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PREFACE 

This book was initially undertaken in 1987 in Moscow. We have found that 
the majority of books on mathematical models of reliability are very special- 
ized: essentially none of them contains a spectrum of reliability problems. At 
the same time, many of them are overloaded with mathematics which may be 
beautiful but not always understandable by engineers. We felt that there 
should be a book covering as much as possible a spectrum of reliability 
problems which are understandable to engineers. We understood that this 
task was not a simple one. Of course, we now see that this book has not 
completely satisfied our initial plan, and we have decided to make it open for 
additions and a widening by everybody who is interested in it. 

The reader must not be surprised that we have not touched on statistical 
topics. We did this intentionally because we are now preparing a book on 
statistical reliability engineering. 

The publishing of this book became possible, in particular, because of the 
opportunities given by B. Gnedenko to visit the United States twice: in 1991 
by George Washington University (Washington, DC) and in 1993 by SOT AS, 
Inc. (Rockville, Maryland). We both express our gratitude to Professor James 
E. Falk (GWU), Dr. Peter L. Willson (SOTAS), and Dr. William C. Hardy 
(MCI) for sponsoring these two visits of B. Gnedenko which permitted us to 
discuss the manuscript and to make the final decisions. 

We would also like to thank Tatyana Ushakov who took care of all of the 
main problems in the final preparation of the manuscript, especially in 
dealing with the large number of figures. 
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We are waiting for the readers' comments and corrections. We also repeat 
our invitation to join us in improving the book for the future editions. 

Professor of the Moscow State University BORIS GNEDENKO 
and Consultant to SOTAS, Inc- 
Chief Scientist, SOTAS, Inc. IGOR UsHAKOV 
and Visiting Researcher at the George Washington University 
Moscow, Russia 
Rockville, Maryland 
December 1993
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INTRODUCTION 

The term reliability, in the modern understanding by specialists in engineer- 
ing, system design, and applied mathematics, is an acquisition of the 20th 
century. It appeared because various technical equipment and systems began 
to perform not only important industrial functions but also served for the 
security of people and their wealth. 

Initially, reliability theory was developed to meet the needs of the electron- 
ics industry. This was a consequence of the fact that the first complex systems 
appeared in this field of engineering. Such systems have a huge number of 
components which made their reliability very low in spite of their relatively 
highly reliable components. This led to the development of a specialized 
applied mathematical discipline which allowed one to make an a priori 
evaluation of various reliability indexes at the design stage, to choose an 
optimal system structure, to improve methods of maintenance, and to esti- 
mate the reliability on the basis of special testing or exploitation. 

Reliability is a rich field of research for technologists, engineers, systems 
analysts, and applied mathematicians. Each of them plays a key role in 
ensuring reliability. The creation of reliable components is a very complex 
chemical-physical problem of technology. The construction of reliable equip- 
ment is also a very complex engineering problem. System design is yet 
another very complex problem of system engineering and systems analysis. 
We could compare this process to the design of a city: someone produces 
reliable constructions, another design and builds buildings, and a third plans 
the location of houses, enterprises, services, and so on. We consider mainly 
reliability theory for solving problems of system design. We understand all of 
the limitations of such a viewpoint. 





XVili INTRODUCTION To compensate for the deficiency in this book, we could recommend some 
books which are dedicated to reliability in terms of equipment and compo- 
nents. References can be found in the list of general publications at the end 
of this book. We understand that the problem of engineering support of 
reliability is very serious and extremely difficult. Most of this requires a 
concrete physical analysis and sometimes relates very closely to each specific 
type of equipment and component. 

We are strongly convinced that the main problem in applied reliability 
analysis is to invent and construct an adequate mathematical model. Model- 
ing is always an art and an invention. The mathematical technique is not the 
main issue. Mathematics is a tool for solution of the task. 

Most modern mathematical models in reliability require a computer. 
Usually, reports prepared with the help of a computer hypnotize: accurate 
format, accurate calculations.... But the quality of the solution depends 
only on the quality of the model and input data. The computer is only a tool, 
not a panacea. A computer can never replace an analyst. The term "GIGO," 
which reminds one of FIFO and LIFO in queuing theory, was not conceived 
in vain. It means: garbage in, garbage out. 

A mathematical model, first of all, must reflect the main features of a real 
object. But, at the same time, a model must be clear and understandable. It 
must be solvable with the help of available mathematical tools (including 
computer programs). It must be easily modified if a researcher can find some 
new features of the real object or would tike to change the form of 
representation of the input data. 

Sometimes mathematical models serve a simple purpose: to make a de- 
signed system more understandable for a designer. This use of modeling is 
very important (even if there are no practical recommendations and no 
numerical results) because this is the first stage of a system's testing, namely, 
a "mental testing." According to legend Napoleon, upon being asked why he 
could make fast and accurate decisions, answered that it is very simple: spend 
the night before the battle analyzing all conceivable turns of the battle—and 
you will gain a victory. The design of a mathematical model requires the 
same type of analysis: you rethink the possible uses of a system, its opera- 
tional modes, its structure, and the specific role of different system's parts. 

The reader will not find many references to American authors in this book. 
We agree that this is not good. To compensate for this deficiency, we list the 
main English language publications on the subject at the end of this book. 
We also supply a restricted list of publications in Russian which are close to 
the subject of this book. 

As a matter of fact, we based our book on Russian publications. We also 
used our own practical experience in design and consulting. The authors 
represent a team of an engineer and a professional mathematician who have 
worked together for over 30 years, one as a systems analyst at industrial 
research and development institutes and the other as a consultant to the 
same institutes. We were both consultants to the State Committee of Stan-



 

 

INTRODUCTION x'lXdards of the former Soviet Union. For over 25 years we have been running 
the Moscow Consulting Center of Reliability and Quality Control which 
serves industrial engineers all over the country. 

We had a chance to obtain knowledge of new ideas and new methods from 
a tide of contemporary papers. We have been in charge of the journal 
Reliability and Quality Control for over 25 years, and for more than 20 years 
we have been responsible for this section on reliability and queuing theory in 
the journal Tehnicheskaya Kibernetika (published in the United States as 
Engineering Cybernetics and later as the Soviet Journal of Computer and 
Systems Sciences). 

This activity in industry and publishing was fruitful for us. Together we 
wrote several papers including review on the state of reliability theory in 
Russia. 

We hope that the interested reader meets with terra incognita—Russian 
publications in the field, Russian names, and, possibly, new viewpoints, ideas, 
problems, and solutions. For those who arc interested in a more in-depth 
penetration into the state of Russian results in reliability theory, we can 
suggest several comprehensive reviews of Russian works in the field: Levin 
and Ushakov (1965), Gnedenko, Kozlov, and Ushakov (1969), Belyaev, 
Gnedenko, and Ushakov (1983), and Rukhin and Hsieh (1987). 

We tried to cover almost the entire area of applied mathematical models in 
the theory of reliability. Of course, we might only hope that the task is 
fulfilled more or less completely. There are many special aspects of the 
mathematical theory of reliability which appear outside the scope of this 
book. We suggest that our readers and colleagues join us in the future: the 
book is open to contributions from possible authors. We hope that the next 
edition of the book will contain new contributors. Please send us your 
suggestions and/or manuscripts of proposed new sections and chapters to 
the address of John Wiley & Sons. 

BORIS GNEDENKO 
IGOR USHAKOV 
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CHAPTER 1 

FUNDAMENTALS 

We decided to begin with a brief discussion of the more or less standard 
subject of probability theory and the theory of stochastic processes. Of 
course, we are trying to review all this from a reliability standpoint. We not 
only give a formal description of the main discrete and continuous distribu- 
tion functions usually used in reliability analysis, but explain as well the 
nature of their appearance and their mutual interrelationships. 

A presentation of stochastic processes does not pretend to cover this 
branch of probability theory. It is rather a recollection of some necessary 
background for the reader. 

With the same purpose we decided to include an appendix to the chapter 
with a very short overview of the area of generating functions and 
Laplace-Stieltjes transforms. 

1.1 DISCRETE DISTRIBUTIONS RELATED TO RELIABILITY 

1.1.1 Bernoulli Distribution 
In applications, one often deals with a very simple case where only two 
outcomes are possible—success or failure. For example, in analyzing the 
production quality of some production line, one may choose a criterion (an 
acceptable level or tolerance limit) to divide the entire sample into two parts: 
"good" and "bad." 

Consider another example: during equipment testing one may predeter- 
mine some specified time and check if the random time-to-failure of the 
chosen item exceeds it or not. Thus, each event might be related to success or 
failure by this criterion.
 ■
} 
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2 FUNDAMENTALS 
We will denote a successful outcome as 1, and a failure as 0. This leads us 
to consider a random variable (r.v.) X for which Pr{,V = 1} = p and Pr{A" = 
0} = 1 - p = q. The value of p is called the parameter of the Bernoulli 
distribution. The distribution function (d.f.) of the r.v. X can be written in 
the form 

f B ( x \ P )  = X  - 0,1
 (1.1) 

where the subscript B signals the Bernoulli distribution. Clearly, /fl(l|p) =■ p 
and f B ( 0 \ p )  =  1 -  p  =  q .  For the Bernoulli r.v. we know 

E{X} - 1 p + 0 q =p (1.2) 
and 

E { X 2 }  =  \ 2 p  +  02q = p 

The variance is expressed through the first and second moments: 

Var{*} = E { X 2 }  - [E{X }] 2  = p - p2 - p{\ - p) = pq (1.3) 

The moment generating function (m.g.f,) of the r.v. X can be written as 

< p ( s )  =  E{elA"} = pes + q for < 5 < ao (1.4) 

The m.g.f. can also be used to obtain the moments of the distribution: 
d 

A F F > - E { * }  - — ( p e '  +  q )  = p  
as 

d2 
M<3> = E { A - 2 }  = ^ { p e 5  +  q )  

= P 
j = o 

which coincide with (1.2) and (1.3). 
A sequence of independent identically distributed (i.i.d.) Bernoulli r.v.'s is 
called a sequence of Bernoulli trials with the parameter p. For example, one 
may sequentially test n statistically identical items by setting Xt = 1 if the /th 
item operates successfully during the time period t, and Xt = 0 otherwise 
(i = 1, - -., n). Thus, one has a random sequence of l's and 0's which reflects 
the Bernoulli trial outcomes. 

