers of units of 
each type are n1=2 and n2=1  (see Figure 7.3).  Test results are N1=10, d1

*=1 and N2=20, d2
*=1, 

respectively. 
 .............................................................................................................................................................. Figure 7.3 
The system PFFO is written as 
 

R = - - p - p1 1 11
2

2( ) ( )  (7.83) 
 
We need to construct the lower confidence limit for the PFFO with the confidence coefficient not 
less than 0.9. 
 Let us introduce a supplementary series system consisting of the same units (see Figure 7.4), 
PFFO of which is R'=p1

2p2. 
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 .............................................................................................................................................................. Figure 7.4 
 First we construct the confidence limit of the series system PFFO, R'.  In this case, the point 
estimate for R' is 
 

 .
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"Equivalent numbers of failures", Di, can be found from (7.75): 

   D N R1 1 1 10 1 0 769 125      ' . .  

   2 2 1 20 1 0 769 4 62D = N -R  = - = . . .  
The lower - confidence limit for R' in correspondence with (7.74) equals 
 

R = P N ,D , P N ,D =min{ ( ) ( )} 
2

1 1 2 2  

= P , P = .min min{ ( , . ) ( , . )} {( . ) , . } .. .0 9
2

0 9
210 125 20 4 62 0 634 0 605 0 401  

 
Applying formula (7.82), we find the lower 0.9- confidence limit for the PFFO of the considering 
parallel system (7.83), taking into account that the total number of units within the system equals 
n=n1+n2=2+1=3, can be written as 
 

R = - - R  = - - = .
n

n1 1 1 1 0 401 0 982
33









. . ■ 

 
 
8.5 Series-Parallel System 
 
 Consider a system which consists of m subsystems (redundant groups). In turn, each 
subsystem consists of ni identical redundant units in parallel, that is, redundant units are working in 
loading regime. The PFFO of this system can be written as 
 

 R = - - p
i m

i
ni

1
1 1

 
 ( )  (7.84) 

 
where pi is the PFFO of a unit of the ith subsystem, i = ,m1 570.   Assume that each unit was 
tested in accordance with a binomial plan: Ni units were tested and di failures were registered.  We 
need to construct the lower - confidence limit for the PFFO (7.84) on the basis of these test results. 
A simple solution of the problem exists only for a no-failure-test: d1

*=d2
*= ... = dm

*=0 (see Section 
6.3).  In other cases the solution of the problem is rather difficult. 
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8.5.1  "Super Reliable" System 
 
 Assume that all numbers of observed failures, di

*, satisfy inequalities 
 di

*<ni-1     for all i = ,m1 .571 (7.85) 
 
It means that the number of failures does not exceed the number of redundant units for each 
subsystem.  Such a system we will conditionally call "super reliable". 
 We apply the general method described above in Section 7.1 (see also Example 7.3).  Let us 
take an unbiased point estimate R 572 of the system PFFO as an initial statistic S.  This unbiased 
estimate for the binomial scheme of testing, is 
 

i i i i

i i i i

d d -  ... d - n +
N N -  ... N - n +

.
( ) ( )
( ) ( )

1 1
1 1
 
 

 

 
We further assume that inequality Ni>ni is valid for each type of units, that is, the number of tested 
units of each type is not less than the number of these units within the ith subsystem.  If unit tests 
are independent, then the unbiased estimate for the system PFFO can be written as 
 

  ( ) )
( ) )

R = R( ) = - d d -  ... ( d - n +
N N -  ... ( N - n +
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i m
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i i i i
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1
1
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  (7.86) 

 
Assuming S = R( ( )d) d 574 in (7.36) - (7.38), we obtain the following lower confidence limit for 
the system PFFO 
 

 R = - - p
i m

i
nimin ( )

1
1 1

 
 , (7.87) 

 
where minimum is taken over all values of unit parameters p=(p1, ... ,pm) which satisfy inequalities 
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From (7.85) and (7.86) it follows that ( )R =*d 1576.  So, the sum in (7.88) is taken over all d=(d1, 
... ,dm) which satisfy inequality 
 

( )R .d  1  (7.90) 
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From the definition of estimate ( )R d 578, it follows that inequality (7.90) is equivalent to the 
following inequalities: 
 
 0 < di < ni-1  for all i = ,m1 579. (7.91) 
 
Thus the sum in (7.88) is taken over the set of all vectors d=(d1, ... ,dm) which satisfy inequalities 
(7.91).  This set represents anm-dimensional hyper cube in the space of test results d.  In  this 
situation, inequality (7.88) takes the following form: 
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i m
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We introduce new arguments  
 
 zi= -ln fi(pi),   i = ,m1 581 (7.93) 
 
for a more convenient calculation of R. 
 After some simple transformations, the problem of calculation of minimum of (7.87) can be 
represented in the following form: 
 

R = - i iz
i m

exp max ( )
1 







 ,  (7.94) 

where 
 

 i i i i
n( z )= - - - p z i ln [ ( ) ]1 1  

 
and pi(zi) is an inverse function corresponding to (7.93).   Maximum in (7.94) is taken under the 
restrictions 
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It is easy to show by direct differentiation that i i i iz ,  z ,  i = ,m. ' ( ) " ( ) 0 0 1 583  So, the 
function  
 

 ( ) ( )z z i=
i m

i
1 
  

 
is monotone increasing in each zi and convex ("convex down") in z=(z1, ... , zm).  In accordance with 
well known results in the theory of convex programming (see Section 3 of Appendix to Chapter 6), 
it follows that maximum in (7.94) is attained at one of m "corner" points of area (7.95).  This point 
has the form 
 
 (01, ... ,0i-1, -ln(1- ), 0i+1, ... , 0m) 
 
where 0i means zero on the ith position. 
 After some simple transformations, we can obtain the lower confidence limit of the system 
PFFO in the form 
 

 R = - - P N ,r
i m

i i
ni

1
1 1

 
min [ ( ) ] , (7.96) 

 
where P (N,d) is the standard Clopper-Pearson lower - confidence limit of a binomial parameter 
p.  Here N is the number of units tested, d is the number of failures, ri=ni-1 is the number of 
redundant units within the ith subsystem. (For more details see Section 2 in Appendix to the current 
chapter.) If n1=n2= ... =nm=1, formula (7.96) includes for the Mirny-Solovyev result for a no-failure-
test as a particular case(see Sections 6.1 and 6.3). 
 
 
8.5.2 Method of Hyperplane 
 
 Consider a solution of the problem for the case where the Poisson approximation is valid.  
Let we have Ni Bernoulli trials (the number of tested units) and the probability that an event has 
been occurred equals qi.  As is well known in the probability theory, the binomial distribution 
converges to the Poisson distribution  with parameter i=Niqi, if qi 0 and Ni  in such a way that 
Niqi=const.  (In our case, a binomial r.v. is represented by the number of failures, di.)  This theorem 
above allows us to use the Poisson approximation for a distribution of r.v. di if units, consisting a 
system, are highly reliable, qi<<1, and the numbers of tested units, Ni, are large.  In this case, we can 
use the following approximate formula for the system PFFO 
 

 R = - q q = c
i m

n

i m
i
n

i m
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ni i i

1 1 1
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exp exp  , (7.97) 
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where the coefficients are i

n

i
c =

N

i1





586.  So, the problem is reduced to constructing the upper 

confidence limit of the following function of Poisson parameters ( 1, ... , m): 
 

f = c
i m

i i
ni( ) 

1 
  (7.98) 

 
on the basis of test results d =(d1, ..., dm).  Here di is a r.v. with the Poisson distribution with 
unknown parameter i, i = ,m1 .588 All these r.v.'s are mutually independent. 
 Notice that the construction of confidence limit for the system PFFO (7.84) can be reduced 
to the analogous problem if system units have exponential distribution  of TTF, i

- tp t = e i( )  589, 
where i is the failure rate, i = ,m1 590.  Assume that the ith type units were tested in accordance 
with plan [Ni R Ti] (see Chapter 2) and di failures have been registered.  Then r.v. di approximately 
has a Poisson distribution with parameter i=niTi i. The system PFFO (7.84) can be presented in 
the form 
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i m

i
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The problem is again reduced to construction of the upper confidence limit for function 
 

f = f
i m

i i( ) ( ) 
1 
  (7.99) 

 
on the basis of independence of Poisson r.v.'s d=(d1, ... , dm). In the case of highly reliable units 
( it<<1) function (7.99) approximately has the form analogous to (7.98): 
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592,  i = ,m1 593. 

 Further, let us take the total number of failures (for all types of units)  
 
 S=S(d)=d1+d2+ ... +dm 
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as an initial statistic for constructing the confidence limit.  Let d1
*, d2

*, ... , dm
* be the registered 

numbers of failures and S=d1
*+d2

*+ ... +dm
* is the corresponding value of observed statistic S.  

Applying (7.31) and (7.32), we find that the upper -confidence limit for f( ) has the form: 
 

f = fmax ( ) . (7.100) 
 
Here the maximum is taken over all parameters =( 1, ... , m) in such a way that inequality 
 
 P (S<S*)>1-  (7.101) 
 
holds. 
 Statistic S is the sum of independent Poisson r.v.'s.  Thus, S itself has the Poisson 
distribution with parameter 1+ 2+ ... + m.  After simple transformations, inequality (7.101) can 
be rewritten as 
 

1
1 1 2

 
 

i m
i -

* *
m
*d d d+ + ...    ( )  (7.102) 

 
where 1- (d) is the standard upper -confidence limit of parameter of the Poisson distribution 
based on test results d.  Besides, parameters i must satisfy the obvious restrictions 
 

i ,  i = ,m.  0 1  (7.103) 
 
Thus , maximum in (7.100) is taken under restrictions (7.102) and (7.103).  Function f( ) is 
monotone increasing in each variable and Convex ("convex down") in vector .  From here it 
follows (see Section 3 of Appendix to Chapter 6) that the maximum mentioned above is attained at 
one of "corner points" of the area described by (7.102) and (7.103).  These points have the form of 
the following type 
 

( ,... , , ( ))0 0 0 0 1
1

1
1

1

i

-
i m

i
*

i+ md  i = ,m, ,..., ,  
  

   

 
where 0i means that 0 is at the ith position.  From here we conclude that the upper -confidence 
limit of f( ) has the form 
 

f =  f ,..., , d
i m

i- -
i m

i
*

i+ m, ,..., .
1

1 1 1
1

10 0 0 0
   









max ( )  (7.104) 

 
After this the lower - confidence limit for the system PFFO is calculated as R = e- f 598.   
 This solution has the following meaning.  First, we calculate a lower - confidence limit for 
each individual ith subsystem under the assumption that there were observed number of failures 



 

240 
 

equal to d1
*+d2

*+ ... +dm
*.  Then the minimum of such confidence limits is considered as the lower 

confidence limit of the system PFFO.  Notice that for a series system and a no-failure-test, n1=n2= ... 
=nm=1 and d1

*=d2
*= ... =dm

*=0, the obtained solution coincides with the result obtained by 
Lindstrem-Madden method (see Section 7.3) and by Mirny-Solovyev (Sections 6.1 and 6.3). 
 The area given by (7.102) and (7.103) in the space of parameters 1, ... , m is a simplex 
restricted by m-dimensional plane: 
 

1 2 1
1

   + +...+ = dm -
i m

i
* .

 




  

 
This is the reason why this method is often called as "method of hyperplane".  This method was 
considered in (Lipow, 1958,1959), Mirny and Solovyev (1964), (Belyaev, 1966a, b), (Bol'shev and 
Loginov, 1966), (Belyaev at al., 1967), and others. 
 This method effectively works in the following cases: 
 1. Series systems with equal (or very close) volumes of unit test, that is, for n1=n2= ... =nm=1 
and N1=N2= ... =Nm  (or for the exponential model N1T1=N2T2= ... =NmTm ).  In this case the method 
of hyperplane produces confidence limits which coincide with the ones obtained by the Lindstrem-
Madden method (see Section 7.3). 
 2. Series-parallel systems with equal numbers of units within different subsystems, n1=n2= 
... =nm, and equal volumes of tests N1=N2= ... =Nm in the case where all (or almost all) failures have 
occurred within a single subsystem (remaining subsystems are highly reliable). 
 3. Series-parallel systems with equal volumes of tests, N1=N2= ... =Nm, in the case where the 
system PFFO coincides with (or is close to) the PFFO of a subsystem with the minimum number of 
redundant units 
 
 nj = min (n1, ... , nm) 

 
(other subsystems are highly reliable). 
 4. Series-parallel systems with equal numbers of units within different subsystems, n1=n2= 
... =nm, in the case where the system PFFO coincides (or is close to) the PFFO of a subsystem with 
the minimum number of redundant units 
 
 Nj = min  (N1, ... , Nm) 

 
(other subsystems are highly reliable). 
 In other cases, the efficiency of the method of hyperplane is significantly worse. 
 
 
8.5.3 Method of Hypercube 
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 Let d1
*=d2

*= ... =dm
* be observed number of failures of tested units.  We calculate the 

upper -confidence limit of each parameter i of the ith unit by standard formula i - i
*= d 1  ( )

599.  Let us consider the m-dimensional cube 
 

H = :  d ,   i = ,m*
i - i

*( ) { ( ) }d   0 11     (7.105) 
 
in the space of parameters =( 1, ... , m).  Then, taking into account the test results for different 
types of units, we can write the following relations: 
 

P H = P = P d .*

i m
i -

*

i m
i - i

* m{ ( )} [ ( )] [ ( )]}     








 
   

d d
1

1
1

1     

 
Thus, sets H(d*) form a collection of confidence sets for  with the confidence coefficient not less 
than m.  It follows that the value of 
 

f = f( )
H( )*


 d

max
 (7.106) 

produces the upper -confidence limit for f( ) with the confidence coefficient not less than m. 
 Since function f( )=f( 1, ... , m) defined by (7.98) and (7.99) is monotone increasing in 
each parameter i, the maximum in (7.106) is calculated as 
 

f = f ,..., m( )1   
 
Corresponding lower confidence limit for the system PFFO, R = e- f 602, is calculated by simple 
substitution of the -upper confidence limit for individual parameters i into a function which 
gives the dependence of system PFFO on unit parameters.  An obvious deficiency of the method is 
in fast decreasing of confidence coefficient m with increasing of m (number of different unit 
types).  It normally leads to a very conservative confidence limits of the system PFFO. 
 
 
8.5.4 Method of Truncated Hypercube 
 
 This method, suggested in [Belyaev, 1966,b] and [Belyaev, et al., 1967], represents a 
combination of the two methods: hyperplane and hypercube.  Let = 0 in (7.102) and = 1 in 
(7,105). Form a confidence set in the space of unit parameters =( 1, ... , m) by the means of 
intersection of corresponding confidence sets obtained by the methods of hyperplane and 
hypercube.  The resulting set is given by restrictions 
 

1
1

1   
  


i m

i -
i m

i
*

0
d                (7.107)   
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 0 11 i - i
*

1 d ,   i = ,m.   ( )    (7.108) 
 
 Confidence coefficient  for sets given by (7.107) and (7.108) satisfies inequality 
 
 > 0+ 1

m-1. 
 
 This inequality follows from the well known formula for intersection of two events 
 
 P(AB) = P(A)+P(B)-P(A B)> P(A)+P(B)-1. 
 
Thus, the lower - confidence limit for the system PFFO with the confidence coefficient not less 
than value of 0+ 1

m-1 is calculated as 
R = e- f

 
where  

f = fmax ( )  (7.109) 
 
and the maximum is taken over the area given by constrains (7.107) and (7.108).  This area in the 
m-dimensional space of parameters  is a hypercube truncated by a hyperplane.  For series-parallel 
systems function f( ) defined in (7.98) or (7.99) is monotone increasing in each i and convex 
("convex down").  Thus, maximum in (109) is attained at one of "corner" points.  This allows one to 
locate the maximum easily with the help of a computer. Using examples from [Belyaev, et al., 
1967], we show below that this method gives better results in comparison with the methods of 
hyperplane or hypercube. 
 
Example 7.15  A system consists of ten redundant groups (subsystems) connected in series (m=10). 
The ith subsystem consists of ni parallel identical units.  Each unit was tested by the binomial plan: 
ni is the number of tested units and di is the number of registered failures.  Corresponding values are 
given in Table 7.3. 
 ............................................................................................................................................................... Table 7.3 
 Values of the lower confidence limit with confidence coefficient =0.9 for the system 
PFFO for this example, calculated with the help of different methods, are given in the left column of 
Table 7.4. 
 ............................................................................................................................................................... Table 7.4 
Example 7.16  A system consists of ten redundant groups (subsystems) connected in series (m=10). 
Each unit was tested by the binomial plan analogously to Example 7.5.1.  Corresponding values are 
given in Table 7.5 
 ............................................................................................................................................................... Table 7.5 
Values of the lower confidence limit with confidence coefficient =0.98 for the system PFFO , 
calculated with the help of different methods for this example, are given in the second column of 
Table 7.4.  
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Example 7.5.3  A system consists of twenty redundant groups (subsystems) connected in series 
(m=20). Each group consists of two parallel units, ni=2.   Equal number of each unit were tested, 
N1=N2= ... =N20=100.  Corresponding numbers of failures are d1=d2= ... =d5=0  and d6=d6= ... 
=d20=1. 
 Values of the lower confidence limit with confidence coefficient =0.9 for the system 
PFFO , calculated with the help of different methods for this example, are given in the third column 
of Table 7.4.  
 
 Notice that the method of truncated hypercube, nevertheless, still gives too conservative 
confidence limit of the system PFFO . 
  
 
8.5.5 Modified Hyperplane Method 
 
 
 The method of hyperplane, as it was shown in (Pavlov, 1972) can be improved for series-
parallel systems if ni>2 for all i, i = ,m1 605, that is, if each subsystem has at least one redundant 
unit.  Then the confidence limit defined in (7.104) we can use value 
 

 ~ max maxS =  d ,  d - r
i m

i
*

i m
i
*

1 1   
  (7.110) 

 
instead of the total number of failures, 

1 


i m
i
*d 607.  Above we used notation r =  n -

i m
i

1
1

 
min 608 

which denotes the minimum number of redundant units among all subsystems. 
 
Example 7.5.4  Consider a series system consisting of three subsystems (see Figure 7.5).  All data 
related to the example are given in Table 7.6. 
 .............................................................................................................................................................. Figure 7.5 
 ............................................................................................................................................................... Table 7.6 
We need to construct the lower confidence limit for the system PFFO with the confidence 
coefficient =0.9. 
 In this case r=2 and ~ maxS = (2; 4-2)=2.609  The method of hyperplane gives the 

following lower - confidence limit for the system PFFO 
 

R = -
N

d
i m

n

i

-
i m

i
*

i

=exp exp
( )

. .max .

1
1

1

0 1
31 4

25
0 965

   







































 

 
The modified method of hyperplane produces the lower confidence limit (with the same confidence 
coefficient =0.9) equal to 
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R = -

S
Ni m

n
-

i

i

.exp
~

exp
( )

.max .

1

1 0 1
32

25
0 991

 

































 

 

 
The latter estimate is significantly better than previous one. 
 
Example 7.19  Consider a system consisting of ten subsystems, m =10.  All data concerning unit 
tests result are presented in Table 7.7.  In this case the total number of failures is d1

*+ ... +d10
*=6.  

The minimum number of redundant units equals 
 

r =  n ...,n ) - = .mmin ( ,1 1 2  

 ............................................................................................................................................................... Table 7.7 
 The lower -confidence limit with the confidence coefficient =0.9 calculated with the 
help of the hyperplane method equals 
 

R = .exp
( )

..







0 1

36
40

0 982  

 
 Now from (7.110) we find that 
 

~ maxS = (1; 6-2)=4 

 
Thus the modified method of hyperplane gives 
 

R = .exp
( )

..







0 1

34
40

0 992   

 
Example 7.20   Consider again Example 7.17.  For that example, the minimum number of redundant 
units among all subsystems is r= min(n1,...,nm)-1=1, the total number of failures is d1

*+ ... +dm
*=15, 

and the value of 
~S 610 is max (1, 15-1)=14. 

 For the confidence coefficient =0.9 the method of hyperplane (see Table 7.4 above) gives 
the - of the system PFFO R=0.955.  The modified method of hyperplane produces 

R = .exp
( )

..







 0 1

314
100

0 960   

 
 All methods considered in this section are correct and give the guaranteed confidence 
coefficient for series-parallel systems.  Nevertheless, in many cases they produce a too 
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conservative estimate of system reliability to be of practical interest.  It leads one to create 
heuristic or approximate methods which give better confidence limits. We consider these 
approaches in the next section.  Besides, in Section 7.7 we suggest more effective method though 
it needs more sophisticated computations. 
 
 
9.  
 
 
9.1 see before 
9.2 see before 
9.3 see before 
9.4 see before 
9.5 see before 
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9.6 Approximate Methods 
 
 All algorithms considered previously deliver guaranteed value of the confidence coefficient 
for series-parallel systems, that is, they satisfy the following condition 
 
 Pp{R < Rp}>  (7.111) 
 
for all possible values of unit parameters p=(p1, ... , pm).  At the same time, these strong methods 
give conservative estimates R of the system PFFO R=R(p).  There are  heuristic and approximate 
methods which can be described by condition 
 
 Pp{R < Rp}  
 
which might lead to an opposite effect. As we have discussed overestimating the reliability indices 
is often unacceptable , in practice.  Thus, these methods must be used with care.  
 
 
9.6.1 Method of "Equivalent Tests" 
 
 This method is a natural extension of the Lindstrem-Madden method (7.56) for the series-
parallel systems. Taking into account the vector of test results d*=(d1

*,d2
*, ... ,dm

*), let us find point 

estimates of unit parameters i
i
*

i
p = -

d
N

 1 611 and a point estimate of the system PFFO (7.84): 

 

 (   )R = R p , ... , p = -
d
N

.m
i m

n
i
*

i

i

1
1

1
 
 




















 

 
Determine the "equivalent number of failures", Di, for the ith subsystem units from the condition 
 

R , -
D
N

, ,..., = R
i

i

i
( ,... , ) 1 11 1 1

1
  (7.112) 

 
where 1i means that the ith component of the vector equals 1.   From (7.112), we obtain 
 

1 1
1
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n
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  (7.113) 

 
 Now we determine the lower -confidence limit for the system PFFO (7.84) as  
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 R = R P N D - - P N ,D
i m i

i i
i m

i i
ni

1 1 1
1 1 1 1 1 1

    
min min( ,..., , ( , ), ..., ) [ ( )]      (7.114) 

 
where P (N,d) is the  Clopper-Pearson lower - confidence limit calculated on the basis of the 
binomial test (N units were tested and d failures have been observed).  If the value of Di is not 
integer, the value of P (Ni,Di) is found from solution of the equation 
 

p i i iN - D ,D + = - ( )1 1   
 
where p(a,b) is beta function (see Section 2 of Appendix to the current chapter). 
 Thus, we first find the "equivalent number of failures", Di, for each ith subsystem in such a 
way that the point estimate of each subsystem, calculated on the basis of such value,  coincides with 
the point estimate R 615 of the system PFFO.  Then on the basis of this "equivalent number of 
failures", we construct the -lower confidence limit of the PFFO of a unit of the ith type and for the 
ith subsystem itself.  The minimum confidence limit among the lower -confidence limit for the 
subsystems is taken as the lower -confidence limit for the entire system.  This method includes the 
Lindstrem-Madden method (7.56) for series systems as a particular case.  In an analogous way, it is 
applied to the exponential model. 
 Explanations of this method can be obtained for the normal approximation in the case of a 
large test volume  (see below Section 7.6.5 and [Krol, 1974, 1975] and [Pavlov, 1982]). 
 This method relates to the general strong method considered in Section 7.2.  Let us take the 
point estimate of the system PFFO 
 

S = R = - d
Ni m

n
i

i

i

( ) d
1

1
 
 

















 

 
as an initial statistic S=S(d) for constructing the confidence limit. Then in accordance with (7.36)-
(7.38) the lower - confidence limit for the system PFFO has the form 
 

 R =  - - p
i m

i
nimin ( )

1
1 1

 
  (7.115) 

 
where minimum is taken over all values of parameter p=(p1, ... ,pm) which satisfy the following 
inequalities 
 

S( ) S( ) i m

i

i
i
N -d

i
d

*

i i i
N

d
p - p - ,

d d  
 









 

1
1 1( )   (7.116) 

 
 0 < pi < 1,   i = ,m1 618. (7.117) 
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Now consider m "corner points" of the area (7.116)-(7.117) which has the following form 
 

(i)

i

i= , , ,    i = ,m.p ( ,... , , ..., )1 1 1 1 1
1

   

Substituting the ith "corner point" p(i) into inequality (7.116), the value i can be found from 
equation 
 

0
1 1

 












i i

i i i

d L
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i
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i
dN

d
- = -  ( )  (7.118) 

 
where Li is the maximum integer quantity among r ones satisfying the inequality 
 

S( ,r, ) S( )
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from where we have 
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  It shows that the "equivalent number of failures", Di, connected with the quantity Li by the 
following relation 
 
 Li = [Di],   i = ,m1 620 (7.119) 
 
where [Di] is the integer part of Di. 
 From (7.118) follows that value of i coincides with the standard Clopper-Pearson lower - 
confidence limit calculated on the basis of Li failures in Ni tests: 
 
 i =P (Ni,Li).  
 
 All "corner points" belong to the area (7.115) in which minimum is searched, so from here 
the following inequality for the strong lower confidence limit, R, follows: 
 

   

R = R p =  R , =

 

=  - - =  - - P N ,L .

i m
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The right part of this inequality coincides with the lower confidence limit calculated by the method 
of "equivalent tests" if the "equivalent numbers of failures", Di, are integer.  (If Di are non-integer, 
the difference is not significant since Di-Li=Di-[Di] from  (7.119).) 
 Thus, the lower confidence limit calculated by the method of "equivalent tests" is always as 
good as thee strong lower confidence limit (7.115).  The above argument shows that from the 
computational viewpoint this heuristic procedure factually reduces the finding minimum in (7.115) 
among the "corner points" of the area determined by (7.116)-(7.117) instead of searching within the 
entire area.  Correspondingly, the proof of correctness of the method is reduced to the question: how 
much does the absolute minimum value within the entire area differ from the minimum value found 
in m "corner points" (see Section 7.6.6). 
 
Example 7.21  Consider Example 7.18.  Let us construct the lower confidence limit ofor the system 
PFFO by the method of "equivalent tests".  The point estimate of the system PFFO in this case is 
 

  (  )

.

R = - - p = -
d
N

 
 

= - - -
2

= .

i m
i

n

i m

n
i
*

i

i

i

1 1

3 3 3

1 1 1

1
1
25

1
1
25

1
25

0 99936

   
  




































































 

 
 From condition (7.113) we find that the "equivalent number of failures", D1, for the first subsystem 
is 
 

1
1

1

1
- D

N
= R

n






  

from where we get 
 

 1 1

1
311 25 64 10 2 16D = N - R = = .n -5 .  

 
For the second and third subsystems, the "equivalent number of failures", D2 and D3, coincide with 
D1.  Further, from (7.114) we find the lower - confidence limit (with the confidence coefficient 

=0.9) for the system PFFO 
 

R = - - P N ,D = - - P = - - .1 1 1 1 25 2160 1 1 0 795 0 9911 1
3 3 3[ ( ) ] [ ( ; . ] ( . ) .    

 
In this case the confidence limit coincides with that found in Example 7.18 by the modified method 
of hyperplane.■ 
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Example 7.22  Consider again the same system as in the previous example but with different test 
results (see Table 7.8). 
 ............................................................................................................................................................... Table 7.8 
 In this case, the point estimate of the system PFFO is 
 

 .R = - - - = .1
1
25

1
1

50
1

2
100

0 99992
3 3 3















 















 















  

 
 The minimum number of tested units is n1=25.  From (7.113) we find the "equivalent 
number of failures" D1 for the first  
subsystem: 
 

1 1

1
31 25 0 00008 1081D = N ( - R ) = = .n . .  

 
Thus, the lower - confidence limit with the confidence coefficient =0.9 for the system PFFO 
calculated by the method of "equivalent tests" is 
 
 R = 1-[1-P (N1,D1)]3 = 1-[1-P0.9(25, 1.08)]3= 
 =1-(1-0.848)3 = 0.996. 
 
 Notice that in this case, the minimum number of tested units, N1=25, and observed numbers 
of failures, di

*, are the same as in Examples 7.6.1 and 7.5.4.  Thus the methods of hyperplane and 
modified hyperplane method give in this case the previous quantities equal to 0.966 and 0.991, 
respectively.  It shows that they are not sensitive to increasing N2 and N3 if the minimum number N1 
is fixed.  The method of "equivalent tests" delivers higher values of lower - confidence limit of the 
system PFFO.■ 
 
Example 7.23  Apply the method of "equivalent tests" to the system considered above in Example 
7.17.   
 In this case the point estimate of the system PFFO is 
 

  (  ) .R = - - p = - = .
i m

i
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1

152

1 1 1
1

100
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From condition (7.113) we find the "equivalent number of failures" for the first subsystem: 
 

1 1

1
1 100 0 0015 3881D = N - R = = .n(  ) . .  
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In this case all values ni and Ni are equal, therefore all "equivalent number of failures", Di, for 
different subsystems coincides with D1.  The lower -confidence limit of the system PFFO 
calculated with the help of the method of "equivalent tests" equals 
 
 R=1-[1-P )N1,D1)]2 = 1-[1-P0.9(100, 3.88)]2 
 =1-(1-0.923)2= 0.994. 
 
 In this case the method of "equivalent tests" produces the -lower confidence limit much 
higher than other methods considered above (see Table 7.4 and Examples 7.17 and 7.20).■ 
 
 
9.6.2 Method of Reduction 
 
 This method was considered in [Martz and Duran, 1985] and [Tyoskin and Kursky, 1986].  
Let us begin with a series-parallel system described by reliability index (7.84).  The idea of the 

method is in the following.  First we construct the point estimate, iR 621, and lower -confidence 
limit, Ri, for each subsystem PFFO i i

nR = - - p .i1 1( ) 622  These values are constructed in a standard 
way 
 

i i
n

n
i
*

i
R = - - p = - d

N
,i

i

 (  )1 1 1






  

i i i
nR = - - P N ,d i1 1[ ( ) ]*

  
 
where P (Nidi

*) is the standard Clopper-Pearson lower - confidence limit.  Then we replace the ith 
subsystem (redundant group) by an "equivalent unit" with the "equivalent number of tested units", 
Mi, and "equivalent number of failures", ri, which are chosen from the conditions 
 

1-
r
M

= R ,

 
   P M ,r = R .

i

i
i

i i i
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 (7.120) 

 
In other words, values of Mi and ri are chosen in such a way that the point estimate and lower - 
confidence limit for an "equivalent unit" coincides with the corresponding quantities of the ith 
subsystem. 
 Thus, an initial series-parallel system is replaced by some supplementary (imaginary) series 

system consisting of m "equivalent units" for each of which we have test results Mi and ri, i = 1,m
624.  After this, the lower - confidence limit can be constructed with the help of any known 
method for a series system (for instance, by the Lindstrem-Madden method). 
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 Notice that in contrast to the previous method of "equivalent tests" (see Section 7.6.1) 
where the number of tests Ni was kept constant, in this case both ri and Mi, determined from (7.120), 
are varied. Both these quantities might be non-integer.  In this case the lower - confidence limit, 
P (Mi, ri), is found as the solution of equation 
 
 p(Mi-ri, ri+1) =1-  
 
where p(a,b) is beta function (see Section 2 of Appendix to the current chapter). 
 
 
9.6.3 Method of Reduction for Complex Systems  
 
 In contrast to the previous method, the method of "equivalent tests" can be easily extended 
to systems with more complex structure than series-parallel. 
 
 

Series-Parallel Systems with Different Units  
 
 Consider a system consisting of m redundant groups (subsystems).  The ith subsystem might 
consist of ni different units in parallel.  In this case, the system PFFO has the form  
 

R = - - p
i m j n

ij
i1 1

1 1
   
 













( )  

 
where pij is the PFFO of the jth unit of the ith subsystem.  For each parameter pij, we have results of 
independent binomial tests with the following results: Nij units were tested and d*ij of them have 
failed.  The PFFO of the ith subsystem is denoted by 
 

i
j n

ijR = - - p .
i

1 1
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 ( )  

 
As before, we construct a corresponding point estimate R 625 for this index: 
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and the lower -confidence limit, Ri, which can be constructed with the help of any known method 
for a parallel system, for instance, that considered in Section 7.4.1. 
 After this, the entire ith subsystem is replaced by the supplementary "equivalent unit" with 
"equivalent number of tests", Mi, and "equivalent number of failures", ri.  The numbers Mi and ri are 
again found from (7.120).  Thus, we replace an initial series-parallel system by a series system 



 

253 
 

consisting of m equivalent units.  After this, the lower -confidence limit can be constructed by 
the Lindstrem-Madden method. 
 
 

Systems with Reducible Structures 
 
 The method of reduction can be extended on the so-called reducible structures.  Remember 
that a reducible structure is such a structure which can be obtained from an initial simple series (or 
parallel) system by replacing units of this structure by series and parallel substructures.  Such 
procedure of replacement can be recurrently continued.  It is obvious that a reducible structure can 
be "converted" up to a single unit by the inverse procedure (replacement simple series and parallel 
fragments by a single "equivalent unit").  In such a manner an entire initial reducible system can be 
transformed into a single "equivalent unit".  An example of a structure of such type is depicted in 
Figure 8.1 of the next chapter. 
 The method of reduction is applied for statistical problems as follows.  Each kth parallel 
structure (fragment of a system) is replaced by "equivalent unit" with "equivalent number of tests", 
Nk and "equivalent number of failures", rk.  (These values are found as above.) 
 In an analogous manner, we replace each ith  series structure (fragment of a system) by 
"equivalent unit" with "equivalent number of tests", Nk, and "equivalent number of failures", Dk, 
found as 
 

k k kD = N - R(  )1  
 
Here R k626 is the point estimate of the PFFO of the fragment replaced.  In this case the point 

estimate 1-
D
N

k

k
627 and the lower - confidence limit P (Nk,Dk) of the PFFO of the "equivalent 

unit" coincide with the corresponding characteristics of the replaced fragment. 
 As we mentioned above, the procedure of recursive reduction allows one to represent an 
initial reducible system as a single "equivalent unit". 
  
Example 7.24  Consider a series-parallel system analogous to that in Examples 7.18 and 7.21 (each 
redundant group consists of identical units). The structure of the system is depicted in Figure 7.5 
and input data are presented in Table 7.6. 
 The reduction method gives for this system the lower - confidence limit of the system 
PFFO 0.987 with the confidence coefficient =0.9.  Methods of hyperplane, modified method of 
hyperplane and method of "equivalent tests" give for this case quantities 0.966, 0.991 and 0.991, 
respectively. 
 
 
 
 
9.6.4 Method of Fiducial Probabilities 
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 The idea of the method was suggested in [Fisher, 1935] and developed by many authors 
(for instance, see [Rao, 1965]; [Fraser, 1961]).  Consider this approach on a simple example.  Let i 
be a reliability parameter of unit i and random variable xi be the result of testing this unit.  Denote 
the distribution function of  
random variable xi for a fixed values of parameter i by 
 

i i iF t, = P x ti( ) ( )         (7.121) 
 
For the sake of simplicity, assume that function (7.121) is continuous in t.  Assume also that this 
function is continuous and monotone increasing in parameter i.   
 Let xi

* be a value of random variable xi observed in the result of test.  For fixed xi
*, we 

consider parameter i as a random variable with the distribution Fi(xi
*, i).  The distribution of 

parameter i defined in such a way is called a fiducial distribution.  The upper and lower -fiducial 

limits i and i 629 for parameter i for given fixed test result xi
*  are determined from the 

following conditions 
 

i i
*

iF x , = ,( ) 1  (7.122) 
i i

*
iF x , =( ) .   