1.1.2 Geometric Distribution 
Consider a unit installed in a socket. The unit is periodically replaced by a 
new one after time /, Thus, the socket's operation is represented by a 
sequence of cycles, each of which consists of the use of a new unit. Let X 
denote the trial's outcomc: X  =  1 if a unit has not failed during the time



 

CONTINUOUS DISTRIBUTIONS RELATED TO RELIABILITY 3 interval t, and X — 0 otherwise. The probability of a unit's successful 
operation during one cycle equals p. All units are identical and stochastically 
independent. The socket operates successfully for a random number of cycles 
X before a first failure. The distribution of the r.v. X is the subject of 
interest. This distribution of the length of a series of successes for the 
sequence of Bernoulli trials is called a geometrical distribution: 

Pr{* =  x} = f g ( x \ p )  =  pxq
 (1.5
) 

where the subscript g denotes the geometrical distribution. For (1.5) the 
d.f. is 

Pr{ X z x } = q  E  P k

 ( 1 - 6
)  

0 £ k £ x  

Since (1.6) includes the geometric series, it explains the origin of the 
distribution's name. 
Everybody knows how to calculate (1.6) in a standard way, but we would 
like to show an interesting way which can be useful in other situations. Let 

z  =  l +  p + p 2  +  

and 

y  =  \ +  p + p 2  +  

Then (1.7) can be rewritten as 

z  =  y  +  p x  +  l  I  +  p ( l  +  p  +  p 2  +  • •  •  

+ p x )  =  1  +  p y  

and, finally, if the sum converges 
1  -  p I + 1  1  

£ PK = y= * » - [ l  -P'+1] 
0  zks* 1 - P  Q 

Now returning to (1.6), we obtain 

Pr{X<;jc} = 1 ~px+l (1.8) 

Thus, with the probability defined in (1.8), a failure has occurred before the 
;cth cycle. The probability of a series of successes of length not less than x, 
that is, PrlX > is, obviously, 

Pr{ X > x) = 1 - Pr{A- <; a: ~ 1} = px (1.9) 

(1.7)

+P* 
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Of course, the last result can be obtained directSy. The set of all events, 
consisting of series of not less than x successes, is equivalent to x first 
successes and any other outcome afterwards. 
For the geometric distribution, the m.g.f., lp, can be written as 

$ g ( s )  = = q Z  P'E" (1.10) 
jrao 

This sum has a limit if 0 < pe5 < 1. To compute (1.10), we can use the 
same procedure as above. With the same notation, we obtain 

y = 1 + a + a2 + a3 + • • • = 1 + a(l + a + a2 + • • - ) = 1 + ay 

and then 

y - ( I - f l )  

Thus, 

1  - p e s  

The mean and variance of the geometric distribution can be found in a 
direct way with the use of bulky transformations. We will derive them using 
(1.11):

 
o ds \ 1 - pe5

 
and

 
Thus, the variance by (1.11) is

 
P (1 +P) 
Var( A') = 

Substituting es for z, we obtain the generating function (g.f.), <p, of the 
distribution, that is, a sum of the form 

f(z) - L PkZk = £ pV4 = 1 _ — 
f e ^ O  i t s O  I  p z   

-i 

(1.11)

 

_ P 

s-a a 
(1.12) 

d 2  

ds
2 

P (  1  + P )— )  
1  ~ p e s )  "M*1)-jsWO (1.13) 

.t-0 s-0 
 

 

(1.14)

(1.15)
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In conclusion, we should emphasize that the geometric distribution pos- 
sesses the mcmoryiess, or Markovian, property: the behavior of a sequence of 
Bernoulli trials, taken after an arbitrary moment, does not depend on the 
evolution of the trials before this moment. This statement can be written as 

Pr{ X  =  k  +  t \ X ^ k )  = Pr{JT = (} 

Of course, this property of the geometric distribution follows immediately 
from the definition of a Bernoulli trial. At the same time, (1.14) follows from 
(1.7) and the definition of the conditional probability: 

Pr { X  =  k + t and X ^  k )  qpk 
+  ------------- Rfjf^Ej ---------------------- 7 

For example, in the case with cycles of successful operations of a 
socket, 
the reliability index of the socket at an arbitrary moment of time does not 
depend on the observed number of successful cycles before this moment. 

1.1.3 Binomial Distribution 
In a sequence of Bernoulli trials, one may be interested in the total number 
of successes in n trials rather than in the series of successes (or failures), In 
this case the r.v. of interest is 

x = x, + ■ ■ ■ +*„ = Z X; 
1 sisn 

For example, consider a redundant group of n independent units operat- 
ing in parallel. The group operates successfully if the number of operating (or 
functioning) units is not less than m. Let Xt be 1 if the tth unit is functioning 
at some chosen time, and 0 otherwise. Then X is the number of successfully 
operating units in the group. Thus, the group is operating successfully as long 
as X > m. 
When considering the distribution of the r.v. X, one speaks of the binomial 
distribution with parameters n and p. 
By well-known theorems of probability theory, for any set of r.v.'s X t ,  

E{ £ X , } -  £ E{ X , )  (1.16) 

In this particular case 

E { A ' } = n p  (1.17)  

= qp' 
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For independent r.v.'s the variance of X is expressed as 

Var{ E - E Var{*,.} (1.18) 

For i.i.d. Bernoulli r.v.'s 

V z v { X } = n p q  (1.19) 

For this distribution the m.g.f. is 
H s )  -  ( p e *  +  q) "  (1.20) 

Both (1.17) and (1.19) can be easily obtained from (1.20). 
Substituting es - z transforms (1.20) into the g.f. of a binomial distribution 

£ ( * )  =  ( p z + q) "  (1.21)  

The reader can see that (1.21) is a Newton binomial so the origin of the 
distribution's name is clear. 
If one writes (1.21) in expanded form, the coefficients at zk is the 
probability of k successes in n trials 

<p(z) ~ p " z "  +  + (2)<7n~yz"~2+ ••• (1-22) 

So the probability that there will be x successes in n trials equals the 
coefficient of z x \  

Pr { X  =  = jpV" (1-23) 

Of course, (1.21) can be written in the form < p ( z )  =  ( p  +  q z Y .  In this case 
the coefficient of 2* will be the probability that exactly x failures have 
occurred. 

1.1.4 Negative Binomial Distribution 
The negative binomial distribution arises if one considers a series of Bernoulli 
trials before the appearance of the /cth event of a chosen type. In other 
words, the r.v. is a sum of a fixed number, say k, of geometric r.v.'s. This 
distribution is sometimes called the Pascal distribution. 
As an illustrative example consider a relay. With each switching the relay 
performs successfully with probability p. With probability q = 1 - p the 
relay fails and then is replaced by another identical one. Let us assume that
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each switching is independent with a constant probability p, and the relay 
replaces the failed one is identical to the initial one. If there is one main and 
x - 1 spare relays, the time to failure of the socket has a negative binomial 
distribution. 
Thus, a negative binomially distributed r.v. X can be expressed as 

X = xl + • ■ ■ +*„ = z Xi 
1 Slid 

where each X j $  i  = has a geometric distribution. 
Of course, in a direct way one can easily find the mean and variance of the 
negative binomial distribution using the corresponding expressions (1.12) and 
(1.14) for the geometric distribution 

E { X } =  Z  E{*,} = ^ (1.24) 
isri'^M * 

and 

^ nP 
Var{X}= Z Var{*(}=— (1.25) 

The m.g.f. of the negative binomial distribution can be easily written with 
the help of the m.g.f. of the geometric distribution: 

1 - qes 

Obviously, the mean and variance can be obtained from (1.26) by a 
standard procedure, but less directly. The example above shows that the use 
of an m.g.f. can result in a more straightforward analysis. 
Consider a geometric r.v. representing a series of successes terminating 
with a failure. Let us find the probability that n trials will terminate with the 
jcth failure; that is, during n trials one observes cxactly x geometric r.v.'s. 
This event can occur in the following way: the last event must be a failure by 
necessity (by assumption) and the remaining n — 1 trials contain x - 1 
failures and (n — 1) — (jc - 1) = n — x successes, in some order. But the 
latter is exactly the case that we had when we were considering a binomial 
distribution: x - 1 failures (or, equivalently, n - x successes) in n - 1 trials. 
The probability equals 

Pr { X  =  n )  =  Pr{jc - 1 failures among n  - 1 trials} 

• Pr{the «th trial is a failure} (1-27)  

(1.26)
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The second term of the product in (1.27) equals q and the first term 
(considered relating to failures) is defined to be 

f b ( x  -  1|p , n -  1) = ^  ~ ) (1.28) 

Now (1.28) can be rewritten as 

Pr{X = n} = ("_ (1-29) 

The expression (1.29) can be written in the following form: 

Pr{* = „) . ( (1-30) 

[We leave the proof of (1.30) for Exercise 1.1.3 

Equation (1.26) explains the name of the distribution. 
We mention that the negative binomial and the binomial distributions are 
connected in the following manner. The following two events are equivalent: 

♦ In n Bernoulli trials, the fcth success occurs at the «,th trial where 
n{ <, n, and all remaining trials are unsuccessful. 
• The negative binomially distributed r.v. is less than or equal to n. 