 
It means that they are corresponding quantiles of fiducial distribution Fi(xi

*, i).  The -fiducial 
limits coincides with corresponding -lower confidence limit for parameter i as it can be seen 
from equations (1.31) for confidence limit. 
 Notice that in this approach parameter i is not a random variable, but some unknown 
constant, and function Fi(xi

*, i) is a distribution function of the result of observations, xi, for given 
fixed value of parameter i.  So, we interpret Fi(xi

*, i) as a distribution function of parameter i 
for given fixed xi. Correctness of the procedure  is not obvious and even more -- doubtful.  The 
probabilistic ("physical") sense of such transform also is unclear.  (For details see, for instance, 
[Rao, 1965, Section 5b]; [Zacks, 1971, Section 10.6]; [Depster, 1964]; [Stein, 1959]; in application 
to reliability tests - [Pavlov, 1982, Sections 2.4, 4.5, and 4.6].)  Nevertheless, independently of the 
interpretation and validation of the method, we might consider it a convenient formal approach 
which gives good practical results in many cases. 
 Let R be a reliability index of a system , consisting of m units of different types.  This index 
is a function R=R( )=R( 1, ... , m) of parameters =( 1, ... , m) of the units.  Let x*=(x1

*, ... xm
*) 

be observed values of the vector of test results x=(x1, ... xm) where xi is the test result for the ith type 
units.  Test results for different units are assumed independent.  For each parameter i let us 
construct fiducial distribution Fi(xi

*, i) in a manner proposed above.  Now the reliability index,  
R=R( 1, ... , m), can be considered as a function of fiducial random variable i with corresponding 
distributions.  The fiducial distribution function for R for a given vector of test results x* is 
determines by the following formula: 
 

( ) ( )*

R( ,..., ) R i m
i i

*
i i,R =   f x d

1 m

... ,x
1 1 

 
  

    (7.123) 



 

255 
 

 

where i i
*

i
i i

*
i

i
f x , =

F x ,
( )

( )








632 is the density function of the fiducial distribution of parameter 

i, i = ,m1 633. 
 The lower and upper -fiducial limits R and R 634 for the system PFFO, R, are determined 
from conditions 

( )* ,R = ,x 1                (7.124) 
( )* ,R = ,x                         

Analytical calculation of distribution (7.123) and limits R and R 635 in (7.124) is usually too 
complicated.  Nevertheless, in many practical cases these values can be found by Monte Carlo 
simulation. 
 The fiducial approach discussed above was used for reliability problems (mostly for 
binomial and exponential models) in [Springer and Thompson, 1964], [Senetsky and Shishonok, 
1967], [Farkhad-Zadeh, 1979], [Groisberg, 1980], [Pavlov, 1980, 1981 a,b].  More available sources 
are [Gnedenko, ed., 1983] and [Ushakov, ed., 1994]. 
 
Example 7.25  (Binomial model)   Let i=pi be the unit PFFO, xi=di be the number of failures 
during the test, and Ni be the number of tested units of type i.  In this case, distribution function 
(7.121) has the form 
 

i i i
j d

i

i
N - j

i
jF d , p =

N

j
 p - p

i

( ) ( )
0

1
 










  (7.125) 

 
Function (7.125) is a distribution function of the test result di for a given fixed value of parameter pi 
and, at the same time, is a fiducial distribution function of parameter pi for a given fixed test result 
di.  Further, let the system consist of m different types of units with parameters p=(p1, ... ,pm) and 
function R=R(p)=R(p1, ... ,pm) reflect the dependence of the system PFFO on parameters of units.  
For instance, for a series-parallel systems considered above 

 R = - - p
i m

i
ni

1
1 1

 
 ( ) . 

 
The value of R is considered below as a fiducial random variable with a distribution which is 
determined by distributions of parameters (7.125).  Afterwards, the -fiducial limit for R is 
constructed as mentioned above. 
 
Example 7.26  (Exponential model)    A system consists of m different units each of which has the 
exponential distribution of TTF.  The failure rate of the ith unit is i, i = ,m1 637.  In this case 

i= i and xi=Si where Si is the total time of testing of all units of the ith type until occurrence of ri 
failures.  In this case function 
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i i i
- S

j r -

i i
j

F S , = - e
S
j!

i i

i

( )
( )


1

0 1 
  (7.126) 

 
 
is a function of test results Si for a given fixed value of parameter i and simultaneously the same 
function is a fiducial distribution of parameter i for a given fixed value of the test result Si.  Let 
R=R( )=R( 1, ... , m) be a function that gives the dependence of the system PFFO on unit 
parameters.  Then -fiducial limit for R can be constructed on the basis of fiducial distribution 
(7.126) for parameters i, i = ,m1 639, as it was described above. 
 Sometimes the fiducial approach produces obviously ineffective limits (which is illustrated 
by the example below). 
 
Example 7.27  (Binomial model, No-failure-test)  Take a series system considered in Example 7.25 
for particular case: n1=n2= ... =nm=1.  All units are tested in equal numbers: N1=N2= ... =Nm=N and 
no failures has been observed: d1=d2= ... =dm=0.   
 In this case the lower -fiducial limit for the system PFFO can be easily found analytically.  
Indeed, from (7.125) it follows that parameter pi is a fiducial random variable with distribution 
function 
 

i i i i i i
N

i
NF d , p = F , p = p = p ,   i = ,m.i( ) ( )0 1        (7.127) 

 
The system PFFO in this case equals 
 

R = p p ... p .m1 2    (7.128) 
 
Thus, the lower -fiducial limit R for R equals a quantile of the level of (1- ) for random variable 
(7.128) under the condition that each parameter pi has distribution (7.127).  This random variable 
can be found, for instance, by the following way.  Introduce random variable's i i

N= p ,   i = ,m. 1  
Each of random variable i has the uniform distribution on interval [0, 1].  Introduce also random 
variable's i i= -  ,   i = ,m. ln 1  
Since i has the uniform distribution on interval [0, 1], random variable i has the exponential 
distribution, 1-e-x.  Thus, R can be written in the following form 
 

R = p p ... p = im
i m

i N = .
N i m

1 2
1

1 1

1

   
 






 

 exp  

 
Then use the well known fact that random variable 2( 1+ 2+ ... + m) has the standard 2 
distribution with 2m degrees of freedom (see Section 1.2).  Inequality R > R is equivalent to 
inequality 
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2

1 
  

i m
i -2N  R. ln  

 
After simple transformations we obtain that the lower -fiducial limit R for the system PFFO 
equals 
 

R = e-
(2m)

2N

2


 (7.129) 
 
where 2(2m) is the quantile of the level  for the 2 distribution with 2m degrees of freedom.  
The lower limit (7.129) rapidly decreases with increasing of the number of system units, m.  On the 
first glance, this fact seems natural, since the system has a series structure.  From another hand, the 
best lower - confidence limit obtained in [Mirny and Solovyev, 1964] for the same situation (see 
Sections 6.1 through 6.3) is 
 

R = - = eN -
( )

N( )1
1 2

2

2




 (7.130) 
 
and it does not depend on m and for m>1 is always better than (7.129).  The more m, the worse 
fiducial limit (7.129).  (Notice incidentally that Bayesian approach possesses the same deficiency.) 
 Nevertheless, if we do not deal with no-failure-tests, the fiducial method (as well as 
Bayesian one) can deliver good results (see Chapter 8).  Besides, this method is rather universal and 
can be applied for systems with various types of structures.  It makes this method very popular in 
engineering applications. 
 Notice also that the fiducial method is approximate in the sense that for the -fiducial limit 
(for instance, lower) does not guarantee the inequality for the confidence coefficient 
 

  P R R{ ( )}   (7.131) 
 
for all possible values of parameters =( 1, ... , m).  Although for m=1, that is for one unknown 
parameter, -fiducial limit simultaneously represents -confidence limit, for m>1 justification of 
(7.131) does not follow from anywhere (for all ). In Chapter 8 it will be shown that there are 
examples where the fiducial method does not work.  However, at the same time one can find many 
examples where this method is valid.  For instance, for a wide class of "exponential models" for 
systems with complex structures, the fiducial approach delivers strong lower - confidence limit, 
that is, its application is correct and effective. 
 
 
9.6.5 Bootstrap Method 
 
 The idea of this method [Efron, 1979,1982] will be illustrated on the example of the 
binomial model.  Let R=R(p)=R(p1, ... ,pm) be a function expressing the dependence of the system 



 

258 
 

PFFO on binomial parameters of its units p=(p1, ... ,pm).  The point estimate R 645 of reliability 
index R is written as 
 

 ( ) (   )R = R = R p ,..., pmp 1  
 

where i
i

i
p =

d
N

 1 646 is the point estimate of parameter pi. 

 Denote the distribution function of the point estimate, R 647, for a given vector of 
parameters p=(p1, ... ,pm) by ( ) (  )t, = P R t .p p   
We need to construct the lower - confidence limit R for the system PFFO, R=R(p).  Let us define 
R as the quantile of the level (1- ) of the distribution function of estimate R 648, that is, from the 
following condition 
 

( )R, = - .p 1   (7.132) 
 

 The distribution of estimate R 650 depends on parameters p=(p1, ... ,pm) which are unknown 
by the formulation of the problem.  Therefore a direct determination of the value of R from (7.132) 
is impossible.  To pass side this obstacle, let us set p=p* where p*=(p1

*, ... ,pm
*) and 

i
* i

*

i
p = -

d
N

,   i = ,m,1 1 651 where di
* is the number of observed failures.  Function (t, p*) is called 

a bootstrap distribution of estimate R 652.  So, value  R is determined from the condition 
 
 (R, p*)=1- . (7.133) 
 
In other words, for finding R we use an estimate of distribution (t, p*) instead of the distribution of 
estimate, (t, p). 
 Finding an exact analytical expression for a distribution function in the left side of (7.133) is 
usually a difficult task.  Therefore most often Monte Carlo simulation is used  for estimating  (t, 

p*).  In this case for simulation we use estimates i
* i

*

i
p = -

d
N

1 653 which are taken from real tests (see 

Section 2.6) instead of unknown values of parameters pi. 
 The main benefit of this method is its universality, simplicity and clearness.  However, this 
method sometimes produces (for lower limits) too optimistic estimates (see, for instance, [Martz and 
Duran, 1985]). 
 
9.6.6 Normal Approximation 
 
 Consider a binomial testing plan  for a series system.  For the case of highly reliable units 
the system PFFO can be approximately written in the form 
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R q qi i
i mi m

   
  
 ( ) exp( )1

11

 

 

where qi = 1-pi  is the probability of the ith unit PFFO, qi <<
1
m

, i =1, ... ,m. The construction of 

the lower confidence level for the system PFFO reduced to the construction of the UCL for the 
value 
 

  f f q qi
i m

 
 
( )

1

 

 
 As an initial statistic S which is used for the construction of the confidence limit, let us 
take the unbiased point estimate f  for f, that is, 
 

S f qi
i m

 
 
 

1

                      (7.134) 

 

where  q d
N

i

i

  is the standard point estimate for parameter qi , i= 1, ... ,m.  Let us denote the 

mathematical expectation and variance of statistics S for a given vector of parameters q = (q1, ... 
,qm) by E(q) and V(q): 

E ES E q qi
i m

i
i m

( ) (  )q   
   
 

1 1

                     (7.135) 

 

V Var S Var q
q q

N
q
Ni

i m

i i

ii m

i

ii m
( ) { } {  }

( )
q   




     
  

1 1 1

1
 

 
Distribution function of statistic S for given q is denoted by F(t,q) = Pq(S < t).  Random variable 
S represents the sum of  i independent random variables with finite moments.  Therefore for 
large enough m and Ni the distribution of statistic S can be approximated by the normal 
distribution with the mean E(q) and variance V(q) 

F t q t E
V

( , ) ( ( )
( )

)



q

q
                (7.136) 

 
where (u)  is the standard normal distribution. 
 Applying general functions (7.9) and (7.11), we obtain that the upper -confidence limit 
f  for f = f(q) is defined from the equation 

K f S1( ) *         (7.137) 
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where S d
N

i

ii m

*

*


 


1
, id

*  is the number of observed failures, and function  K1(f) is defined as 

K f t
q Af

1 1( ) ( )min


q  

 
where minimum is taken over the set Af = {q: f(q) = f}, and the value f1(q) is the quantile of level 
(1-) of the distribution function of statistic S.  In accordance to (7.136) t1(q) is defined from the 
equation 

( ( )
( )

)t E
V

1 1
 

q
q

  

from where 
t1(q)=E(q)- u V ( )q  

 where U  is the quantile of the level  of the standard normal distribution. (Here the difference 
is understood as operations over vector components.) 
 Thus, for the normal approximation, the upper -confidence limit f  is defined from 
(7.137) where 

K1(f)=
q Af

min E(q)- u V ( )q                       (7.138) 

are minimum is taken over all q = (q1, ... ,qm)  that satisfy the constrain 
qi

i m1 
 = f               (7.139) 

0  i 1, i=1, ... ,m 
The value of U > 0 if  > ½ .  Taking into account inequality (7.135), minimum (7.138) is 
written in the form 

K(f)=E(f)- u V f
 ( )  

where  

V+(f)=
q Af

max V(q)=
q Af

max  q
N

i

ii m1 
              (7.140) 

 
is the maximum value of the variance V(q) within the area of parameter q satisfying constrains 
(7.139).  Maximum (7.140) belongs to one of the “corner” points of the form: ( ,..., , , ,..., )0 0 0 0

1i

f



.  

It produces V+(f) = f/N1 where N N
i m

i1
1


 

min   is the minimum volume of tests among all units. 

 Thus, the upper -confidence limit f  for the normal approximation can be defined from 
the equation 

f u
f

N
d
N

i

ii m
 

 


1 1

*

 .     (7.141) 

Let us introduce an “equivalent number of failures” as follows 
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~ * *D N S
N
N d

ii m
i1 1

1

1
 









 
  

For small numbers of failures di<<Ni, i= 1, ... ,m,  the value ~D1  coincides with the “equivalent 
number of failures” D1 given by formula (7.57), differing only in the infinitesimally small values 
of the second and higher orders: 

( ) [ ( )]*
*N

N d N
d
Nii m

i
i

ii m

1

1
1

1
1 1

   
     

Equation (7.141) for the confidence limit can also be written in the form 

f u f
N

D
N

 
1

1

1

~
      (7.142) 

 
Finally, the lower confidence level for the system PFFO  can be computed as R=exp(- f ). 
 
 From (7.142) it follows that the lower confidence level for the system PFFO is computed 
in the same way as  the lower confidence level for a single unit of type 1 with the minimum test 
volume N1 and the “equivalent number of failures” ~D1 .  Strictly speaking, the idea of “equivalent 
tests” for the series system under present consideration.  Thus, for the construction of the lower 
confidence level of the PFFO of a series system, if we take the point statistic (7.134) as the initial 
statistic S, then the normal approximation of this confidence limit corresponds to that obtained 
by the method of “equivalent tests”  (for > ½).  Analogous fact takes place for series-parallel 
systems (see [Krol’, 1974, 1975] and [Pavlov, 1982]). 
 
 
9.7 Method of the Use of Basic Structures 
 
  Accurate methods of confidence estimation considered in Sections 7.2 and 7.5 (that is, 
the methods for which a given value of    is guaranteed  by inequality 7.111) in many cases 
deliver very conservative estimates for the system reliability.  This is the reason for the use of 
different heuristic or approximate methods, based in some sense, on asymptotic results (see 
Section 7.6).  Notice that main existing methods of confidence estimation of complex systems 
reliability do not take into account of optimization approaches due to added complications.  In 
addition notice that asymptotic methods for large samples, for instance, the maximum likelihood 
method (see [Wilks,1938], [Madansky, 1965] and others) do not appear to be a good 
approximation for small samples. 
 We suggest an approach based on the construction of an algorithm of system confidence 
limit estimation based on the methods existing for systems with simpler structures bvelow.  
Actually, this approach is the development of a simple idea (already used in Sections 4.5 and 
7.4) of constructing the system confidence limits on the basis of a simpler system consisting of 
the same units. 
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 The construction of the algorithm is realized in two stages.   At first, an ensemble of 
simple auxiliary structures is introduced, each of which consists of the same units as the 
investigated system.  For each of these structures, the confidence limits are constructed with the 
help of “trivial algorithms” used for developing the algorithm for the complex structure 
confidence estimation.  Then some operations are introduced (see Theorem 7.7.1) which allows 
us to combine these “trivial algorithms”.  Then the best algorithm is searched among the class of 
these combined algorithms.  It is shown that for some general conditions there is an optimal 
algorithm (Theorem 7.7.2) which gives the confidence limits that are better for arbitrary test 
results than any “trivial algorithm” of the basic ensemble (Theorem 7.7.3). 
 
9.7.1  Basic Ensemble of “Trivial Algorithms”. 
 
 Let a system consist of m units of different types, and z=(z1, z2, ... ,zm) be the vector of 
reliability parameters of units, where zi is the parameter of the ith type unit, i=1, ... ,m.  Vector z 
takes its values from the area Z={z:  zi  0, i=1, ... ,m} of m-dimensional Euclidean space.  Let 
x=(x1, ... ,xm)X be the vector of test results and Pz{} be the distribution of test results xX  for 
given value of vector zZ.  Let f=f(z) denote the function expressing the dependence between 
the reliability index and unit reliability parameters z.  This function is called system reliability 
function.  We are interested in construction of the confidence limit (say, upper) with the 
confidence coefficient not less than given  for f=f(z), that is, we are searching a function of the 
test results f f x ( )  such that the inequality 

Pz{ f f(z)}               (7.143) 
holds for all  zZ. 
 In correspondence with the general method of confidence sets (see Sections 1.4 and 7.2), 
the limit f f x ( )  is found as the maximum value of the reliability function f(z) over entire -
confidence set HxZ.   A collection of sets in the space of parameters 
 

HxZ,   xX                   (7.144) 
 

is called a collection of -confidence sets for zZ, if inequality 
 

Pz{zHx}g               (7.145) 
 

holds for all zZ.  The upper -confidence limit f f x ( )  for  f=f(z) is computed as  
f f x ( )=

z Hx

f z


max ( )                   (7.146) 

It follows directly from (7.145) that f  constructed in such way satisfies inequality (7.143) for all 
zÎZ, that is, f  is the -UCL for f=f(z). 
 Thus, an algorithm for computation of the confidence limit f f x ( )  is defined by a 
given collection of confidence sets (7.144) and by the operation of taking the optimum in 
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(7.146).  Different collections of -confidence sets correspond to different algorithms of 
computing of  the confidence set. 
 Further assume that there are several different collections of -confidence sets 

{ , }H Z x Xx
       ,           (7.147) 

such that 
                  Pz{zHx

m }>     
for all zZ and for all M.   The value of m is the “mark” of a collection of confidence sets in 
(7.147).  Each collection of confidence sets Hx

m, xX,  corresponds to its own algorithm of 
computation of the following kind of the confidence limit: 

f f x  ( )=
z Hx

f z
 

max ( ) ,                        (7.148) 

Thus, the value of   is the “mark” of the algorithm of computation of the confidence limit 
(7.148), and M defines a collection of such algorithms.  An aggregation of all algorithms (7.139) 
with M is called basis collection of algorithms for computation of the confidence limit for the 
system reliability function, f(z). 
 Examples of such basis collections are collections of algorithms for systems with the 
simplest structures as series and parallel.  Let us consider, for instance, a binomial model.  Let  
zi= - lnpi where pi is the binomial parameter equal to the PFFO of a unit of the ith type, and xi=di  
be the number of failures observed during a test of Ni units of the ith type, i =1, ... ,m,   x=(d1, ... 
,dm).  Assume that we use these units of an initial complex system for constructing some series 
system in which a unit of the ith type is used  i times, i =1, ... ,m.  The PFFO of this series 
system is 

R p zi
i m

i i
i m

i


   
   
 

1 1

exp( )                      (7.149) 

where   = (1, ... , m) is the vector defining the number of different units in the system. Let us 
construct constructed the lower confidence level on the basis of one of known methods, for 
instance, the Lindstrem-Madden, (7.58), (7.59) for the system reliability (7.140): 

R R x P N D
i m

i i
i

  
 

 
( ) [ ( , )]min

1
          (7.150) 

where values Di are found from the conditions 

( ) ,1 
D
N

Ri

i

i  

 ( )R
d
N

j

jj m

j

 
 
 1

1



 

By definition of the lower confidence level R we have 
Pz{ R R}. 

The above inequality can be written for all zZ in the following equivalent form: 
P z g xz i i

i m
{ ( )}  
 


1

        (7.151) 

 
where g x ( )=-ln R(x). 
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 Consider a collection of sets in the space Z of the unit parameters z=(z1, ... ,zm): 
H z z g xx i i

i m


 

 
{ : ( )}

1
,   xX           (7.152) 

 
where x=(d1, ... ,dm) is the vector of the numbers of failures observed at the different unit tests, X 
is the set of all vectors x with positive integer coordinates.  By (7.151) the collection of sets of 
the type (7.152) forms the collection of -confidence sets for zZ.   It means that the value 

f f x  ( )=
z Hx

f z
 

max ( )           (7.144) 

 
is the upper -confidence limit for the reliability function f=f(z). 
 Further, let us consider an ensemble of all such series structures with various numbers of 
units of different types,  = (1, ... , m).  For any fixed , each structure of such type is 
characterized by its own collection of confidence sets (7.152) and its own algorithm for 
confidence limit computation (7.153) for the reliability function of the initial system.  We thus 
obtain a basis set of computational algorithms for the confidence limit of the form 

f x ( ) =
z Hx

f z
 

max ( ) ,                 (7.154) 

 
where  = (1, ... , m)  is  the “mark” of an algorithm (and simultaneously it is the vector of 
numbers of units in the corresponding auxiliary series system).  The set M represents the set of 
all m-dimensional vectors  with positive integer coordinates: 
 

M = {:   i =0, 1, ...   ;i=1, ... ,m}. 
 

Notice that the confidence limit Rm is not just defined for integer, but for any positive value i.  
Therefore below we will use M defined by the following way: 
 

M = {: i 0   ;i =1, ... ,m}. 
 
A collection of algorithms of the kind (7.154) we will call a basis collection of “trivial” 
algorithms.  Further the basis collection of  confidence sets (7.152) and corresponding collection 
of “trivial” algorithms (7.154) will be significantly extended, and within this new extended class 
of algorithms we will find the optimal algorithm (Theorem 7.7.1).  This algorithm delivers for all 
test results x the best confidence limit for f(z) in comparison with any “trivial” algorithm of the 
basis set (7.154). 
 
 
 
9.7.2 Constructing New Algorithms from the Basis Collection of “Trivial” Algorithms. 
 
 Denote the boundary hyper-plane for the confidence set in (7.152) by 



 

265 
 

x z Z  { :    i i
i m

z g x
 
 ( )}

1

         (7.155) 

 
 Assume that the reliability function of a system, f(z)=f(z1, ... ,zm) is monotone increasing 
in each variable, has continuous partial derivatives of the first order, and convex in zZ. Assume 
also that the following conditions hold: 
 A.  Function gm (x) is continuous in  M. 
 B. For any   and      in M, sets x

 and x
 have non-empty intersection for any xX. 

 C. Hx
 = Hx

c for any c>0, xX, M. 
The justness of these conditions can be proved directly on the basis of (7.150), (7.152), and 
(7.155).  Notice that the latter condition shows that the set 
 

M = { : ||||=1; i > 0;  i=1, ... ,m} 
 
can be considered as the set M.  In other words, a set of all “directing” unitary vectors m with 
positive coordinates where 

|| || 
 
 i

i m

2

1
 

is the standard norm in m-dimensional Euclid space  . 
 Now let s be a curve in Z given in a parametrical form: 
 

s= {z:  zi = ji(t),  i=1, ... ,m;  t0}           (7.156) 
 

where ji(t) are continuous, monotone functions increasing in t. 
 Let any ensemble S of non-intersected curves of type (7.156) and covering the entire 
space Z 
 

S = {sv:  vV}                (7.148) 
 

 be called S-division of the parameter space Z.  Arbitrary curves sv and su above do not intersect if 
vu [may be with the exception for a unique point of the origin, z=(0, 0, ... ,0) ] and 
 

s Zv
v V

 . 

 
An example of such a division is S={sv: vV} of the space Z by various rays (semi-lines) 
initiating at the origin: 
 

sv = {z:  zi=vi t;   1<i<m;  t  0}        
 
where v=(v1, ... ,vm)  is a “directing” unitary vector, ||v||=1 which determines the direction of ray 
sv and V is the set of all “directing” unitary vectors with positive coordinates 
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V = { v:  ||v||=1; vi > 0;  i=1, ... ,m}. 
 
Let some S-division (7.157) of the parameter space  Z exist and  a=a(v) be a one-to-one 
reflection 
 

a:   V  M. 
 

Then the following theorem holds. 
 
Theorem 7.7.1.  The collection of sets  

H S s Hx v x
v

v V
( , ) { }( ) 


 , xX               (7.158)  

represents a collection of -confidence sets for zZ. 
 
Proof.  Let  z be any fixed point in Z.  Then by the definition of S-division there is a unique vV  

such that zsv.  For these fixed z and v, we have 
 

Pz{zHx(S, a)}=Pz{ z(sv Hx
a(v) )}= Pz{zHx

a(v)}. 
 

The proof of the theorem follows from this statement.■ 
 
 Thus each pair S and a  

 
S={sv, vV},   a: V M 

 
produces a new collection of  -confidence sets formed in accordance to operation (7.149) on the 
basis of initial confidence limits Hx, xX, M.  For instance a trivial (identically equal to a 
constant) reflection  
 

a(v) vM 
 

in accordance with (7.154) gives the collection of confidence sets Hx(S, a), xX, belonging to the 
basis collection of sets (7.147).  However, an arbitrary reflection  a=a(v), not identically equal to 
a constant, produces a new limit for the system reliability unction, f=f(z). 
 Pair A=(S, a)  is called an algorithm of constructing the upper confidence limits (7.149) 
and corresponding confidence limit f  for f=f(z).  This upper confidence limits f = f A(x) , 
computing by the algorithm A, has the form 

f x f zA
z H A v Vx

( ) ( )
( )

sup sup 
 

  
z l Hv x

v

f z
   ( )
sup ( )            (7.159) 

 
where Hx(A)=Hx(S, a) is the confidence limit formed in accordance with (7.158). 
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 The sense of the construction for computing a new confidence limit given above can be 
explained in the following way.  Assume that we a priori know that parameter z belongs to some 
subset svZ.   Then the confidence limit (7.154) for f=f(z) can be improved by the formula 

 f    
z s Hv x

f z
  

sup ( )            (7.160) 

 
Notice that a collection of confidence limits Hx

m  with an arbitrary mark , M, can be used  in 
the formula (7.160).  If there is no prior information concerning parameter z , then for computing 
the UCL we need to find the maximum  of the value (7.151) over various subsets sv, which cover 
the entire parametrical space Z.  The mark m, generally speaking, can change dependently on v  
as some function =a(v).  In other words, we use a “best” collection of confidence limits from 
the basis ensemble (7.147) for estimation of the function f(z) on each subset sv.  This leads us to 
constructions (7.158) and (7.159) where the choice of the function a(v) dividing the space Z onto 
subsets sv  can be arbitrary.  Thus the problem is in finding the function a(v) and optimal division 
of L, that is, in choosing the optimal algorithm  A=(S, a) among various pairs (S, a). 
 
 
9.7.3 Constructing the optimal algorithm 
 
 Let S*  be a class of all S-divisions of the parameter space Z, and W be a class of all 
reflections a=a(v)M such that  

{:  =a(),  v V }  .          (7.161) 
 
This condition means that all collections of confidence limits from the basis ensemble (7.147) 
are used for constructing the confidence limit (7.150).  Let A=S*W be a class of corresponding 
algorithms A=(S, a) of computation of the confidence limit (7.150) for the system reliability 
function f=f(z). 
 Denote the gradient of function f(z) by 
 

 f z
f
z

f
zm

( ) ( ,..., )




1

 

 
and introduce set Vf , Vf, of all normed gradients of function f(z) 
 

Vf={v:  v=



f z
f z
( )

|| ( )||
,  zZ}. 

 
Let  A* =(S*, *), where division S*={s*, v Vf} of space Z and  reflection *=*(v) M  are 
defined as follows 
 

s*={z:  f z( ) =tv,  t0},  v Vf           (7.162)  
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*(v)=v,   vVf  .                            (7.163) 
 
 

The following theorem shows that the confidence limit f A* (x),  that is calculated in respect to the 

algorithm A* =(S*, *) from (7.159), is the best one for xX in comparison with the limit f A (x), 
that is calculated by any other algorithm AA*. 
 
Theorem 7.7.2.  For any algorithm AA*  the inequality 
 

f A (x) f A* (x)     (7.164) 
holds for all xX. 
 
Proof.  Let =(),   is the reflection inverse to =(v) ,  vV, that is  
 

()={v:  (v)=}V. 
 

If the reflection : V M is not unique, then subsets ()V  might include more than one 
point.  The formula (7.150) can be rewritten as follows 
 

f xA
v V

( ) sup


 
z l Hv x

v
f z




  ( )

max ( )  


sup   
v ( )
sup   

z l Hv x

f z
  
max ( ).        (7.165) 

 
On the other hand, for the limit corresponding to algorithm A*, we have 
 

f x
A

v V f

* ( ) sup


  
z l Hv x

v

f z



* * ( )
max ( )

  v V f

sup    
z l Hv x

f z
 *
max ( ).

 

  

 
Let z* be the crossing point of subset s*  with the border  v

*of the set Hv
* .  At this point by the 

definition of  division S* condition 
 

 f z v( )*  
holds due to the convexity of function f(z), and at this point the minimum 
 

z x
v

f z f z





min ( ) ( ).*        (7.166) 

 
is attained.  Taking into account the monotone increase of the function f(z) in each variable zi, it 
follows that 
 

z l Hv X
V

f z



*

max ( )


   
z lv X

V
f z

 *
max ( )



 =f(z*)=
z X

V
f z


min ( ).  
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From here, with condition VfM, we have 

f xA
v V f

* ( ) sup


  
z x

v
f z






min ( )


sup    
z x

v
f z


min ( ).           (7.167) 

 For any vV and M the inequality 

z l Hv x
v

f z





max ( )  
z sv x

v
f z




 
max ( )

z x
v

f z


min ( )  

and, moreover, the inequality 

v ( )
sup  

z s Hv x
v

f z





max ( )
z x

v
f z


min ( )       (7.168) 

hold.  The proof now follows from (7.165), (7.167), and (7.168).■ 
 Notice that by the condition (7.161) the class A*   does not contain algorithms A=(S,a) 
with trivial reflections  a=a(v) of the form a(v).  Therefore from theorem 7.7.2 does not 
follow directly that the limit f xA* ( )  is optimal in comparison with any of limits  f x ( )  of the 
form (7.154) which corresponds to the initial collection of “trivial” algorithms.  This fact follows 
from the next theorem. 
 
Theorem 7.7.3   For any M the limit f xA* ( )  satisfies the inequality 

f xA* ( )   f x ( )  
for all xX. 
Proof  In correspondence with (7.167), the value f xA* ( )   can be written in the form 

f x
A* ( )   =

V f

sup  
z x

v
f z


min ( )      (7.169) 

Therefore for any e>0 there exists such ()VfM that 
 

z x
v

f z
 ( )

min ( )


  >
V f

sup
z x

v
f z


min ( )  - = f xA* ( ) -. 

For any M, the set x
m    due to the condition B has at least one common point  ~z  with the set 

x
 m(e). Thus, 

z x
v

f z
 ( )

min ( )


   f z(~)  
z x

v
f z


max ( )  = 

z Hx

f z
 

max ( ) = f x ( ) ,     . 

 
and taking into account the previous inequality, we have 

f xA* ( )  < f x ( ) +,    . 
 

Due to the arbitrariness of , the needed inequality is proved.■ 
 As an example, consider an application of the optimal algorithm A* for computation off 
the lower confidence level of the PFFO of a series-parallel system for a binomial model.  The 
PFFO of this system (7.84) can be written via parameters zi=-ln pi in the following form 
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R p f zi
n

i m

i    
 
{ ( ) } exp{ ( )}1 1

1
 

 
where 
 

f(z)= f zi i
i m

( )
1 
 , 

f z ei i
z ni i( ) ln{ ( ) }   1 1  

 
 The confidence estimation of the system reliability index R from below  is reduced to the 
constructing of the UCL for f(z).  Function f(z) is monotonically increasing in each zi and convex  
in zZ.  S*-division of the space of parameters Z in correspondence with (7.162) has the form 

sv
*={z:  f’i(zi)=tvi, i=1, ... ,m;   t0} 

 
where v=(v1, ..., vm)Vf M.  The upper confidence limit (7.159) for  f(z) corresponding to the 
optimal algorithm A* has the form 

f x f z
A

V z l Hf x

*
*

( ) ( )max max
  



             (7.170) 

or in correspondence to (7.167) 
f x

A
V f

* ( ) max
 z x

f z


min ( ).      (7.171) 

Notice that if the number of units of different subsystems ni>1, i =1, ... ,m,  then the set Vf=M, 
that is the external maximum  in (7.171) or (7.170) is taken over set M. 
 
Example 7.28  Consider a series-parallel system from Example 7.15.  The system consists of 
m=10  parallel subsystems connected in series.  The numbers of units, ni, in the subsystems and 
the test results, Ni, di, are given in Table 7.2 above.  In this case the lower -confidence level (for 
=0.9) for the system reliability computing with the help of algorithm A* equals R=0.9998.   This 
value coincides with the limit found for this example by the heuristic method of “equivalent 
tests” (see Table 7.4 above).■ 
 
9.8 Bayes Method 
 
 Let us demonstrate this method applied to a binomial testing plan.  Consider a system 
consisting of units of m different types.  The system reliability index, R=R(p)=R(p1, ...,pm), is a 
function of  vector p=(p1, ... ,pm) representing the results of tests of individual units (here pi is the 
PFFO of a unit of the ith type).  For each unit of each type we have the results of tests:  number 
of failures di in Ni tests.  Unit test results are assumed to be independent. 
 Assume also that for each parameter pi a prior density function  hi(pi) is given and 
parameters pi are also assumed independent.  Thus the prior density of the distribution h(p) has 
the form 
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h h pi i
i m

( ) ( )p 
 


1
. 

 
In correspondence with the standard Bayes procedure (see Chapter 4 above, formula 4.1)  the 
posterior density of the distribution of vector p=(p1, ... ,pm) for given test results d=(d1, ... , dm) 
has the form 
 

h
h L

( | )
( ) ( | )

( )
p d

p d p
d




                (7.172) 

 
where L(d|p) is the likelihood function, the probability of the test result d for given vector of 
parameters p: 

L p p
i m

N

d

i
d

i
N d

i

i
i i i( | ) ( )d p  



 

 


1

1  

and  
 

  ( ) ... ( ) | ...d p d p   
0

1

1
0

1

h L dp dpm . 

 
It follows that the posterior density of distribution  (7.172) is expressed by formula 
 

h(p|d)=
1 


i m
hi(pi|di)                      (7.173) 

 
where hi(pi|di) is the posterior density of the distribution of parameter pi: 
 

h p d
h p p p

h u u u du
i i i

i i i
d

i
N d

i
d N d

i i i

i i i

( | )
( )( )
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1

1
0

1  .           (7.174) 

 
In Binomial scheme of testing considered here, one usually assumes that the prior distribution  
hi(pi)  is a standard Beta distribution with parameters (ai, bi), that is 

h p
p p
B a bi i

i
a

i
b

i i

i i

( )
( )

( , )


  1 1 1

                      (7.175) 

 
where B(ai, bi) is the beta function.  In this case the posterior distribution (7.174) is also beta, but 
with different parameters (see Section 4.3 above) 
 

h p d
p p

B a d b N di i i
i

a d
i
b N d

i i i i i

i i i i i

( | )
( )

( , )



  

    1 1 1

. 