The first and second events are described with the help of binomial and 
negative binomial distributions, respectively. In other words, 

— k  

Thus, in some sense, a binomial d.f. plays the role of a cumulative d.f. for an 
r.v. with a negative binomial d.f. 

1.1.5 Poisson Distribution 
The Poisson distribution plays a special role in many practical reliability 
problems. The role of the Poisson distribution will be especially clear when 
we consider point stochastic processes, that is, processes which are repre- 
sented by a sequence of point events on the time axis. 
Before we begin to use this distribution in engineering problems, let us 
describe its genesis and its formal properties. 
Again, let us consider a sequence of Bernoulli trials. One observes 
experiments each with a probability of success of p, and a probability of  
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failure of q x .  The probability of no failures occurring during the experiment 
is 

Pr{no failurelfl], />J (1.31) 
Let the probability (1.31), that is, the probability that there are no failures 
in n, trials, be equal to P. Now let us assume that each mentioned trial 
consists, in turn, of m identical and independent subtrials, or "trials of the 
second level." So now we consider n 2  = n { m  experiments at the second level. 
If at least one failure has occurred in this group of experiments at the second 
level, we will consider that a failure of the entire process has occurred. If the 
probability of success for this second level is p 2 ,  then one has the obvious 
relationship p, = p™ or, consequently, 

Prfno failurej«2, p 2 }  =  p%2 = P 
We can continue this procedure of increasing the number of trials and 
correspondingly increasing the probability of success in such a manner that 
for any >th stage of the procedure 

Pr[no failurejrtj, p\ — p"> = P 

Now let us consider the probability of k failures for the same process at a 
stage with n trials and corresponding probabilities p and q. We can use the 
binomial distribution 

Pr[k failures^, p} 

" ■ ( " - ! )  . . . . . . .  ( n - f c + 1 )  k  k  
 - - - - - - - - - - - - - - - - - - -   ( t - q )  q «  

1 • 2 
Now let us write the expression for the case when k is fixed but n -* oc 
and p 1 in correspondence with the above-described procedure: 

lim Pr{/c failures|/i,p} = — lim [n ■ ( n  -  1)................................... ( n  ~  k  +  1)J(1 -  q ) n ~ k  
n —»<x> k ! n —*<» 

e""> (1.32) 

Thus, the Poisson distribution can be considered as a limiting 
distribution for the binomial when the number of trials goes to 
« (or, in practice, is very large) and the value nq is restricted and fixed. 
For this case it is convenient to introduce a special parameter, say A, which 
characterizes the intensity of a failure in a time unit for this limiting case. 
For the limit (1.32) one can speak of the transformation of a discrete 
Bernoulli trials process into a continuous process. Then Kt is the mean 
number of failures during a time interval (. (The memoryless property of 
Bernoulli trials is independent of when this interval begins.) So one can

{nq
)k 

k\ 
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substitute nq in (1.32) for \t and obtain 

(A t ) k  
Pr{*;Af} = (L33> 

We will soon discuss the main applications of the Poisson distribution. 
Here we emphasize that this distribution is a very good approximation for the 
binomial distribution when the number of trials is very large and the 
probability of failure in a single trial is extremely small (but the mean number 
of events during a fixed time interval is finite). 
Now let us consider different characteristics of this distribution. Based on 
the definition of the parameter A, one can directly find the mean, that is, the 
average number of failures during a time interval r, 

E{X}=Af = A (1.34) 

The equation for the m.g.f. can be easily obtained with the use of (1.33) 

=  E { e X z ]  = £ = e"A £ = (1.35) 

The expression can also be used to obtain the second moment 

d 2 g - M l - e ' )  
= A2 + A (1.36) 

z-0 
dz2 

and hence from (1.34) and (1.36) we obtain 

Var{A'}=A (1.37) 

1.2 CONTINUOUS DISTRIBUTIONS RELATED TO RELIABILITY 

1.2.1 Exponential Distribution 
The exponential distribution is the most popular and commonly used distri- 
bution in reliability theory and engineering. Its extreme popularity usually 
generates two powerful "lobbies" among the community of reliability special- 
ists: "exponentialists" and "antiexponentialists." Both groups have many 
pro's and con's. Sometimes these groups remind one of the two political 
parties of egg eaters described by Jonathan Swift in his famous book 
Gulliver's Travels] 
The "exponential addicts" in engineering will tell you that this distribution 
is very attractive because of its simplicity. This may or may not be a good 
reason! Many mathematical researchers love the exponential distribution

=
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because they can obtain a iot of elegant results with it. If, in fact, the 
investigated problem has at least some relation to an exponential modei, this 
is an excellent reason! 
Antagonists of the exponential distribution maintain that it is an unreason- 
able idealization of reality. There are no actual conditions that could gener- 
ate an exponential distribution. This is not a bad reason for criticism. But on 
the other hand, it is principally impossible to find a natural process that is 
exactly described by a mathematical model. 
The real question that must be addressed is: under which conditions it is 
appropriate to use an exponential distribution. It is necessary to understand 
the nature of this distribution and to decide if it can be applied in each 
individual case. Therefore, sometimes an exponential distribution can be 
used, and sometimes not. We should always solve practical problems with a 
complete understanding of what we really want to do. 
Consider a geometric distribution and take the expression for the probabil- 
ity that there is no failure during n trials. If n is large and p is close to 1, one 
can use the approximation 

Pr{ A' > n} = = (1 — q ) "  ~  e ~ n q  (1.38) 

If we consider a small time interval d t ,  then the probability of failure for a 
continuous distribution must be small. In our case this probability is constant 
for equal intervals. Let 

Pr{failure during A} = A A 

Then, for the r.v. X, a continuous analogue of a geometric r.v., with n -» <» 
and A -> 0, we obtain 

lim (1 — \ t ) ' / £ k  =  e ~ k '  (1.39) 
A -»0 

It is clear that the exponential distribution is a continuous analogue of the 
geometric distribution under the aforementioned conditions. Using the mem- 
oryless property, (1.39) can be obtained directly in another way. This prop- 
erty means that the probability of a successful operation during the time 
interval t + x can be expressed as 

P( t  + x )  =  P( t )  P( x \ t )  =  P( t )  ■  P( x )  

f ( t + x ) - f { t ) + f ( x )  (1.40) 

where f ( y )  =  In P ( y ) .   
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But the only function for which (1.40) holds is the linear function. Let 
/(y) =  a y ,  Then P ( y )  = expUy). Now one uses the condition that F(oo) = 1 
- P(oo) = 1 and finds that a = — 1. Therefore, the probability of having no 
failure during the period t equals 

P( t )  -  1 -  F( t )  = exp(-Af) 

The distribution function is 
F{ t )  = 1 - exp(-Af) 

and the density function is 

/(fjA) = Aexp(-Ar) 

The exponential distribution is very common in engineering practice. It is 
often used to describe the failure process of electronic equipment. Failures 
of such equipment occur mostly because of the appearance of extreme 
conditions during their operation. We wilt show below that such events can 
be successfully described by a Poisson process. In turn, the Poisson process 
very closely relates to the exponential distribution. 
In addition, we should emphasize that the exponential distribution appears 
in several practical important cases when one considers highly reliable 
repairable (renewal) systems. 
Both of these cases are related to the case where a continuous (or discrete) 
stochastic process crosses a high-level threshold. Indeed, intuitively we feet 
that a level might be considered as "high" because it is very seldom reached. 
Now let us find the main characteristics of the exponential distribution. 
The easiest way to find the mean of the exponential r.v. is to integrate the 
function Pit) = 1 - Ht>. 

1 
E{ A} - f Ate~x' dt ---- - 
A  

 

\(t) 

X — 

Figure 1.1. Exponential distribution FU ) ,  its density /(f), and its hazard function
AO). 

(1.43)

(1.41)

(1.42)
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The second initial moment of the distribution can also be found in a direct 
way 

go 2 
E{*2} = Ckt2e~x' dt = — (1.44) Jo A 

and, consequently, from (1,43) and (1.44) 

2 1 1 
V**) - ? - y - p 

that is, the standard deviation of an exponential distribution equals the mean 

<7= Vv^W = ~ 

The m.g.f. for the density can also be found in a direct way 
(1.45) 

J0 A - s 

For future applications it is convenient to have the Laplace-Stieltjes 
transform (LST) of a density function. For the density of an exponential 
distribution, the LST equals 

A 
<p(s) = [ \e~k'e~s' dt =  -------------  (1.46) 
w Ja A + s x ' 

As we considered above, the LST of the function P i t )  =  1  -  F i t )  =  e  A', 
taken at s = 0, equals the mean. In this case 

<M 0 =  /  d t  = (1.47) 

and, consequently, 

<Pp(s — 0) = T 

One very important characteristic of continuous distributions is the inten- 
sity function which, in reliability theory, is called the failure rate. This 
function is determined as the conditional density at a moment t under the  



 

14 FUNDAMENTALS 

condition that the r.v. is not less than /. Thus, the intensity function is 

l - F{ t )  - P i t )  

For the exponential distribution the intensity function can be written as

 

/(0 
no

 
that is, the failure rate for an exponential distribution is constant. This 
follows as well from the memoryless property. In reliability terms it means, in 
particular, that current or future reliability properties of an operating piecc 
of equipment do not change with time and, consequently, do not depend on 
the amount of operating time since the moment of switching the equipment 
on. Of course, this assumption seems a little restrictive, even for "exponential 
addicts." But this mathematical description is sometimes practically suffi- 
cient. 