 

272 
 

 
Bayesian -confidence limit (for instance, lower) R=R(d) of the system PFFO, R=R(p), can be 
found from the equation 
 

h p d dpi i I i
i mR p p Rm

( | )
( ,..., )


 
 

1
1

,          (7.176) 

 
that is R is the quantile of level (1-) of prior distribution of R(p)=R(p1, ... ,pm).  Analytical 
evaluation of limit R on the basis of (7.176) might be too complicated, although it can be easily 
found with the Monte Carlo simulation.  For a Monte Carlo simulation, independent random 
values of parameters pi

(j), i=1, ... ,m, are generated on the basis of the posterior distributions 
(7.174).  After this the value of the system reliability  R(j)=R(p1

(j), ... ,pm
(j))  is calculated, and the 

computational process goes to the next (j+1)th step.   On the basis of n realizations  one can 
construct a corresponding empirical distribution function, and afterwards the lower Bayesian -
confidence limit, R, is taken equal to the quantile of the level (1-) of this empirical distribution. 
 The Bayesian approach might deliver too conservative confidence limit R for the 
reliability of series systems consisting of large number of subsystems and units if there were few 
failures, that is the case is close to the non-failure tests almost for all types of units (see Section 
7.6.4, Example 7.27 above).  Nevertheless, for “medium” numbers of failures, this approach 
gives admissible results.  Besides, the merit of the Bayesian approach for this problem is that it is 
universal and visual.  The Bayesian approach  was used for analysis of the reliability of complex 
systems in many works, among them [Barlow, 1985], [Cole, 1975],  [Dostal and Iannuzzelli, 
1977], [Mann, Schafer, and Singpurwalla, 1974] , [Martz and Waller, 1982, 1990] , [Martz, 
Waller and Fickas, 1988] , [Mastran, 1976], [Mastran and Singpurwalla, 1978] , [Natvig and 
Eide, 1987], [Savchuk, 1989], [Springer and Thompson, 1966, 1967, 1968], [Smith and Springer, 
1976], and other. 
 An additional merit of the Bayesian approach lays in a possibility to use a mixed 
information  of testing of subsystems and units of the same system.  Consider, for instance, a 
situation where in addition to the unit test results d1, ... ,dm we also know the results of test of K 
different subsystems of the system.  These subsystems could be of series-parallel type.  During 
the tests only subsystems failures were registered, not its units.  Let Rj=Rj(p) is the PFFO of the 
lth subsystem, 1>j>K.   If the jth subsystem has a series structure then 

R p pj i
v

i m

ij( ) 
 


1
 

where  ij is the number of units of the ith type comprising the jth subsystem.  If the jth 
subsystem has a parallel structure then 
 

R p pj i
v

i m

ij( ) ( ) .  
 
1 1

1
 

 
 In addition, suppose we have information about test of Mj subsystems of the jth type and 
it is known that there were Dj failures.  The vector of the test results has the form 
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z=(d,D)=(d1, ... ,dm; D1, ... , DK) 
 
where d= (d1, ... ,dm)  is the vector of test results for units, and D=(D1, ... , DK) is the vector of 
test results for the subsystems.  As usual, all test results are assumed to be independent.  We need 
to construct, for instance, the lower confidence limit R for the system PFFO, R=R(p). 
 In the frame of the Bayesian method such problems are solved  in the same manner as for 
more simple problem where only  unit test results were known.  However, pure calculational 
difficulties can arise.  Indeed, the posterior density in this case is again determined by the 
formula equivalent to (7.172): 
 

h
h L

( | , )
( ) ( , | )

( , )
p d D

p d D p
d D




                (7.177) 

 
where L( , | )d D p  is the probability of test results (d, D)  for the given vector of parameters, p: 
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i m
l

D
l

M D
i

i i i i

l

l l l l( , | ) ( ) [ ( )] [ ( )]d D p p p  

  

 1 1
11

     (7.178) 

 

  ( , ) ... ( ) , | ...d D p d D p   
0

1

1
0

1

h L dp dpm . 

 
Now the lower Bayesian -confidence limit R for the system PFFO, R(p)=R(p1, ... ,pm) is 
determined similarly to (7.176): 
 

R p p Rm( ,..., )
...
1 

  h L dp dpm( ) , | ...p d D p 1  =. 
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9.9 Appendices 
 
9.9.1 Derivation of formulas (7.26) and (7.27) for the confidence limits in the case of arbitrary 
distribution of test results x and statistic S=S(x). 
 
Let  

R R
H S





( )*

inf ( ),      R R
H S





( )*

sup ( ),  

where set H(S*) is defined by inequalities 
t1() < S* 
t2() > S*. 

In correspondence with (7.20) and (7.25), values R and R  give the confidence interval for 
R=R() with the confidence coefficient not less than =1--. 
 Further, let us assume that the following conditions hold 
Condition A. Function R() is continuous in . 
Condition B. Functions of the form P(S < S*) and P(S > S*) are continuous in  . 
Directly from the definition of  t1() and t2() in (7.20) the following applications follow: 

t1()< S*  P (S < S*)>     (7.179) 
t2()> S*   P(S > S*) >                

and 
P(S < S*)>  t1()< S*      (7.180) 

P(S > S*) >  t2()> S*                     
Let us denote the set of parameters   that satisfy the conditions P(S < S*)> and P(S > S*) >  
by G(S*).  Introduce also the set L(S*) of parameters  that satisfy the conditions P(S < S*)> 
and P(S > S*) >. Due to (7.170) and (7.171) the following relations are valid 

L(S*)H(S*)G(S*)             (7.172) 
 
By continuity of function R() the set L(S*) is open and the set G(S*) is closed. 
 Now assume that together with conditions A and B above, the following conditions also 
hold: 
Condition C.   Minimum and maximum of function R()are attained on the set G(S*).  (This 
condition is surely holds if, for instance, the set G(S*) is restricted.) 
Condition D.  Closure L*(S*) of set L(S*) coincides with set G(S*).  
 All conditions from A through D given above are not practically very restrictive for the 
common reliability problems.  From (7.172) due to condition C the following inequalities follow: 
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It gives the following lower and upper confidence limits due to the continuity of R() and 
condition D: 

R R min ( )  

R R max ( )  

where minimum and maximum are taken over set G(S*).   It delivers the proof of the statement. 
 Notice in conclusion that formulas (7.26) and (7.27) for the confidence limits R and R  
are valid  for more general case where statistic S depends on the test results and a parameter , 
that is, S=S(x, ).   In this case inequalities (7.27) can be written in the form 
 

P{S(x, )< S(x*,)} >  
P{S(x, )> S(x*,)}> b 

 
where x*  is the observed value of random vector x. 
 
9.9.2 Computation of confidence limits for binomial testing plan. 
 
The lower -confidence Clopper-Pearson limit for the binomial parameter p (the PFFO) is 
defined from the following equation: 
 

N
jj d









 


0
(1-p)jpN-j=1- 

 
where N is the number of tests and d is the observed number of failures.  For integer N and d  the 
left part of this equation can be written also in the form 

N
jj d









 


0
(1-p)jpN-j =p(N-d, d+1) 

 
where 
 

 p

a b
p

a b

a b
x x dx

x x dx
( , )

( )

( )






 

 





1 1

0

1 1

0

1

1

1
 

 
is the beta function.   Thus, the equation for funding the lower confidence level can be written in 
the form 
p(N-d, d+1)=1- 
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The left part of this equation is defined for all positive values d<N (not necessarily integer).  
The solution of this equation relative to p is denoted by Pg(N,d).  Thus the value of Pg(N,d) is the 
lower  -confidence Clopper-Pearson limit for parameter p obtained on the basis of  N tests with 
d failures.  This limit is valid for all positive d<N, that allows one to apply it for construction of 
confidence limits for the system reliability  using various methods of “equivalent tests” (see 
Sections 7.6.1 and 7.6.2 above). 
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Problems to Chapter 7 
7.1  A series system consists of two different units. Test of N1=100 units of the first type has no 
failures, d1=0. Test of N1=200 units of the second type found  d1=4.  Construct the lower -
confidence level with the confidence coefficient not less than =0.9 for the system PFFO R=p1p2. 
7.2  Consider a series system consisting of  units of different types, m=3. The number of units of 
each type, ri, and results of tests, Ni and di,  are given in Table 7.9.   Construct the lower -
confidence level with the confidence coefficient =0.95 for the system PFFO R=p1

2
 p2p3. 

7.3 Consider a parallel system consisting of two units, m=2.  Test results are N1=10, d1=0, and 
N2=20, d2=1, respectively.   Construct the lower -confidence level with the confidence 
coefficient =0.9 for the system PFFO  

   R=1-(1-p1)(1- p2). 
7.4  Consider a parallel system consisting of units of two types, m=2.  There are n1 =2 units of 
the first type and a single unit of the second type, n2=1. Test results are N1=12, d1=0, and N2=6, 
d2=1, respectively.   Construct the lower - confidence level with the confidence coefficient 
=0.95 for the system PFFO R=1-(1-p1)2(1- p2). 
 
7.5  Consider a series-parallel system consisting of m=10 subsystems that was considered in 
Example 7.5.1 above.  Find lower - confidence level for the system PFFO by the method of 
“equivalent tests” (for  =0.9). 
7.6  Find the lower - confidence level for the PFFO of the system considered in Example 7.5.2 
above (for  =0.9) by the method of “equivalent tests”. 
 
10. Confidence Limits for  Systems Consisting of Units with Exponential Distribution of 
Time to Failure. 
 
10.1 Introduction 
 
 The methods considered in previous chapters are valid for constructing confidence limits of simple 
series or series-parallel structures.  For systems with more complex structures one uses usually different 
heuristic or approximate methods.  However the correctness of application of these methods remains unclear, 
in other words, it is it is not known if this method produces confidence limits with guaranteed confidence 
coefficient for a complex system.  The answer can be obtained by Monte Carlo simulation of the test process 
and constructing the confidence limit of a particular system for particular set of parameters.  But a specific 
solution for this particular case does not deliver any information about results for other parameters.  Moreover, 
there is no information for other types of system structures. Enumerating all the specter of structures of interest 
is practically  impossible.  Thus, Monte Carlo simulation is not the best way of validation of one method or 
another, though it is frequently used for engineering purposes in reliability analysis.   
 In this chapter we suggest  methods of constructing confidence limits that are accurate in 
the sense that for them we guarantee the confidence limit  not less some  given value  for all 
realizations of parameters.  Besides, these methods work for a wide class of complex systems, 
particularly, for systems with repair if an additional suggestion is made, namely: units have 
exponential distribution of time to failure. 
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10.2  Method of “Replacement” 
 
10.2.1 Description of the method 
 
 Let a system consist of  m different types, and the distribution of TTF of the ith unit is 
exponential:  Fi(t) =1-exp(-it) with unknown parameter, FR, i , 1im..  Assume that a test of 
the unit i was performed by the standard plan of the type [Ni, U   ri ], that is, without replacement 
of failed units, or by the plan [Ni, R  ri ], that is, with replacement of failed units.  (See details in 
Chapter 2, Section 2.1.)  The test results in the form of summarized unit testing time are Si, 
1im.  The test results are assumed independent. 
 Let R be some system reliability index and  
 

R()=R(1, ... , m)      (8.1) 
 

be a function expressing the dependence of this reliability index on element parameters  =(1, ... 
, m).    It is necessary to construct the confidence limit (for instance, for lower) for the system 
reliability R=R()on the basis of unit test results. 
 Let us introduce the notation 
 


 

i
i

i

r
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2 2
2
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                 (8.2) 

 
where 2(2ri) is a quantile of level  for the 2 -distribution with 2ri degrees of freedom,  ri is the 
number of failures of the units of the ith type, 1im.  Let us also introduce the vector 
   ( ,..., )1 m  of upper -confidence limits for the separate unit parameters.  The function 
(8.1), as a rule, is monotone decreasing foreach its parameter i.   That is, they satisfy the natural 
condition:  the system reliability decreases with decreasing unit reliability. 
 Take R as a lower confidence limit of the reliability index R: a value that is computed by 
a direct substitution of upper -confidence limit into function (8.1), that is 
 

           R=R(  ) ( ,..., ) R m1         (8.3)   
   

Since R() is monotonically decreasing in each parameter, the following relation is valid: 
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Taking into account the unit test  independence, we have 
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Therefore the lower confidence limit (8.3) has the confidence coefficient not less than the value 
of m.  This procedure of the confidence limit construction, obviously, corresponds to the 
previously considered method of rectangular (Chapter 7, Section 7.5.3). 
 This simple procedure is universal enough and can be applied always if the function R() 
is monotone.  Notice that this condition is almost always valid.  Nevertheless, confidence 
coefficient for this procedure decreases very fast with growing number of system unit types m.  
Due to this fact, this simple approach gives too conservative a confidence estimate of the system 
reliability. 
 In Pavlov (1979, 1980a, 1982) and others, it is shown that for many of the models of 
complex systems considered below (including systems with repairable units), the lower 
confidence limit of the system reliability (8.3) can be used with the preservation of the initial 
confidence coefficient  

for >1
3
2


e 0.778). In other words, the lower confidence limit of the system reliability with 

the given confidence coefficient can be done by a simple substitution of confidence limits  i  for 
unit parameters (with the same confidence coefficient) into the function (8.1). 
 This procedure will be called the method of substitution.  In many practical cases this 
method allows us to obtain a simple and effective solution immediately.  Although, as we will 
show below, sometimes this method still produces very conservative estimates of the system 
reliability (see Sections 8.5 and 8.6). 
 
10.2.2 Conditions of Method Application 
 
We will further assume that function R()=R(1,...,m) is monotone decreasing in each of its 
parameter i, 1im..  Besides for application of the replacement method we need some 
conditions of convexity of function R().  
 Function  R()=R(1,...,m)  is called quasi-concave (convex) if the region of parameters 
 of the form 
 

{:  R()() C} 
 

is concave (convex) for any constant C.  It is easy to see that convex (concave) function is 
simultaneously quasi-convex (quasi-concave) although the inverse statement is not correct.  (One 
can find details in Appendix 1 to the Chapter.) 
 In Sections 8.2 trough 8.4 we will assume that  the confidence coefficient  satisfies the 
inequality  

1-exp(-
3
2

) 0.778.  We also assume that  function R()=R(1,...,m)  is monotonically 

increasing  in each parameter   i and quasi-concave.  Then the lower -confidence limit  R  for 
R()  can be calculated by the method of replacement, that is by formula (8.3).  (See Theorem 
8.6 in Appendix to the Chapter.) 
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10.2.3 Systems with Series-Parallel Structure 
 

Series structure 
Let a system consists of m different units connected in series.  The PFFO of such system  with 
independent units is defined as 
 

R p ti
i m


 
 ( )

1
 

 
where pi(t)=exp(-it)  is the PFFO of the ith unit, 1im. This expression can be rewritten via 
parameters =(1,...,m) as 
 

R()= exp (-t i
i m1 
 )      (8.5) 

 
Function (8.5) monotone decreases in each i and quasi-concave in , since the region of 
parameters 
 

{ :  R() C} {:  i
i m

C
t1 

   ln }  

 
is convex.  So, by (8.4) the lower -confidence limit 
 for R can be calculated  as 
 

R= exp (-t  i
i m1 
 )       

 
Series Structure with replicated units 

 In an analogous manner we can consider a series structure where units of some type are 
replicated several times.  Let ri be the number of units of the ith type.  Then the system PFFO 
equals  
 

R p ti
r

i m
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1
= exp (-t ri i

i m
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 )       

 
 The lower -confidence limit  for the PFFO can again becomputed with the help of the 
substitution method as 
 

R=exp (-t ri i
i m


1 
 ).  

 
Series-Parallel Structure (Loaded Redundancy) 
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 Consider a system consisting of m parallel subsystems in series.  Each of subsystems 
consists of ni parallel identical and independent units.  Each unit has exponential d.f. of TTF with 
parameter i , 1<i<m.   In this case the system PFFO can be written as 
 

R p ti
n

i m

i  
 
{ [ ( )] }1 1

1
 

 
where  pi(t)=exp(-it).  Using vector parameter =(1, ... , m), we can write  
 

R()=exp {-f()} 
 

where f()= f i i
i m

( ).
1 
 , fi(i)=-ln {1-[1-exp(-it)] ni }. 

It is easy to show, for instance, by direct differentiation, that functions f i i( )  are monotone 
increasing and convex.  It follows that the area of the form 
 

{:  R()>C} = {:  f()- ln C} 
 

is convex.  Thus, in accordance with (8.4), the lower -confidence limit for R() can be 
calculated by the method of substitution as 

R=exp { f i i
i m

( )
1 
 }. 

 
Series Connection of Systems of Type “k out of n” 

 Consider a system consisting of m parallel subsystems in series.  Each of subsystems 
consists of ni parallel identical and independent units.  The ith subsystem failure occurs if ki or 
more units of this fails, 1<ki<ni.  Each unit again has exponential d.f. of TTF with parameter i , 
1<i<m. System described above is a particular case of this general model.  In this case the system 
PFFO can be written as 

R R pi i
i m
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1
 

where pi=pi(t)=exp(-it) and  
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1  

The system PFFO expressed via parameters  i can be written as  
R()= exp {- f ti i

i m
( )}

1 
    (8.6) 

where  
fi(it) = -ln Ri[exp (-it)]  (8.7) 

 
It easy to show by direct differentiation that each in functions (8.7) is monotone increasing and 
convex in i.  Notice that convexity of these functions follows from the known fact that a system 
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of type “k out of n”, consisting of identical units with exponential d.f. of TTF, has IFR 
distribution of TTF.   Moreover, this fact is also correct even for systems of such type consisting 
of identical units with IFR d.f. of TTF (see Barlow and Proschan, 1965).  From here by 
definition of IFR distribution, it follows that each function in (8.7) is convex in t and, 
consequently, in i for fixed t. 
    It follows that (8.6) is monotone decreasing in each i and quasi-concave in .  Thus, the 
lower  -confidence limit  for R() can be calculated with the help of the method of substitution 
as 
 

R f ti i
i m

 
 
exp{ ( )}

1
 

 
Series-Parallel Structure (Unloaded Redundancy) 

Consider a system consisting of m parallel subsystems in series.  Each of subsystems consists of 
ni  identical and independent units, one of them main and other spare (unloaded redundancy).  
TTF of the ith subsystem represents the sum of i.i.d. exponential r.v.’s with parameter i , 
1<i<m: 
 

 i j
j ni
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where j is TTF of unit j of subsystem i.  The PFFO for the ith subsystem has the form: 
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The system PFFO is determined as 
 

R R t t
i m
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where 
 

   i i i it R t( ) ln ( ).    (8.8) 
 
It is easy again verify that each of functions (8.8) is monotone increasing and convex in i.   
Notice that the convexity is follows from the fact that the sum of i.i.d IFR distributed r.v.’s has 
IFR distribution (see Barlow and Proschan, 1965).  Thus we again obtained that the lower 
confidence limit for R() can be calculated with the help of the method of substitution as 
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10.3 Systems with Complex Structure 
 
10.3.1 ”Recurrent” Structures 
 
For all previously considered systems, we assumed that units within a redundant group are 
identical to the main ones.  Now consider a now more general case where the number of 
redundancy levels is arbitrary and redundant units might differ from main ones. 
 Consider, at first, a separate redundant group consisting of n units.  If 1, ... , n are the 
unit failure rates, then the PFFO for loaded redundancy for this redundant group is 
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i n
   

 
1 1
1

( )   (8.9) 

 
Further instead of (8.9) we will use an approximate formula for highly reliable groups, that is for 
t n

i
i n


1 
 <<1, 1<i<n: 
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This formula gives the lower estimate for index R for all 1, ... , n (Gnedenko, et al., 1965). 
 In an analogous way, one can obtain an expression for unloaded redundancy.  Instead of 
the clumsy and practically useless formula 
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we will use an approximation 
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  (8.11) 

 

which gives the lower estimate for index R for all 1, ... , n  if 
t
n

n

i
i n!


1 
 <<1 (see Gnedenko, et 

al., 1965) and delivers the lower limit for PFFO.  
 Let a system consist of n units.  The system PFFO for some given time t has the form 
 

R=H(p1, ... ,pn) 
 

where  pi=exp (-it),  i is the FR of the ith unit.  The system PFFO, expressed via parameter 
=(1, ... ,n) can be written in the form 
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R=R()=R(1, ... ,n)    (8.12) 
 
where R(1, ... ,n)=H[exp(-1t) ... exp(-nt)]. 
 Introduce operation S(i,n) of substituting the subsystem of n units with FRs  1, ... ,n 
instead of the ith unit.  PFFO After this substitution can be written in the form 

R=R[1, ... ,i-1, (), i+1, ... , m]   (8.13) 
 

where ()=-(1/t)ln(), () is the PFFO of the new subsystem, =(1, ... ,n). 
 Let S1= S1(i,n) denote the operation where the subsystem is series.  For this operation 
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and transformation (8.13) has the form: 
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 j
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  (8.14) 

 
Let now S2= S2(i,n)  denote the operation where the subsystem is parallel.  For this case, if 
redundancy is loaded, due to (8.10) we have 
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If the redundancy is unloaded then by (8.11) 
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Thus, transformation (8.13) for operation S2  has the form: 
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for loaded and unloaded redundancy, respectively. 
 Let us say that a system has recurrent, or reducible structure if it can be obtained from 
some series structure by sequential application of procedure S1 and S2  in finite number of 
iterations.  Structures of such type were considered in Section 7.6.3.  Obviously the class 
recurrent structures includes series, parallel, series-parallel and parallel-series structures as 
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particular cases.  More sophisticated  recurrent structure is depicted in Figure ???.1. where 
numbers denote unit types.  There are no restrictions on the number of levels of “recurrence” or 
on  the identity of main and redundant units.  Let us introduce a class of functions of the 
following type: 
 

R Ai
i M

( ) exp(  
 


1
 j

n

j G

ij

i

)

  

 
where Ai>0, i=1, ... ,M,  nij are arbitrary  integer positive numbers, Gi, i=1, ... ,M are arbitrary  
(possibly intersecting) subsets of subscripts from set {1, 2,  ... ,m}. 
 Assume that some recurrent structure has reliability function of type (8.16).  Then 
application of operations S1 or S2 to each of its units corresponds to the substitution of some 
parameters j in the initial expression by sums of type (8.14) or products of type (8.15) that again 
produces formula of type (8.16) though from larger number of variables.  Notice that the 
reliability function of a series system 
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obviously is function of type (8.16).  It follows that for any recurrent structure the reliability 
function has the form (8.16). 
         Thus the lower confidence limit for the PFFO of the system with recurrent structure of type 
(8.16) is reduced to the construction of the upper confidence limit for the function of type  
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where Ai are positive coefficients, Gi are arbitrary subsets of unit’s subscripts.  Notice that if we 
have prior information about identity of some units within the system, function (8.17) again 
transforms to another function of the form of (8.17) but with smaller number of parameters.  
Function (8.17) of general type is not quasi-convex or quasi-concave in =(1, ... ,m).  
Nevertheless, as Pavlov (1982)  showed (see p.2 of Appendix to the chapter, Theorem 8.7), the 
upper -confidence limit for function of type (8,17) can be constructed by the method of 
substitution, that is, with the help of formula 
 

f f Ai
i M

 
 
( )

1
 j

n

j G

ij

i
  (8.18) 

 
where    ( ,..., )1 m  is vector of standard upper -confidence limits for unit parameter [here 
>1-exp(-3/2)].  It means that - lower confidence limit for the PFFO of recurrent structure, that 
is the index of type (8.16) can be also constructed with the help of the method of substitution as 
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R R R m ( ) ( ,..., )  1  
 

Example 8.3.1.    Consider a system with a recurrent structure depicted in Figure 8.1. 
 

Figure 8.1 
 

The number of different unit types is equal m=16.  All redundant units are in loaded regime.  
Test results for different unit types, ri, Si, 1<i<m, are given in Table 8.1. 

Table 8.1 
 
This table also contains upper 0.9-confidence limit, i  for parameters i.  Application of the 
method of substitution in this case gives the lower confidence limit with confidence coefficient 
not less than 0.9 for the system PFFO (for t=1) equal to R=0.953.■ 
 
Example 8.3.2.  Consider a system with the same input data as above but for the condition that 
all redundant units are in unloaded regime.  In this case the method of substitution gives 
R=0.963.■ 
 
10.3.2 Monotone Structures 
 
 A wide class of real systems can be described with the help of model of monotone 
structure (see Section 4.2 above, and Barlow & Proschan, 1965).  Let a system consists of m 
units each of which is characterized by the failure probability during time t :  qi=1-pi =1-exp(-
it), 1<i<m.  Let us introduce the following notation: 
Hi {1, 2, ... ,m} = a set of unit’s subscripts belonging to a system’s minimum cut i, 
Ci = an event that the ith units has failed, 
B Ci j

j Hi



 = an event that all units belonging to a system’s minimum cut i have failed, 

B = an event that the system has failed. 
 
 In this notation the probability of system failure, Q, can be written in the form 
 

Q P B P Bi
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where M is the total number of system’s minimum cuts. 
 For the case of highly reliable systems (it<<1) the following approximation can be used: 
qiit.  Notice that  it gives an over estimate of qi.  From (8.19) in the case of independent units, 
we have 
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This approximation is valid under assumption that the probability of two or more failures of  cuts 
is negligibly small.  Notice that (8.20) gives an over estimate for Q:  
 

Q q t
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i
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Thus, for highly reliable systems the confidence estimation of Q from above is reduced to the 
construction of the upper confidence limit for 

 
Q t
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i

i M i


 
 ( )

1
 (8.21) 

 
where Hi  are some (in general case intersecting) subsets of unit’s subscripts .  For series-parallel 
system each of  parameters i belongs to only on of product in (8.21).  In other words, each unit 
belongs to only one system’s cut.  For complex systems, each unit might belong to different 
intersecting  cuts.   
 Sometimes we can assume in advance that  some units within the system are identical, 
i.e., have same reliability parameters.  In this case  (8.21) for the system failure probability has 
the form 
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ij
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1
 (8.22) 

 
where nij is the number of identical units with equal parameter  i  in cut Hi.  (8.21) is a particular 
case of (8.22). 
 Thus, for the case of highly reliable systems the problem (with the approximation made 
above) is reduced to the construction of the upper confidence limit of function of type (8.22).  
This function has the same form as (8.17) considered in the previous section.  For the latter we 
showed that (8.18) can be used for the upper confidence limit calculation.  So, for arbitrary 
complex monotone structures upper -confidence limit for the probability of system failure can 
be calculated (if 1-exp(-3/2) by the method of substitution with the help of formula 
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10.4 Systems with Repairable Units 
 
 For  repairable systems we often meet a situation where the system MTTF  is much larger 
than mean time of renewal.  Usually  it is easier to estimate renewal (repair) time than MTTF, 
because it can be done by special and simple experiments.  We will assume that the mean 
renewal time is known with accuracy. 
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10.4.1 System with a Series Structure 
 
Let a system consists of n units in series. The d.f. of the ith unit’s TTF is assumed exponential 
with unknown parameter  i, that is, MTTF of this unit is equal to Ti=1/i. The mean renewal 
time, ai,  is assumed known.  All units are assumed independent in sense of failures and repair.   
 Consider the construction of upper confidence limit for main system reliability  indices 
for this case.  The most widely used reliability index in this case is stationary availability 
coefficient, the probability that the system is in up state at the arbitrary stationary moment  of 
time t (t).  The availability coefficient of each unit  i is determined by well known formula: 
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T ai i
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For independent units the system’s availability coefficient has the form 
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where T=(T1, ... ,Tm). 
 Since repair parameters are assumed known, the problem is reduced to the confidence 
estimation of (8.23)  depending on unknown parameters T=(T1, ... ,Tm).  Introduce now a 
vector of the lower confidence limits for unit parameters : T  ( ,..., )T T m1  where 
 

T
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is  the lower -confidence limit  for parameter Ti, 1im.  As it is shown below (see  p.1 of 
Appendix to the chapter , Theorem 8.4), lower -confidence limit for reliability index R=R(T) 
can be calculated by the method of substitution (for 1-exp[-3/2]), that is by formula 

 
R R R T T m ( ) ( ,..., )T 1  

 
if function R T T m( ,..., )1 is monotone increasing in each Ti and quasi-concave in vector T.  It is 
easy to see that reliability index (8.23) satisfies all this conditions.  Indeed, monotone increasing 
of K(T) in each Ti is obvious.  Besides, by direct differentiating we can prove that function 
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is concave in Ti.  Thus, the area of parameters 
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{ :T  K C( ) }T   { :T  ln ( ) ln }K T Ci i

i m


 


1
 

 
is convex, and, consequently, it follows that  function K(T) is quasi-concave.  So, lower -
confidence limit 
 for the system availability coefficient (8,23) can be calculated by the method of substitution as 
follows 
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Analogously, we can prove that this method is valid for confidence estimation from above for 
other main reliability indices.  Consider  the coefficient of operative availability probability of 
failure free operation  on time interval (t, t+ ) in stationary regime for t.  This reliability 
index has the form 
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 Another standard reliability index, MTBF, has the form 
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It is easy to see that functions K(T)and L(T) are monotone increasing in each Ti  and quasi-
concave in T.  So, lower -confidence limit for each of these reliability indices can be calculated 
by the method of substitution as follows 
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10.4.2 Series-parallel system with loaded redundancy. 
 
 Consider a system consisting of m subsystems (redundant groups) in series.  Each group 
consists of ni+1 identical units in parallel.  All failures and renewals are independent.  TTF of 
unit i has exponential d.f. with unknown mean Ti.  The mean repair time for each group is known 



 

290 
 

and equal ai.  Random repair time has an arbitrary d.f.  The repair process for all units is 
independent, that is, repair(replacement) on all units begins immediately after failure. 
 In the frame of assumption made above availability coefficient of each unit of type i  

equals 
T

T a
i

i i
,   1<i<m. For the ith group we can write 
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In this case (see Gnedenko, et al., 1965, Section 2,4 and 6.2) the MTBF of each redundant group 
can be found as 
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It follows (see ibid., Section 2.4) 
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 Consider the PFFO on a time interval of the length . Let us denote random TTF (in 
stationary regime) of the ith redundant group by i.  The d.f. of this r.v. in general differs from 
exponential if (ni+1)  2.  Nevertheless (ibid., Section 6.2), if the group MTBF is much larger 
than mean repair time, that is li(Ti)>>ai, then d.f. of r.v.   i is approximately exponential : 
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therefore stationary PFFO for the system as a whole can be calculated  by formula 
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where li(Ti) is calculated by (8.25). 
 Coefficient of operative availability (unconditional stationary probability of failure-free 
operation on interval of length ) can be found from 
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Main reliability indices, such as K(T), L(T), K(T) and P(T) are monotone increasing in Ti can 
be seen directly from the above equations.   In p.3 of the Appendix to this chapter, we show that 
all these functions are quasi-concave in vector T=(T1, ... ,Tm).  Therefore the lower confidence 
limits for them (for >exp{-3/2}) can be calculated  by the method of substitution as K=K(T), 
L= L(T), K= K(T) and P=P(T). 
 
10.4.3 General model of series connection of renewal subsystems 
 
 Results obtained above can be expanded on a wider class of systems. Consider a system 
consisting of m subsystems in series.  All failures and renewals are independent.  Let subsystem i 
consists of Ai+Bi+Ci  identical units with same unknown parameter - MTBF Ti.  Among these 
units, Ai of them are main, Bi are loaded redundant units, and Ci are unloaded redundant units.  
There are Di repair facilities each of which can repair a single failed unit in a time.  The mean 
time of repair of unit i equals ai, 1<i<m.  For this model we assume that d.f. of random TTF as 
well as that for repair time are exponential.   
 The subsystem i is in operational state if at least Ai its units are in up state.   Stochastic 
process Ni(t), describing changing the number of non-failed units within ith subsystem, is a 
Birth-and-Death process.  The ith subsystem failure corresponds to the moment when process 
Ni(t) crosses the threshold ni=Bi+Ci from below.  Processes Ni(t), 1<i<m, are independent.  The 
system has failed if at least one subsystem has failed. 

 Consider the process for Ni(t).  Transitive intensity from state k to state k+1 equals   
 ki

iT
 

and from state k to state k-1 equals  
ki

iT
 where coefficients ki and ki  are defines by values Ai, 

Bi, Ci and Di and also by the regime of repair and replacement within the ith subsystem.   
Assume, for example, that subsystem i operates in the following manner.  If a main unit has 
failed, it is replaced by a unit from unloaded redundant group.  If loaded redundant unit has 
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failed or is directed for replacement of failed main unit, an unloaded unit takes its place.  
Repair of failed units begins immediately. Coefficients ki and ki for such a model are defined 
as:    
      
                                Ai+Bi,    k<Ci 
                      ki    =    
                               Ai+Bi+Ci,    k>Ci 
 
 
                                 ki,    k<Di 
                       ki   =    
                                Di,    k>Di. 
 
 
 
 
 

It is easy to write down transitive intensities for other possible regimes. 
 Let us evaluate main reliability indices, using known results from theory of stochastic 
processes.  Let ki be the stationary probability that  Ni(t)=k.  This value is determined (see, for 
instance ibid, Section 6.3): 
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where Zi=Ai+Bi+Ci  is the total number of units in the ith subsystem, and coefficients cki are 
defined via  ki and ki as 
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, ,     1<k<Z. 

 
Availability coefficient of subsystem i is the stationary probability that the number of failed units 
has not exceeded the system failure level ni: 
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Thus, availability coefficient of subsystem i represents a ratio of polynomials with positive 
coefficients 
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 (8.26) 

 
where cki>0.  The system availability coefficient is defined as 

 
K(T)=
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i m
Ki(Ti) (8.27) 

 
Formulae (8.23)-(8.24) are particular cases of (8.26)-(8.27). 
 The MTBF of subsystem i, that is process Ni(t) transition time  from state ni to state ni+1 
is given by (see ibid., Section 6.3): 
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For the system as a whole, the MTBF (for stationary regime) is determined as 
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Distribution of TTF of the system or its individual subsystems is not, in general, exponential, 
though the exponent d.f. gives a good approximation.  For instance, system’s availability 
coefficient for time interval  has the form of the following approximation (see Gnedenko and 
Ushakov, 1995) 
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where characteristics of  individual subsystems are defined by (8.26) and (8.28). 
 Stationary  system PFFO on time interval  is equal to  
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 Consider the moment t=0 where all system’s units are operable.  The mean time of the 
transition of  process Ni(t) from state 0 to failure state ni+1 is determined by 
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(see Gnedenko, et al., 1965,  Ushakov, ed., 1994) which after changing the order of summation 
gives 
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where coefficients  Eri  are defined as 
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The system PFFO  on time interval (0,) can be calculated by approximate formula 
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where characteristics if individual subsystems l Ti i

0 ( )  are found from (8.29). 
 All the main reliability indices: K(T), K(T), P(T), L(T)  and P0(T) are monotone 
increasing in each Ti  as it can be seen directly from corresponding formulas.  In addition (see 
p.3 to Appendix to the chapter) all of these functions are concave in vector T=(T1, ... ,Tm).  Thus, 
lower -confidence limit  (for  > 1-exp(-3/2)) for those reliability indices can be calculated by  
substitution method as K=K(T), K=K(T), P=P(T), L=L(T)  and P0=P0(T).  It allows one to 
calculate the lower confidence limits of main reliability indices for sufficiently general models of 
renewable systems.  
 
11. hnnnn 
11.1 iiiiii 
11.2  
11.3  
11.4  
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11.5 Method of Fiducial Probabilities 
 
11.5.1 Introduction and method description 
 
  As before in this chapter, we assume that system units have exponential d.f of TTF and the 
test of units of type i continues up until ri failures. Test is assumed to be performed in accordance 
with plans [Ni U ri] or [Ni R ri], 1<i<m.  Let Si be the total test time of units of type i.  R.v. Si has 
gamma d.f. of the form 
 

 
where i is unknown parameter of failure rate of unit of type i. 
 For each fixed Si, (8.30) considering as a function of parameter i possesses all formal 
properties of d.f. in respect to parameter i.  Let S*

i be observed value of r.v. Si obtained in the test. 
For given fixed value S*

i  we consider parameter i as a r.v. with d.f.  
 

 
Defined in such a way d.f. (8.31) of parameter i  is called fiducial (see also Section 7.6.4 above).  
Corresponding density of fiducial distribution of parameter i   has the form 
 

 
that is, it is a density of standard gamma distribution with parameters (S*

i, ri). 
 Let, further, R be a reliability index which is a function  
 
 R=R( )=R( 1, ... , m)  (8.32) 
 
of unit parameters =( 1, ... , m)  where m is the number of different system unit types.  Let also 
S*=(S*

1, ... ,S*
m)  be a vector of test results for different types of units.  As above, test results for 

different unit types are assumed independent.   
 For given fixed S* let us consider reliability indices (8.32) as a function of independent r.v.'s 

i with fiducial d.f.'s (8.31) mentioned above.  Corresponding fiducial d.f. of R for given S* has the 
form 
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where i(Si

*, i) is mentioned above fiducial densities of parameters i.  The lower and upper 
(one-sided) fiducial limits with confidence coefficient , R and R  for system reliability index 
R=R( ) is defined from conditions 
 

 
that is, as corresponding quantiles of fiducial d.f. of r.v. R.  D.f. (S*,R) and limits R and R  can be 
easily found with the help of Monte Carlo simulation. 
 As we mention in Section 7.6.4, in multi-dimensional case, where  m>1, the fiducial method 
is approximate in the sense that the  fiducial limit constructed by this method  (for instance, upper) 
R  may not be with confidence coefficient equal to .  Its real confidence coefficient might be 
essentially smaller than .  As a simple example, illustrating this fact, coincide the following. 
 
Example 8.5.1  Let reliability index has the form R=R( ) 
 
  R= min ( 1, ... , m)    (8.33) 
 
and we need to construct the UCL for R.  This task can be interpreted as follows. Reliability index 
(8.33) has the sense of the best (minimum) parameter of failure rate among the unit failure rates of 
different types.  Thus, we need on the basis of results of independent unit tests of m different types 
to construct UCL of failure rate for the best (most reliable) unit type. (We do not know in advance 
which unit type is the best.)  
 Let us apply for solving this problem the fiducial method considered above.  In accordance 
with this method, parameters i are assumed independent r.v.'s with d.f.'s (8.31).  Corresponding 
fiducial d.f. reliability index (8.33) has the form 
 

 
So, the upper fiducial limit, R , with confidence coefficient , for reliability index R is determined 
from  
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 Notice that standard -UCL i  (coinciding with the upper  fiducial limit) for each individual 
parameter i is determined from  
 

 
Left sides of (8.34) and (8.35) satisfy inequality 
 

 
for all t>0.  From here inequality 
 

 
for all 1<i<m.  So, 
 

 
and it follows the following inequality for the confidence probability 
 

 
Take in this inequality 1= ... = m, we obtain that in this case confidence probability satisfies 
inequality  
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from here it follows that then upper fiducial limit has confidence coefficient not larger than m.  
Form instance, for m=10 and =0.9 factual value of confidence coefficient is not larger than value 

m 0.35.■ 
 Thus, in this example using the fiducial method for confidence estimation of reliability 
index is incorrect because it leads to essential increasing of reliability (the larger, the larger the 
problem dimension is, that is, the larger is the number of types of units). 
 
Remark 8.5.1.  In example considered above, value 

i
imin  is equal to UCL for R, calculated in 

accordance with the method of "substitution".  Due to this, from analogous arguing we can show 
incorrectness of application for this example the method of substituting.   
 
 Thus, application of fiducial method for confidence estimation of complex system might 
lead, in general case, to essential errors.  Therefore  the application of this method to one or another 
concrete situation is needed to be verified.  Further we will show, using results (Pavlov, 1980b, 
1981a,b), that the application of the fiducial method is correct for sufficiently wide class of complex 
systems for confidence estimation of system reliability index from below  (that is most important for 
practice).   
 
 
 
 
 
11.5.2 Conditions of the method correctness 
 
 Let 
 R=R( )=R( 1, ... , m)  (8.36) 
is a function expressing the dependence of system reliability index R on parameters of units =( 1, 
... , m).  Consider the question for each reliability index (8.36) it is possible to state that the 
application of the fiducial method for confidence estimation is correct (or, in other words, that the 
fiducial limit for R is simultaneously -confidence limit for this reliability index). 
 It is convenient to write (8.36) in the form 
 
 R= exp {-f( )}.   (8.37) 
 
Estimate R  from below is reduced to the estimation of function f( )=f( 1, ... , m) from above.  Let 
us introduce new parameters z=(z1, ... ,zm)  where zi= ln i, 1<i<m. 
 Assume that the following main condition holds. 
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Condition A. Function f( ) expressed via parameters z=f(z1, ... ,zm), that is, function 
 

 
is convex in z. 
 Then the upper fiducial limit, f , for f( ) is simultaneously -UCL, that is, has the 
confidence coefficient not smaller than  (see the proof in p.4 of App). In other words, if condition 
A holds, the use of the method of fiducial probabilities is correct for confidence estimation of f( ) 
from above.  (It corresponds to estimation of reliability index (8.37) from below.) 
 Let us now show that condition A (function (8.38) convexity) is valid for satisfactory wide 
class of complex systems, including systems with recurrent structures and with renewal. 
 
11.5.3 Systems with series-parallel system 
 
 Consider a system consisting of m subsystems in series.  Each subsystem i consists of ni 
identical units in parallel, each unit is characterized by failure rate i, 1<i<m.  The redundant units 
regime might be any: loaded or unloaded.  Let us assume that within subsystems with subscripts 
1<i<l redundant units are unloaded, and within subsystems with subscripts l+1<i<m redundant units 
are loaded.  The system PFFO during time t0 can be written in the form 
 

 
where hi( i) is the PFFO of the ith subsystem which depends on the redundant unit regime.  For a 
subsystem with unloaded redundant units, the PFFO can be written as 
 

 
and for loaded redundant units as 
 

 
Obviously, (8.39) includes as particular cases systems with all loaded or all unloaded redundant 
units.  It is easy to check by a direct differentiation that for both types of redundancy function 
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is monotone increasing and convex in i, 1<i<m.  Consequently, system reliability index (8.39) can 
be written as 
 
 R( ) =exp {-f( )} 
 
where 
 

 
is the sum of monotone increasing convex functions.  It follows that function 
 

 
is convex in z, that is, Condition A holds.  It means (see Section 8.5.2) that the fiducial method can 
be used for confidence estimation of f( ) from above, or for confidence estimation of reliability 
index (8.39) from below. 
 
Example 8.5.2.  Consider series-parallel system consisting of m=10 subsystem in series. Within 
subsystems from 1 through 4, redundant units are unloaded, and within subsystems from 5 through 
10, redundant units are loaded.  The numbers of units in subsystems, ni, and the test results (the 
number of failures, ri, and the total test time, Si) are given in Table 8.2. 
 We need to construct the LCL with confidence coefficient =0.95 for the system reliability 
index (8.39) for t0=1. 
 
 Table 8.2 
 
The use of the method of fiducial probabilities in this case gives R0.95=0.856.  Notice that the 
method of substitution, considered above, gives for the same case essentially worse lower limit: 
R0.95=0.786. ■  
 
Example 8.5.3.  Consider the same system as in the previous example with the difference that all 
subsystems are consisted of unloaded redundant units. In this case the method of fiducial 
probabilities gives R0.95=0.918, and the method of substitution 
R0.95=0.876.  ■ 
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11.5.4 Systems with complex structure 
 
 As we mentioned above (see Section 8.3), the confidence estimate of a system with complex 
structure can be reduced to the construction of UCL of function  
 

 
where Ai are positive coefficients, Gi is some (in general case, intersecting) subsets of subscripts, 
Gi (1, 2, ..., m) where m is the number of different types of units within the system, j is failure 
rate of unit j (see formulas (8.17) and (8.22) above). 
 Function (8.40), written via parameters zj=ln j, 1<j<m, has the form 
 

 
This function is convex in z=(z1, ... ,zm) because it represents the sum of convex functions, that is, 
Condition A above holds.  Thus, the UCL for reliability index of type (8.40) can be constructed by 
the method of fiducial probabilities.  It means that this method is correct for confidence estimation 
of complex system PFFO from below. 
 
11.5.5 Systems with renewal 
 
 Consider at the beginning a system with independent renewal, i.e., a failed unit begins to be 
repaired immediately after its failure. Let a system consist of m subsystems in series.  Each 
subsystem i consists of ni identical redundant units in parallel.  Processes of failure and renewal in 
all subsystems are independent. 
 Unit's TTF and unit's intensity of repair have exponential d.f. with parameters i and i, 
respectively, 1<i<m. 
 Parameters =( 1, ... , m) and =( 1, ... , m) are unknown but there are test results:  the 
total test time for unit i, Si, up to the occurrence of ri failures, and the total time of repair Vi of li units 
of this type.  In other words, each Si and Vi represent the sum of corresponding r.v.'s.  Notice that 
these test results might be obtained in the result of unit tests, test of a system as a whole, or as a 
combination of data of both types of testing. 
 System's reliability index is a function of mentioned parameters 
 
 R=R( , )=R( 1, ... , m, 1, ... , m)  (8.41) 
 
We need to construct the confidence limit (lower or upper) for reliability index (8.41) based on the 
tr. Systems with renewal are quite different from systems without renewal.  They are characterized 
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by different reliability indices.  Nevertheless, from formal viewpoint, parameters i are same 
"exponential" parameters like i.  Therefore all results obtained above for systems without renewal 
can be extended to systems with renewal. 
 We again write reliability index (8.41) in the form 
 
 R=exp{-f( , )}. 
 
Estimation of R from below is reduced to estimate of function f( , )=f( 1, ... , m, 1, ... , m)  from 
above. 
 Introduce parameters: zi =ln i and yi= ln i, 1<i<m.  As above, denote z=(z1, ... ,zm) and 
y=(y1, ... ,ym).  Condition A given in Section 8.5.2 in this case transforms into the following. 
 
Condition A'.  Function f( , ) expressed via parameters (z,y), that is  
 

 
is convex in (z,y). 
 The condition of applicability of the method of fiducial probabilities for confidence 
estimation of renewal system reliability indices is formulated in a way similar to above.  If 
Condition A' holds, then the upper fiducial limit for f( , ) is simultaneously -UCL (see the proof 
in p.4 of App). In other words, if condition A' holds, the use of the method of fiducial probabilities 
is correct for confidence estimation of f( , ) from above.  (It corresponds to estimation of 
reliability index (8.41) from below.) 
 Condition A' is valid for many practical cases.  For instance, one of the most frequently used 
reliability index for renewal systems is availability coefficient.  For the case of independent unit 
repair and failures 
 

where Ki( i, i) is availability coefficient of subsystem i which is defined by (see Section 8,4,2 
above) 

 
reliability index (8.42) can be presented in the form 
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where 
 

 
and in turn 
 

 
confidence estimation of availability coefficient from below is reduced to the construction of the 
UCL for function (8.43).  This function can be written via parameters (z,y)in the form 
 

where  

 
By direct differentiation we can show that functions i(u) are convex  in u, 1<i<m, and the 
convexity of function (8.44) follows.  Thus, Condition A' holds and, consequently, -UCL f  for 
f( , ) can be calculated by the fiducial method.  After this, the -LCL for the system availability 
coefficients calculated by 
 

Example 8.5.4.  Let a system consists of m=10 subsystems in series. The number of units within 
subsystems, and test results (that is, values of Si, ri, Vi, li) are given in Table 8.4. 
 We need to construct the LCL for the system availability coefficient (8.42) with confidence 
coefficient =0.9. 
 
 Table 8.4 
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In this case, the use of fiducial method gives the LCL K0.9=0.678.■ 
 
 Consider now construction of the LCL for another standard system reliability index with 
renewal, the MTBF (in stationary regime).  For the model with independent renewal, this reliability 
index is defined by formula (see Section 8.4.2 above, and Gnedenko et al., 1965, Ushakov, 
ed.(1994): 
 

 
Confidence estimation of L  from below is reduced to construction of UCL for  
 

 
In the most interesting for practice cases of highly reliable systems where i<< i for all i, from 
(8.45) it follows the following approximation 
 

 
Expressing this formula via parameters (z, y) , we have 
 

 
This function is convex in (z,y).  Thus, Condition A' holds and the UCL, f , for f( , ) can be 

calculated by fiducial method. After this the LCL for the system MTBF, L, can be found as L
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 In analogous way, we can show the correctness of fiducial method for confidence estimate 
from below another standard reliability index, operative availability coefficient, K .  Remember that 
this reliability index presents the probability of successful operation during interval  in stationary 
regime.  For highly reliable systems ( i<< i) the following approximation is valid: 
 

 
where K and L are availability coefficient and MTBF of the system.  Using previous formulas, we 
can rewrite the latter formula: 
 

 
where f( , ) being expressed via parameters (z,y) takes the form 
 

 
This function id convex in (z,y), so it follows that the LCL for K  can be constructed by the fiducial 
method. 
 In analogous way, on the basis of Condition A',  we can show the correctness of the fiducial 
method for confidence estimation from below standard reliability indices like the availability 
coefficient, K,  operative availability coefficient, K , MTBF, L, for a general model of series-
parallel system with renewal (see Section 8.4.3). 
 
11.6 Method of "Tangent" Functions 
 
 Consider one more approach, which is more complex in sense of computations but allows, 
in particular, to improve the fiducial method. Besides this approach is sufficiently general and can 
be applied not only to considered in this chapter "exponential" case, that is,  where a system 
consisting of units with exponential d.f. of TTF. (See Remark 8.6.1 below.) 
 Let f( )=f( 1, ... , m) be a system reliability index where i is failure rate of a unit i.  Again 
introduce new parameters  
zi=ln i , 1<i<m and assume that function  
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is convex in z=(z1, ... ,zm) . As  we show above, this condition holds of many standard reliability 
index and models of complex systems. 
 Consider a class of all linear functions of type  
 

 
where b=(b0,b1, ... ,bm) is vector of coefficients and  
B={b:  - <bi< , 1<i<m}. 
Since function (8.46) is convex, it can be presented as maximum in some subset of linear functions 
of the type (8.47), that is, 
 

 
where  B' B.  Obviously, that function hb(z) has the sense of tangent "planes" for function ~( )f z . 
We call functions hb(z)  "tangent functions" for function ~( )f z .  
 Denote by b(z) B' vector of coefficients for which (for given fixed z) maximum in (8.48) 
attains, that is, 
 

 
Let h h Sb b ( )  is the upper fiducial limit with confidence coefficient  for function hb(z)  for 
given vector of test results S=(S1, ... ,Sm)  .  Value hb  simultaneously represents the -UCL for 
hb(z)  (see p.4 of App).  Denote also by f f S ( )  the upper fiducial limit for f.  From (8.48) 
follows inequality  
 

 
for all z. It follows inequalities for fiducial limits 
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for all S.  So, Inequality 
 

 
holds for all S.  Introduce  
 

 
which we call a "confidence majorant".  Taking into account (8.49), we have for arbitrary fixed z 
 

 
that is, H(S) is -UCL for function f. Due to (8.50) Inequality 
 

 
holds for all S. 
 The latter Inequality shows, first, that the upper fiducial limit f S( )  presents the -ULC for 
f because of H(S) is such a limit. It proves the correctness of the use of the fiducial method for 
confidence estimation from above (if condition of convexity of function (8.46) holds).  Besides, 
from (8.52) follows that -UCL H(S)  is better (for all test results S) in comparison with the upper 
fiducial limit f S( )  with confidence coefficient . 
 The precise calculation of a "confidence majorant" H(S)  is sufficiently complicated if 
maximum in (8.48) and (8.51) is taken over infinite set B'.  Nevertheless, convex function ~( )f z  can 
be always presented approximately with the given in advance accuracy in the form of maximum 
over a finite set of "tangent" linear  functions: 
 

 
After this "confidence majorant" is calculated by formula 
 

 f h , 
B

sup( ) (S S)
b

b
 

   (8.50) 

 H = h , 
B

sup( ) (S S)
b
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   (8.51) 

 P H f = P h h
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 f H( (S) S)    (8.52) 
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where each of confidence limits h Sj ( )  for individual "tangent" linear functions hj(z), 1<j<N, is 
calculated  (if it is  impossible to do analytically), for example, by a common fiducial method with 
the help of Monte Carlo simulation.   
 This procedure of confidence limits construction for H(S) is called method of "tangent 
functions", or method of "confidence majorant".  Thus, if the condition of function (8.46) convexity 
holds, then method of tangent functions allows to improve confidence estimation of function f from 
above in comparison with fiducial method.  (See examples below.)  Remember that it corresponds 
to the confidence estimation of the system PFFO from below (see Section 8.5). 
   
Example 8.6.1.  Consider the system from Example 8.5.2.  Fiducial method gives R0.95=0.856.  
Method of "tangent functions" gives R0.95=0.914.  ■ 
 
Example 8.6.2.  Consider a series-parallel system with renewal, similar to that in Example 8.5.5.  
Let the system consists of m=4 subsystems in series.  Each subsystem consists of ni parallel identical 
units.  A failed unit is repaired immediately after its failure independently on the state of other units. 
All needed data for this example are in Table 8.5. 
 We need to find LCL with confidence coefficient not less than =0.95 for the system 
availability coefficient  
 

 
Fiducial method gives K0.95=0.533, and method of "tangent functions" gives K0.95=0.686.  ■ 
 
Remark 8.6.1.  It is easy to see that method of "tangent functions", suggested by Pavlov (1981a,b, 
1982, pp.157-159), can be applied not only for "exponential case", investigated in this chapter.  Let 
us consider a general function 
 

 
reflecting the dependence of reliability index f from vector of parameters =( 1, ... , m), where i 
is parameter of unit reliability.  We need to construct -UCL for f on the basis of test results x.   
 Assume that there is a basis set of the "tangent functions" 
 
 hb( )=hb( 1, ... , m),   b B  (8.54) 

 H = h ,...,h }.N( max{ ( (S) S) S)1  
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such that function (8.53) can be represented in the form of maximum over some subset of "tangent 
functions".  In other words, for arbitrary  inequality 
 

 
where B' B, and maximum (8.55) is attained on some b( ) B' for arbitrary b.  Assume also that 
for each of "tangent functions" hb( ) -UCL h h xb b ( ) ,  bB,  can be constructed.  Then value 
 

 
gives -UCL for function (8.53). 
 The proof of this fact is completely similar to that for "exponential" case.  The problem is in 
"optimal" (more precisely, rational) and choice of a sufficiently constructive  class of "tangent 
functions" (8.54) for a concrete situation.  
 
 In conclusion note that all three main methods (substitution, fiducial and "tangent 
functions") represents a set of methods each of which improves a previous one but consumes more 
calculating time.  Method of substitution needs calculation of function f( ) only in a single point 

=  in the space of parameters .  Fiducial method requires multiple calculations of function f( ) 
in different points of the parametrical space.  These pints might be calculated with the help of Monte 
Carlo simulation.  Finally, method of "tangent functions", roughly speaking, needs multiple 
repetition of fiducial method for different "tangent functions". 

 
12.  
12.1  
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12.7 Appendix to Chapter 
 
12.7.1 Confidence Limits for Quasi-Convex and Quasi-Concave Functions 
 
 Let  is a convex area in m-dimensional Euclid space.  Function of m variables 
 
 g(x)=g(x1, ... ,xm) 
 
determined in area  is called quasi-concave if for any >0 and >0, + =1, x  and y , 
Inequality 
 
 g( x+ y)> min [g(x),g(y)] 
 
or, equivalently, if area 
 
 {x :  g(x)>C} 
 
is convex for arbitrary constant C.  Function g(x) is called quasi-convex if function -g(x) is concave.  
It is easy to see that concave (convex) function is simultaneously quasi-concave (quasi-convex), 
although an inverse statement is, generally speaking, not true.  Notice also that if function g(x) is 
convex (concave) and function of a single variable h(u) is monotone decreasing in u, then function 
h[g(x)] is quasi-concave (convex). 
 Let F (t)=P( <t) is d.f. of r.v. . Denote by  class of d.f.'s F(t) such that -ln [1-F(t)] is 
convex in t for such  t that F(t)<1, and ~  class of d.f.'s F(t) such that -ln F(t) is convex in t for such  
t that F(t)>0.  If r.v.  has d.f. F (t)belonging to  ( ~ ), we will denote it by  (or by ~ ). 
 From definition of the classes, defined above, it follows that if  then - ~ , and, on 
the contrary, if ~  then - .  If  ( ~ ) and C>0 then C  (C ~ ).  Classes  
and ~  include such d.f.'s like normal, exponential, Weibull-Gnedenko (with shape parameter >1), 
and some others.  Notice that under an additional condition: F(0)=0, class  coincides with class of 
IFR- distributions. 
 
Lemma 8.1.  Let 1, ... , m are independent r.v.'s, and u1, ... ,um such constants that 
P{ <(>)uk}> ,  1<k<m.  Then if k  ( k

~ ) and >1-exp(-3/2), then 
 

 
Proof.  It is enough to consider the case where k ,  1<k<m, since the second half of the proof is 
follows from a simple transition to r.v.'s - k.  Since class  is closed in respect to convolution of 
independent r.v.'s, it is enough to prove (8.56) for  m=2.  Let Fk(t)=P( k<t)  and Fk(uk)= ,    1<k<2.  

 P ( ) u
k m

k
k m

k .
1 1   
  








    (8.56) 
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Due to convexity of 'k(t)=- ln [1-Fk(t)], it lies above the tangent at point [uk, 'k(uk)], and it 
follows that for all t 
 
 k(t)> max[0, k(uk) + 'k(uk) (t-uk)] 
 
or, taking into account that  k(uk)=-ln(1- ), we obtain 
 
 k(t)> *

k(t)= max[0, k(t-uk)] 
 
where k=uk + ln (1- )[ 'k(uk)]-1,  k= 'k(uk),  1<k<2.  Denote F*

k(t)=1-exp[- *
k(t)] we obtain 

F*
k(t)<Fk(t) for all t.  It gives 

 

 
where 
 

 
Inequality J*>  after integration can be written in the form 
 

 
Setting 1> 2 and denoting = 2/ 1, we can write 
 

 
where B=-ln (1- ).  It is easy to show that for B>3/2 and 0< <1 
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holds.  From here follows that if B>3/2, function h( ) is convex on interval (0, 1).  Since 
h(+0)=h(1)=1, it follows that for B>3/2 and 0< <1 Inequality h( )<1 holds, and inequality J*>  
and (8,56) follow.■ 
 Let we have m independent test results where Xk={xk} is the results of the kth test, Pak

 is a 
family of d.f.'s on Xk where  
ak Ak, 1<k<m.  Let k(ak) is given on Ak real function  and k(xk) and  k(xk) are r.v.'s defined on 
Xk such that 
 

 

 
1<k<m, 0< <1.  Further we use an abbreviate notation: k= k(ak), k= k(xk),  k k kx ( ) , 

=(1, .. , m), =(1, .. , m),    ( ...., )1 m . 
 
Theorem 8.1  Let k , 1<k<m, and function R( =R(1, .. , m) is strictly  increasing 
(decreasing) monotone in each variable and quasi-concave (quasi-convex).  Then if >1-exp(-3/2), 
then  
 

 
Theorem 8.2.   Let  k 

~ , 1<k<m, and function R( =R( 1, .. , m) is strictly  increasing 
(decreasing) monotone in each variable and quasi-convex (quasi-concave).  Then if >1-exp(-3/2), 
then  
 

 h" = B e - e .-B
B
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Proof. Consider at the beginning the proof of Theorem 8.1 if R(  is increasing in each variable 
and quasi-concave function.  Let a A and = (a).  Since set H={ : R( >R( )} is convex, 
then there exists a plane in m-dimensional space of the form  
 

 
which comes via a border point = H and the area H locates on one side of this plane, that is,  

 
From here follows that  
 

{ :  C Ck k
k m

k k
k m

  
   
 

1 1
}  

 
 {: R()<R()} {: R()<R()} 

 
Due to the monotonicity of R( ) coefficients ck>0, 1<k<m.  If function R( )  has continuous partial 
derivatives then coefficients ck are defined in a unique way: 

 
with the accuracy of a positive multiplier .  Using Lemma 8.1 we obtain 
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that proves (8.57) for the case where R( ) is increasing in each variable and quasi-concave 
function.  The proof the statement in braces follows from the previous after transition to function (-
R).  Notice also that function R(- ) is monotone decreasing (increasing) in each variable and quasi-
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convex (quasi-concave) if function R( )  is monotone increasing (decreasing) in each variable and  
quasi-convex (quasi-concave).  Since, additionally, r.v.'s - k  and k

~ ,so the proof Theorem 
8.2 follows from the previous after transition to variables - 1, - 2, ... ,- m.■ 
 The generalization of previous statements for the case where function R( ) is monotone 
increasing in some of the variables and decreasing in others is given by the following Theorem. 
 
Theorem 8.3.  Let function R( ) is strictly monotone increasing in 1, ... , n and decreasing in 

n+1, ... , m, and >1- e


3
2 .  Then: 

(1) If ( 1, ... , n)  and ( ,..., ) ~ n m 1  , and  function R( )  is quasi-concave, then 
 

 
 (2) If ( ,..., ) ~ 1 n   and ( n+1, ... , m) , and function R( )  is quasi-convex, then 
 

 
 The proof is analogous to the given above. 
 Consider now an application of the results above for an "exponential" case.  Let k is 
parameter (failure rate) for unit of type k and  

 
is standard -UCL for k.  (See Section 8.2.1 above ). 
Denote also by =( 1, ... , m) vector of unit parameters and by    ( ,... , )1 m   vector of 
corresponding UCLs.  In some cases, it is convenient to use parameters  T=(T1, ... ,Tm)  where 
Tk=1/ k is MTBF of a unit of type k, 1<k<m.  Vectors of corresponding confidence limits for 
individual parameters are denoted by T=(T1, ... ,Tm)    and T  ( ,... , )T T m1  where  
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are standard lower and upper -confident limits for Tk. 
 R.v. Sk (the total test time of units of type k) has gamma d.f. with density  
 

 
On the basis of this it easy to show that Sk  and Sk

~ .  From here, it follows that confident 
limits Tk   and Tk

~ , and Tk  and Tk , ~ , 1<k<m.  From previous results the following 
theorem follows. 
 
Theorem 8.4.  If function R(T) is monotone increasing (decreasing) in each variable and quasi-

concave (quasi-convex) then for >1- e


3
2  

 

T
inf PT{R(T)<(>)R(T}>. 

 
If in addition one of the following conditions holds: 
 (a) for some C set C={T:  R(T)<(>)C} is restricted 
 (b) for some C set  
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Proof. Since Tk  ,1<k<m, and function  R(T) is monotone increasing (decreasing) in each 
variable and quasi-concave (quasi-convex), the proof Inequality (8.58) follows from Theorem 8.1.  
Let us show (8.59).  Let, for instance, condition (a) holds.  Then  
 

 
exists.  From here the relation  
 

{T:  R(T ) < (>)c}{T: Tk <k} 
 
follows. Due to it for any T C  

For any >0 such T T T
m c    ( ,..., )

1
 exists that k-< Tke

< k.  Since P TT k kk
{ }   is 

continuous in Tk, then 
] 

PTk
{R(T)<(>)R(T)}< PTk

{Tk <k}+ =+ 
 
where >0 and 







0
0lim . From here,  (8.59) follows.  The proof for condition (b) is similar.■ 

 
Theorem 8.5.  If function R(T) is monotone increasing (decreasing) in each variable and quasi-

convex (quasi-concave), then for >1- e


3
2  

 
Proof.  Since T k 

~ , 1<k<m, in accordance with Theorem 8.2,  
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Let further u=(u1, ... , um) be some fixed point uk>0, 1<k<m,  and c=R(u).  Due to the quasi-
convexity of R(T) there exists a plane in m-dimensional space of type 
 

 
which passes via point T=u and such that  
 

 
Since area G is restricted, area c is also restricted.  After this the proof is analogous to that for 
Theorem 8.4.■ 
 Let    ( ,..., )1 m  be vector of -UCLs.  The following theorem can be formulated. 
 
Theorem 8.6.  If function f( ) is monotone increasing (decreasing) in each variable and quasi-

concave (quasi-convex), then for >1- e


3
2  

 

 
Proof.  It is enough to consider the case where f( )  is quasi-concave and monotone decreasing in 

each variable function.  Introduce function gf(T)=f(
1 1

1T Tm
,... , ) .  For any T, u and >0, >0, 

+ =1, we have 
 

 
From here follows that gf(T) is quasi-concave and monotone increasing in each variable function.  
Besides, set  
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is restricted for any u and it follows that the function satisfies condition (b) of Theorem 8.4, and the 
proof follows from this theorem.■ 
 
12.7.2 Construction of confident limits by the substitution method for function of type (8.17) 
 
 
 We need further additional knowledge about some distribution families. 
 Continuous distribution density f(t) of r.v.  is called Polya second order density (we use 
below abbreviation P2-density), if one of the following equivalent condition holds: 
 

 (1) Function 
f t

f t
( )

( )
 

 is monotone increasing in t for >0 and t such that f(t)>0. 

 
 (2) Function (t)=-ln f(t) is convex in t such that f(t)>0. 
 
 It is easy to see that such d.f. like normal, exponential, Gnedenko-Weibull (with shape 
parameter a>1) and some other frequently used distributions have P2-density density (for more 
details, see Barlow and Proschan, 1965).  It is easy to show that if r.v.  has P2-density, then  
and   ~  where  and ~  are classes of logarithmically convex distributions.  Indeed, let   has 

P2-density and F t f u du
t

( ) ( )

  is corresponding d.f.  Then function 

 

 
is monotone increasing in t for such t that F(t)<1, an it follows that .  (In particular, from here 
follows the well-known fact that if r.v.  is non-negative and has P2-density, then it has IFR 
distribution.) Besides, from the definition above follows that if  r.v.  has P2-density, then (- ) also 
has P2-density.  Consequently, (- )  and it follows that =-(- ) ~ .  Thus, if r.v.  has P2-
density, then  and ~ . 
 Consider, further, function f( ) of type 
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where Ai are positive coefficients and Gi are arbitrary subsets of set if subscripts, Gi (1, 2, ... ,m).  
Let us show that for arbitrary function of type (8.60) -UCL can be calculated (for >1-exp(-3/2)) 
by the method of substitution, that is by formula f f ( ) .  For the sake of convenience, introduce 
new parameters zi=ln i, 1<i<m. For parameter zi value 
 

 
is -UCL.  It is not difficult to find that z i  has P2-density. For this purpose, we need to show that 
r.v. i=ln Si has P2-density. R.v. Si has gamma d.f. (or Erlang d.f. of order ri-1) with density 
 

 
R.v. i has d.f. 
 
 Hi(t) = P( i<t) = P( ln Si<t)=P(Si<et) =Fi(et) 
 
where F( ) is d.f. of Si.  After simple transforms, it gives the following density of r.v. i: 
 

 
where (t)= iet-rit is a convex function.  So, r.v. i (and, consequently, confident limit z i ) has P2-
density. 
 Introduce vector of parameters z=(z1, ... ,zm) and vector of -UCLs z  ( ,..., )z zm1 .  From 
the previous results follows 
 
Theorem 8.7   Let function  g(z)=g(z1, ... ,zm) is monotone increasing in each zi and quasi-convex, 

then for >1- e
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Proof.  As we showed above, UCL z i  has P2-density. Then z i 

~ , 1<i<m, and the needed proof 
follows from Theorem 8.2. 
 Let us express function (8.60) via parameters z: 
 

 
This function is convex in z being the sum of convex functions.  Thus, using Theorem 8.7, we show 
that for function of type (8.61) for parameters z, or for function of type (8.60) of parameters of type 

, -UCL can b calculated by the method of substitution.■ 
 
12.7.3 Proof of quasi-convexity of reliability index for renewable systems 
 
 Let g(T) be a function of type (8.27) where Ki(Ti) are given in (8.26). Notice that (8.23) and 
(8.24) are particular cases of (8.26) and (8.27).  For proof of quasi-concavity of functions (8.27), it 
is sufficiently to show convexity in z of function 
 

 
where m<n,  Ak>0, 0<k<n.  Denote 
 

 
After differentiation of nm(z), we obtain 
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It follows that it is sufficient to show the convexity of function l,l-1(z), m+1<l<n.  We can write 
  
   l,l-1(z) =-ln [1-h(z)], 
 

 
where 
 

 
 Since Ak, 0<k<m,  function f(z) is convex for z>0 that gives the convexity of functions l,l-

1(z) and  nm(z).  Consequently, function (8.27) can be presented as a monotone decreasing function  
of the sum of monotone decreasing convex functions and is quasi-concave. 
 Let g(T) be the function of the following form: 
 

 
where (u) is monotone decreasing in u and Aki>0.  (Functions of type (8.62) are L(T) and  P (T).) 
Function  
 

 
is monotone decreasing and convex in Ti, 1<i<m, from where follows that (8.62) is quasi-concave 
function. 
Now let g(T) be the function  
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where g1(T) is function of type (8.27).  Function K (T) belongs to type (8.63). 
 Formula (8.63) can be also presented in the form of a monotone decreasing function of the 
sum of monotone decreasing convex functions and, consequently, is quasi-concave. 
 
12.7.4 Conditions of correctness of the method of fiducial probabilities for calculation of 
confidence limits for the system PFFO 
 
 Let us investigate the question: for what functions f( )=f( 1, ... , m) fiducial limit with 
confidence coefficient  coincides with -confidence limit?  It is not difficult problem to show that 
such functions are, for instance, 
 

 
where b=(b0, ... ,bm) is vector of constant coefficients, and  B={b:  b0>0, - <bi< , 1<i<m}.  For 
arbitrary function of type (8.64), fiducial approach is correct for the construction of UCL and LCL 
of b( ).  Indeed, for each fixed i r.v. i= iSi has distribution independent on i.  For given 

fixed test results Si
*, fiducial distribution of parameter i coincides with distribution of r.v. 

i

iS *  .  

Thus, upper fiducial limit  b  with confidence coefficient , , for b( ) is equal to quantile of level 
 for r.v. 

 

 
and from here follows 
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where tb( ) is quantile of level  for r.v. 
 