1.2.2 Erlang Distribution 
The Erlang distribution is the continuous analogue of a negative binomial 
distribution. It represents the sum of a fixed number of independent and 
exponentially distributed r.v.'s. The principal mathematical model for the 
description of queuing processes in a telephone system is a Markov one. 
Consider a multiphase stage, or example, a waiting line of messages. An 
observed message can stand in line behind several previous ones, say N.  
Then for this message the waiting time can be represented as a sum of the N  
serving times of the previous messages. By assumption, for a Markov-type 
model, each of these serving times has an exponential distribution, and so the 
resulting waiting time of the message under consideration has an Erlang 
distribution. 

The sum of N independent exponential r.v.'s forms an Erlang distribution 
of the Nth order. It is then clear that the mean of an r.v. with an Erlang 
distribution of the jVth order is a sum of N means of exponential r.v.'s, that 
is, 

 

A  ( 0 - (1.48)= A 
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B { X) = j  (1.49)  
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and so the variance equals N times the variance of a corresponding exponen- 
tial distribution 

Var{X> (1.50) 

Finally, the LST of the density of an Erlang distribution of the Nth order is 

*(*) - (1.51) 

The last expression allows us to write an expression for the density 
function of this distribution 

(e.g., one can use a standard table of the Laplace-Stieltjes transforms). We 
will show the validity of (1.52) below when we consider a Poisson process. 

Note that if the exponential r.v.'s which compose the Erlang r.v, are not 
identical, the resulting distribution is called a generalized Erlang distribution. 
Here we will not write the special expression for this case but one can find 
related results in Section 1.6.7 dedicated to the so-called death process. 

1.2.3 Normal Distribution 
This distribution occupies a special place among all continuous distributions 
because many complex practical cases can be modeled by it. This d.f, is often 
termed a Gaussian distribution. 

The central limit theorem of probability theory states that the sum of 
independent r.v.'s under some relatively nonrestrictive conditions has an 
asymptotically normal distribution. This fundamental result has an intriguing 
history which has developed over more than two centuries. 

A simple example of a practical application of the central limit theorem in 
engineering occurs in the study of the supply of spare parts. Assume that 
some unit has a random time to failure with an unknown distribution. We 
know only the mean and variance of the distribution. (These values can be 
estimated, even with very restricted statistical data.) If we are planning to 
supply spare parts over a long period of time, as compared to the mean time 
to failure (MTTS) of the unit, we can assume that the total time until 
exhaustion of n spare units has an approximately normal distribution. This 
approximation is practically irreproachable if the number of planned spare 
parts, n, is not less than 30.  
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In engineering practice the normal distribution is usually used for the 
description of the dispersion of different physical parameters. For example, 
the resistance or electrical capacity of a sample of units is often assumed to 
be normally distributed; the normal distribution characterizes the size of 
mechanical details; and so on. Incidentally, many mechanical structures 
exposed to wear are assumed to have a normal d.f. describing their time to 
failure. 
The normal distribution of the random time to failure OTP) also appears 
when the main parameter changes linearly in time and has a normal distribu- 
tion of its starting value. (The latter phenomenon was mentioned above.) In 
this case the time to the excedance of a specified tolerance limit will have 
normal distribution. We will explain this fact in mathematical terms below. 
The normal distribution has the density function 

U x \ a , « ) - —JLe-U-ft**1 (1.53) 
(T\  ZT T  

where a and a1 are the mean and the variance of the distribution, respec- 
tively. These two parameters completely characterize the normal distribution. 
The parameter u is called the standard deviation. Notice that cr is always 
nonnegative. From (1.53) one sees that it is a symmetrical unimodal function; 
it has a bell-shaped graph (see Figure 1.2). 
That a and a2 are, respectively, the mean and the variance of the normal 
distribution can be shown in a direct way with the use of (1.53). We leave this 
direct proof to Exercises 1.2 and 1,3. Here we will use the m.g,f. 

00 1 
<p„(s) = f —J=e-(x-ait/2a2esx dx = exp( a s  +  ± e r 2 s 2 )  (1.54) 

.— oo <T\1tt 

(The proof of this is left to Exercise 1.4.) 

Fit) fit) 

Figure 1.2. Normal distribution F(f), its density /((), and its hazard function A(()- 
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From (1.54) one 
can easily find

 
and 

VarfA*} = a2 (1.57) 

[The proof of (1.56) is left to Exercise 1.5.] 
In applications one often uses the so-called standard normal d.f. In this 
case a = 0 and a = 1. It is clear that an arbitrary norma! r.v. X can be 
reduced to a standard one. Consider the new r.v. X' = X - a (obviously, the 
variances of X and X' are equal) and normalize this new r.v, by dividing by 
cr. In this way an arbitrary normal distribution can be reduced to the 
standard one (or vice versa) by means of a linear change of scale and 
changing the location of its mean to 0. 
The density of a normal d.f. is (see Figure 1.2) 

<T\LTT 

The function (1.58) has been tabulated in different forms and over a very 
wide range (see Fig. 1.3). Using the symmetry of the density function, one can 
compile a table of the function 

e<*) = f f n ( x $ , \ ) d x  
J n 
J0 

The correspondence between the functions F n ( x )  and F * ( x )  is 

Often one can find a standard table of the so-called Laplace function: 
I —  2 F( x ) .  This kind of table is used, for instance, in artillery calculations to 
find the probability of hitting a target. 
The distribution function of a normal distribution decreases very rapidly 
with increasing x. Most standard tables are, in fact, composed for Ul < 3 or 
4, which is enough for most practical purposes. But sometimes one needs 

E{*} = 

EM « 

(1.55)  

(1.56)  

■= a 
dz 

d2<Pn(

z )  
= a2 + cr2 

clz z = 0 

 



 

CONTINUOUS DISTRIBUTIONS RELATED TO RELIABILITY 19 

values for larger x. In this case we suggest the following iterative computa- 
tional procedure.  
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Consider the integral 

/ = fe~x2'2dx 

It can be rewritten as 

Using integration by parts, one obtains 

/  =  V ' V 2  _  f  J - f e - ' V 2 1  d x  =  -  / ,  <  
 t  J ,  x 2 1  1  t  t   

m

F X
x )  

 

-x 0 x 
Figure 1.3. Three types of tabuiated functions for the standard normal distribution. 
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/. = \e-tn _ 3 dx = -L-'1'2 - /, < 
1  f 3  J ,  x 4  r  r

 
Thus at this stage of 
the iteration

 
I 1 
7 - 7 3 

More accurate approximations can be obtained in an analogous manner. 

1.2.4 Truncated Normal Distribution 
A normal d.f. ranges from -00 to +<*>. But in reliability 
theory one usually focuses on the lifetime of 
some object, and so we need consider distributions 
defined over the domain [0, + <»). The new d.f. (see Fig. 1.4) is said to be 
"truncated (from the left)." The new density function, f(x\a, <r), can be 
related to the initial one, f{x\a, A), as follows: 

 

 

In practical problems this truncation often has a negligible influence if a/cr 
is greater than 4 or 5. 

The mean of a truncated distribution is always larger than the mean of its 
related normal distribution. The variance, on the other hand, is always 
smaller. We will not write these two expressions because of their complex 
form. 

1.2.5 Weibull - Gnedenko Distribution 
One of then most widely used distributions is the Weibull-Gnedenko distri- 
bution. This two-parameter distribution is convenient for practical applica- 
tions because an appropriate choice of its parameters allows one to use it to 
describe various physical phenomena. One of the parameters, A, is called the 
scale parameter and another, (3, is called the shape parameter of the

Now we can evaluate I 

and after integration by parts 
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distribution. A Wcibull-Gnedenko distribution has the form 

F( t \  = h -e-(At)fi for t  >  0 
V ; \ 0 for / < 0 

The density function is 

X'frP-ie-** for t > 0 
\ 0 for t < 0 

The density function for several different parameter values is presented in 
Figure 1.5. 
The failure rate of the distribution is 

A(f) - A^"1 

The behavior of the failure rate depending on the parameter values is 
depicted in Figure 1.6. For ft — I, the Weibull-Gnedenko d.f. transforms 
into a common exponential function (the failure rate is constant). For fi > 1, 
one observes an increasing failure rate: for 1 < < 2, this is concave; for 
[5 3: 2, this is convex. For 0 < 0 < 1, the failure rate is decreasing. 

f ( t )  

  

 

Figure t.5. Density of the Weibull-Gnedenko distribution /(r) for the following 
parameters: (a) 0 - 1, A - I; (fr) p - 2, A - 1; (c) P - 4, A = 1; p =* 2, and 

A = 0,7. 
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The mean of this d.f. is 

1 / I 

BU)-rr i + ? 
and the variance is 

Var{£} = 

where I T )  is the gamma function. 

1.2.6 Lognormal Distribution 
In mechanics one often sees that material fatigue follows a so-called lognor- 
mal distribution. This distribution appears if the logarithm of the time to 
failure has a normal distribution. For f > 0, one has 

F( t )  =  $   

(} = 2.0 

 

Figure 1.6. Hazard rate for the Wcibull-Gnedenko distribution with A = 1 and 
different parameter 0. 

r 1 + 

log t - fl 
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and the density is

 
A sample of a lognormal distribution for several parameter values is depicted 
in Figure 1.7. The mean and the variance have the following forms, 
respec- tively: 

=  p H + < r 2 / 2  

and 

Var{£} = e2it+<rl(e^ - 1) 

For a small coefficient of variation, one can use a normal approximation for a 
lognormal d.f.  

 

Figure 1.7. Density function for the log normal distribution with different parameters: 
( a )  =  1, o- =  1; ( h )  f L  = 3, a  = 1.7; (c) ^ = 3, a  = 1. 

( j o g f  - f t ) '  
2(r2 for t > 0 

for t > 0 

exp /(') = y / 2 v a t  
 

EU} = e
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1.2.7 Uniform Distribution 
For this distribution the density function is constant over its domain [ a , b ] .  
The graphs of the density and distribution functions are presented in 
Figure 1.8. The density function is 

1

for a < x <: b 

for x < a and x > b

 
and the d.f. is

 
(■A i A H

(1.60) 

Because of the symmetry of the density function, the mean is ( b  ~  a ) / 2 .  The 
variance can be calculated as

 
Var{*} = f

 
The uniform distribution on the interval [0,1] plays an important role in 

reliability and its related applications. It is determined by the fact that an r.v. 
y  =  F~ \ x )  [here F~ l  is the inverse for F(JC)] has a uniform distribution. 
This fact is often used for the generation of r.v.'s with a desired distribution 
on the basis of uniformly distributed r.v.'s. For example, to generate an r.v. £ 
with a specified d.f. F i x ) ,  we must take the generator of a uniformly 
distributed r.v. y u y z , . . .  and arrange the inverse transforms: = F ' K y J ,  
f2 - F~Ky2\ >- ■ 

For computer simulations the so-called pseudo-random variable (p.r.v.) is 
usually generated. The first generator of uniformly distributed r.v.'s was

/ < * ) - <  b - a  
0 

(1.59)

 

 x - a

 
( b - a Y  

12 
(1.61)dx -

b - a  

 

a -b 

Figure 1.8. Uniform distribution F(f), its density /(f), and its hazard function AO). 

Alt) 

2  _________  

0 a a + b b 
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0 
0 

introduced by John von Neuman. The principle consists in the recurrent 
calculation of some function. 

For example, one takes an exponential function with some two-digit power, 
chooses, say the 10th and 11th digits as the next power, and repeats the 
procedure from the beginning. Of course, such a procedure leads to the 
formation of a cycle: as soon as the same power appears, the continuation of 
the procedure will be a complete repetition of one of the previous links of 
p.r.v.'s. At any rate, it is clear that the cycle cannot be larger than 100 p.r.v.'s 
if the power of the exponent consists of two digits. Fortunately, modern p.r.v. 
generators have practically unrestricted cycle lengths. 

At the same time, p.r.v.'s are very important for different numerical 
simulation experiments designed for comparison of different variants of a 
system design. Indeed, one can completely repeat a set of p.r.v.'s by starting 
the procedure from the same initial state. This allows one to put different 
system variants into an equivalent pseudo-random environment. This is 
important to avoid real random mistakes caused by putting one system in a 
more severe "statistical environment" than another. 

1.3 SUMMATION OF RANDOM VARIABLES 

The summation of random variables often comes up in engineering problems 
involving a probabilistic analysis. The observation of a series of time se- 
quences or the analysis of the number of failed units arriving at a repair shop 
are examples. At the same time, the number of terms in the sum is not always 
given—sometimes it is random. Asymptotic results are also of practical 
interest. 

1.3.1 Sum of a Fixed Number of Random Variables 
General Case Consider a repairable system which is described by cycles as 
"a period of operation" and "a period of repair." Each cycle consists of two 
r.v.'s £ and TJ, a random time to failure (TTF) with distribution F ( t ) ,  and a 
random repair time with distribution G i t ) ,  respectively. If the distribution of 
the complete cycle is of interest, we would analyze the sum 6 = £ + 77. The 
distribution of this new r.v., denoted as D ( t )  = Pr{0 < t }, is the convolution 
of the initial d.f.'s: 

  

 

=  G * F( t )  = f ' G ( t  —  x )  d F{ x )  
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If the Laplace-Stieltjes transforms (LSTs) of these d.f.'s 

< P F ( s )  -  f ' ° F( t ) e ~ s t  d t  Jo 

and 

<PCG(S) = f°°G(t)e~" dt Jo 

are known, the LST of the d.f. D ( t ) is 

{ p D ( S) = 

If one considers a sum of n  i.i.d. r.v.'s, the convolution F * " ( t )  is 

Pr{ E Pr{ £ ftSf-Jc)dF(x)  

Jo 

where all JF* 's are determined recurrently. For a sum of i.i.d. r.v.'s each of 
which has LST equal to <p(s), 

<PN (S )  -  [?(*)] "  

For the sum of n r.v.'s with arbitrary distributions, one can write 

E{^} = E{ E £;} = E EU,} (1.62) 

and, for independent r.v.'s. 

J E (1-63) 
V lsjsn 

Now we begin with several important and frequently encountered special 
cases. 

Sum of Binomial Random Variables Consider two binomially distributed 
r.v.'s and v 2  obtained, respectively, by and n 2  Bernoulli trials with the 
same parameter q .  From (1.21), the g.f. of the binomial distribution is 

£(s) = ( p z  +  q)n> ( = 1,2  (1.64)
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Thus, 

$ ( z )  = <p,(z)<p2(z) = ( p z  +  q ) n \ p z  +  q ) " 2  =  ( pz +  q)"'+"2 (1.65) 

In other words, the sum of two bionomially distributed r.v.'s with the same 
parameter p  will produce another binomial distribution. This can be easily 
explained: arranging a joint sample from two separate samples of sizes n} 
and n 2  from the same population is equivalent to taking one sample of size 
n ,  +  n 2 .  
Obviously, an analogous result holds for an arbitrary finite number of 
binomially distributed r.v.'s. Thus, we see that the sum of binomially dis- 
tributed r.v.'s with the same parameter p produces a new binomially dis- 
tributed r.v. with the same p  and corresponding parameter 

n  =  £  n i  
l Z j Z N  

For different binomial distributions, the result is slightly more complicated 
(see Exercise 1.8). 

Sum of Poisson Random Variables Consider the sum Xz of two inde- 
pendent Poisson r.v.'s Xx and X2 with corresponding parameters A,, i = 1,2. 
The m.g.f.'s for the two Poisson distributions are written as 

V i ( z )  = e W- e ">  i  —  1,2 (1.66) 

The m.g.f. for the distribution of the sum Xz can be written as 

< p ( z )  =  ^ ' - l ^ A ^ ' - l )  =  e ( A 1 + A 3 X ^ - l )  (1.67) 

that is, the resulting m.g.f. is the m.g.f. of a new Poisson d.f. with parameter 
Az = A, + A2. 
An analogous result can be obtained for an arbitrary finite number of 
Poisson r.v.'s. In other words, the sum of N Poisson r.v.'s is again a Poisson 
r.v. with parameter equal to the sum of the parameters: 

A = £ A,- (1.68) 
1 

Sum of Normal Random Variables The sum of independent normally 
distributed r.v.'s has a normal distribution. Again consider a sum of two r.v.'s. 
Let Xj be a normal r.v. with parameters «, and ait i = 1,2, and let
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^ z  ~  +  X 2 -  Then the m.g.f. for X  can be expressed as 

= Vi(2)p2(z) ™ exp(a,z + \a}z2) exp(a,z + \a\z2) 

= exp[ + a 2 )  +  ±z2(<rf + cr2
2)] (1.69) 

Therefore, the sum of two normal r.v.'s produces an r.v, with a normal 
distribution. For n terms, the parameters of the resulting norma! distribution 
are 

(1.70) 
az - £ Of 

J s i s N  

and 

(1.71) 
V ts/sAf 

1.3.2 Central Limit Theorem 
Many statisticians have worked on the problem of determining the limit 
distribution of a sum of r.v.'s. This problem has practical significance be- 
cause, when a sum includes a large number of r.v.'s, the direct calculation of 
some characteristic of the sum becomes very complicated. The problem itself 
has aroused theoretical interest even outside of applications. 
Above we showed that a sum of different normally distributed independent 
r.v.'s has a normal distribution, independent of the number of terms in the 
sum. The new resulting normal distribution has a mean equal to the sum of 
the means of the initial distributions and a variance equal to the sum of the 
variances. It is obvious that this property is preserved with the growth 
of n. 
But what will be the limiting distribution of a sum of r.v.'s whose distribu- 
tions arc not normal? It turns out that, with increasing n, such a sum has a 
tendency to converge to a normally distributed r.v. 
In simple engineering terms it appears that if we consider a sum of a large 
number n of independent r.v.'s then this sum has approximately a normal 
distribution. If we consider the sum of independent arbitrary distributed r.v.'s 
£ with mean a = E{£) and variance v = Var{£), then the normal distribution 
of the sum will have mean A = an and variance V — un. (Of course, some 
special restrictions on the independence and properties of distributions must 
be fulfilled.) 
Historically, limit theorems developed over several centuries. Different 
versions of them pertain to different cases. One of the first attempts in this 
direction is contained in the following theorem.  

<rN =
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DeMoivre Local Theorem Consider a sequence n of Bernoulli trials with 
a probability of success p. The probability of m successes P„(m) satisfies the 
relationship 

 _____ g —K / * 
y/2tt 

uniformly for all m such that 

m — np 

yfnpq 

belongs to some finite interval. 
This theorem, in turn, is the basis of the following theorem. 

Integral DeMoivre - Laplace Theorem If v is the random number of 
successes among n Bernoulli trials, then for finite a and b the following 
relationship holds: 

The next step in generalizing the conditions under which the sum of a 
sequence of arbitrary r.v.'s converges to a normal distribution is formulated 
in the following theorem. 

Liapounov Central Limit Theorem Suppose that the r.v.'s X, are inde- 
pendent with known means ai and variances or,2, and for ail of them, 
EffA^ — at< <*>. Also, suppose that 

E  
lim  -------------- = 0 

V v Uisn ' 

Then, for the normalized and centered (with zero mean) r.v.,
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for any fixed number x,

 

n

 
Thus, this theorem allows for different r.v.'s in the sequence and the only 
restrictions are in the existence of moments of an order higher than 2. As a 
matter of fact, this statement is true even under weaker conditions (the 
restriction of a variance is enough) but all r.v.'s in the sum must be i.i.d. 
For the sample mean, the related result is formulated in the following 
theorem. 