 
It follows that for arbitrary fixed =( , ... , m), the confidence probability corresponding to upper 
limit  b  is equal to 
 

 
that is, upper fiducial limit with confidence coefficient  for  b ( ) coincides with -ICL.  
Analogously, we can prove a similar relations for lower fiducial limit. 
 A set of all functions (8.64) for different b B we call a basis set of functions.  For any 
function from this set, as it was shown above, fiducial method is correct for constructing UCL and 
LCL.  Obviously, the basis set is somewhat narrow.  For instance, it does not contain simplest linear 
functions of type 
 

 
which are related, for instance, to the problem of reliability estimation of series systems.  
Nevertheless, of basis set of functions (8.64) can be used for expanding the class of functions for 
which fiducial method can be applied for constructing upper confidence limits. 
 For the sake of convenience, introduce new parameters z=(z1, ... ,zm) where zi= ln i, 1<i<m.  
This vector of parameters, z, takes its values from Z={z:  - <zi< , 1<i<m}.  In these new variables, 
a set of functions (8.64) transforms into a set of linear functions 
 

 
where B={b:  - <bi< , 1<i<m}. 
 Upper fiducial limit for hb(z)is denoted by h hb b S ( ) .  Function f( ) can be written via 
parameters z as follows 
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 Now let f f ( )S  is the upper fiducial limit with confidence coefficient  for f=f( ) .  The 
theorem below shows that the upper fiducial limit coincides with the -UCL for f, if function (8.66) 
is represented in the form of maximum over a set of functions of type (8.65).  Let 
 

 
where B' B.  Then the following theorem takes place. 
 
Theorem 8.8.  Let supremum in (8.67) is attained for any z Z at some point b(z) B', that is, 
 

 
Then for any z Z inequality 
 

 
Proof.  Due to (8.67), inequality 
 

 
for all z Z. From the construction of fiducial limits f  and  hb , analogous inequality for these 
limits follows 
 

 
for all S.  It follows that 
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for all S.  Thus, it is sufficient to show that 

 
Further, for arbitrary fixed z Z, we have 
 

  P H S f = P h S h
B

b ( )sup{ ( ) ~( ( ) (  
 

z)} z)
b

b z  P h S h = .b ( )( ) ( b z z)   

 
This completes the proof.■ 
 Thus, the fiducial method if correct for confidence estimation  of f from above, if function 
(8.66) can be represented in the form 
 

 
This condition holds if function (8.66) is convex in z.  Functions fb(z) in (8.70) represent tangent 
"planes".  Thus, Theorem 8.8 establishes that fiducial method is correct for confidence estimation of 
function f( ) from above, if function (8.66) is convex in z.  This result cab be, in natural way, 
expanded to the case where functions are concave.  For this purpose, one must consider function (-
f).  From the proof of Theorem 8.8 follows that the fiducial method is not correct for strictly convex 
(concave) functions ~f () for confidence estimation from below (above).  In this case we obtain 
confidence limit with confidence coefficient smaller than  used for this method.  Moreover, this 
difference between a real confidence coefficient and given  can not be evaluated. 
 As one can see from the proof of Theorem 8.8,  
 

 
is also -UCL for f, and, moreover, better (lower) in comparison with upper fiducial limit  f (S) 
with the same  for all test results S, as it follows from (8.69).  So, confidence limit (8.71) improves 
the fiducial method although needs more complicated calculations (see also Section 8.6 above). 
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13. Sequential  Criteria of Hypotheses Test and Confidence Limits for Reliability Indices 
 
13.1 Introduction 
 
  Different objects (like units, subsystems or systems) are tested sequentially in many 
practical cases. In other words, statistical information about objects of interest is collected in 
sequential bits, not at once.  Moment of test termination is not determined in advance. It is 
determined during the test, depending on the data obtained thus far.  
 The first result in this direction was obtained for two simple hypotheses in Wald (1947).  
The sequential criterion h e formulated is known as Wald criterion.  This method gives an 
opportunity to decrease the necessary average test volume in comparison with the case where the 
test volume is fixed in advance. However the classical Wald analysis does not "work" for some 
problems arising in reliability (test hypotheses and construction of confidence limits for reliability 
indices of complex systems).  It leads to the necessity of modifications and development of new 
methods.   
 
 
 
 
13.1.1 Sequential Confidence Limits and Hypotheses Test Criteria 
 
 The problem of sequential test of hypotheses for reliability indices are close to the problems 
of construction of sequential confidence limits.  Assume that at each test step n, n=1,2, ..., we can 
construct the confidence limit (say, the lower) 
 
  Rn=Rn(x(n))=Rn(x1, ... ,xn)            (9.1) 
 
for the reliability index of interest R by some known method.  Here xn is the test result at the nth 
step, x(n) is a set of all test results, x(n)=(x1, ... ,xn) obtained at first n steps, n=1, 2, ... .  Thus, for each 
fixed test step n inequality 
 

  P(Rn<R)>    
 
 
holds. Here  is the confidence coefficient of the lower limit Rn,  n=1, 2, ... . 
 Assume that the test is continued until some (generally speaking, random) step , and we 
observe the set of test results x( )=(x1, ... ,x ), and the test is stopped.  The value  is called the 
moment of test stop.  Consider a situation where the stop moment  is not fixed in advance but 
determined during the test in accordance with some stopping rule. At a first glance, it seems natural 
to use already known confidence limit (9.1)for the estimation of the reliability index R in this case.   
In other words, if the test is terminated at =n  then we take value of Rn  as the -LCL for R.  
Nevertheless, that simple solution is not correct in general.  Indeed, the confidence probability 
corresponding to this procedure is equal to 
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P(R  R)=
1 

n

P(=n)P(Rn <R | =n) 

 
where R =R (x1, ... ,x ) is the confidence limit (9.1) calculated at the random moment , P(Rn 
<R| =n) is the conditional probability of the event {Rn <R} under the condition that =n.  
Conditional and unconditional probabilities, P(Rn <R | =n) and P(Rn < R) do not coincide (except 
for the case where the random stop moment  does not depend on the process of test).  Therefore, 
analogous inequalities 
 
  P(R <R)> .     (9.3) 
 
for R   does not follow from the inequalities (9.2) in general.  
It means that the confidence coefficient of the confidence limit R  can be smaller than  on an 
unknown value.  Therefore the use of above procedure can lead to errors (except for the situation 
where the stop moment is determined in advance, or  is a r.v. which does not depend on the test 
results x1, ... ,xn, ...).  Let us consider the following simple example for illustrative purposes.  
Assume that we need to confirm that reliability index R exceed some specified level b from the test 
results x1, ... ,xn, ... .   Standard method of solving such a problem consists in the proof that the -
confidence limit R constructed from the test satisfies the inequality R > b.  This can be proved, for 
instance, by the following way.  At the current kth step we construct by some known method the -
LCL, Rk=Rk(xk).  Here xn is the test result at the nth step.  We continue the test until at some nth step 
inequality   
 
   Rn > b   (9.4) 
 
holds.  The moment of the test stop is determined as 
 
   =min{ n:  Rn >b}. 
 
After this step the test is terminated and due to the inequality (9.4) we declare that the reliability 
requirement R>b is confirmed with the confidence level .  However, it is clear that if, for instance, 
the test results x1, ... ,xn, ...  at different steps are independent then using such a way may lead to 
confusion: we can always confirm an any reliability level although the real level of reliability is 
arbitrary low!  This follows from the fact that inequality (9.4) will be satisfied sooner or later for 
some random step  due to randomness and independence of values Rn, n=1, 2, ... .  Thus, a direct 
transition from usual confidence limits (9.4) found for the fixed test stop to the confidence limit R  
in the sequential test can lead to erroneous results.  Therefore the confidence limits for sequential 
tests must be constructed by special procedure such that confidence coefficient  will be preserved 
for any stop rule. 
 
Remark 9.1.1. The question whether the confidence limit (9.1) found for random moment  
satisfies inequality (9.3), that is qualified as a -confidence limit, is a particular case of more 
general problem.  Assume we have a sequence of functions depending on test results 
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  gn=gn(x1, ... , xn),   n=1,2, ...   (9.5) 
 
such that at each step n inequality 
 
  E{gn} >C ,   n=1, 2, ...    (9.6) 
 
holds.  Here C is a constant which does not depend on n.  Let  be some test stop moment defined 
as the moment of the first entry into the "stop area" D, that is 
 
  = min {n:   (n, xn) D}. 
 
The question is: when can we say that inequality 
 
  E{g >C     (9.7) 
 
follows from inequalities (9.6).  Here g =g (x1, ... ,x ) is function (9.5) depending on test results 
and computed at random moment .  This problem is discussed in detail, in particular, in Pavlov 
(1996). 
 
13.1.2 Sequential Independent and Identical Tests 
 
 Assume that the test result for some object is a sequence of independent and identically 
distributed random values (vectors) 
 
    x1, x2, ... ,xn, ...     (9.8) 
 
where xn n nx x

l
 ( ,..., )

1
 is vector r.v. observed at the nth step of the test.  The distribution of xn is 

defined by density function f(x, ) depending on some unknown vector parameter =( 1, ... , m).  
We need to construct the confidence limits for some function of parameter on the basis of data 
(9.8): 
 
   R=R( )=R( 1, ... , m)   (9.9) 
 
Function R is a reliability index as above.  Sometimes we need to test hypotheses about R( ) on the 
basis (9.8): 
 
  H0:   R( )<R0,      H1:   R( )>R1   (9.10) 
 
where R0<R1 are some specified critical levels of index R. 
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Example 9.1.1.  Let a unit have TTF  with d.f. F(x, ) and density f(x, ) which depend on 
parameter  (in general case vector).  During the test the unit is immediately replaced by a new 
identical one after a failure.  As a result we have the following sequence of i.i.d. r.v.'s 
 
    x1, x2, ... ,xn, ...     (9.11) 
 
where xn is the TTF (random value of ) at the nth test step, n=1, 2, ... .  We need to construct the 
confidential limits on the basis of (9.11) and check hypotheses (9.10) for unit reliability index 
R=R( ).  The reliability index can be one of the following: 
(1) The PFFO for time interval t0, that is 
 
  R( )=1-F(t0 )    (9.12) 
 
(2) The unit life time guarantee, tq( ) with the level q, which is defined by the equation 
 

  1-F(t, )=q 
 
(3) The unit MTTF 
 

  R( )= x f x dx( , )
0



 .     ■ 

 
Example 9.1.2. ("Exponential" tests) 
 In condition of the previous example, let us consider a particular case where a unit has 
exponential d.f. of TTF with density f(x, )=  exp (- x) with unknown parameter = .  In this 
case any reliability index can be expressed via parameter . It means that the problem is reduced to 
confidence estimation and test of hypotheses for parameter  on the basis (9.11) where i.i.d. r.v.'s 
have exponential d.f.   
 Notice that this case is the most investigated in literature.  ■ 
 
Example 9.1.3. ("Binomial" test) 
 In condition of Example 9.1.1 consider a particular case where the index of interest is (9.12).  
Let us denote the unit PFFO by q, q=1-R=F(t0, ). Assume that each test step a unit is tested for 
time t0.   

Introduce an indicator function, n, which equals 1 if a failure has been observed at the nth 
step, and 0 otherwise:  n= I(xn<t0). The moment of failure occurrence, xn, is not registered. 
 In this case we are observing a sequence of i.i.d. r.v.'s 
 
  1, 2, ... , n, ...    (9.13) 
 
where  takes value 0 or 1 with probabilities P( n=0)=1-q and  P( n=1)=q, n=1, 2, ... . Thus, in 
this case the problem is reduced to confidence estimation and test of hypotheses for parameter q on 
the basis of(9.13).  This "binomial" scheme represents the well-known classical scheme of 
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sequential independent trials (Bernoulli trials). This is also one the best investigated case in the 
probability theory.   ■ 
 
Example 9.1.4. (Continuous time) 
 Let us again refer to Example 9.1.1. Let   
 
  tn=x1+ ... +xn   (9.14) 
 
denote the moment of the nth failure and d(u) the number of failures up to moment u.  (In other 
words, n satisfies the condition: tn<u.) We consider a situation where the failure moments (9.14) are 
continuous in time. Actually, we observe a standard renewal process d(u), u>0.  At each moment u 
we have the complete information about previous failure moments 
 
  t1<t2< ... <td(u)<u 
 
(see Figure 9.1).  Notice that if d.f. of TTF is exponential, the renewal process represents a Poisson 
process.  In that case, due to the memoriless property, this model can be reduced to the Bernoulli 
scheme considered above by dividing the time axis into intervals of the length h, h0. 
 
   Figure 9.1 
 
 In general case the process behavior after moment u depends on the prehistory, namely, on 
the residual time zu=u-td(u).  It means that this scheme cannot be reduced to the Bernoulli scheme 
and must be studied in the frame of more general models. (This case will be discussed in later 
sections.) ■ 
 
Example 9.1.5.  (System with loaded redundant units. Exponential distribution) 
 Consider a system consisting of m different types of units.  There are Ni units of type i 
within the system, 1<i<m. Distribution function of TTF for each unit is exponential: 
 
  Fi(x, i)=1-exp(- ix)   (9.15) 
 
with unknown parameter i , 1<i<m.  All units are in operational state, i.e. under load. All unit 
failures are independent.  Any failed unit is immediately replaced by a new identical one.  In other 
words, we observe m independent tests of different units, and for each type i there are Ni 
independent renewal processes, that is units of type i are tested by plan [Ni R] (see Section 2.1).  
Due to exponentiality of d.f. (9.15) each unit is characterized by the standard Poisson process of 
failures with the FR i , 1<i<m. 
 We need to construct confidence limits or/and to test some hypotheses for system reliability 
index R=R( )=R( 1, ... , m) on the basis of this test.  For instance, for a series-parallel system 
consisting of m parallel subsystems in series, PFFO for time t0 has the form 
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1
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where Ni is the number of parallel units in subsystem i,  1<i<m. 
 Although we have the model with continuous time, this model can be again reduced to the 
discrete model (9.8) by dividing the time axis into intervals of length h.  Random value xn in (9.8) 
will be presented by the set of all test results on intervals [(n-1)h, nh], or in other words, by the 
random vector 
 
   xn=(d1n, d2n, ... ,dmn)   (9.16) 
 
where din is the number of failures of units of type i on the interval of length h, 1<i<m,  n=1, 2, ... . 
Random value din has the Poisson d.f. with parameter Ni ih, 1<i<m..  The vector of parameters,  
is represented by =( 1,... , m).  Due to the memoriless property for Poisson processes in (9.18), 
random vectors x1,..., xn, ... are independent and identically distributed.  Thus, we have reduced the 
initial continuous model to the discrete version (9.16).  Results for the discrete model can be 
transferred back to the continuous time case with h0. ■ 
 
Example 9.1.6. (System with loaded redundancy. General case.) 
 Consider a test scheme analogous to the previous one but without the assumption of 
exponentiality of the d.f. of TTF (9.15). In this case we observe m independent processes of unit 
tests, each unit is tested by plan [Ni, R].  In other words, we have N1+N2+ ... +Nm independent 
renewal processes.  Each group of Ni processes is characterized by the same d.f. Fi(x,). 
 We need to construct confidence limits or/and to test some hypotheses for system reliability 
index R=R()=R(1, ... , m). 
It is obvious that this model is a multi-dimensional analogue of Example 9.1.5.  This model can not 
be reduced to (9.8) and must be studied with the help of more general methods. ■ 
 
Example 9.1.7.  (Binomial test) 
 Consider the PFFO in conditions of the previous example. Let  the test bepresented by 
cycles of length t0, in other words, units of type i are tested by plan [Ni U t0], 1<i<m.  Result at the 
nth test step is presented by the random vector 
 
  xn=(d1n, d2n, ... ,dmn)   (9.17) 
 
where din is the number of failed units of type i within nth cycle, 1<i<m, n=1, 2, ... . Random value 
din has the binomial distribution with parameters (Ni, qi) where qi=Fi(t0, i)is the unit PFFO during 
time t0.  All failed units are replaced at the end of each cycle t0.  Thus we have a sequence of i.i.d. 
random vectors (9.17) which is used for constructing confidence limits or/and testing some 
hypotheses for reliability index R=R(q)=R(q1, ... ,qm) where q=(q1, ... ,qm) is vector of binomial 
parameters of units and R=R(q)is the system PFFO for time t0.  For instance, for a  system 
consisting of m parallel subsystem in series, the reliability index has the form 
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where Ni , 1<i<m , is the number of parallel units in subsystem i. 
 This model is a multi-dimensional analogue of the model in Example 9.1.3. ■ 
 
Example 9.1.8. (System with spare units) 
 Consider a system consisting of m subsystems each of which comprise ri identical units, one 
main and ri-1 spares (unloaded redundancy). Distribution function of TTF of the ith unit is denoted 
by Fi(x, i) where i is unknown parameter (in general case vector).  All failures are independent. 
 Let di denote the number of units of type i having failed up to the moment t=0.  The process 
di(t) is, obviously, the standard renewal process with d.f. Fi(x, i). Thus we observe m-dimensional 
stochastic process 
 
  d(t)={d1(t), ... ,dm(t)}   (9.18) 
 
 Each cycle of testing is terminated at the moment of the system failure, i.e. at the moment 

: 
 
  = min {t:  di(t)>ri at least for one i,  1<i<m}. 
 
Moment  is the moment of the first entering the "stop area " D by the process (9.18).  Area D is 
defined in the space of m-dimensional vectors d=(d1, ... ,dm) with integer coordinates: 
 

D
i m


 

{ :d
1
  di> ri}  (9.19) 

 
(for m=2 see also Figure 9.2).  Thus we observe a sequence of i.i.d. test cycles of the form: 
 
  xn={d(n)(t),   0<t< n},   n=1, 2, ...  (9.20) 
 
where d(n)(t) is a realization of process d(t) at the nth test cycle, and n is the test duration at this 
cycle: 
 
  n= min {t:  d(n)(t) D} 
 
(see Figure 9.2 where two different realization of reaching stop area D by process d(t) are depicted). 
 Using these information, we need to construct confidence limits or/and to test some 
hypotheses for system reliability index R=R() where =(1, ... , m) is the vector of unit 
parameters.  For instance,  
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where F ti
r

i
i( ) ( , )   is the d.f. of the ith subsystem TTF which is ri-times convolution of d.f. Fi(t, 

i).  Tests of systems of such type were considered in Ushakov and Gordienko (1978), 
Gordienko(1979) and some others. ■ 
 
13.2 Sequential Wald Criterion 
 
13.2.1 Introduction 
 
 One of the frequently encountered problem in reliability practice is:  to test hypotheses: 
 
  H0:  R( )<R0,   H1:  R( )>R1   (9.21) 
 
on the basis of test results of type (9.8).  Here  is unknown parameter (in general, a vector), R( ) 
is a reliability index, R0 and R1 are some critical levels. R0 and R1 play role of rejection and 
acceptance levels of the tested object by reliability index R.  (Of course, if R is index characterizing 
failure, for instance, FR, then H0 corresponds to acceptance and H1 to rejection.)  The probabilities 
of errors of type I ( ) and of type II ( ) corresponds to the manufacturer risk and consumer risk.  
Criteria of test are defined by the stop rule and decision making rule at the moment of the test 
stopping. 
 Hypotheses of type (9.18) are composite.  Let us first consider more simple task, namely, 
test of simple, hypotheses of type: 
 
  h0:  = 0,   h1:   = 1 
 
where 0 and 1 are two points of the parametric space. The moment of test stop is denoted by .  
It is clear that the moment of stop determines the test volume.  If this moment is defined in advance, 
that is, it is a constant =n, the optimal decision rule is determined by well-known Neyman-
Pearson criterion (see Section 1.5 and Lehman, 1959).  In correspondence with this criterion 
hypothesis h1 is accepted if the test results x1, ... ,xn satisfy the inequality 
 
  n(x1, ... ,xn)>C   (9.22) 
 
where the function of test result (statistic) n(x1, ... ,xn)>C is determined as the likelihood ratio 
 


  
  

n
n

n

f x f x f x
f x f x f x


  
  


( , ) ( , ) ... ( , )
( , ) ( , ) ... ( , )

1 1 2 1 1

1 0 2 0 0
  (9.23) 

 
and constant C is found so that the probability of error of type I equals given value of , that is, 
satisfies condition 
 

  P0(n >C)=    (9.24) 
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(Probability P0 corresponds the value of parameter = 0.) 
 
For the sake of simplicity we consider continuous case and assume that such a constant C can be 
found satisfying  equality (9.24) for any 0< <1. 
 If inequality (9.22) does not hold, that is 
 

  n(x1, ... ,xn)<C    (9.25) 
 
then hypothesis H0 is accepted. 
 The Neyman-Pearson criteria (9.22), (9.25) possesses a known optimal property, namely, it 
has minimum probability of error of type II 
 

  =P1(n <C) 
 
among all criteria with fixed constant test volume =n and fixed value of the probability of error of 
type I, .  (Here P1 is the probability corresponding the value of parameter = 1.) 
 Let n*=n*( , ) denote the test volume which is necessary for constructing the Neyman-
Pearson criterion with given values of probability of errors of types I and II (  and , + <1).  
The value of n* is determined as the minimum integer value n, for which two following inequalities 
hold  
 

  P0(n >C)<  
 

  P1(n <C)< . 
 
Notice that due to the optimum property of the Neyman-Pearson criterion, the necessary test volume 
n*=n*( , )  can not be decreased if one takes a criterion with deterministic test volume =n. 
 Outstanding result obtained by Wald (1947) was that he  constructed a sequential criterion 
significantly decreasing the average volume of the necessary test volume in comparison with the 
value above n*( , ) for the same values of probabilities of errors  and .  The Wald criterion is 
defined as follows. At current test step n, taking into account the results already obtained, x1, ... ,xn, 
one calculates n(x1, ... ,xn) considered in (9.23).  This value has a meaning of likelihood ratio for 
hypotheses h0 and h1 on the mth test step.   At each nth step, one checks the following two 
inequalities 
 

B<n(x1, ... ,xn)<A    (9.26) 
 
where B and A are some given constants such that 0<B<1<A.  If both inequalities (9.26) hold then 
the test continues, that is, the next r.v. xn+1 is subject of observation.    In other words, inequality 
(9.26) determines the "area of test continuation" for the Wald criterion. 
 Test terminates at the first violation of at least one of inequalities in (9.26).  If the left 
inequality is violated,  hypothesis h0 is accepted. The violation of the right inequality leads to 
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acceptance of hypothesis h1. Thus the moment of test stop  for the Wald criterion is determined 
from the conditions 
 
  n(x1, ... ,xn) (A,B) for all 1<n< -1, 
 
   (x1, ... ,x) (A,B) 
 
or in more compact notation 
 
  = min{n: n(x1, ... ,xn) (A,B)}  (9.27) 
 
 Vector of test results for any sequential criterion (including the Wald criterion) has the form 
( ,x1, ... ,x), where  is the stop moment and (x1, ... ,x) is the set of all test results obtained up to 
this step.  Let  
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denote the value of function n (likelihood ratio) at the test stop moment .  For the Wald criterion 
the decision making rule at the stop moment  on the basis of test results ( ,x1, ... ,x) has the 
following form 
 
 if  <B hypothesis h0 is accepted 
 (9.28) 
 if  >A hypothesis h1 is accepted. 
 
 
 The probabilities of error (risks) of type I and II for any criterion equal =P0(h1) and 

=P1(h0) respectively, where the probabilities Pj(hj) are taken for = i,  i=0,1; j=0,1.  For the Wald 
criterion, these values in correspondence with (9.28) are equal to =P0( >A) and =P1( <B) . 
 The precise values of risks  and  for the Wald criterion can be approximately estimated 
with the help of the following known Wald formulas (Wald, 1947): 
 




1 0 0
 E h( | )  

  (9.29) 
1

0 1






E h( | )  
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where E0 denotes the mathematical expectation for = 0 and E0( |hj)  is conditional 
mathematical expectation of r.v.   under condition that at the stop moment  by the test results 
( ,x1, ... ,xn)  hypothesis hj is accepted, j=0,1.  Notice that formulas (9.29) are  valid for any criterion 
with the stop moment ("not depending on the future") such that Pi( < )=1, i=1 or 2. 
 It is easy to obtain corresponding inequalities and approximate estimates for  and  of the 
Wald criterion from (9.29).  Indeed from (9.29) for the Wald criterion, it follows by construction 
that the following conditions are valid: 
 
   <B if hypothesis h0 is accepted 
 
  >A if hypothesis h1 is accepted. 
 
Thus, corresponding inequalities are valid for mathematical expectations: 
 

  E0( |h0)<B and E0( |h1)>A. 
 
Taking into account (9.29), it follows well known inequalities for precise values of risks  and  
for the Wald criterion: 
 


1
 B ,   

1





A              (9.30) 

 
The area of ( , ) satisfying inequalities (9.30) are shown in Figure 9.3. 
 
 Figure 9.3 
 
From these inequalities, also follows: 
 

  B ,    
1
A

  (9.31) 

 
They are often used in practice for approximate risk estimation. 
 Notice that to construct the Wald criterion, test is stopped at such a step =n when the 
process n first time exits interval (A,B), that is when r.v. n "jumps" over level A from below or 
under level B from above.  Let us neglect the process of that "jump" and assume that at the stop 
moment one of the following two approximate conditions are fulfilled: 
 
  B if hypothesis h0 is accepted 
 (9.32) 
  A if hypothesis h1 is accepted. 
 
Then from (9.29) we obtain known approximate Wald's equalities 
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1

1
-

B,          
-

A                          (9.33) 

 
These approximate solutions are often used in practice for  
risk estimation.  Let us assume that precise values of risks  and  are close to approximate values 

* and *, i.e., 
 

*  and * 
 
where approximate risks are found from equations 
 

*

*

*

*-
B,          

-
A  





1

1
         (9.34) 

 
 
from where 
 

* *=
- B

A - B
,       =

B A -
A - B

 
1 1( )

 

 
 (See Figure 9.3 where point ( *, *) is found as cross of lines =B-B  and =1-A .)  From 
Figure 9.3 one can see that the precise values of risks  and  are laying always within the 
shadowed area, that is, 

 + < *+ *. 
 
Besides, taking into account (9.34), inequalities (9.31) can be written in the form 
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1 1
 

 
 The precise values of risks ,  can be found with the help of computer programs. (For 
more details, see p.1 of Appendix to the chapter.)  
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Average test volume 
 In accordance with (9.27) the stopping moment  for Wald's 
criterion can be written as 
 

 
where a=lnA>0,   b=-lnB>0,  and Zn is the logarithm of likelihood 
ratio at the nth step: 

 
Let us introduce the notation: 

random values z1, ... ,zn, ...  are i.i.d. and zn is the nth 
observation of r.v. z. Zn is defined as 
 
 Zn=z1+ ... +zn.    (9.36) 
 
Let us find the mathematical expectation E0 for the case where 
hypothesis h0 is true, that is =0.  In accordance with (9.36), 
the equality 
 
 E0Z=E0(z1+ ... +z).   (9.37) 
 
where E0 denotes the mathematical expectation under condition =0. 
Applying a well known Wald's equivalence (Wald, 1944) to the right 
part of (9.37) for the mathematical expectation of the sum of 
random number of i.i.d r.v.'s, we obtain  
 

  E0(z1+ ... +z)=E0E0z  (9.38) 
 
(For a proof of Wald's equivalence, see p.2 of Appendix to the 
chapter.) For the left side of the equality (9.37,) we have  
 
  E0Z=P0(h0)E0(Z|h0)+P0(h1)E0(Z|h1),  (9.39) 

  = n:Z b,anmin{ ( )}   

 n n
n

n
Z = =

f ,x ... f ,x
f ,x ... f ,x

ln ln
( ) ( )
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  (9.35) 
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from where  
 
  E0Z=(1-)E0(ln |h0)+E0(ln |h1).  (9.40) 
                                                                  
Neglecting again a "jump" mentioned above and using approximate 
equalities (9.32) and (9.33), we obtain from the latter equality  
 

After this, the known approximate equality (Wald,1947) for the 
average test volume under condition =0 follows from (9.38) and 
(9.41) : 

where  

 
In the same way an analogous approximate equality for the average 
test volume for hypothesis h1, that is for =1: 
 

 
Taking into account the definition of r.v. z in (9.35) , formulae 
for the average test volume can be also represented in the 
following form: 
 

where value 
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represents "Kullback-Leibler information distance" between 1 and 
0 (or more exactly, between d.f.'s with densities f(1,x) and 
f(0,x).  Notice that in general (Kullback-Leibler,1951; Kullback, 
1959) (1,0)(0,1).  Formulae (9.42)-(9.44) for the average 
test volumes are approximate (without accounting for "jumps").  
See p.2 of Appendix to the chapter for the precise calculation of 
the test volumes with the help of computer programs. 
 

The lower limit for the average test volume  
From (9.40) one can easily obtain the lower limit of the average 
test volume for any criterion with fixed risk values  and .  
Indeed, this equality is valid for any criterion, not only for 
Wald's.  Taking into account that function lnu  is concave in u 
and applying Jensen's inequality for the mathematical expectation 
of concave function we obtain 
 

Taking into account (9.40) and (9.29), we obtain from (9.46) the 
following unequally  

 
Then taking into account (9.37) and (9.38), we obtain 
 

In the same way, we can obtain an analogous inequality for the 
average test volume under condition =1: 
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    (9.45) 
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Inequalities (9.47) and (9.48) give us the lower limit for the 
average test volume under conditions =0 and =1 for any ("not 
depending on the future") criterion for hypotheses h0 and h1 for 
given risks  and . These inequalities were obtained by Wald 
(1947) and Hoeffding (1960). 
  As one can see from approximate equalities (9.42) and 
(9.43), the average test volume for Wald's criterion reaches the 
lower limit in (9.47) and (9.48) at least approximately (without 
taking into account the "jump" mentioned above).  The accurate 
proof of Wald's criterion optimality was obtained by Wald (1947) 
and Wald and Wolfowitz (1948) where the following optimum property 
of this criterion was shown.  Let us adopt some Wald's criterion 
for hypotheses h0 and h1 with the stop moment  and with risks  
and . Then for any other criterion with the stop moment ' and 
with risks ' and ' such that '< and '< the following 
inequality is valid: 
 E0'>E0,  E1'>E1. 
 
 The significant property of Wald's criterion is that it 
simultaneously minimizes two quality indices of the criteria E0 
and  E1. among all criteria with the risks not larger than  and 
.  The generalization of Wald's results for the case of 
continuous time was obtained afterwards in Dvoretsky, Kiefer, and 
Wolfowitz (1953), Epstein and Sobel (1955), and others. 
 
 
14.2.2 Standard Sequential Wald's Plans of Reliability Indices Control 
 
 Suppose we need to test two composite hypotheses about some 
one-dimensional parameter  
 
 H0:  <0, H1:  >1,   (9.49) 
 
on the basis of the test results (9.8).  Here 0 <1 are specified 
levels of parameter .  Levels 0 and 1 mean, respectively, levels 
of "acceptance" and "rejection" of a tested object by parameter , 
if  is the index of type of failure probability, q, or FR, , 
(see examples below), or if  is the index of type of PFFO. 

 1
1

E
,

E z
      

  


( )
( )

      (9.48) 



 

342 
 

 Standard approach for criterion construction (or in other 
terms, plans of control of parameter ) for the case of composite 
hypotheses of type (9.49) consists in the following.  Let us 
construct Wald's criterion for two simple hypotheses 
 
 h0:  =0,   h1:  =1  (9.50) 
 
in the same way as it was considered above.  Apply this criterion 
to the test of initial composite hypotheses (9.49).  In other 
words, let us continue the test up to the moment of stop  which 
was determined above in (9.27). At the stop moment we make the 
following decision: 
 
 if  <B hypothesis H0 is accepted 
  (9.51) 
 if  >A hypothesis H1 is accepted. 
 
 Introduce function 
 
 L()=P(H0)   (9.52) 
 
 
equal to the probability of acceptance of hypothesis H0 under the 
condition that the true value of parameter is .  Function (9.52) 
is called the operative characteristic of a criterion (plan of 
control).  Since the rule of decision making for Wald's plan has 
the form of (9.51), the operative characteristic for this plan is 
determined by  
 
 L()=P(<B)   (9.53) 
 
or, in other words, the operative characteristic L() for Wald's 
plan is equal to the probability that function of likelihood ratio 
 will exit the lower limit B (limit of the "acceptance" area) 
for a specified values of parameter . (See Figure 9.4.) 
 
 Figure 9.4 
 
 In many cases (see examples below) operative characteristic 
(9.53) is monotone decreasing in parameter . (See Figure 9.5.) 
 
 Figure 9.5 
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 Since hypotheses (9.49) are composite, the probabilities of 
errors of type I and II are some functions of parameter  which 
are expressed via the operative characteristic as follows 
 
 ()=1-L() for <0 
  (9.54) 
 ()=L() for >1. 
 
 The maximum values of probability of error, that is values 
 

are called, respectively, risks of types I and II.  If the 
operative characteristic L() is monotone decreasing in , then  
 
 =1-L(0),     =L() 
 
(See also Figure 9.5.)  Notice, that the values  and  coincide 
with risks for Wald's criterion for simple hypotheses (9.50).  Due 
to (9.54) and (9.55) the following inequalities are valid 
 
 ()< for <0 
 
 ()< for >1. 
 
Thus, Wald's criterion applied for simple hypotheses h0 and h1 
(corresponding to the boundary point of the acceptance and 
rejection levels 0 and 1) simultaneously gives criterion for 
composite hypotheses of type (9.49) with the errors of types I and 
II not larger than values  and .  
 

Average test volume 
 Consider calculation of the average test volume for Wald's 
plan. Denote this plan by  
 
 N()=E    (9.56) 
 

      
   

= ,   =  
 0 1

max max( ) ( )     (9.55) 
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where E is the mathematical expectation under given value of 
parameter .  For estimating (9.56), let us use formulae of type 
(9.39) 
 
 EZ=P(H0) E(Z|H0) + P(H1)E(Z|H1)= 
 
 L()E(ln |H0) + [1-L()] E(ln |H1). 
 
Applying approximate formulae (9.32) we obtain 
 
 EZ[1-L()]a - L()b  (9.57) 
 
where a=ln A, b=-ln B.  On the other hand, applying Wald's 
equivalency to the left side of (9.57)(see p.2 of Appendix to the 
chapter) we have 
 
 EZ=E(z1+ ... +z)=EEz 
 
Well known Wald's formula for the average, test volume follows 
from here  

for Ez0. Taking into account 

 



E z = E
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(9.58) can be rewritten in the form 

Formulae (9.58) and (9.59) are true for such  that Ez0, or in 
other words, for ', where ' is determined from the condition: 
E'z=0, or form (',0)=(',). 
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 Point ' is called "equally distant" (in sense of Kullback-
Leibler distance) from points 0 and 1.  In most standard 
situations, point ' is located between points 0 and 1. For =' 
for the average test volume the approximate formula found by Wald 
(1947) 

 is valid. 
 The precise values of the operative characteristic L() and 
average test volume N() for Wald's plan for given fixed 
boundaries A and B and for other sequential plans (with other stop 
areas) can be calculated with the help of special computer 
programs. Analogously, with the help of computer one can solve an 
inverse problem of finding the boundaries for stopping (A and B) 
in such a way that the precise values of risks coincide with the 
given values   and .    (For details see p.1 of Appendix to the 
chapter.)   
 A typical graph of dependence of the average test volume, 
N(), of parameter  for sequential Wald's plan is depicted in 
Figure 9.6 
 
 Figure 9.6 
 
 As one can see, sequential Wald's plan is the most effective for 
<0 and >1.  In other words, Wald's plan for statistical control 
allows fast (on average) to accept "good" objects (with parameter 
<0) and reject "bad" objects (with parameter >1).  In areas of 
values <0 and >1 Wald's criterion gives an essential gain  in 
the average test volume in comparison with the best Neyman-Pearson 
criterion for the case of fixed test volume.  However, Wald's 
criterion becomes less effective in the intermediate area of 
parameter's values, i.e. if 0<<1  . This area is also called 
"area of uncertainty" or "area of indifference".   
 
Example 9.2.1. (Binomial test. Control of failure probability) 
 Consider the binomial test considered above in Example 9.1.1. 
A sequence of i.i.d. r.v.'s is observed 
 
 1, ... ,n, ...   (9.61) 
 

 N
ab

E z
       ( ) 





2     (9.60) 
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where n is indicator of unit failure at the nth step.  As was 
mentioned above this value takes 0 or 1 with probabilities 
P(n=0)=1-q and P(n=1)=q where q is the failure probability. On 
the basis of test results (9.61) we need to test hypotheses 
 
 H0:  q<q0,   H1:  q>q1   
 
where q0<q1 is given critical levels of index q.  These values mean 
"acceptance" and "rejection" levels of this index.   
 In this case parameter is =q, observed r.v. at the nth step 
is xn=n, and function f(x,)=f(,q)=q(1-q)1-, =0,1. From here we 
obtain that the function of likelihood ratio (9.23) at the nth 
test step has the form 

 
where dn=1+ ... +n is the total number of failures during n 
steps.  The area of test continuation for Wald's plan (9.26) is 
given by inequalities 
 

 
or after simple transformations 
 
 C1n-C2b<dn<C1n+C2a,  (9.62) 
 
where a=ln A>0, b=-ln B>0, 
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The test continues if both inequalities (9.62) are true and stops 
at such a step =n at which at least one of these inequalities is 
violated.  The violation of the left inequality means that 
hypothesis H0:  q<q0 ("acceptance"), and the violation of the right 
inequality the decision is to accept hypothesis H1:  q>q1 
("rejection").  Thus, the boundaries of the stopping area (see 
Figure 9.7) have the form of lines on the plane (n, dn).  The 
equations of these lines are 
 dn=C1n-C2b is the boundary of "acceptance" area 
 
 dn=C1n+C2b is the boundary of "rejection" area. 
 
 
 Figure 9.7 
 
 
In this test scheme r.v. (9.35) has the form 
 

 
Taking into account that E0=q0, E1=q1, we obtain that (9.42)-
(9.44) for the average, test volume for q=q0 and q1 has the form 
 

 (9.63) 
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Example 9.2.2 ("Exponential" test.  Control of FR.) 
 Suppose we observe a sequence of i.i.d. r.v.'s 
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 x1, ... ,xn, ...   (9.64) 
 
each of which has the exp. d.f. with the density f(x, ) 
=exp(-x). (See also Examples 9.1.1 and 9.1.2.)  We need to test 
the following hypotheses on the basis of test results (9.64) 
 
 H0:  <0,     H1:  >1   (9.65) 
 
where 0<1 are given critical levels of "acceptance" and 
"rejection".   
 In this case the likelihood ratio function (9.23) at the nth 
test step has the form 
 

 n
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n
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where Sn=x1+ ... +xn is the total test time during n steps. The 
area of test continuation for Wald's criterion in this case is 
given by inequalities 

or inequalities 
 C1n-C2a<Sn<C1n+C2b  (9.66) 
 
where a=ln A,  b=- ln B, 

 The test continues if both inequalities are true (9.66) and 
test stops when at least one of these inequalities is violated the 
first time.  If the right inequality in (9.66) does not hold, 
hypothesis H0 is accepted.  If the right inequality. in (9.66) is 
violated, hypothesis H1 is accepted ("rejection").  The boundaries 
of the stopping area (see Figure 9.8) in this case have the form 
of lines on the plane (n, Sn): 
 
 Sn=C1n + C2b is the boundary of "area of acceptance" 
 
 Sn=C1n - C2a is the boundary of "area of rejection" 
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 Figure 9.8 
 
 Let us also estimate the average test volume in this case.  
R.v. (9.35) in this case has the form  
 

taking into account that E0x=1/0 and E1x=1/1, we obtain that 
formulae (9.42)-(9.44) for =0 and =1 in this case has the form: 
 

 (9.67) 

where 

 
Example 9.2.3. (Poisson process. Control FR.) 
 Assume that we observe a Poisson process of failures 
occurrence dt, t>0, with unknown parameter  where dt is the number 
of failures observed up to the moment t.  We need to accept one of 
two hypotheses on the basis of the results of observation 
 
 H0:   <0,     H1:   >1 
 
where  0<1 is the given critical levels of "acceptance" and 
"rejection".  The likelihood ratio t at the moment t (an analogue 
of value n in the discrete scheme considered above n) has the 
form 
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Thus the area of the test continuation for Wald's criterion at the 
moment t is given by inequalities 
 

or, after simple transformations, 
 
 C1t-C2b<dt<C1t+C2a  (9.68) 
 
where a=ln A,  b=- ln B, 

 
The test continues until both inequalities (9.68) are true, and 
test stops at moment =t when at least one of these inequalities 
is violated for the first time.  If the right inequality in (9.69) 
does not hold, hypothesis H0 is accepted.  If the right inequality 
in (9.66) does not hold, hypothesis H1 is accepted ("rejection").  
The boundaries of the stopping area (see Figure 9.9) in this case 
have the form of lines on the plane (t, dt): 
 
 dt=C1t - C2b is the boundary of "area of acceptance" 
 
 dt=C1t + C2a is the boundary of "area of rejection". 
 
 
 Figure 9.9 
 
 
 The moment of the test stop, , is the moment of exit of the 
process dt from one of the boundaries mentioned above.  From 
(9.42)-(9.44) in the scheme with discrete time, one can easily 
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obtain analogous formulae for the average test time if =0 and 
=1 in this scheme with the continuous time: 
 

  

where 

 Let us consider a numerical example that illustrates a gain 
in the average test volume obtained by sequential Wald's criterion 
in comparison with the best Clopper- Pearson criterion with fixed 
test volume.   
 
Example 9.2.4 (Gain in average test volume) 
 In the scheme of Example 9.2.2 we need to test hypothesis 
that FR of type (9.65) where critical levels : “acceptance" and 
"rejection" are equal to 0=0.1 and 1=0.2. Given values of risk of 
type I and II equal =0.1 and =0.1. 
 If the test stopping moment is determined in advance and is a 
constant =n, then the best Neyman-Pearson criterion has the 
following form: 
 
 if Sn<C, hypothesis H1 is accepted, 
 
 if Sn>C, hypothesis H0 is accepted, 
 
where Sn=x1+ ... +xn is the total time during n steps. Risks of 
type I and II for this criterion equal P0(Sn<C) and P1(Sn>C) where 
Pj denotes the probability for the parameter value equal to =j,  
j=0 or 1.  Thus, the test volume n*=n*(,) needed for delivering 
given risk levels  and   is determined as a minimum integer 
number n which satisfies to the following two inequalities 
 
 P0(Sn<C)< and P1(Sn>C)<. 
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These inequalities can be written in the form 
 
 P0(20Sn<20C)< 
 
 P1(21Sn>21C)< 
 
or, taking into account that r.v. 2Sn has the standard -
distribution with 2n degrees of freedom, we have 
 
 2(20C, 2n)< 
 
 1-2(21C, 2n)<. 
 
where nis function of the 2-distribution with 2n degrees of 
freedom.  After simple transformations it gives the needed test 
volume n*, equal to the minimum integer number n which satisfies 
inequality  
 
 21-(2n)<(1/0)2(2n) 
 
where 2(2n) is the quantile of level  of the 2-distribution with 
2n degrees of freedom.  Using Table E.16 (2-distribution), we 
find 
 
 n*= min {n:  20.9(2n)<220.1(2n)}=15. 
 
Applying (9.67), we find the average test volume for =0 and =1 
for the sequential Wald's criterion  (for the same values of 0, 
1, , and ): 
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Thus, for =0 and =1 the average gain in test volume obtained 
with Wald's criterion is equal, respectively, to: 
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15.2.3 Truncated Sequential Wald's Plans 
 
 The area of test continuation for Wald's plan is infinite.  Therefore in practice one often uses 
truncated Wald's plans with finite area of test continuation.  Consider, for instance the scheme of 
Poisson process observation considered in Example 9.2.3.  In this case a typical area of test 
continuation for a truncated Wald's plan is depicted in Figure 9.10. 
 
 Figure 9.10 
 
The boundary of the "acceptance area" (if the process  dt reaches this area then hypothesis H0 is 
accepted) is given by conditions: 
 
 dt=C1t - C2b  for t<T 
 
 dt <r  for t=T 
 
The boundary of the "rejection area" (if the process  dt reaches this area then hypothesis H1 is 
accepted) is given by conditions: 
 
 dt=C1t + C2a  for dt <r 
 
 tt <T  for dt=r 
 
where (T, r) is the truncating point  (see Figure 9.10) and coefficients C1 and C2 are determined by 
(9.69). 
 Truncated Wald's plans loose, generally speaking, their property of minimum of average test 
volume.  If the truncation in not "too severe", that is, if the coordinates of the truncating point (T,r) 
are large enough, then we believe that that property is preserved approximately.  Analogous 
arguments are applied to the risks  and . 
 The truncated Wald's plan is specified by four parameters A,B,T and r.  Precise values of 
risks  and , operative characteristic L( ), and average test volume N( ) for the truncated Wald's 
plan can be calculated with the help of computer.  (For details, see p.1 of Appendix to this chapter.) 
 
15.3 Sequential Test of Composite Hypotheses for Multi-Dimensional Parameters 
 
 The sequential Wald's criterion, discussed above, has minimum average test volume 
E0 and E1  for values of parameter = 0 and = 1 (among all criteria with given risks  and 

).  On the other hand, the Wald's criterion’s deficiency is its low efficiency in the "area of 
indifference", that is where values of parameter are 0< < 1.  This led to the appearance of a set 
of works by Kiefer and Weiss (1957), Chernoff (1959), Albert (1961), Weiss (1962), Schwarz 
(1962), Kiefer and Sacs (1963), Ayvazyan (1965), Shiryaev (1965, 1976), Lai (1973), Robbins and 
Siegmund (1973, 1974), Lorden (1976), Liptser and Shiryaev (1981), Huffman (1983), Pavlov 
(1985, 1987a, 1990), Draglin and Novikov (1987, 1996), and others in which sequential criteria 
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with other properties were constructed (for instance, minimization of maximum average in  test 
volume, E ). 
 One important direction of generalization of sequential Wald's criterion for applications 
(including reliability) is in test of composite hypotheses for multi-dimensional parameter, for 
instance, of the following type: 
 
 H0:  R( )<R0,  H1:  R( )>R1  (9.70) 
 
where R( )=R( 1, ... , m) is a function (reliability index) depending on multi-dimensional 
parameter =( 1, ... , m), and R0<R1 are specified levels of index R( ).  Such problems are typical 
for complex system analysis (see Section 9.1 above and Examples 9.1.5-9.1.8).  At the same time 
such a problem arises for a single unit if its d.f. of TTF, F(x, ) depends on vector parameter  (see 
Examples 9.1.1 and 9.1.4).  Construction of approximately optimal sequential criteria for composite 
hypotheses of type (9.70) and close to this problems of construction of approximate optimal 
sequential confidence limits for R( ) were studied in general form by Pavlov (1983a, 1985, 1987a, 
1990, 1993), in application to  reliability problems by Pavlov (1982, 1983c, 1984a and b, 1986, 
1987b), and, in particular, for renewal systems by Pavlov (1988), Pavlov and Ushakov (1989). 
 Another direction of generalization of Wald's criterion is the study more general test plans, 
differing from (9.8), including dependent tests.  This direction is extremely important for reliability 
problems because the test scheme of identical and independent objects applies to very restricted 
class of real tasks (see Examples 9.1.1-9.1.8 above).  Problems of sequential test of composite 
hypotheses of type (9.70) and construction of confidence limits for reliability indices for dependent 
tests (for Markov type of dependence) were considered by Pavlov (1982, 1983b, 1985). 
 At first, let us consider sequential test of composite hypotheses of type (9.70) for the simple 
case of independent identical tests. 
 
15.3.1 Sequential Rules of Composite Hypotheses "Exclusion" 
 
 At first, consider sequential test of composite hypotheses for multi-dimensional parameter 

=( 1, ... , m) for a simple scheme of independent and identical sequential tests (9.8).  Let there 
be a composite hypothesis of the type 
 
 H0:  D   (9.71) 
 
where D is an area of in space parameter .  Let us determine  for any hypothesis of type (9.71) 
some random moment (step)  which is called the moment (or the rule) of exclusion of this 
hypothesis.  In other words, at moment  one makes a decision that hypothesis H is not true.  This 
moment  is determined during the test process 
 
 x1, x2, ... , xn, ...  (9.72) 
 
in dependence on the current test results.  It means that   is a random Markovian moment, or, in 
other terminology, a random moment "independent of the future".  (For more details see p.1  of 
Appendix to Chapter 3.) 
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 For the moment  of excluding hypothesis (9.71) we require that the following condition 
holds 
 
 P ( < )< for any D,  (9.73) 
 
where  is given small constant (probability of error).  Event { < } means that hypothesis H is 
excluded at some step .  So, condition (9.73) has the following meaning:  if hypothesis H is true 
(the true value of parameter  belongs to area D), then the probability to exclude this hypothesis by 
test results (9.72) in some future does not exceed constant . 
 Condition (9.73) does not guarantee usefulness of the moment .  Indeed, a trivial exclusion 
moment , for instance, satisfies this condition:  hypothesis H never excludes, that is, is 
considered as true for any test results.  Therefore in addition to (9.73) we require that condition: 
 
 for D,  E   min  (9.74) 
 
must be held.  In other words, we wish mathematical expectation E  of the moment of hypothesis 
H exclusion would be small, if this hypothesis is not true ( D). 
 It can be shown (see p.3 of Appendix to the chapter) that from (9.73) it follows that 
mathematical expectation E  of the moment of hypothesis (9.71) must satisfy inequality 

where 

 
and ( , ') is Kullback-Leibler "information distance" between  and ': 

 
Value of ( ,D)  represents Kullback-Leibler "information distance" between  and D.  Notice 
that ( , ')=0  if = ' and ( , ')>0  if ' . Therefore, ( ,D)=0 if D and ( ,D)>0 
if D. So, (9.75) delivers the lower limit for the mathematical expectation E  for any 
(Markovian) moment  which satisfies (9.74).  Following Pavlov (1985, 1990), consider the rule of 
construction of  where the lower limit of the right side of (9.75) is asymptotically reached for 
 .  It allows one to obtain asymptotic solution of the problem of optimization (9.74). 

 The moment of hypothesis H: D  exclusion is determined as  

 


 
E ,D

     for  all  D  








ln

( )

1

   (9.75) 

     


( ) ( )min,D = ,
D

    (9.76) 

   

( ) ln

( )
( )

, = E
f x,
f x,

.










  



 

357 
 

  
where  ( ,... , )  x xn1  is the point estimate of parameter  on the basis of test results x1, ... , xn on 
first n steps.  The moment determined in such a way, it satisfies the inequality 
 

   P ,D <{ ( ) }         (9.78) 
 

 for any H: D.  
(See the proof in Appendix to the chapter.)  Besides the mathematical expectation of this moment, 

( ,D) for some general conditions reaches the lower limit in (9.75) asymptotically for  
0, namely, 

 
for any D where  0 if 0. (For the proof see ibid.)  Thus for small probability of error, , 
approximate formula for the average moment of hypothesis H exclusion when it is not true (that is 
for D) is: 

The right side of this approximate coincides with the right side of inequality (9.75), so moment 
(9.77) is approximately (for <<1) optimal. 
 With construction of the moment of exclusion ( ,D) constructed by rule (9.77), we can 
further to solve problems of test for composite hypotheses. 
 
15.3.2 Sequential Criterion for Composite Hypotheses Test 
 
 Suppose we need to test two composite hypotheses of the type (9.70) for some function 
(reliability index) R( ) of vector parameter =( 1, ... , m).  These hypotheses can be written in the 
form 
  
  H0:  D0,    H1:  D1  (9.80) 
 
where D0 and D1 are areas in the parameter space which is determined as D0={ : R( )<R0} and 
D1={ : R( )>R1}.  The intermediate area I={ : R0<R( )<R1} is called the "area of indifference". 

    



( ) min : (  ) ( )max,D = n   f x , f x ,

r n
r r

D r n
r

1
1

1

1
 


  

 








,  (9.77) 

   


 
E ,D =

,D
+( )

ln

( )
( )

1

1







 

  


 
E ,D

1

,D
.( )

ln

( )








 



 

358 
 

 Let us construct moments of exclusion for hypotheses H0 and H1, respectively, on the basis 
(9.77) 
 
  0= ( , D0),   1= ( , D1)  (9.81) 
 
where  and  are given risks of type I and II.  Sequential criterion for tests of these hypotheses is 
determined as follows.  Let us continue the test until such moment (step) when one of hypotheses 
will be excluded, that is, until moment  
 
  = min ( 0, 1).  (9.82) 
 
At this moment test is stopped and the remaining hypotheses is accepted.  In other words, the rule of 
decision making at the stop moment (9.82) has the form 
 
 if = 1< 0 then hypothesis H0 is accepted, 
 if = 1> 0 then hypothesis H1 is accepted,      (9.83) 
  
(If 1= 0 , that is, both hypotheses are excluded simultaneously, either of these hypotheses may be 
accepted.) In accordance with (9.77) the sequential criterion (9.82), (9.83), determined as shown 
above, can be formulated in the following form.  The area of test continuation is given by the 
following inequalities 
 

where 

The test continues until the first violation of at least one of the inequalities in (9.84).  If the first one 
is violated, then hypothesis H1 is accepted. If the second one is violated, then hypothesis H0 is 
accepted. 
 It is easy to find that the sequential criterion constructed in such a way for test hypotheses 
(9.80) has risks of type I and II not larger than  and , respectively.  Indeed, let D0, that is, 
hypothesis H0 is true.  Then by construction of the criterion, the probability of erroneous decision 
(acceptance of hypothesis H1) satisfies inequality 

 n nU -V < ,0
1

ln





  

(9.84) 
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 Analogously, let D1, that is, hypothesis H1 is true.  Then the probability of erroneous 
acceptance of hypothesis H0 satisfies inequality 

 
(For more details see p.3 of Appendix to the chapter.)  Besides, this sequential criterion for 0 
and 0 is asymptotically optimal by average test volume N( )=E  for all . The average test 
volume, N( ), for small values of  and  can be estimated by the following approximate 
formulae (see ibid., Theorem 9.2): 

where 

 
15.4 Sequential Confidence Limits 
 
15.4.1 Construction of Sequential Confidence Limits 
 
 Let R( )=R( 1, ... , m) be some function (reliability index) depending on m-dimensional 
vector parameter =( 1, ... , m) whose true value is unknown.  Assume that during the test, results 
are obtained (9.8) at each step n. On the basis of test results x1, ... ,xn, ...,we construct the confidence 
limit (for instance, lower): Rn=Rn(x1, ... ,xn) for index R( ).  Random sequence 
 
  Rn=Rn(x1, ... ,xn),  n=1, 2, ...  (9.90) 
 
is called sequential -LCL for index R( ) if it satisfies the following conditions: 

    P to accept H P <{ } ( )1 0    
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 (a) Sequence Rn monotone non-decreasing in n: 
 
 R1 < R2 < ... < Rn < Rn+1 < ... 
 
for any test results (x1, ... ,xn, ...). 
 
 (b)  For any Markovian stop moment  such that P ( < )=1, inequality  
 

for all  where R =R (x1, ... ,x ) is the LCL (9.90) calculated at the stop moment .  Notice that 
due to the monotonicity of sequence Rn condition (b) can be substitute by the weaker one 
 (c) For any fixed step n inequality 
 

 
holds for all . 
 Indeed, from monotonicity of sequence Rn follows that there exists (for any test results x1, ... 
,xn, ...) limit for n  
 
 R= lim Rn 
  
and due to (9.92) this limit satisfies inequality 
 

   P R R P R R ,n{ ( )} lim { ( )}     
 

and, taking into account monotone decreasing of Rn, it follows that for arbitrary (not necessarily 
Markovian) stopping moment  inequalities R < R  and  
 

    P R R P R R ,{ ( )} { ( )}     
 
hold. The latter inequality is true for any moment  such that P ( < )<1 if R = lim Rn=R.  Thus, 
if sequence (9.90) is monotone non-decreasing (in all x1, ... ,xn, ...), then for demonstration,  that (b) 
is true, it is enough to prove condition (c). 
 Let us now construct the sequential confidence limit for R( ) based on the exclusion 
moment ( ,D) for composite hypotheses given  in (9.77). For this purpose, consider composite 
hypothesis 
 
 HC:  R( )<C   (9.93) 
 

    P R R{ ( )}                          (9.91) 
 

   P R R ,n = ,...n{ ( )} ,  1 2    (9.92) 
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where C is a constant.  The exclusion moment for this hypothesis is denoted as 
  C= ( ,DC)   (9.94) 
 
where DC is the area in space of parameters  of the form DC={ :  R( )<C}.  The LCL 
Rn=R (x1, ... , xn) for R( )at step n is defined as 
 
 Rn= max {C: C<n},   n=1, 2, ... (9.95) 
 
that is as maximum value C for which hypothesis of type (9.93) is found untrue at step n. 
 It is easy to find that r.v.'s Rn,  n=1, 2, ... defined in (9.95) form -LCL for R( ) where 

=1- .  Indeed, let ' be an arbitrary point in the space of parameters.  Denote b=R( ').  For 
each fixed n due to (9.95) the following relation is valid: 
 
 { b>n} {Rn < b} . (9.96) 
 
Taking into account that ' belongs to area Db={ : R( )<b} and due to (9.78) the following 
inequality holds: 
 
 P '( b > n)=1-P '( b < n)> 
 1-P '( b < )=1-P '{ ( , Db )< } >1- . 
 
from here, due to (9.96) follows that 
 
 P '{Rn<R( ')}=P '(Rn<b)> 
 P '( b>n)>1-  
 
for each fixed n=1, 2, ... (that is, condition C holds).  Monotone non-decreasing of sequence Rn 
(condition A) follows directly from its definition (9.95).  Thus r.v.'s (9.95) form sequential (1- )-
LCL for R( ).   
 Analogously define the UCL. The sequence of r.v.'s  
 

is called the sequential -UCL for R( ) if the following condition holds: 
 A') Sequence of R n  is monotone non-increasing: 
 

 
for any test results x1, ... , xn,... . 
 B') For any (Markovian) stop test  such that P ( < )=1  inequality 
 

 n n nR = R x ,...,x , n = , ,,....( )1 12  

 1 2 n n+1R R ... R R ...      
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holds for all  where  

 Analogously, we can show that if the sequence R n , n=1,2 ..., satisfies to the first condition 
of monotonicity A' than for showing that the second condition B weaker condition maybe proved:   
 C') For arbitrary fixed n=1, 2, ... the inequality  
 

holds for all .   
 In an analogous way we define two-sided sequence -confidence interval ( , )R Rn n  for 

R( ).  It is easy to show that if r.v.'s Rn and R n  form, respectively, (1- )-LCL and  -UCL 
for R( ) then ( , )R Rn n  form sequential (1- - )-confidence interval for R( ).  For 
constructing sequential (1- )-UCL for  R( ), consider again composite hypotheses of the type 
 
 H'C:  R( )>C  (9.97) 
 
The exclusion moment for hypothesis (9.97) is denoted by 
 
 'C= ( , D'C)  (9.98) 
 
where D'C={ :  R( )>C}.  At test step n let us set 
 

R n = min {C:  C
’ < n},  n=1,2,...     (9.99) 

 
The random sequence defined in such a way forms sequential  -UCL for R( ). The proof 
of this is similar to the one given above for (9.95). 
 On the basis of definition of the exclusion moment ( ,D) in (9.77) the sequential  -LCL 
(9.95) and -UCL (9.99) can be written in more detail as follows 
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where values R'n and R n are determined at test step n from the following equations: 

1
1

n nV C = U( ) ln









 

 
where Un is determined above in (9.85), 
 

 
Sequential confidence limits, constructed in (9.100)-(9.102), are asymptotically optimal for ->0 
and ->0 in sense of the average time to reach the specified accuracy (see p.3 Appendix to the 
chapter). 
 
15.4.2 Test Reliability Hypotheses with the Help of Sequential Confidence Limits 
 
 Suppose we need to test, on the basis of sequential tests (9.8), two composite hypotheses of 
the following type 
 
 H0:  R( )<R0,  H1:  R( )>R1, 
 
where R0<R1 are given critical levels of index R.  Let  and  be given risks of type I and II.  One 
can see directly from (9.81)-(9.86) (9.94), (9.95), (9.98)-(9.102) that sequential criterion, 
constructed above in Section 9.3, with risks  and   for hypotheses H0 and H1 can be written via 
sequential confidence limits as follows.  The area of test continuation at step n is given by two 
inequalities 
 

where Rn is sequential (1- )-LCL, R n  is sequential -UCL for R( ) constructed above in (9.100).  
The test continues, that is, we go to the next step n+1 if at step n both inequalities in (9.103) hold.  
The test is stopped at such step where the first time at least one of inequalities in (9.103).  If the first 
inequality is violated, the hypothesis H1 is accepted. If the second inequality is violated the 
hypothesis H0 is accepted. 
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 In other words, this decision rule based on the sequential confidence limits means the 
following.  Let, for instance, R=R( )  be an index of the type of failure probability or failure rate.  
Then the critical levels R0<R1 are, respectively, equivalent to the levels of "acceptance" R0 and 
"rejection" R1.  The test continues if the confidence interval ( , )R Rn n  at step n contains both critical 
levels R0 and R1. If the (1- )-LCL Rn crosses the level of "acceptance" R0 then the test is stopped 
and hypothesis H1 is assumed true ("rejection").  If the  -UCL R n  crosses the level of 
"rejection" R1 then the test is stopped and hypothesis H0 is assumed true ("acceptance"). 
 
Remark 9.5.1.  This sequential decision rule preserves its meaning in the case where the 
intermediate area of "indifference" I is absent, that is, if critical levels are coincide, R0=R1. In this 
case risks of types I and II  and  are preserved but the average test volume increases if the value 
of index R( ) R0, that is, N( )   if  R( )  R0 as it can be seen from (9.87)-(9.89). (For 
details, see p.3 of Appendix to the chapter.) 
 
15.4.3 Scheme of Dependent Tests    
 
 Consider a case where the test process  
 
 x0, x1, ... ,xn, ... 
 
represent a homogeneous Markov chain "starting" from the initial state x0.  Let f(x|y, ) is the 
transitive density of distribution, in other words, the density of r.v. xn+1 observed at step n+1 for 
given value of parameter =( 1, ... , m) and under condition that at step n the value of r.v. xn=y 
was observed. 
 Consider again composite hypothesis: 
 
 H:  D   (9.104) 
 
where D is some area in the space of parameters .  The moment of "exclusion" of hypothesis 
(9.104) we determine analogously to (9.77) in the scheme with independent tests, namely, in the 
following way 
 

 
where  ( ,..., ) n nx x 1  is again the point estimate of parameter   based on the test results x1, ... 
,xn at first n steps.  It is possible to show (see p.4 of Appendix to the chapter) that this moment, as in 
the scheme of independent tests above, satisfies inequality 
 

 P { ( ,D)< }<   for all D  (9.106) 
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 After this, sequential confidence limits for R=R( ) are constructed on the basis of the 
moment of exclusion of composite hypotheses (9.105) by previous formulae (9.94) and (9.95) for 
the lower limit, and by formulae (9.98) and (9.99) for the upper limit.  The lower and upper limits at 
test step n are determined analogously to (9.100)-(9.102) by formulas: 
 
 

where values R’n and R n' are determined at test step n, respectively, for the following levels of C 

where  
 

  (9.110) 

 
The random sequences Rn and R n , n=1,2, ... ,constructed in such a way, form sequential (1- )-LCL 
and sequential (1- )-UCL for R( ). (The proof of this fact is completely coincides with that given 
in Section 9.4 for the scheme of independent tests.) 
 
15.5 Sequential Confidence Limits and Test of Hypotheses for Systems on the Base of Unit 
Tests 
 
 Consider now some application of the results obtained above.  Begin with a simplest 
"binomial model" of system unit tests (see above Example 9.1.7). 
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15.5.1 Binomial Model. 
 
 Let a system consist of m units of different types. At the current  nth test step (cycle) Ni units 
of type i are simultaneously tested. Each unit has reliability parameter (failure probability) qi, 
1<i<m.  Failures of different units are independent.  As the results of the test, we observe a sequence 
of i.i.d. random vectors 
 
 x1, x2, ... ,xn, ...  (9.111) 
 
where random vector xn represents a set of all numbers of failures for units of different types that 
were observed at step n: 
 
 xn=(d1n, d2n, ... ,dmn),  n=1, 2, ... 
 
where din is the number of failures of Ni tested units of type i at step (cycle) n.  Thus, r.v. din has 
binomial distribution with parameters (Ni,qi) where value of parameter qi is unknown.  This model, 
obviously, is a multi-dimension analogue of the classical scheme of sequential independent 
Bernoulli trials.  Bernoulli scheme is a particular case of this general scheme for Ni=1 and m=1. 
 We need, on the basis of test results (9.111), to construct confidence limits or to test 
hypotheses about some system reliability index 
 
 R=R(q)=R(q1, ... , qm) 
 
where q=(q1, ... , qm) is vector of unknown parameters of unit reliability. 
 Denote Min=di1+ ... +din, the total number of unit i failed during n test steps and 

 
is the point estimate of parameter qi at step n.  Values ki and ri take into account some prior 
information.  For instance, if there is information about previous tests, then ki might be the number 
of tested units and ri the number of observed failures, 1<i<m. Denote  ( )  ( )p n q ni i 1  the point 
estimate for parameter pi=1-qi at test step n. 
 Applying general formulae (9.100)-(9.102), we obtain that sequential (1- )-LCL Rn and (1-

)-UCL R n  for parameter R=R(q)can be found at the nth test step as 

 (9.113) 

 i
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        ( )    (9.112) 
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where values R'n and R n'  are found at step n from solution of the following equations in respect to 
C: 

 (9.114) 

where 

n
i m

in i i in iH = M q + nN - M q .( ) { ln ( ) ln( )}q
1

1
 
   

 
 Suppose we need to test two composite hypotheses on the basis of test results (9.111) 
 
 H0:  R(q)<R0,   H1:  R(q)>R1. 
 
Sequential criterion  with given risks of types I and II (  and ) for hypotheses H0 and H1 is 
constructed in accordance with (9.84)-(9.86) as follows.  The area of test continuation on step n is 
given by inequalities 

 (9.115) 

 
 The test continues, if both inequalities (9.15) hold. The test is stopped if at least one of these 
inequalities is violated. The violation of the first one leads to acceptance of hypothesis H1, and the 
second one to acceptance of hypothesis H0. 
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 In accordance with (9.113), this sequential criterion can be also written in a more compact 
form via sequential confidence limits (9.113).  Namely, the area of test continuation at step n is 
given by inequalities 
 

 
that are equivalent to previous inequalities (9.115). The decision rule is formulated in this case 
similarly.  The test continues, if both inequalities (9.16) hold and stops if at least one of these 
inequalities is violated. The violation of the first one leads to acceptance of hypothesis H1, and the 
second one to acceptance of hypothesis H0. 
 This sequential criterion is asymptotically optimal for 0 and 0 in sense of the 
average test volume (see p.3 of Appendix to the chapter, Theorem 9.2).  Let us write formulae for 
the average test volume, assuming in the sake of simplicity = . Let  be the moment of the first 
violation of the inequalities above and N(q)=Eq  is the average test volume for given vector of 
parameters q.  In accordance with (9.87)-(9.89) the average test volume, N(q), can be estimated for 

= 0 with the help of the following formulae 
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where 
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q=(q1, ... , qm), q'=(q'1, ... , q'm). 
 
 In practice, for often used 0.01< <0.2, these approximate formulae give satisfactory 
estimates for average test volume.  A more precise the value of the average test volume, N(q), can 
be estimated with the help of Monte Carlo method (see below Examples 9.5.1 and 9.5.2). 
 

Gain in the average test volume  
with unit test information 

 
 Consider a series-parallel system (see Example 9.1.7 above) which is characterized by 
 

 
where Ni is the number of parallel units in the ith redundant group, 1<i<m.  The test of hypotheses 
H0 and H1 for (9.117) can be performed on the basis of test results for the system, that is, on the 
basis of sequence 
 
 1, 2, ... , n, ...  (9.118) 
 
where n is system failure indicator at step n: n=1 if at least one redundant group has failed at the 
step n, that is at least for one i,  1<i<m, din=Ni. Otherwise, n=0. 
 In this case the problem is reduced to the standard test of hypothesis of type 
 
 H0:  R<R0,   H1:  R>R1 
 
for binomial parameter (failure probability) R on the basis of results of Bernoulli trials (9.118).  This 
problem can be solved on the basis of sequential Wald criterion (see Section 9.2 and Example 9.2.1 
above). The average test volume in this case is estimated with the help of known Wald's formulae 
(9.63). 
 The serious deficiency of such a simple method, based directly on system failures (9.118), is 
that all information about unit's failures is not taken into account.  In is clear on an intuitive level 
that this fact should lead to increase in the average test volume especially for the highly reliable 
systems.  For instance, in this case we consider as equivalent cases where at the test step n we 
observe din=0 or din=Ni-1 though these two cases are quite different. 
 Below we suggest numerical examples with comparison of average test volume (for the 
same values of R0, R1,  and ) for the sequential Wald's criterion based on system's failures 

  R = R = - - q    
i m

i
N i( )q 1 1
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(9.118) and for the sequential method (9.115)-(9.116) based on complete information (9.111) 
taking into account complete data of unit's failures. 
 From these examples one can see that sequential criterion (9.115)-(9.116) gives a substantial 
gain in average test volume. 
 
Example 9.5.1  (Series-parallel system) 
 Consider a series-parallel system with reliability index of form (9.117). The system consists 

of m=2 parallel subsystems connected in series.  The number of units within the subsystems are 
N1=N2=2.  The critical levels are R0=0.05 and R1=0.2, and risks of type I and II are = =0.1.  

Using formula (9.63), we obtain that for R=R0 the average test volume for Wald's criterion based on 

the system's failures is equal to WN R
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For the sequential criterion (9.115)-(9.116) based on the complete information, the average test 
volume, N(q), is equal to 8.3 for the value of reliability index R(q)=R(q1, q2)=R0 the average test 
volume found with the help of Monte Carlo simulation with computer.  (The average test volume 
was estimated for a symmetrical point q1=q2, R(q1,q2)=Ro, that is for equally reliable units for both 
subsystems.)  Thus, in this case, the average test volume can be decreased more than in two times 
due to use sequential criterion (9.115)-(9.116) with taking into account complete information. 
 
Example 9.5.2 (Parallel system) 
 Consider a parallel system consisting of m=2 units of different types. The reliability index 
(in this case the failure probability) has the form 
 
 R=R(q)=q1q2  (9.119) 
 
where qi is the failure probability of the ith unit, q=(q1, q2) is vector of unit parameters.  Let, as in 
the previous example, at each step a single system be tested.  It means that the number of tested 
units of the first and second types are equal N1=N2=1.  Vector of test results, xn, at step n has the 
form: 
 
 xn=(d1n, d2n),    n=1, 2, ...   (9.120) 
 
where din={0 or 1} is the failure indicator for a unit of the ith type at step n.  The system failure 
indicator at step n equals =1 if d1n=d2n=1, that is both units have been failed, and =0, otherwise.  
Suppose we need to test two composite hypotheses for reliability index (9.119): 
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 H0:  R<R0,   H1:  R>R1 

 
where critical levels R0=0.01 and R1=0.05.  Given risks of type I and II are = =0.05. 
  Test of hypotheses H0 and H1 can be done either by Wald's criterion applied to the sequence 
of system failure indicators 
 
 1, 2, ... , n, ...  (9.121) 
 
or on the basis of criterion (9.115)-(9.116), applied to sequence (9.120).  Using (9.63), we obtain the 
average test volume for Wald's criterion for R=R0 is equal 
 

 
For sequential criterion (9.115)-(9.116) the average test volume for R(q)=q1q2=R0 (that is at 
symmetrical point q1=q2= R0 ) gives, with the help of Monte Carlo simulation, the value of 44.  
Again we have a substantial gain in the average test volume due to the use of complete information 
about unit failures and applying sequential criterion (9.115)-(9.116). ■ 
 
Example 9.5.3 (Sequential UCL for the failure probability of a parallel system) 
 Consider a parallel system consisting of m different units. Failure probability of such system 
as the form 
 

 
Construct (1- )-UCL for reliability index of type (9.122) using formulae (9.113)-(9.114).  In this 
case function V1n(C) has the form 
 
 V1n(C)= max Hn(q)  (9.123) 
 
where maximum is taken under the following restrictions for vector of parameters q=(q1, ... ,qm): 

 0<qi<1,   1<i<m. 
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It is easy to see that maximum in (9.123) is attained in the inner point of the area specified by 
restriction (9.124), since H(q)   for qi1.  Necessary condition for maximum (the system of 
Lagrange equations) in this case has the form 
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where b>0 is a Lagrange multiplier. It gives, after simple transformations, that (1- )-UCL for the 
probability of system failure at step n is determined by the formula 
 

 
where 

 
and value b>0 is found from equation 
 

 
Example 9.5.4. (Test of parallel system up to the first failure) 
 In conditions of the previous Example consider a case where system tests are continues until 
such random step n when the first failure of at least one unit has occurred, that is up to the step 
 
  = min {n:  din>0  at least for one unit i, 1<i<m}. 
 