Lindeberg - Levy Central Limit Theorem If the r.v.'s Xt are chosen at 
random from a population which has a given distribution with mean a and 
finite variance a 2 ,  then for any fixed number y ,  

t i f c ( X „ - a )  \  1 r y  
Iim Pr  ------ ^ -------- <  y  = f  e ~ z  d z  

y <j ) v2tt j - x 

where X„  is the sample mean. 
Because 

this theorem may be interpreted in the following way: the sum of i.i.d. r.v.'s 
approximately has a normal distribution with mean equal to na and variance 
equal to n a 2 .  
A detailed historical review on the development of probability theory and 
statistics can be found in Gnedenko (1988). 

1.3.3 Poisson Theorem 

Considering the locaf DeMoivre theorem, we notice that this result works 
well for binomial distributions with p close to 1/2. But the normal approxi- 
mation does not work well for small probabilities or on the "tails" of a 
binomial distribution. An asymptotic result for small p (for the "tails" of the 
binomial distribution) is formulated in the following theorem. 

 
ii
m 
Pr
{Y
„ 
< 
JC
} 
= 
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Poisson Theorem If pn -» 0 with n -» then 

 

where an — np,  
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This means that for small p, instead of calculating the products of 
astronomically large binomial coefficients with extremely small p", we can 
use a simple approximation. A standard table of the Poisson distribution can 
be used. 

1.3.4 Random Number of Terms in the Sum 
Only a very general result can be given for the d.f. of the sum of r.v.'s, or for 
its LST when a random number of terms is distributed arbitrarily. Further, 
let us assume that v is geometrically distributed. Then the distribution of the 
sum of arbitrarily distributed r.v.'s is 

P r f o * ' } -  E  p W  E  L z t )  

Consider a continuous d.f. The LST can be written as 

< Pz { s )  =  £  p k q [ < p ( s ) ] k  
t zkzN 

In general, both of the latter expressions are practically useful only for 
numerical calculation. 
To find the mean of we may use the Wald equivalence: 

E{ E  f*)=E{»}EU} (1-72) 

Below we consider two cases where the sum of finite r.v.'s will lead to 
simple results. 

Geometrically Distributed Random Variables We can investigate this 
case without using a mathematical technique. Consider an initial sequence of 
Bernoulli trials. The probability of success equals p and the probability of 
failure equals q = 1 - p. Now construct the new process consisting of only 
failures of the initial process and corresponding spaces between them. 
Consider a new procedure: each failure in the initial Bernoulli process 
creates a possibility for the appearance of a failure in the final process. 
(Failure cannot appear in the space between failures of the initial process.) A 
special moment concerning the "possibility" of a new process failure is 
considered. Let a failure of the initial process develop into a failure of the 
new (final) process with probability Q. Thus, if we consider the initial 
process, failure of the final process occurs there with probability Q* = qQ. 
We have obtained this result using only verbal arguments. Of course, it can 
be derived in strict mathematical terms.  
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Exponentially Distributed Random Variables Consider the sum of a 
random number of exponentially distributed identical and independent r.v.'s, 
with parameter A. Assume that the number of terms in the sum has a 
geometric d.f. with parameter p .  We will express the LST of the resulting 
density function through the LST of the density function of the initial d.f. 
From the formula for the complete mathematical expectation, we have 

A A2 A3 
= q ..  ........  + pq --------------  +  ----------   + • ■ • 
'  y A  ™  ( k + s f  ( A  +s)3 

_  y  ( P A ) k  _  < ? A  1  =  <?A . J  7 3 A + * (A + s ) k  s + £?A 
A + s  

Thus, we have an expression which represents the LST for an exponential 
distribution with parameter A = Aq. 
We illustrate the usefulness of this result by means of a simple example. 
Imagine a socket with unit installed. Such a unit works for a random time, 
distributed exponentially, until a failure occurs. After a failure, the unit is 
replaced by a new one. The installation of each new unit may lead to a socket 
failure with probability q. 
This process continues until the first failure of the socket. This process can 
be described as the sum of a random number of exponentially distributed 
random variables where the random number has a geometrical distribution. 
Of course, in general, the final distribution of the sum strongly depends on 
the distribution of the number of terms in the sum. The distribution of the 
number of terms in the sum is the definitive factor for the final distribution. 

1.3.5 Asymptotic Distribution of the Sum of a Random Number 
of Random Variables 
In practice, we often encounter situations where, on the average, the random 
number of terms in the sum is very large. Usually, the number of terms is 
assumed to be geometric. If so, the following limit theorem is true. 

Theorem 1.1 Let {£} be a sequence of i.i.d. r.v.'s whose d.f. is F i t )  with 
mean a  >  0. Let v  be the number of discrete r.v.'s of a sequence with a 
geometric distribution with parameter p :  Pr{f = k )  = ( i p k ~ ]  where q  —  1 —  
p. Then, if p -* 1, the d.f. of the normalized sum 

^E ~ Q £ U 
lstip 

converges to the exponential d.f. 1 — e~1''.  
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Proof. Consider the normalized r.v. 

E  &  
6z £ 

i<.k<.v 

By the Wald equivalency, 

e{ L | = E{f} E{£} 
Without loss of generality, we can take E{£} = 1. Because v has a geometric 
distribution, E{P) = l / q .  Hence, 

1  E  i k  
1 s k s v  

The LST of is 

= E{<r^} = E j ex p /  ~qs £ 

E  p k ~ ] q e x p  E  f t )  

Note that 

expj ~qs E ft) = [?(*?)]' 

Then 

=  E  p k ~ l e[ < p ( w) ] k  
1 sfc <0t> 

- )  E  [ P 9 { s q ) \ k  =  
o 1  ~ P< p ( W )  

Now with some simple transformations 

.  .  q < p ( s q )  q<p{sq) 
=  ------------------- —■——— --  -------------------------------------------------------------------------------------  

1  - p < p ( s q )  1  -  < p ( s q )  +  q < p ( s q )  

< p ( s q )  
1 - <p(sq) 
s  . .   —  +  < p { s q )  

s q
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Notice that <pCj)|t_n = 1. Hence,

 
lim i p ( s q )  =  1

 
and, consequently,

 
1 -  i p ( s q )  <p(0) - 
< p ( s q )  

[jm  ------- —-— = [im -------- — 
q — o s q  t ) — o s q  

Taking into account that E{£} = 1, we have finally 

 

that is, has an exponential distribution with parameter A = L 

1.4 RELATIONSHIPS AMONG DISTRIBUTIONS 

Various distributions have common roots, or are closely related. As we 
discussed previously, the normal and exponential distributions serve as 
asymptotic distributions in many practical situations. Below we establish 
some connections among different distributions that are useful in reliability 
analysis. 

1.4.1 Some Relationships Between Binomial and Normal 
Distributions 
The De Moivre-Laplace theorem shows that, for large n  when min(«< 7, n p )  
» 1, the binomial distribution can be approximated by the normal distribu- 
tion. 

Example 1.1 A sample consists of n = 1000 items. The probability that the 
item satisfies some specified requirement equals Pr{success} - p - 0.9. Find 
Pr{880 < number of successes}. 

Solution. For the normal d.f. which approximates this binomial distribution, 
we determine that a = np = 900 and a2 = npq = 90, that is, a ~ 9.49. Thus, 

/ 880 - 900 \ 
Pr{880 <*} = !-4>[ 949 ) 

880 - 900 

 

 

 
-<p'(0) = -H|f} 
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= 1 - <t>( -2.11) = 1 - 0.0175 = 0.9825  
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Example 1.2 Under the conditions of the previous example, find the num- 
ber of good items which the producer can guarantee with probability 0.99 
among a sample of size n  = 1000. 

Solution. Using a standard table of the normal distribution, from the equa- 
tion 

x  - 900 + 0.5 \ ( x  - 900.5 
Pr(m >;*> " ^900 " = 0 01 

we find 

x - 900.5 
» -2.33 

9.49 

or x = 978.6. Thus, the producer can guarantee not less than 978 satisfactory 
items with the specified level of 99%. 
We must remember that such an approximation is accurate for the area 
which is more or less close to the mean of the binomial distribution. This 
becomes clear if one notices that the domain of a normal distribution is 
(—oo, <»), while the domain of a binomial distribution is restricted to [0, n). 
In addition, there is an essential difference between discrete and continu- 
ous distributions. Thus, we must use the so-called "correction of continuity": 

a 
ifnpq j \ ifnpq 

1.4.2 Some Relationships Between Poisson and Binomial 
Distributions 
By the Poisson theorem, a Poisson distribution is a good approximation for a 
bionomial distribution when p  (or q )  is very small. 

Example 1.3 A sample consists of n  —  100 items. The probability that an 
item is defective is equal to p = 0.005. Find the probability that there is 
exactly one defective item in the sample. 

Solution. Compute a = 100 • (0.005) = 0.5. From a standard table of the 
Poisson distribution, we find p(l;0.5) — 0.3033. The computation with the 
use of a binomial distribution gives 

p h ( l  ' ,  0.005, 100) = ( j0.005 • 0.9959" ® 0.5e"°-5 

» (0.5) • (0.6065) m 0.3033  
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1.4.3 Some Relationships Between Erlang and Normal Distributions 
The normal approximation can be used for the Erlang distribution when k is 
large, for instance, when k is more than 20. This statement follows from the 
"Lindeberg form" of the central limit theorem. 
Let Y be an r.v. with an Erlang distribution of the k th order. In other 
words, Y  —  X ,  +  X 2  +  ■  •  •  + X k  where all AT/s are i.i.d. r.v.'s with an expo- 
nential distribution and parameter A. Then, if k » 1, Y approximately has a 
normal distribution with mean a  =  k / k  and standard deviation c r  =  if a .  