Take the point estimate (9.112) for parameter qi (the probability of failure of unit i) the standard 
estimate of maximum likelihood 
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In this case, by the definition of the test stop moment  for all numbers of failures of units equals 
din=0 and, consequently,  ( ) ,q ni  0    ( ) .p ni  1 .  From (9.125)-(9.127) we have 
 

 
where b>0 can be found from equation 
 

 
It follows that sequential (1- )-UCL for the probability of system failure at test step n is determine 
by formula 
 

UCL (9.128) decreases fast with increasing n.  At the test step  this limit has the form 
 

 
15.5.2 General Parametrical Model 
 
 Consider a system consisting of m units of different types.  Each unit has d.f. Fi(x, i) and 
distribution density fi(x, i) where i is unknown parameter (in general case, a vector).  There are Ni 
units of type i,1<i<m.  All unit failures are independent.  A failed unit is instantaneously replaced by 
a new one (see Example 9.1.6 above).  During the test we observe N1+ ...+Nm independent renewal 
processes among which there are Ni processes of type i.  
 Let R=R( )=R( 1, ... , m) be some system reliability index depending on vector of unit 
parameter.  Using results of Section 9.4, it is easy to construct sequential confidence limits for 
R=R( ) for more general model with continuous time.  The following formulae for the sequential 
confidence limits can be obtained by using the results of Section 9.4.3 by dividing the time axis into 
intervals h and by setting then h0 (see Pavlov, 1983b and 1988 for details). 
 Let us introduce the following notation for test results: 
Ni= the number of units of type i tested at moment t (in this model Ni is constant for any t) 
tij = the moment of the jth failure of unit of type i, 
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sij = the total test time of the ith unit at moment tij , 
Di(t)= the number of failures of units of type i on time interval (0, t], that is, the number of failure 
moments tij such that tij<t, 
Sie(t) =  the test time of the eth unit of type i at a current moment t, 1<e<Ni. 
 
 We also introduce the following notation for the standard unit characteristics: 

is the failure rate of the ith type unit for a given value of parameter i (further we will assume that 
this function is continuous in x for each 1<i<m, 
 

is the "resource function" of the ith unit (in other terminology, "leading function"). 
 Sequential (1- )-LCL and (1- )-UCL for R=R( ) are found for time moment t by  
formulae 

 
where values of R't and R t'  are found from the following equations in respect to C: 
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where  ( ) i t  is the point estimate of parameter i obtained by test results on time interval (0,t], 
  ( ) ij i ijt  0  is the left limit of function  ( ) i t  at point tij. 

 
Example 9.5.5 ("Exponential model") 
 Consider  a particular case where units have exponential d.f. of TTF: Fi(x, i)=1-exp(- ix),  
i=1, ... ,m.  In this case reliability parameter of unit of type i is i= i, vector of unit reliability 
parameters = =( 1, ... , m), and reliability index of the system, R=R( )=R( 1, ... , m),  is some 
function of parameter vector . Denote 

 
the point estimate of parameter i obtained on the basis of test results up to moment t where values 
of Ti and ri allow to take into account information about parameter i if it exists (for instance, test 
duration Ti and number of observed failures ri).  On the basis of previous formulas (9.129)-(9.133) 
we obtain that in this case R=R() sequential (1- )-LCL and (1- )-UCL are determined at moment 
t by formulae (9.129)-(9.130) where 
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where   ( ) ij i ijt  0  is the point estimate of the left limit of estimate i (t) at point tij. 
 
15.5.3 Markov Model of Tests with Censorship and Unit Renewal 
 
 We have considered particular cases of tests: failed units are always instantaneously 
replaced and no unit tests are stopped before the total test completion.  However these results can be 
extended onto more general models. 
 In Section 3.6 we introduced a general Markov model [MMR] of tests of identical units with 
TTF d.f. F(x, ).  This model allows us to consider test censorship as well as unit renewal.  Let us 
now introduce more general model for which we use notation [MMR]m which differs from model 
[MMR] by following: there are units of m different types. In other words, [MMR]m represents a 
multi-dimensional analogue of [MMR]. 
 At moment t=0 we begin to test Ni=Ni(0) identical units of type i. TTF of each of them is 
non-negative r.v. i with d.f. Fi(x, i) where i is an unknown vector parameter, 1<i<m.  The model 
is given by sequences 
 
 ( i1, ni1), ...( ik, nik), ... 

where i1< i2< ... < ik<... are Markov ("independent on future") moments of termination of test of 
units of ith type, i1< i2< ... < il<... are Markov moments of placing on test new units of ith type; 
nik is the number of units of the ith type whose test is terminated at moment ik, ~nil  is the number of 
new units of the ith type whose test begins at moment il.   R.v. nik=0, 1, 2, ... might depend on 
prehistory of test process before moment ik but does not depend on the future developing of the 
process for t> ik.  Analogous r.v. ~nil =0, 1, 2, ...  might depend on behavior of test process before 
moment il but does not depend on the future developing of the process for t> il. (More detailed 
and accurate formal definition are given in Section 3.6 above and in pp.1, 2, and 7 of Appendix to 
Chapter 3.) 
 Denote 
 
 0<ti1<ti2< ... <tij<...  
 
sequential failure moments  of units of the ith type, where tij is the moment of failure of unit j of 
type i.  
 Introduce the following notation:  
 Di(t) is the number of ith unit failures on interval (0,t], that is, the number of failure 
moments tij such that tij<t,  
 Ni(t) is the number of units of the ith type which began to be tested and whose test has not 
been terminated before t: 
 
 Ni(t) = Ni(0)+Bi(t)-Di(t)-Li(t) 
where 

 ( ,n ),....( ,n ),...i i il il1 1 ~ ~  
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 uir is test time of unit r of type i which test has been terminated on interval (0,t] before 
failure, 1<r<Li(t), 
 sij is test time of unit of type i which has failed at moment tij, 
 Sie(t) is the total test time of unit e of type i which is on the test at moment t, 1<e<Ni(t). 
 Let R=R( )=R( 1, .. , m) be a function (reliability index) from unit parameter vector 

=( 1, .. , m). Sequential (1- )-LCL and seq. (1- )-UCL for R=R( ) are calculated for this 
model by formulae analogous to those in previous Section 9.5.2 (see also Pavlov, 1985 and 1988): 

t
u t

uR = R


max
 

where values R't and Rt
'  are determined during the test process at each current time moment t from 

the corresponding equations in respect to C: 
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where, in turn, 
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where  ( ) i t  is, as before, the point estimate of parameter i obtained by test results on time interval 
(0,t],   ( ) ij i ijt  0  is the left limit of function  ( ) i t  at point tij. 
 Formulas (9.134)-(9.138) are similar to (9.129)-(9.133) of previous Section and are their 
generalization. 
 Consider now some particular cases. 
 
Example 9.5.6. (Markov model [MMR] for identical units) 
 Consider a particular case of model [MMR]m for m=1, that is where all tested units are 
identical with the same TTF d.f. F(x, ) where  is some vector parameter.  Remember that in 
Chapter 3 we considered non-parametrical case related to model [MMR].  Formulae (9.134)-(9.138) 
allow to obtain corresponding results for parametrical case. Let R=R( ) be some reliability index, 
for instance, the unit PFFO, 
 
 R( )= 1- F(t0, )  (9.139) 
or MTBF 

 
Using formulae (9.134)-(9.138) with m=1, we find that sequential (1- )-LCL and (1- )-UCL for 
R=R( ) are calculated for each current moment of time t as follows: 

 (9.141) 

where values of R't and R t
'  for moment t are defined from the following equations in respect to C: 
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 (9.142) 

where 

 (9.143) 

where, in turn, 

 
where (x,) is unit failure rate, (x,) =-ln [1-F(x,)] is unit 
resource function, tj is the moment of the jth failure during the test, sj is the test time of unit failed at 
moment tj, D(t) is the number of failures on interval (0, t], N(t) is the number of tested units at 
current moment t, L(t) is the number of unit whose test have been terminated (without failure) on 
interval (0,t], ur is time which unit r was tested on interval (0,t] until stopping the test (without 
failure), 1<r<L(t), Se(t) is test time for unit e which is under test at current moment t, 1<e<N(t),  
( ) t  is point estimate of parameter  by test results on interval (0,t],  ( ) j jt  0  is left limit of 

estimate ( ) t  at moment tj.■ 
 
Example 9.5.7. (Weibull-Gnedenko distribution) 
 In conditions of previous example, let us consider a case where d.f. of unit TTF has 
Weibull-Gnedenko distribution, that is, 
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 F(x, )=F(x, , )=1-exp(- x ). 
 
In this case  is two-dimensional parameter: =( , ).  Any chosen reliability index is a function 
R=R( , ) of this two-dimensional parameter. For instance, reliability index of type (9.139), that is, 
the unit PFFO during time t0, in this case has the form 
 R( , )=exp(- t0 ). 
 
Another standard reliability index of type (9.140), that is, the unit MTTF, is written in this case as 

where 

is the Gamma function. 
 For this d.f. the failure rate  and "resource function" have the following form 
 
 (x, )= x -1  and (x, )= x . 
 
By substituting these functions into (9.144)-(9.145), we find that confidence limits Rt and R t  for 
reliability index R=R( , ) for Weibull-Gnedenko distribution are determined for current moment t 
by (9.141)-(9.142)where 
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where ( ) t  and ( ) t  are point estimates of parameters  and  obtained by test results on time 

period (0.t],  ( ) j jt  0   and  ( ) j jt  0  are left limits of these estimates at moment tj.  ■ 
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Example 9.5.8 (Renewal process) 
 In conditions of Example 9.5.6 let us consider a particular case of the renewal process with 
d.f. F(x, ).  
 In this case replacement is instant, that is, L(t)=0 always.  The number of units N(t) under 
testing at any current moment t is also constant, N(t)=1.  Sequential LCL and UCL for reliability 
index R=R( ) at moment t are determined by (9.141)-(9.145).  In this case (9.144)-(9.145) can be 
simplified: 
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where S(t) is the test time of the unit under test at current moment t, that is, S(t)=t-tj where tj is the 
moment of the last failure in time period (0, t]. 
 On the basis of sequential confidence limits, we can construct corresponding criteria for test 
of hypotheses of types H0: R<R0 and H1: R>R1 in respect to reliability index R=R( ).■ 
 
 
 
16.5.4 Sequential confidence limits for availability coefficient of renewable unit 
 
 Consider a unit with d.f. of TTF equal to F1(x, 1) and d.f. of renewal time equal to F2(x, 2)  
where 1 and 2 are unknown parameters, in general case, vectors.  Consider a simple test scheme 
with test results in the form of alternating independent random intervals 
 
 (s1n, s2n),  n=1, 2, ...  (9.146) 
 
where s1n is TTF of the unit, and s2n is its random renewal time at the nth step of test. All r.v.'s are 
independent.  Thus (9.146) represent a alternating renewal process. All r.v.’s s1n have d.f. 
F1(x, 1), and all s2n have d.f. F2(x, 2).  The test results of such a test are sequential moment of 
failures and renewals of the unit: 
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where t1n is the moment of the nth failure, and t2n is the moment of the nth renewal, n=1, 2, ... .  
Graphical illustration of this process is given in Figure 9.11 where I(t) is an indicator function such 
that I(t)=0 if a unit is in renewal state and I(t)=1 if a unit is in operational state at moment t. 
 
 Figure 9.11 
(Test process of renewal unit: I(t) is indicator function 
 
 A standard reliability index for a renewable unit is its availability coefficient, that is, the 
stationary probability of operational state of the unit 
 

 
 This reliability index can be found by well known formula 
 

where 

 
is the unit's TTF, and 

is the unit's mean renewal time. 
 Applying general formulae (9.134)-(9.138), we obtain that sequential (1- )-LCL, Kt, and 
(1- )-UCL, K t , for reliability index (9.147) can be calculated for a current moment t in the 
following manner: 

 (9.148) 
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where values K't and Kt  are found from the following equations 
 

 (9.149) 

where 

 (9.150) 

 
where, in turn, 
 

 
where i(x, i)=- ln [1-Fi(x, i)], i=1 or 2, are "leading functions" for failure and renewal,  

 0
1

t tV (C) = U - ln





  

 1
1

t tV C = U -( ) ln








  

 0 1 2
1 2

t
K( , ) C

tV C = H( ) max ( , )
 

 


 

 1 1 1 2
1 2

t
K( , ) C

V C = H ,( ) max ( )
 

 


 

 t
j D (t)

j
j D (t)

jH , = s , s -( ) ln ( ) )( ,1 2
1

1 1 1
1

1 1 1
1 1

    
   
    

 
  

 
[ ( )] [ ( ) ] ln ( )1 1 1 1

1
2 2 2

2

- I t S t , + s ,
j D (t)

j     

 
 - s I t s t ,

j D (t)
j , ,  

1
2 2 2 2 2 2

2 
  ( ) ( ) [ ( ) ]    (9.151) 

 
 
 t

j D (t)
j j

j D (t)
j JU = s , + s

1
1 1 1

1
2 2 2

1 2   
  ln (  ) ln ( ,  )     

 

 - S u , u - I u du - s u , u I(u)du     
t t

2
0

1 1 1
0

21
2    [ ( )  ( )][ ( )] [ ( )  ( )]   (9.152) 

 i i i ix, =
d
dx

x,  ( ) ( )  



 

385 
 

 
are corresponding failure and renewal rates, Di(t) are corresponding numbers of failures (renewals) 
on interval (0,t], Si(t) are total times when a unit was in operational (down) state if it is in 
operational (down) state at moment t,  ( ) i t  is point estimate of parameter i on the base of test 
results on interval (0, t],   ( ) 1 1 1 0j jt   is left limit of estimate  ( )1 t  and    ( ) 2 2 2 0j jt   is left 

limit of estimate  ( )2 t at the moment of the jth failure (renewal), that is, t1i and t2j, respectively. 
 Suppose we need to test two composite hypotheses 
 
 H0: K<K0 and H1: K>K1 
 
with respect to availability coefficient  K=K( 1, 2).  Then the sequential criterion for test of 
hypotheses with risks of type I and II can be constructed on the basis of sequential confidence limits 
(9.148) in the same manner as it was done in Section 9.4.2.  Namely, the area of test continuation at 
moment t is given by inequalities 

 
The test continues if both inequalities hold and are stopped at the moment when at least one of them 
is violated.  If the first inequality is violated, hypothesis H1 is accepted, if the second  is violated, 
then hypothesis H0 is accepted. 
 Notice that in this model with continuous time, moments of renewals, t2n, are moments of 
regeneration for random process I(t), and pairs of r.v.'s (s1n,s2n), defined in (9.146), form i.i.d. 
"regeneration cycles".  Thus, I(t)is alternating renewal process formed with two-dimensional r.v.'s 
(s1n,s2n).  Therefore properties of asymptotic optimality (for 0 and 0)of sequential 
confidence limits (9.148) and sequential criterion of test of hypotheses (9.153) follow from 
corresponding results for the scheme of independent and identical tests (see p.3 of Appendix and 
Pavlov, 1988, 1990). In general case where one can not distinguish such regeneration moments, 
corresponding properties of sequential confidence limits above (9.134)-(9.138) need further 
investigations. 
 

Exponential model 
 Let us take a particular case of the test scheme considered above, where d.f. of unit's TTF is 
exponential: F1(x, 1)= 1-exp(- 1x) with unknown parameter 1 (the failure rate), and d.f. of unit's 
renewal time is also exponential: F2(x, 2)= 1-exp(- 2x) with unknown parameter 2 (the renewal 
rate).  In this case 1= 1 and 2= 2 .  Availability coefficient (9.147) has the form 

 
Denote the total time of unit operation on interval(0,t] by W1(t), the total time of unit operation on 
this interval by W2(t). Obviously, W1(t)+W2(t)=t. These values are determined as follows: 

 t 0K < K ,  1 tK > K         (9.153) 
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Let us also introduce 

which are point estimate of parameters 1 and 2 based on the test results obtained on interval (0.t].  
Values W1

0 and D1
0 allow us to take prior information into account (if available) about parameter 

1.  For instance, W1
0 might be the total test time and D1

0 the number of failures during some 
previous tests. W2

0 and D2
0  might play the same role in respect to parameter 2. 

 Applying formulae (9.148)-(9.252), we obtain that in this case (1- )-LCL, Kt, and (1- )-
UCL, K t , for the availability coefficient for moment t are calculated by formulae (9.148)-(9.149) 
where 

 
where in turn 
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where    ( ) 1 1 1 0j jt   is left limit of estimate  ( )1 t  and    ( ) 2 2 2 0j jt   is left limit of 

estimate  ( )2 t at the moment of the jth failure (renewal), that is, t1i and t2j, respectively. 
 Maximum in (9.154)-(9.155) can be found in this case analytically. Let us find the first one. 
The restriction K( 1, 2)<C, for which maximum in (9.154) is being found, is equivalent to one of 
the following inequalities 

or 

 
where 

 
Taking into account the concavity of function Ht( 1, 2) in ( 1, 2) and compiling the Lagrange 
function for this problem 
 

 
we obtain that maximum in (9.154) is attained at point which satisfies the following system of 
Lagrange equations: 
 

 
where b is Lagrange multiplier.  After simple transformations, it gives the (1- )-LCL for 
availability coefficient at moment t in the form 
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where value K't is found at moment t by formula 

 
where value b>0 is determined from equation 

 
In these formulae and below we use short notation W1=W1(t), W2=W2(t), D1=D1(t), D2=D2(t). 
 In an analogous way, by calculating maximum in (9.155) we obtain that sequential (1- )-
UCL for the availability coefficient at moment t  

 
where value K t'  is found at moment t by formula 
 

 
where value b>0 is determined from equation 
 

In conclusion we would like to emphasize that Wald’s plans of testing become an important part of 
modern test planning. 
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16.6 Appendices  
 
16.6.1 Computation of accurate values of characteristics of sequential plans of test. 
 
 Assume that we observe a sequence of i.i.d. scalar r.v.'s 
 
 x1, x2, ... ,xn, ... . 
 
Denote the sum of these r.v.'s observed at first n steps by Sn=x1+ ... +xn.  Let us consider some 
sequential criterion (control plan) for hypotheses of type (9.49) for which the stop time has the form 
 
  = min {n:  Sn Gn} 
 
where Gn is the area of test stop at step n. Let Wn= Gn  be the area of test continuation at step n 
where Gn  is the area complement to Gn.  Thus at step n the test continues if 
 
 Sn Wn  (9.156) 
 
The test is stopped at first violation of condition (9.156), that is, at such step =n when r.v. Sn first 
time reaches stopping area Gn. The decision rule at time stop =n has the form 
 
 if Sn Gn0 then hypothesis H0 is accepted 
 if Sn Gn1 then hypothesis H1 is accepted 
 
where Gn0 and Gn1 are non-intersected areas such that  
 Gn=Gn0+Gn1,  n =1, 2, ... . 
 
In other words, the area of stopping Gn is divided into two subareas: 
 
  Gn0 is the area of  hypothesis H0 acceptance 
  Gn1 is the area of  hypothesis H1 acceptance. 
 
Main sequential control plans (Wald's, truncated Wald's and others) have such a form. 
 Now let us consider calculation of accurate characteristics such as risks of type I and II (  
and ), operative characteristic L( ) and average test volume N( ). At first consider a discrete case 
where r.v. xn takes a finite set of values 0, 1, ... ,l.  Let 
 
 (j, )=P {xn=j} 
 
be the probability that r.v. xn=j for parameter value equal to  where 0<j<l.  Assume that the area of 
test continuation is restricted, that is, such finite nm exists that Wn=  for n>nm and, besides, area Wn 
is restricted for each n,  1<n<nm-1.  Value nm represents the maximum possible value of stop time 

. 
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 Let us fix the value of parameter and introduce a sequence of numbers 
 
 bn(i, ),  0<i<n(l+1),  n=1, 2, ...  (9.157) 
 
which are recurrently calculated by  
 

 
where at the first step we set b1(j, )= (j, ), 0<j<l.  Directly from construction of sequence (9.157) 
it follows that bn(i, ), determined as 

 
is the probability that the test process will not be terminated before step n, and at step n r.v. Sn=i.  In 
other words, 
 
 bn(i, )=P (S1 W1, S2 W2,... ,Sn-1 Wn-1, Sn=i). 
 
Notice that sum in (9.158) is taken over finite number of subscripts j because Wn has finite elements.  
Notice also that at step n+1, value of bn+1(i, ) differs from zero only for i Wn and for i such that 
i<j+l where i Wn.  So, the number of subscripts i for sum (9.158) calculation at step n+1 is equal to 
kn+l where kn is the number of integer points in area of test continuation, Wn, at step n. 
Consequently, the volume of calculation at step n+1 for this recurrent procedure (9.158) is 
proportional to value (kn+l)(l+1). 
 Let us introduce the following events 
 
 An={ =n}, 
 An0={ =n and hypothesis H0 is accepted}, 
 An1={ =n and hypothesis H1 is accepted} 
 
Their meaning is as follows: An is an event that the test is terminated at step n, An0 is an event that 
the test is terminated at step n and hypothesis H0 is accepted, and An1 is an event that the test is 
terminated at step n and hypothesis H1 is accepted. The probabilities of these events for fixed value 
of parameter  are expressed via values bn(i, ) as follows 
 

 n+
j W

nb i, = b j, i - j, ,  n = , ,...   
n

1 12( ) ( ) ( )   
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 It gives us the following expression for operative characteristic L( ) for fixed value of 
parameter  : 
 
 L( )=P ( to accept hypothesis H0)= 

 
 Thus, it is easy to calculate operative characteristic L( ) with the help of a computer, using 
(9.158) and (9.159).  The precise values of risks of type I and II can be found via operative 
characteristic from formulas 
 
 =1-L( 0), and =L( 1)  (9.160) 
 
The average test volume, N( 0), for given value of parameter  can be also expressed via values 
bn(i, ) and found with the help of the same recurrent procedure (9.158) by formula 
 

 
If the area of test continuation is not restricted (for instance, in Wald's plan without truncation), all 
characteristics, mentioned above, can be calculated on the basis of the same formulas (9.159)-
(9.161) if nm is sufficiently large. 
 Notice that the area of test continuation, Wn, the area of test termination, Gn, and areas Gn0 
and Gn1 in most of cases have the form of intervals, or in other words, they are given as inequalities 
of the following type: 
 
 Wn: gn<Sn<hn, 
 Gn: gn>Sn,  <hn<Sn, 
 Gn0: gn>Sn, 
 Gn1: hn<Sn, 
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where gn and hn are boundaries of the area of test continuation at step n, n=1, 2, ... , and these values 
do not depend on the concrete test plan. 
 
 
 
Example 9.A.1. (Binomial plan) 
 Consider a binomial test where r.v. xn is a failure indicator at step n, parameter =q is the 
failure probability, r.v. Sn=x1+...+xn is a random number of failures during n steps.  (See Example 
9.2.1 above.) In this case l=1, r.v. xn only takes values 0 or 1, and values (j, ) have the form 
 
 
             q if j=1 
    (j, )= (j,q) = 
        1-q if j=0. 
 
 
In this case sum in (9.158) is taken over two subscripts and recurrent procedure (9.158) becomes 
extremely simple. 
 If r.v. xn has continuous d.f. F(x, ), then recurrent procedure (9.158) allows one also to 
calculate main characteristics L( ), N( ), ,  with needed accuracy if we use a discrete 
approximation of continuous d.f. F(x, ). Naturally, the average test volume increases with a more 
accurate approximation. For instance, if r.v. xn is approximated by a discrete r.v. with l+1 different 
states, then the computational burden on the basis of (9.158) roughly increases as l2. 
 Now consider the case of continuous time for Poisson process with parameter  (see 
Example 9.2.3).  In this case all above formulas can be applied if we use standard approximation. 
Divide the time axes onto equal small intervals h.  In this case we denote the number of failures on 
interval [(n-1)h, nh] by xn,  n=1, 2, ... .  In this case in formulas (9.158)-(9.161) let us take: l=2,  
parameter = , and define values (j, )= (j, ), j=0, 1, 2 as follows: 
 
 (0, )=e- h, (1, )= he- h, (2, )=1-e- h(1+ h).  
 
Obviously, we neglect the probability of occurrence of two or more failures on the interval h.  The 
error of such approximation has the order o(h2).  The main characteristics of different sequential test 
plans can be calculated with the help of recurrent procedure (9.158) and formulas (9.159)-(9.161).  
The accuracy of the result of calculation is defined by the size of value h.  Corresponding average 
test volume and number of steps of the test increases proportionally to (1/h).  Of course, some more 
modifications for specific cases can allow to gain even more. 
 

 Test plan allowing specified risks  and  
 Sequential Wald's test plan is characterized by two parameters a=ln A and b = ln(1/B) which 
determine the boundaries of the area of test continuation.  If these parameters are given and fixed, 
approximate values of risks  and  can be found by approximate Wald's formulas (9.33), and 
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precise ones with the help of computer with using the recurrent procedure described above.  More 
complicated is the inverse problem:  to find plan parameters a and b such that precise values of risks 

 and  coincide with needed values.  Notice that in general case, the proof of the fact, that a plan 
with precise risks  and  for any +  <1 exists, is not trivial.  Nevertheless, approximate 
solution is always available with the help of computer on the basis the following simple heuristic 
arguments. Let  and  are given levels of risks. Let us consider value values  
 

and  

 
found by Wald's approximate formulas (9.33) as the first iteration. 
Then with the help of computer, calculate precise values of risks 

1 and 1 for the plan with parameters a1 and b1.  Then we change parameters a and b in such a 
way that the precise values of risks become close to the given values of  and .  Here we can use 
the property of the operative characteristic L( ): for any fixed  this function is monotone 
increasing in a for fixed b, and, on the contrary, this function is monotone decreasing in b for fixed 
a.  Notice that the risk of type I, 1-L( 0), is sensitive to the variation of parameter a and 
substantially less sensitive to the variation of parameter b. The risk of type II, L( 1), is sensitive, on 
the contrary, to the variation of parameter b and substantially less sensitive to the variation of 
parameter a.  It means that if we increase parameter a for fixed b, then 1-L( 0) decreases and, 
simultaneously, L( 1) increases though with slower rate.  On the contrary, if we increase parameter 
b for fixed a, then L( 1) decreases and 1-L( 0) increases slowly. Knowing about these monotone 
dependencies, we can alternately change parameters a and b and calculate corresponding precise 
values of risks on a computer, and iteratively adjust plan parameters a and b in such a way that these 
risks coincide at last with given values  and . 
 Analogously, the same dialogue procedure with a computer helps in cases of other test plans 
(for instance, truncated Wald's plan). 
 
16.6.2 Wald's Equivalency 
 
 Assume that we observe a sequence of i.i.d. r.v.'s 
 
 z1, z2, .. ,zn, ... 
 
with the mathematical expectation E|zn|< .  Let  be some Markov  
moment (in respect to a system of -algebra Fn= (z1, ... , zn),  n =1, 2, ... , related to the sequence 
zn) such that 
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 P( < )=1. 
 
Consider the mathematical expectation of the following sum 

 
This value can be presented in the form 
 

where I( >n) is indicator of event { >n}.  Event { >n}  Fn-1, in other words, occurrence of this 
event depends only on values of z1, ... , zn-1 observed at first n-1 steps.  It follows that r.v.'s zn and 
I( >n) are independent.  So, 
 

 
Since mathematical expectation Ezn=Ez does not depend on n, it follows that 

It gives us the Wald's equivalency. 
 
16.6.3 Sequential optimal test criterion for composite hypotheses 
 
 Let we observe sequence of i.i.d. r.v.'s 
 
 x1, x2, ... ,xn, ... .  (9.162) 
 
R.v. xn takes its values from a measurable space (X, B), where X is complete separable metrics 
space, and B is its Borel's -algebra.  Distribution of xn is given by density f(x, ) in respect to some 

-finite measure  on (X, B ).  Here =( 1, ... , m) is vector parameter taking its values from 
some subset  of m-dimensional Euclid space Rm.  We assume that set {x:  f(x, )>0} does not 
depend on . 
 Let ( , F, P ) be the probabilistic space on which the process (9.162) is defined, Fn = (x1, 
... ,xn) Fn Fn+1 F, n=1, 2, ..., be a system of -algebra related to process (9.162),  P  and E  be 
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the probabilistic measure and the mathematical expectation for given value of parameter .  
Denote standard Kullback-Leibler "information distance" between points  and  from  by 

The value 

is called the "distance" from point  to set D  . 
 Let set   of all possible values of parameter  be divided into l+1 non-intersected subsets: 
 

 
where I is the area of "indifference".  Let there be a correspondence between each point  and index 
K( ) of "closest" set Di, i.e., K( ) is defined by condition 
 

 
Introduce the value 
 

 

Sequential criterion for test of l composite hypotheses  
 
 Hi:  Di,  1<i<l  (9.164) 
 
by pair ( ,d) where  is Markovian (in respect to the system of -algebra Fn, n=1, 2, ...) stop time, 
and d is a decision made at the stop time , or in other words, d is F - measurable function taking l 
values.  Hypothesis Hi is accepted if d=i, 1<i<l. 
 Introduce =( 1, ... , l). Denote by K  a class of all ( ,d) such that 
 
 P (d i)< i for all Di,   1<i<l  (9.165) 
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In other words, K  is a class of all criteria ( ,d) with the probabilities of errors not larger given 
values 1, ... , l.  Further we construct criterion ( *,d*) K  which is asymptotically optimal in 
class K  in sense of the average test volume for i 0, 1<i<l. 
 Further discussion is based on the following idea.  At first, for any hypothesis Hi, we 
construct a Markovian (in respect to system Fn) moment of exclusion of this hypothesis i such that 
 
 P ( i< )< i for all Di. 
 
This inequality means that the probability of exclusion of hypothesis Hi (that is, to decide that it is 
untrue) at some test step does not exceed i if the hypothesis is true. 
 Let ( ,D) be the moment of exclusion of a composite hypothesis of a general type H: 

D. (This moment is defined in (9.77).) The moment of exclusion of hypothesis Hi: Di is 
defined as 
 
 i= ( i,Di),  1<i<l.  (9.166) 
 
Sequential criterion ( *,d*) for test of composite hypotheses (9.164) can be constructed on the basis 
of the moments of exclusion (9.166) as follows.  Denote ordered in time moments of exclusion 
(9.166) by 
 
 (1)< (2)<...< (l-1)< (l). 
 
Now define the time stop, *, and the decision made at this moment, d*, as follows: 
 *= (l-1) 
 (9.167) 

 
that is, the test continues until moment * when all hypotheses except one are excluded and a single 
one, which is not excluded, is accepted.  In particular case l=2 sequential criterion of composite 
hypotheses (9.167) takes the form 
 *= min ( 1, 2) 

 
that is, the test continues until the moment of exclusion of one of hypotheses, and at the moment the 
remaining hypothesis is accepted.  If  1= 2 at some moment, then any of these two hypotheses is 
accepted. 
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 Using results (Pavlov, 1985, 1990), we can show that for general enough conditions, 
moment of exclusion ( ,D) is asymptotically optimal for 0.  It follows that sequential 
criterion ( *,d*) is also optimal (see Theorems 9.1-9.3 below). 
 
Lemma 9.1.  Moment ( ,D)  satisfies inequality 
 

Proof.  Let each  correspond to moment 
 

where 
 

For each fixed  sequence n( ),  n=1, 2, ... represents a non-negative martingale with respect to 
system Fn, n=1, 2, ... with mathematical expectation E n( )=1.  Applying Doob-Kolmogorov 
inequality, for each n=1, 2, ... we have 

and then 

for all .  Moreover, 

 
It follows that for each D inequality 
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holds. This proves (9.168).■ 
 The following lemma gives the LCL for the mathematical expectation of the moment of 
exclusion of a composite hypothesis H:  D in case where it is untrue, that is, D . 
 
Lemma 9.2  Let D be some subset  and  be a Markovian moment(in respect to system Fn, n=1, 2, 
...) such that inequality P ( < )< for any D where 0< <1.  Then mathematical 
expectation of this moment satisfies inequality 
 

 
for any D  where D = \D. 
 
Proof.  Let D , that is, hypothesis H:  D is untrue.  If P ( < )<1 then E =  and 
inequality (9.169) is trivial.  Let P ( < )=1.  Let us choose some point 0 D .  Consider two 
simple hypotheses h0 and h1 which corresponds points 0 and .   Let us fix some moment n<  
and consider the following sequential criterion for test of these simple criteria.  Test continues until 
truncated Markovian moment 
 
 n = min ( ,n). 
 
If n<n, then hypothesis h is accepted. If n=n, then hypothesis h0 is accepted. For this criterion 
probability of error of type I (that is, to accept hypothesis h when hypothesis h0 is true) satisfies the 
following relations: 
 

 
The probability of error of type II (that is, to accept hypothesis h0 when hypothesis h is true) is 
denoted by: 
 

 

  


      P ,D <   P  <   P <   { ( ) } { } { } )     
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Since P ( < )=1, sequence n 0 for n .  Using the lower limit  (9.48) of the average test 
volume for any criterion for two simple hypotheses h0 and h, we have  
 

where 

 
For n  we have E n E  and ( n, ) ln (1/ ). From here, we obtain, taking limit in 
(9.170) for n , that 
 

 
Since 0 is an arbitrary point in D, (9.169) follows.  That proves the lemma.■ 
 Notice that from a formal viewpoint, Lemma 9.2 and inequality (9.169) are true if D.  
In this case inequality (9.169) is trivial, because ( ,D)=0 and E = . 
 Denote the estimate of maximum likelihood of parameter  on the basis of test results x1, ... 
,xn at the first n steps by   ( ,..., ).' ' n n nx x 1  Let us introduce the following two groups of 
conditions.  The first one is: 
 (1)  is compact 
 (2) X is compact   
 (3) f(x, )>0 for all (x, ) and continuous in (x, ), function ( ,)>0 for all  . 

(4) For any estimate  n  which is equivalent to maximum likelihood estimate n
’, the 

following equality holds: 
 

 
 The second group of conditions does not use the condition of X compactness.  This group is 
as follows: 
 
 (1') f(x, ) belongs to exponential family of distribution densities of the type 
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and set 

 
is an open subset of m-dimensional Euclid space Rm. 
 
 (2')  is compact subset of  
 (3') coincides with Condition (4). 
 
 Conditions (1)-(4) or (1')-(3') listed above lead to the results presented below.  These results 
state the asymptotic optimality of the moment of exclusion, ( ,D), and corresponding sequential 
criteria and confidence limits (Theorems 9.1-9.4).  For a detailed proof of these Theorems see in 
[Pavlov (1985, 1990)]. One can also find results for weaker conditions there.  Following theorem 
with inequality (9.169) gives the asymptotical optimality for ( 0) of the moment of exclusion 

( ,D) constructed in (9.77) for a composite hypothesis H: D. 
 
 
 
Theorem 9.1  If 0 

 
for any D . ■ 
  
 The following inequality gives the system lower limit for average test volume for any 
sequential criterion ( ,d) Ka. 
 
Lemma 9.3.  Let a=( t1, ... , tl) where t1, ... ,tl are arbitrary positive constants. Then for any 
( ,d) Ka inequality 
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is valid for all  if 0, where ( ) is a function defined in (9.163). ■ 
 
 It is easy to check that sequential criterion ( *,d*) belongs to class Ka, in other words, it 
satisfies inequalities (9.165).  Indeed, taking into account that ( ,D) is monotone decreasing in , 
it follows from (9.171) that for any 0< <1  
 
 E ( ,D)<  
 
for arbitrary  such that (  D)>0. It follows that for arbitrary 0< i<1, 1<i<l, inequality 
 
 P ( *< )=1   (9.173) 
 
holds for any  such that ( )>0.  Let Di,  then, due to Theorem 9.1, inequality  
 
 P ( i< )=P { ( i,Di)< }< i 
 
follows.  From here, taking into account (9.173), we obtain 
 
 P (d*=i)>P ( *< i)>P ( *< , i= )=P ( i= )>1- i 
 
for all 1<i<l.  Thus, sequential criterion ( *,d*) Ka, or in other words, it has probability of errors 
not larger than specified values 1, ... , l. 
 The following theorem accompanied by inequality (9.172) gives asymptotical optimality of 
sequential criterion ( *,d*) in sense of average test volume within class Ka for all criteria with 
probability of errors not larger than specified values 1, ... , l. 
 
Theorem 9.2.  Let a=( t1, ... , tl) where t1, ... ,tl are arbitrary positive constants. Then average test 
volume for sequential criterion ( *,d*) satisfies inequality 

 
for all  if 0. ■ 
 
 Notice that Lemma 9.3 and Theorem 9.2 are also valid if the area of indifference, I, is 
absent, for instance, for the case l=2 of composite hypotheses of the form: 
 
 H1:  R( )<R1,    H2:  R( )>R2 
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where critical levels R1 and R2 coincide: R1=R2.  In this case ( ) 0 and average test volume 
E  for R( ) R1=R2.   
 

Sequential confidence limits 
 Let Rn=Rn(x1, ... ,xn),  n= 1, 2, ... be sequential -LCL for R=R( ). (Definition of sequential 
confidence limits was given in Section 9.4.) Assume that R( ) is continuous in .  Introduce a 
random moment (step) Tc where limit  Rn crosses a fixed level c: 
 
 Tc= min {n:  Rn>c}  (9.175) 
 
We assume that Tc=  if Rn<c for any finite n=1, 2, ... . 
 If level c<R( ), then Tc characterizes the test step where Rn reaches the specified accuracy 
for the first time, in other words, the specified deviation =R( )-c from the true value of R( ).  
The mathematical expectation of this moment, E Tc, characterizes the speed of attaining the true 
R( ) by the confidence limit Rn or c<R( ).  Smaller the value of E Tc, the more is the effective 
sequential -LCL Rn. The following lemma gives the LCL for E Tc. 
 
Lemma 9.3.  Let Rn, n=1, 2, .. is sequential -LCL for R( ). Then mathematical expectation of 
moment (9.175) satisfies inequality 
 

 
for all  where Dc={ : R( )<c}. 
 
Proof.  First consider the case where R( )<c.  In this case (9.167) is trivial since ( ,Dc)=0, and 
directly from the definition of sequential LCL follows that E Tc= .  Let now R( )>c.  From the 
definition of the LCL follows the relation 
 

 
It follows that at any point Dc the following chain of inequalities is valid: 

The proof of Lemma 9.2 follows. ■ 
 
 Let sequential (1- )-LCL for R( ) be defined by (9.95). The following theorem 
accompanied by the previous lemma shows that this limit is asymptotically optimal (for 0) in 
sense of the average time, E Tc, of attaining the specified accuracy.  Introduce notation 
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 Tc

*= min {n:  Rn>c} 
 
where Rn is the confidence limit defined in (9.95). 
 
Theorem 9.3.  Inequality 

 
holds for all  if 0.  
 
Proof.  For c>R( ) inequality (9.177) is trivial, since ( ,Dc)=0.  Let c<R( ).  By construction of 
sequence Rn,  n=1, 2, .. in (9.95), the following relations are valid: 
 
 { c=n}  {Rn>c}  (T*

c<n}. 
 
It follows that T*

c< c.  Since c<R( ),  D c .  From Theorem 9.1 follows 
 

 
that proves (9.177).■ 
 Analogous results for sequential UCLs are formulated and obtained in the same manner. 
 
16.6.4 Scheme of dependent tests 
 
 Assume that we observe a random sequence 
 
 x1,x2, ... ,xn, ...  (9.178) 
 
where in contrast with (9.162) r.v.'s at different steps can be dependent.  Let x(n)=(x1, ... ,xn) be the 
set of observations at first n steps and 
 
 pn(x(n), )=pn(x1, ... , xn-1,xn, ),  n=1, 2, ..., (9.179) 
 
is the density of the distribution of x(n) in respect to measure n on (Xn, B n),  n=1, 2, ... .  System of 
finite-measurable densities (9.179) must satisfy standard conditions of "accordance": 
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for all ,  n =1, 2, .. .  Assume that set {x(n):  pn(xn, )>0}, on which the density is defined, 
coincides with Xn for all ,  n =1, 2, .. .  Let us introduce the following notation: 
 

 
is the conditional density of distribution of xn under condition that test results x1, ... ,xn-1 at first n-1 
steps are known, and 
 

 
where   n n (x1, ... ,xn) is point estimate of parameter  based on observations on first n-1 steps. 
 Consider composite hypothesis H:  D in respect to parameter  where D is subset of 
parameters space .   Introduce moment of exclusion of this hypothesis, ( ,D), which is analogue 
of moment (9.77) in the scheme of independent tests: 
 

 
Let us show that this moment satisfies inequality 
 
 P { ( ,D)< }<   for any D.  (9.181) 
 
Indeed, from the definition of this moment, it follows that 

where 
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Consider random sequence 
 

 
For each fixed , sequence n( ), n=1, 2, ... , is a non-negative martingale (in respect to system Fn 
= (x1, ... , xn),  n=1, 2, ...) with mathematical expectation E n( )=1 for all n.  Applying Doob-
Kolmogorov inequality for non-negative martingals, we obtain 

 
for each n=1, 2, ... from where follows that 
 

 
From (9.182) and (9.183), it follows that for any D inequality 
 

 
holds, that proves (9.181).■ 
 In particular case, if sequence (9.178) is Markovian with "transitive density" fn(xn|xn-1, ), 
then the formulas above take the form: 
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Moment ( ,D)in this case coincides with (9.105), and inequality (9.181) is equivalent to (9.106). 
 

 
 
 
17. MONTE CARLO SIMULATION 
 
 
17.1 NATURE AND PURPOSE  
 
 Monte Carlo simulation is used to imitate the behavior of complex systems whose 
operational processes are difficult or impossible to describe using analytical models.  Computer 
simulations may also be used if an analytical model is available but numerical solution for this 
model requires more time than a simulation.   
 After building a model formally (in terms of formal description of interrelations between 
system's states and processes), we should develop appropriate software or adapt one that may be 
available.  Sometimes the model itself needs to be modified and made compatible with available 
software. We could do this by introducing some reasonable assumptions, which simplify or modify 
initial model.  Sometimes the formal model needs corrections due to the lack of appropriate input 
data. 
 After these essential steps, we are ready to perform actual simulations.  Monte Carlo 
simulation (runs) is a statistical imitation of possible behaviors of the investigated system in the 
frame of accepted assumptions and constraints.  Data obtained as the result of simulation are 
processed in the same way as real data obtained during the system operation or field tests.  
 A reliability simulation model is commonly a discrete model, describing sequences of 
discrete events and their interactions.  In reliability analysis, these events are failures and repairs of 
system's units, switching from main units to redundant units, interaction with external events (traffic 
in telecommunication networks, lightning in electric power systems, floods and hurricanes for 
various terrestrial systems, etc.).  Development of a formal model requires creation of an algorithm 
that transforms a set of initial data into a sequence of discrete output events, which are subject to 
further analysis.  Statistical inferences are made about the behavior of the system after the runs of 
the model are completed.  
 A Monte Carlo simulation has the following important components: 
  Strong algorithmic description of the behavior of the investigated system and the 
inter-relation of system's units; 
  Software allowing one to perform the process of imitation of the behavior of an 
investigated system (probably, including some special analytical blocks); 
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  Input data characterizing time-probabilistic properties of the system's units 
  Generators of different necessary random variables with needed properties 
  Computer tools for obtaining statistical inferences about output data. 
 Usually, system imitating, generator of random variables and tools for processing output 
data are combined into a united software tool. 
 
17.2 GENERAL DESCRIPTION OF A DISCRETE SIMULATION MODEL 
 
 A discrete model of the investigated system replicates the structure and units' interaction.  
Any model reflects only some essential sides of a real system, which are interesting in the 
undertaken research.   The model cannot be complete.  As physicists joke, "the best model of a cat is 
a cat, but the very best model of a cat is the same cat". 
 We will consider a discrete model of a system consisting of some units operating in 
continuous time.  As a matter of fact, in a computer model time is also discrete, but its discreteness 
can be neglected.   
 Thus, the modeled process is represented by the sequence of discrete events that are caused 
by unit's transition from state to state.  The moments of those transitions are determined by random 
values that are generated by computer.  
 We will denote the system's units as A1, A2, ... .  Each unit, Aj, is characterized with a set of 
attributes, aj.  Attributes include the state, sj, which describes the dynamics of the system's transition 
in time, and some special auxiliary variables, j. Thus, aj = (sj, j).                    
 Specified events ej may occur with unit Aj.  For example, the unit might fail or 
repair/replacement might renew failed units.  The state sj defines the moment of the event, and its 
content is defined by attributes aj.  The event ej may follow a change of attributes of units.  A set of 
units determining the event depends on the nature of the event.                            

One of the attributes, aj, is the real variable j, which is the time until the occurrence of a 
new event for this unit if there are no intervening event in the system which could change the 
behavior of this particular unit.  At the initial time t=0, sj = sj

0 and  = j
0 for each unit Aj.  The first 

event occurs after a period of time 1= min j over all j.  If  11
 = j , the template event occurs in 

unit 
1jA . Event 

1je  occurring at time t1 = 1 changes attributes of one or more units.  A new state 
and new residual time j

1 must be found for each affected unit.  For each unaffected unit the 
residual time is given by j

1= j
0- 1.  The procedure then continues, and we find a new inter-

occurrence time 2
1 1   =    =  

j
j j 2min , that is the second event is 2je  and it occurs at time t1 + 

2.  Again, the attributes and the residual times of one or more affected units are changed 
depending on the nature of the event 

2je . For unaffected units, the new residual time is j
2 = j

1-
2.  This procedure continues on. 

 As the result of this procedure, we have the so-called governing sequence (t1, 1je ), (t2, 2je ), 
... , with corresponding attributes which allows one to reconstruct the entire trajectory of the 
simulation process.  
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17.3 DETAILED EXAMPLE OF ALGORITHMICAL DESCRIPTION 
 
 In this section we consider a simple example that illustrates some details of Monte Carlo 
simulation.  Consider a system consisting of m main and n standby redundant units.  All units are 
identical and independent.  There are l servers for repair, 1<l<n+m.  The FIFO (first in, first out) 
discipline is supposed.  The time to failure of each unit is a r.v. with d.f. F(x) and the repair time is a 
r.v. with d.f. G(x).  
 Thus the system has n+m units A1, A2, ... ,An+m with respective attributes ai=(si, i), i=1, 2, ... 
n+m.  The unit's state is defined as follows:  
 
  ...... 
   3 if a unit is the second in the line for repair 
           2 if a unit is the first in the line for repair 
           1 if unit i is in repair 
  si=  0 if unit i is operating 
           -1 if unit i is first in the line for replacement 
           -2 if unit i is second in the line for replacement 
  ...... 
 
(Here we assume that the line of spare units is arranged in accordance with order of completion of 
their repair.) 
 The residual time i is defined only for states 0 or 1, and in the first case it is the residual 
time to failure and in the second case is the residual repair time.  In other cases let us assume that i 
= . 
 Event ei can take only values 0 (failure) and 1 (repair).  Let us assume that for unit Ai the 
attribute i is defined by the number of failures that have occurred at the current moment of time. 
     Let the model be described by the vector [(s1

k, 1
k, 1

k), (s2
k, 2

k, 2
k), ... ,(sn+m

k, n+m
k, n+m

k)] at 
the time tk.  The nearest occurrence time then is tk+l = tk + , where   k

i
m+ni

= min
1 

 is the shortest 

residual time for all four considered units at time tk+l.  Let  = r
k which means that event er occurs 

at time tk+1.  
     Consider following two cases: 
(a)    For the first case, let er = 0 and, consequently, sr

k = 0.  Then for all standby units A  (defined 
by the condition s <0), we can write 
 
                   (s k+1, k, ) if s k<-1, 
         (s k+1, k+1, k+1) =  
      (0, k, k) if s k=-1. 
 
 
 Thus one of the standby units (if any) becomes operating and others advance in the queue.  
Here { k} are times to failure of the unit A   (All of these r,v,'s are i.i.d. with a d.f., F.).  



 

409 
 

 Let  k  be the number of repair servers busy with the repair at moment tk (and hence at 
time tk+l because no repair is finished until this moment).  Thus  k  is the number of Aj for which s j

k

=1.  If there is at least one empty repair server, that is,  k <l, then  
 
 ( , , ) ( , , )sr

k
r
k

r
k

r
k

k
    1 1 1 1 1     

 
where { }k  are i.i.d. r.v.'s with a d.f., G(t), and k is the repair time for unit Ar.  When a repair is 
completed, the auxiliary variable r, increases by one.   
 If  k  1 
 ).,11(),,( max

1

111 


 k
r

k
i

m+ni

k
r

k
r

k
r ,+ss    

 
The unit joins the repair queue in position with the number 1max

1
+sk

i
m+ni

.  For units A  ( r) 

that are failed and a main unit (for which s k>1), we make the following changes: 
 
 (s k+1, k+1, k+1) = (s k, k, k- ). 
 
Here we take into account that for units A  in the queue for which s k>1, k is equal to . 
(b)   For the second case, let er=1.  It means that the repair of unit Ar has just been completed, i.e., 
sr

k=1.  In this case the repair server who just completed the repair takes the first unit in the queue (if 
any), and other units advance one position.  The units under repair stay at their repair places, but all 
residual repair times decrease by . Thus  
 
                    (s k-1, k, ) if s k>2, 
                                   
            (s k+1, k+1, k+1) =  (1, k, k) if s k=2, 
                                   
          (s k, k, - ) if s k=1. 
 
  
 Let k be the number of operable units at time tk, that is, the number of units Aj for which 
zj

k<0.  If k<m, then the repaired unit is directed to occupy the position of a main unit:  
 
 (sr

k+1, r
k+1, r

k+1) = (0, r
k+1, k). 

 
If k=m, unit Ai becomes the last unit in the queue of spare units:  
 

 ( ) (maxr
k+

r
k+

r
k+

i m+n
i
k

r
ks , ,  =   s - , , ).1 1 1

1
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All main and standby units stay in their places. Residual time of all main units decrease by :  
 
 (s k+1, k+1, k+1) = (s k, k, k- ) for s k<0. 
 
 These relationships entirely describe the chosen model. 
 Notice that this description of the model does not give us an opportunity to analyze the 
behavior of repair servers because they were considered only as a group of objects without their 
individual attributes.  This simplification of the model was done for a concise explanation of the 
essential features. 
 In Figure 10.1 we represented a sample of trajectories of the system's units.  The system 
under consideration consists of one main and two standby units with a single repair server. 
  
 FIGURE 10.1 
 
 Let us comment on changing of system's states represented in this figure. 
 Thus, the system has three units A1, A2 and A3. The trajectories of changing of states for each 
unit are represented as three staircase functions.  
 Consider an initial state of units.  The first unit A1 is on working position (state s1=0), its 
time to failure is generated by the counter of random values. This time equals to 1

1=t1. The interval 
on which a unit is working is denoted by a double line on the upper trajectory.  During period (t0, t1), 
the second unit is the first in the line for replacement (state s2=-1) and the third one is on the second 
place in this line (s2=-2).  Intervals where an unit is waiting for installation into the working position 
(si=-1 or si=-2) are denoted by thin lines. 
 A random value of TTF of unit A1 is generated.  Moment t1 is defined as the moment of 
failure of unit A1.  At this moment unit A1 is directed to a repair shop, and its state becomes s1=1.  
The duration of the repair is generated equal to 1

1. We denote the interval of repair by a bold line. 
Unit A2 becomes a working one (state s2=0) and its generated TTF equals 2

1.  At the same moment 
of time A3 change its state to s3=-1. 
 Moment t2 is defined as min ( 1

’, 2
’).  (Here we use sign "prime" to denote a residual 

value.)  In our case, it happens that 1
1> 2

1.  At moment t2, unit A2 has failed and moves to the 
queue for the repair shop (the failed unit A1 is still repaired), that is its state becomes s2=2.  The 
interval of waiting in a queue is denoted by thin line.  Unit A3 becomes working (state s3=0). The 
residue time of repair of unit A1 equals 1

1-(t2-t1)=t3-t2. 
 Moment t3 is defined as min ( '11, 3

1).  (Here we use sign "prime" to denote a residual 
value.)  In our case, it happens that '11< 3

1.   At the moment t3 unit A1 has been repaired and takes 
the state s1=-1 because unit A3 keeps working.  Unit A2 which was waiting for repair enters the 
repairshop (change state s2=2 for s2=1).    And so on. 
 We will not continue the description of the trajectories any further.  Note only that at the 
moment t10  unit A3 has failed and at the same time unit A1 is under repair and unit A2 is failed and 
waiting for repair. The failure of A3 means that the system as a whole has failed (here we use 
conditional notation: a cross on the level s3). 
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 Thus realization of Monte Carlo simulation is represented in a form close to that obtained 
in a real testing: one records system failures, times to and between failures, duration of repair.  All 
this data can be used in an ordinary way to obtain different reliability indexes. 
 Of course the description of the above model could be different.  It might contain more or 
less details.  For instance, we could only be interested in numbers of repaired and standby units 
(without description of their individual behavior).  It makes sense if all units are identical and 
independent.  If we have several repair servers, it might be interesting to obtain information about 
their loading.   The reader can find detailed description of some related models in "Handbook of 
Reliability Engineering", pp.459-461.    
 
17.4 RANDOM NUMBERS 
 
 Monte Carlo simulation uses random values with required distributions.  Many modern 
software libraries have random number generator which produces uniformly distributed random 
numbers.  As a matter of fact, a computer generates the so-called pseudo-random numbers.  The 
procedure of such a generation is a recurrent computation with withdrawing some intermediate 
numbers, for instance, digits on the positions from k to k+n in N-digit number, N>>k+n.  It is clear 
that recurrent procedure generates cycles when initial state repeats during a calculation.  The main 
problem is to make such a cycle long enough to cover a Monte Carlo experiment with 
"independent" pseudo-random numbers.  At the same time it is very important to avoid regular 
dependence on neighboring numbers. 
 The idea of generating of pseudo-random numbers with the help of recurrent calculations 
belongs, most probably, to John von Neuman who used it more than 50 years ago.  Now this type of 
a procedure of random number generating is standard. 
 However, Monte Carlo models need not only uniformly distributed random numbers.  The 
problem of generation of random numbers with arbitrary given distribution can be done using the 
so-called probability integral transform. Let us explain this considering a simple example. Suppose 
that we have a huge sample, SN, from distribution F(x): X1, X2, ... ,XN.  Order these realizations of an 
r.v. and draw a histogram (see Figure 10.2).  

Figure 10.2 
 
 It is clear that if N  the ladder-like function ( )F x  will converge to F(x) (this follows from 
Glivenko's Theorem, see Volume 1).  Now let us take a sample of size n, Sn from the original 
sample SN, assuming that N>>n.  To take this sample one should use a uniformly distributed random 
numbers in the following way. 
 Let N be a k-digit number (for the sake of simplicity) with a value from 0 to 10k-1.  Consider 
a set of n  k-digit uniformly distributed random numbers.  To form sample Sn, let us pick up values 

1 2j j jX , X ,..., X n
 whose subscripts coincide with random numbers chosen above (see Figure 10.1).  

In other words, we take a uniformly distributed ordinate of the function ( )F x  (which represents an 
empirical distribution) and obtain in response a realization of an r.v. having this distribution.   
 After these obvious explanations, we can formulate the following rule.  If there is a given 
arbitrary d.f. F(x) and a set of uniformly distributed r.v.'s X1, X2, ... ,Xn, in [0, 1] then one can obtain 
n r.v.'s Y1, Y2, ... ,Yn with the distribution F(x) by solving the equation 
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 F(Yj) = Xj, 
 
or in an equivalent form 
 
 Yj = F-1(Xj). 
 
 Let us now describe this problem in a more strict way.  Suppose that an r.v. X has a d.f. F. 
and let Y= F(X).  Let us show that the distribution of Y is uniform on the interval (0,1).  By the 
definition of the distribution function 0 < F(x) < 1 for 
-  < x < .  Let x0 be a number such that F(x0) = y where 0<y<1. Since by the definition F is 
strictly increasing, there exists a unique number x0 such that F(x0) = y.  However, if F(x) =y over an 
entire interval of values of x, then we can choose x0  arbitrarily from its interval.  If G denotes the 
d.f. of Y, then    
       
 G(y) = Pr(Y < y) = Pr(X < x0) = F(x0) = y. 
 
It follows that G(y) = y for 0<y<1.  Since this function corresponds to the uniform distribution on 
the interval (0,1), Y has this uniform distribution. 
 Now suppose that X is an r.v. with d.f. F and that G is some other d.f.  It is required to 
construct a random variable Z = r(X) for which the d.f. will be G.                                    For any 
value of y, 0<y<1, let z = G-1(y) be any number such that G(z)=y.  We can now define the random 
variable Z in the following way: 
 Z= G-1[F(X)]. 
 
 To verify that the d.f. of Z is actually G, we note that for any number z such that 0 < G(z) < 
1, 
 
 Pr(Z<z) = Pr{G-l[F(X)]<z } = Pr[F(X)<G(z)]. 
 
 It follows from the probability integral transformation that F(X) has a uniform distribution 
and, consequently, that  
 
 Pr[F(X)<G(z)] = G(z).  
 
 Hence, P(Z<z) = G(z), that is G is the distribution of Z. Thus, the theorem is proven.  
 Generation of Bernoulli's r.v.'s which are frequently used in reliability modeling, in 
principle, is similar.  However, it has a simpler explanation.  Let us construct a sample of a 
Bernoulli's sequence with the probability of success (denoted as “0”) equal to p and the probability 
of failures (denoted as “1”) equal to q=1-p.  Suppose that a random number generator produces 
uniformly distributed values j, 0< j <C. Introduce a threshold A such that A=qC. Bernoulli's 
random variable, Bj, is generated by the rule 
 
    0 if j<A. 
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       Bj  =  
    1 if j>A. 
 
 Obviously, probability transform of such kind is not the only way of generating of r.v.'s with 
a given distribution on the basis of uniform distributed r.v.'s.  For instance, in many software 
implementation, a normally distributed r.v. is obtained as a sum of a very restricted number of 
uniformly distributed r.v.'s. This method is based on the Central Limit Theorem (see Volume 1).  If 
the number of uniformly distributed r.v.'s in the sum equals k, the generated quasi-normal 
distribution will have the mean equal to k/2 and the variance equal to k/12.  
 
17.5 SAMPLE OF COMPUTER SIMULATION 
 
 Monte Carlo simulation is especially important if we intend to analyze a non-stationary 
process. Analytical results for this case are available only for simple Markov models. Markov 
model implies that all distributions within the model are assumed exponential. 
 Consider a simple model: a single renewable unit with the exponential distribution of time 
between failures and constant repair time.  For an illustration let us choose MTBF and mean repair 
time equal.  Consider the mechanism of Monte Carlo simulation on an example with two 
realizations.  
 Each realization of the unit operation process might be presented as alternating process 
where 1, as above, corresponds to the failure state and 0 corresponds to the operational state.   
 
 FIGURE 10.3 
 
In Figure 10.3 we represented two separate realizations for two units. There is also a superposition 
of these two processes in a form of a staircase-like function:  
 “2” corresponds to moments of time where both units have been failed 
  “1” correspond to the moments where one unit is uo and another is down 
 “0” means that both units are operating.   
 
 It is clear that increasing the number of superimposed realization makes the resulting 
function more "continuous", i.e., discrete increments become smaller and smaller. 
 
 FIGURE 10.4 

Figure 10.5 
 
 In Figure 10.4 we represent results of computer simulation for different number of 
realizations: 165 (see a), 1,293 (see b) and 11,013 (see c). (The duration of simulation period is 10 
MTBF.) In Figure 10.5 the same curves are represented in a smoothed form: each realization is 
presented in the form of the running average with time window about 0.25 of the unit of time. 
 This illustrative example is simple by its nature.  However it demonstrates dependence of 
results accuracy on the number of realizations. 
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17.6 MODELLING NETWORK RELIABILITY   
 
 Advantage of Monte Carlo simulation for continuous processes of a complex nature is 
almost obvious:  sometimes we have no way to solve a huge system of integro-differential equations 
even with the use of powerful iterative procedures. 
 Another case requiring the use of the Monte Carlo method is analysis of networks of 
complex structure.  We will not consider a queuing network, i.e., a network whose nodes can 
generate an input traffic of messages and process transit traffic messages (as servers of a queuing 
system).  In a general sense, such a model will be very close to that described in Section 10.3.  For 
the sake of simplicity, we will consider a two-pole network with links and nodes subjecting to 
failures.  Let us focus on the probability of connectivity of the network. 
  In general, the procedure of simulation of a network in this case consists, of the 
following steps: 
  Description of the two-pole network (a matrix of connectivity: what nodes are 
connected by direct links) 
  Definition of criteria of connectivity of the two distinguished poles 
  Procedure of generating of random states of the network 
  Procedure of checking the connectivity of the network for each realization of state 

 Collection of output data  
 Statistical inferences. 

 
 If the system's units are highly reliable, the direct "event-by-event" simulation takes too 
much computer time because enormous number of realizations may be required before obtaining 
necessary number of events of interest for getting the required level of confidence.  (Planning of test 
volume is outside the topics of this book.) 
 Consider a two-pole network.  Such a network is supposed to operate successfully if its 
input and output nodes are connected by some chain of links.  The system is assumed to have n 
nodes and k links, each is characterized by the probability of successful operation pi.  The system 
can be in 2n+k different state.  Of course, enumerating all states, evaluation of their probability and 
checking for each state if the network connectivity has taken place or not is enormous calculating 
problem. For example, even for a moderate size network of 20 nodes and 50 links the total number 
of states is about 1021. In this case Monte Carlo method is obviously more effective than a direct 
calculation. Usually several thousands realizations are enough for statistical estimate. (In this 
particular case, each realization needs the generation of 70 Bernoulli's r.v.'s and checking every time 
for network connectivity.) 
 For illustrative purpose, we consider a simple two-pole network, namely, the so-called 
"bridge structure".  All links are assumed independent and identical in their reliability parameters.  
Let us assume that the probabilities of the link's successful operation, pi=0.5 for all i.  (We take this 
condition only for simplicity of checking the result obtained.)  Assume that the structure nodes are 
absolutely reliable.  In Table 10.1 there are three digit random numbers, i, uniformly distributed.  
 

TABLE 10.1 
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 Table 10.2 contains Bernoulli's r.v., Bi, for units of the bridge structure.  These r.v.'s are formed in 
accordance to criterion  
 
    1 if i<1000pi, 
       Bi  =  
    0 if i>1000pi, 
 
that is Bi=1 corresponds to operational state and Bi=0 to failure of the ith link. 
 

  TABLE 10.2 
 
Example 10.1   Each row of Table 10.2 contains five realizations of Bernoulli's r.v.'s corresponding 
to links of the considered bridge structure.  These realizations of link states are used for obtaining 
the system's states realizations, Bsyst (see column 6 of the table).  These realizations are obtained in 
accordance with the rule 

 (10.1) 
i.e., if at least one path between input and output exists, the system is supposed to be operational. 

 From the statistical experiment performed, we obtain the result: systP = = . .
9
20

0 45   We 

intentionally choose pi=0.5 for all i because in this case the probability of the bridge structure 
connectivity can be easily calculated. Indeed, 
 

 
The reader can find more details about network structures and, in particular, about the bridge 
structure, in Volume 1. 
 Of course, where the units are equally or almost equally reliable, the procedure can be 
improved.  Particularly, analytical and Monte Carlo methods can be mixed to reduce the total time 
of simulation. Such a combination of methods is especially useful in cases of analysis of highly 
reliable systems.   
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17.6.1 Simulating with Fixed Failed States 
 
 Let a network include many links, which are highly reliable and almost identical (in 
probabilistic sense).  Besides, assume that the network is redundant, that is, the system failure 
cannot occur if the number of link's failures has not exceeded, say, M.  In this case many 
realizations will have no useful information. For instance, if the number of failed links k in some 
realization less than M, there is no real information in this particular test: it is clear that k<M failures 
never leads to the system failure. 
 Moreover, it may occur that "informative  states" appear very seldom.  In this case we can 
use the following procedure:  first to compute analytically the probabilities of different system states 
with fixed numbers of failed units and then to estimate conditional probabilities of system failure 
under condition that the number of links is fixed by simulation.  The general procedure follows:  

1. Analytically calculate probabilities, P(k), of the states, which have exactly k failed units.  
Under condition of almost identical units this probability is 

 

 

 2.  Use Monte Carlo simulation to estimate each conditional probability, (k)
 , that the 

system in state H(k) is operational. 
 3.  Compute the total probability of system successful operation:  

 
Example 10.2.  Consider the same bridge system and use the same Table 10.1 of random numbers.   
As we know this system can not fail if the number of failed units is less than two.  It means that 

( ) ( )
 

0 1 1  =   =  .  At the same time the system is failed if it’s four or five units are failed, that is  

( ) ( )
 

4 5 0  =   =  .663.  Thus we need to estimate the conditional probabilities of the system 
failure for the cases where two or three units are failed. 
 Let us use the first 10 rows of Table 10.1 for simulation of two failures in the bridge 
structure and the next 10 rows for simulation of three failures.  In the first case let us choose two 
smallest numbers within each row and consider them as failed units.  As the result we construct 
Table 10.3 with exactly two failed links and using the same formula (10.1) to determine the sixth 
column (system's state) 
 

  TABLE 10.3 
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Analyzing Table 10.3 we conclude that ( )
 .2 0 7  =  .  

 Table 10.4 contains analogous results of simulation with exactly three failed links.  We 
choose three largest numbers within each row of the second part of Table 10.1 (rows from 11 to 20) 
and consider them as failed units. 
 

  TABLE 10.4 
 
Analyzing Table 10.4 we conclude that ( )

 .3 0 4  =  . Thus the resulting mixed estimate, which was 
obtained using both analytical calculations and experimental estimation is found as follows: 

 
17.6.2 Modeling Link Failures Until System Failure 
 
 In this case links of the network are excluded one by one.  The failure criterion is again the 
loss of network connectivity.  When the system  fails, the number of links, ks, which were excluded 
in the sth realization is stored in the computer memory.  After a sufficient number of experiments, 
N, we use the following estimate for the conditional probability of the loss of connectivity  

 
where  we use an indicator function 
 

 
Example 10.3.    Let us illustrate the method on a bridge structure.  We will use the same table of 
uniformly distributed numbers. Consider each row of the table and let us exclude links in order 
corresponding to the increasing of the numbers.  The numbers in Table 10.5 show the order of link's 
failures. 
 

  TABLE  10.5 
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Note:   All examples were purely illustrative.  Besides, the reader should keep in mind that the use 
of the same table of random numbers makes all results dependent of each other. 
 
17.6.3 Accelerated Simulation 
 
    Direct Monte Carlo simulation is convenient due to simplicity of the model.  But, as we 
mentioned above, if the system's units are highly reliable or/and the system's structure is highly 
redundant, direct simulation may be ineffective, since many realizations will be non-informative.  
The solution may be obtained by simulation of similar structures but with less reliable units and 
transformation of the results afterwards.  
 

Direct transform 
 Consider a network state where there are z failed links belonging to some set u.  For 
instance, it might be some network cut disjoining two specified nodes (say, input and output).  The 
frequency of the system failures due to this cut tends to its probability  

 
If n denotes the total number of the network links then 
 

 
 
 Let us now introduce into the network units with lesser reliability, p'i, for which the 
condition 
 

 From Table 10.5 we can see that in 10 cases of the total 20, structure can stand three failure and 

fails only after the fourth failure has occurred.  This gives us ( )


3
10
20 = .  Only in 3 cases the 

system failure has occurred after the failure of the second link.  It means that ( )
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holds.  This condition can be rewritten in form 
 

 
After substitution of new values for all of the network links, the probability of the occurrence of the 
network failure due to failure of cut u will change and be equal to 
 

 
 Let us now introduce the coefficient of modeling acceleration, , which characterizes how 
the frequency of occurrence of a cut increases: 
 

  =
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where z is the power of set u, that is, the number of links belonging to this cut.  Notice that the 
second multiplier in (10.2) is a constant for specified network: 
 

 
   Thus, for cuts of the same power the relative frequency of occurrence is preserved.  At the same 
time, the relative frequency of cuts of power z+  increases in  times.  Thus, during Monte Carlo 
simulation we are able to collect satisfactory statistics for cuts of larger power which occurs in  
regular simulation with a negligible probability. 
 

Inverse transform 
 Inverse calculation of the probability of occurrence of  failure of cut u can be performed by 
the following formula 
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u u z uP = P =
K

P .
1 1
     (10.3) 

 
We emphasize that the power of a corresponding cut plays an essential role in the inverse transform.  
From (10.3), we see that the frequency of failure of cut u with power z in a transformed model is in 

 times higher than the same value in an initial model.  If during the simulation process, the 
transformed system has had m failures, then for the initial system the number of failures can be 
calculated by formula 
 

 
where zi is the number of units which cause the ith failure of the system.  After a current failure of 
transformed system, the probability Pm should be calculated as follows 

 
where M is the total number of realization taken into account. 
 Naturally, parameter  must be chosen in a way that allows one to accelerate the most 
critical events.  Usually, such an event corresponds to a failure of a set of the system units whose 
power equals to the power of the minimal cut, that is, the minimal set of the system's units which 
causes the system failure. 

 
Explanations: 
 
 
Figure  10.4.   Results of Monte Carlo simulations for different sizes of 
samples:  (a) small sample, (b) average sample, (c) large sample. 
 
This figure is compiled of Figures 19.2(a), 19.3(a) and 19.4(a) from 
“Handbook of Reliability Engineering”, pp. 469-471 (John Wiley & Sons,  
1994) 
 
Figure  10.5.   Smoothed results of Monte Carlo simulations for different 
sizes of samples:  (a) small sample, (b) average sample, (c) large sample. 
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This figure is compiled of Figures 19.2(b), 19.3(b) and 19.4(b) from 
“Handbook of Reliability Engineering”, pp. 469-471 (John Wiley & Sons,  
1994) 

 