Example 1.4 Consider a socket with 25 units which replace each other after 
a failure. Each unit's TTF has an exponential distribution with parameter 
A = 0.01 [1/hour], Find the probability of a failure-free operation of the 
socket during 2600 hours. (Replacements do not interrupt the system opera- 
tion.) 

Solution. The random time to failure of the socket approximately has a 
normal d.f. with parameters a  = 25 ■ 100 = 2500 hours and <r = ^(2500) = 
50 hours. The probability of interest is 

 

1.4.4 Some Relationships Between Erlang and Poisson Distributions 
Consider the two following events: 

(a) We observe a Poisson process with parameter A. The probability that 
during the interval [0, r] we observe k events of this process is 

( A O  

(b) We observe an r.v, £k with an Erlang distribution of order k with 
parameter A. Consider the event that £ is smaller than f and, at the 
same time, + 1 is larger than t. The probability of the latter event 
equals 

[A(f -x)]* ' 
e~Mt-*>e-x* dx 

=  - P p ( k - , k t )   
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Thus, events (a) and (b) are equivalent. It is important to remark that both 
the Erlang r.v. and the Poisson process are formed with i.i.d. r.v.'s with 
exponential d.f.'s. 

Notice that the unconditional event £k > t is equivalent to the set of the 
following events in the Poisson process: {no events arc observed) or {one 
event is observed) or {two events are observed) or... or {k - 1 events are 
observed). This leads to the following condition:

 

(Af) 
Z  =  / > , ( * - ! ;  A * )  
n t ■

 
or, for the probability of the event fk < t, that is, for the d.f, of the Erlang 
r.v. of the fcth order, we have 

Therefore, in some sense, the Poisson d.f. is a cumulative function for an r.v. 
with an Erlang distribution. 

1.4.5 Some Relationships Between Poisson and Normal Distributions 
Note that a high-ordered Erlang r.v. can be approximated by a normal r.v. 
and, at the same time, it has a Poisson distribution as its cumulative 
distribution. This fact can be used as a heuristic justification for the possibil- 
ity of approximating a Poisson distribution with the help of a normal 
distribution. The strict proof of this statement can be obtained with the help 
of a Gram-Charlie set (see below). 

Here we take without proof that a Poisson distribution can be approxi- 
mated by a normal distribution. For a Poisson d.f. with a large mean a, the 
approximation can be written as 

 

Notice that this approximation is accurate in an area close to the mean and 
may be very bad for the "tails" of the Poisson distribution. This is explained 
by the fact that these two distributions have different domains: the normal 
distribution is defined on (-00,00), while the Poisson d.f. has no meanings for 
m < 0. 

Example 1.5 Assume that the number of failures of some particular unit of 
equipment has a Poisson distribution. The expected number of failures 

 
k -  1

P r  { & > * }  =  =  Z 

0
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during a specified period of time equals 90. One has decided to supply the
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equipment with 100 spare units of this type. With what probability will there 
be no deficit of spare units? 

Solution. 

I 100 - 
90 

PrH^lOO} 

From a standard table of the normal distribution, we 
find that this probability 
equals 0.853. 

Example 1.6 Under the conditions of the previous example, find how many 
spare units should be supplied so that the probability exceeds 0.995. 

Solution. 

I x ~ 90 + 0.5 \ 
Pr [ m  > x } ~ 4>| -- ̂  ----- J - 0-995 

From a standard table of the normal distribution, we find that 

a: - 90.5 
= 2.576 

\/90 

or jc = 114.9. This means that one should have 115 spare units. 

1.4.6 Some Relationships Between Geometric and Exponential 
Distributions 
It is clear that an exponential distribution is an approximation to a geometric 
distribution with q — A Ac 

lim — [(1 - A A t ) ' / A ' \  A f l  =  A Um (1 - A &t ) ' / A '  =  \ e ~ A '  
m-O A r L  1 &t->o 

where At 0. 

1.4.7 Some Relationships Between Negative Binomial and Binomial 
Distributions 
The relationship between these distributions is similar to the relationship 
between the Erlang and Poisson distributions. Consider a sequence of 
Bernoulli trials that forms a negative binomially distributed r.v. v k  consisting 
of the sum of k geometrically distributed r.v.'s. Let us pay attention to the

= <t>( 1.05) 
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first n  trials where n  >  k .  The event { v k  > n} means that, in the first n  trials, 
there are 0, or 1, or 2,... f or k  - 1 failures, that is, 

Pr K>«} = £ ("W"' 
O &j &k ~ 1 V J I  

1.4.8 Some Relationships Between Negative Binomial and Erlang 
Distributions 
We noticed that the geometric distribution is related to the exponential 
distribution. In the same sense, the convolution of geometric distributions is 
related to the convolution of exponential distributions. No other comments 
are needed: the negative bionomial and Erlang distributions are these convo- 
lutions. 

1.4.9 Approximation with the Gram-Charlie Distribution 
Because of the wide applications of the normal distribution, many attempts 
were made to use various compositions of this distribution to express other 
distributions. Below is one of them. 
Let /(/) be the density function of a distribution other than the normal 
distribution. The mean a and the variance cr1 of this distribution are known. 
Introduce a new variable 

x  -  a  
t -  ------------  (1.74) 

<T 

The density function /(t) can be represented with the help of the 
Gram-Charlie series 

/ ( / )  ~A0<p{t) +A1<p'(t) + A 2 < p "( t )  +  • • •  

where <p(r), <p'(t), <p"(0,. . .  are the density of the normal distribution and its 
subsequent derivatives. The standard normal density is expressed as 

Introduce the Chebyshev-Hermit polynomials: 

a>inHt) 
Hn(t) = (-1) —777- (1.75) 

f(0  
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where c p u ' K t )  is the nth derivative of the normal density. By direct calcula- 
tions we find 

H 0 ( 0  

= 1  

J f , ( 0  - t  

H 2 ( t )  = t 2 -  1 (1.76) 

H 3 ( t )  = r3 - 3 t  

H 4 ( t )  =  /4 - 6r2 + 3 

Usually, for practical problems, we do not need more than four terms of the 
Gram-Charlie set. 
From (1.75) it follows that 

These functions go to 0 for ail n  when t  - *  ±», The functions ( p i t ) ,  H 2 ,  and 
H a are even, and the functions H, and are odd, so from (1.77) it follows 
that 

< P ' ( ~ 0 = < P ( 0  

< p " ( - 0= < P ( 0  

<P{3)(-0 = -?(3)(r) 

( p w (  - t )  =  < p < 4 > ( t )  

The Chebyshev-Hermit polynomials are orthogonal, that is, 

This fact can be proven by direct calculation. 
Now substitute the Chebyshev-Hermit polynomials into (1.75) 

f ( t ) - A 0 H 0 ( t ) v ( t ) - A M O v C O  +  A 2 H 2 ( t ) < p ( t )  ~  ■ ■ ■  (1.78) 

To find A n ,  multiply both sides of (1.78) by H n ( t )  and integrate from — GO 
to oo. Because of the above-mentioned orthogonality property of the 
Chebyshev-Hermit polynomials, we have 

(  - 1 ) "  
A n =   - - - -   f f ( t ) H „( t ) d t  (1.79) 

n : J — oo 
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After substituting (1.76) into (1.79), we obtain 

A 0 = \  

A, = -m? 

A 2 = - £ (1.80) 

A t ~  _ i [ m o _ 3 m ? ]  

= + 3] 

where is the central moment on the /ith order of the r.v. t. 
Thus, m" = 0, m\ = 1, and, consequently, all initial moments are equal to 
centered moments. Then from (1.80) 

A, - 0 
A2 = 0 

A 4 = ± [ m A ( t ) - 3]  =  s M O  

where k3 and k4 are known as the coefficient of asymmetry and the coefficient 
of excess, respectively, 

m i i x )  

m 4 ( x )  

k3 defines the deviation of the density function under consideration from a 
symmetrical function, and k4 defines the sharpness of the mode of the 
density function. All symmetric densities have k3 = 0, and a normal density 
has k4 = 0. 
Finally, we obtain 

or, after integration from - QO to t, 

F( t ) ~ < P( t )  -  ik3<p<2>(t) + ±4k4<p«\t) 

Notice that t  is the linear function of x .  And so, f i x )  and F ( x )  can be
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expressed as 

f ( x )  -  -  
cr 

and 

Example 1.7 With the help of the Gram-Charlie series, the Poisson distri- 
bution can be approximately expressed as 

Pr{1 < c) m <t>(f) - + -24%<3>(/) (1.81) 

where 

x  —  a  —  0.5 
r = 

and a  is the parameter of the Poisson distribution. 
It is clear that for a 1 one can disregard the last two terms of the right 
side of (1.81), and, consequently, the Poisson distribution can be approxi- 
mated by the normal distribution for targe a .  

REMARK. The Gram-Charlie distribution can be successfully applied to the evaluation of d.f.'s. 
This takes place, for instance, in analyses of the distribution of a parameter of a piece of 
electronic equipment when the distributions of its components are known. 

1.5 STOCHASTIC PROCESSES 

Stochastic processes are used for the description of a system's operation over 
time. There are two main types of stochastic processes: discrete and continu- 
ous. Among discrete processes, point processes in reliability theory are widely 
used to describe the appearance of events in time (e.g., failures, terminations 
of repair, demand arrivals, etc.). 
A well-known type of point process is the so-called renewal process. This 
process is described as a sequence of events, the intervals between which are 

                                            
1 Stationarity 
• Memorylessness (Markov property) 
• Ordinarity 
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i.i.d. r.v.'s. In reliability theory this kind of mathematical model is used to 
describe the flow of failures in time. 
A generalization of this type of process is the so-called alternating renewal 
process which consists of two types of i.i.d. r.v.'s alternating with each other 
in turn. This type of process is convenient for the description of renewal
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systems. For such systems, periods of successful operation alternate with 
periods of idle time. 

The more complex process is a process describing a system transition from 
state to state. The simplest kind of such a process is a Markov process. If the 
times that the process may change states are assumed to be discrete, the 
process is called the Markov chain. 

We start with simplest cases and move in the direction of more complex 
mathematical models. 

1.5.1 Poisson Process 
In the theory of stochastic processes, the Poisson process plays a special role, 
comparable to the role of the normal distribution in probability theory. Many 
real physical situations can be successfully described with the help of a 
Poisson process. A classical example of an application of the Poisson process 
is the decay of uranium: radioactive particles from a nuclear material strike a 
certain target in accordance with a Poisson process of some fixed intensity. 

In practice, the Poisson process is frequently used to describe the flow of 
failures of electronic equipment. In inventory control, the flow of random 
requests for replacement of failed units is also often assumed to be described 
by a Poisson process, especially if the system which generates these requests 
is large. 

Sometimes the Poisson process is called "a process of rare events." Of 
course, the meaning of the word "rare" should be carefully defined in each 
particular case. Usually, we speak about rare events if they appear with a 
frequency which is lower than the frequencies of other accompanying pro- 
cesses. The Poisson process appears as the interaction of a large number of 
these processes and, consequently, has a frequency lower than the other 
processes. 

In reliability, such "rare" events appear, for instance, when one considers 
a highly reliable renewal redundant system or a multicomponcnt renewal series 
system. This process also successfully describes the fluctuation over a high- 
level threshold. 

This process is so named because the number of events in any fixed 
interval of length t has a Poisson distribution: 

(A t ) k  
Pr{£ events during f} = p k ( t )  =  - - - - - - -  e  A '  

Ac! 
where A is called the parameter of the Poisson process. 

First of all, note that the Poisson process possesses the three following 
properties that are often referred to as characterization properties:  
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The first property means that the d.f. of the number of observed events in 
a time interval depends only on the length of the interval and not on its 
position on the time axis. 
The second property means that the d.f. of the number of observed events 
does not depend on the previous history of the process. 
The third property means that the probability of an appearance of more 
than one event in an infinitesimally small interval h goes to 0: 

1 
— Iim Pr{k  events appear during h , k  > 1} -» 0 
h a - O  

or, in another notation, 

Pr{fc events appear during h ,  k  >  1 }  =  o ( h )  (1.82) 

In practical problems, these properties are often assumed. These proper- 
ties, which seem to be—at a first glance—purely qualitative, allow us to 
obtain strict mathematical results. 
First, for a better understanding, we present a semiintuitive proof of the 
fact that these properties generate a Poisson process. Consider a Bernoulli 
process with probability of success p and a sufficiently large number of trials 
n. The Bernoulli process satisfies the first two properties (and trivially 
satisfies the third one because of its discrete nature). As we considered in 
Section 1.1, the number of successes in a series of n Bernoulli trials has a 
binomial distribution. As we have shown in Section 1.1, for large n the 
binomial distribution can be successfully approximated by a Poisson distribu- 
tion. 
We now return to the exact mathematical terms. First, add one extra 
property to the above three properties, namely, assume that the probability 
that there is exactly one event in a time interval h: 

Pj ( h )  =  A h  +  o { h )
 (1.83
) 

where A is some constant and o ( h )  was introduced in (1.82). As a matter of 
fact, (1.83) follows from the three properties characterizing a Poisson pro- 
cess. 
Consider the probability of the appearance of k events in a time interval 
t + h. The formula for the probability can be easily written as 

P k ( t  +  h ) =  z  WWM 0-84) 
0 

Let 

=  E  PjiOfW*>  (1.85)
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0  z j < , k - 2  
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R k S  I  P k - j ( h ) <  L  P , ( h )  (1.86) 
Q £ j £ k - 2  2  zi&k. 

because all P s ( t )  <  1. We only reinforce the inequality (1.86) by changing the 
limits of summation 

R k <  L  W) 

= Pr{two or more events appear during interval h} (1.87) 

At the same time, by assumption, this probability equals o ( t ) .  
As a result, we have the equality 

W  +  h )  = P k ( t ) P Q ( h )  + P k . i ( t ) P 1 ( h )  +o(0 (1.88) 

In this equality, we can substitute P t { h )  =  \ h  + o ( h ) .  Also, P 0 ( h )  +  P t (h)  +  
o ( h )  = 1, that is, P Q ( h )  = 1 - Ah  +  o ( h ) .  Now (1.88) can be rewritten as 

P k ( t  + h )  =  P k ( 0 0  -  Ah )  +  P k - t ( t )AA + o ( t )  (1.89) 

and from (1.89) we obtain 

and, after h  0, 

d P k { t )  
=  - \ P k ( t ) + \ P k ^ ( t )  (1.90) 

d t  

Thus, a system of equalities for P k ( t ) ,  k  = 0, I,..., has been obtained. We 
need to add one more equation to determine P0(f). Using the memoryless 
property, we can write 

pQ(t + h)  =  p 0 ( t ) p 0 ( h )  =  p0(t)[ 1 - \ h  +  o ( h)  3 

or, finally, 

dPQ(t) 
= -AP0(0 (1-91) 

d t  

To solve the system, we must determine the initial condition. Of course, at 
t  = 0, the probability of no events equals 1; that is, the initial condition is 
/>,,( 0) = 1.  

Obviously,
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The system of differential equations (1.90) and (1.91) with the above initial 
condition can be solved by several different methods. We solve this system of 
equations with the use of the LST. Let <p0(s) be the LST of the function 
PoO): 

< p 0 ( j )  =  f p 0 ( t ) e - "d t
 (1.92
) J o  

Applying (1.92) to (1.91) and keeping in mind the properties of the LST, 
one obtains 

-/>o(0) +  s < p 0 ( s )  =  - \ < p 0 ( s )  (1.93) 

which has the solution 

< Po ( * )  =  T — ( ! - 9 4
>  A + s  

As it follows from a table of Laplace-Stieltjes transforms, the function P 0 ( t )  
corresponding to (1.94) is exponential with parameter A: 

P 0 ( t ) = e ~ »  (1.95) 

For arbitrary k  > 0, from (1.90) the system of recurrent equations follows: 

s < p k ( s )  = -A < p k ( s )  + A <?*_,(*) (1.96) 
or 

Finally, using (1.94) systematically, we have 

Ms) - + l (1.98) 
(A + 5 )  

From a table of LSTs, the latter transformation corresponds to a Poisson 
distribution 

( A/ ) *  4  
P k ( t )  = (1.99) 

For the Poisson distribution the mean number of events in a fixed interval of 
time is proportional to its length. The parameter A is the mean number of 
events in a time unit, or, equivalently, it equals the inverse of the mean time
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between events. Also, as known (see the Appendix), a convolution of Poisson 
distributions produces a Poisson distribution. Thus, for several disjoined 
intervals of lengths t x , t 2 , . . . , t m ,  the distribution of the total number of 
events is Poisson with parameter A(/, + t 2  +  •  *  •  +  t m ) .  In other words, the 
Poisson process is a point stochastic process with exponentially distributed 
intervals between neighboring events. 

1.5.2 Introduction to Recurrent Point Processes 
We often encounter situations where some events occur sequentially in such 
a way that the times between occurrence (interarrival times) can be success- 
fully described by a sequence of independent r.v's. For instance, consider a 
socket with an installed unit which is instantly replaced upon failure by a new 
unit; the times between replacement moments form such sequence. In 
general, the length of each interval might depend on the number of the event 
because of a changing environment, a wearing out of the socket, and so on. 
Here we ignore such phenomena. A process of this type is called a point 
process with restricted memory. 

A point process with restricted memory is a sequence of r.v.'s. It is called a 
renewal (recurrent) point process if all interarrival intervals are i.i.d. r.v.'s 
with identical d.f.'s F k ( t )  =  F( t ) ,  k  s 2, with only the first interval having its 
own distribution F x ( t ) .  

The Poisson process represents a particular case of such a process in that 
the intervals between arrivals are independent and exponentially distributed. 

We assume that a flow of failures is represented by a recurrent point 
process. This assumption is acceptable in many practical situations. At the 
same time, it allows us to obtain simple and understandable results. 

For a renewal point process, there are two main characteristics: (1) the 
process intensity defined to be the mean number of process events arriving in 
a time unit and (2) the process parameter defined to be the limit probability 
of the arrival of at least one event. 

Let N(r) be the number of events arriving during an interval of length t .  
Then, for the stationary process, 

A* = lim -E{N(M + T)} = lim - £ j p X t ,  t  + T)  
T r o<;y<°= 

The parameter of the process is defined as 

A = lim lim — £ P j ( t )  
T 0 £ j < s c  

For an arbitrary stationary point process with a single arrival at a time and 
without so-called "points of condensation" (infinitesimally small intervals in  
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which an infinite number of discrete events might appear), we have 

A* < A 
For a stationary and memoryless point process, the parameter coincides with 
the intensity. We can given an explanation of the parameter of a point 
process based on a more physical consideration: 

A*(/) A = Pr{at least one failure occurs in [f, / + A]} 

Let f *  ( t )  stand for a convolution of the /cth order of the function /(f): 

r \ t )  - f r ° ! - i \ x ) f ( t - x ) d x  

it is clear that at least one failure might occur if 

- The first failure occurs with probability /(/)A. 
• The second failure occurs with probability f * 2 ( t )  A,..., 
• The Arth failure occurs with probability f * k ( t )  A and so on. 

Thus, the probability that a failure will occur for any of these reasons is 

Pr{at least one failure occurs in the interval [/,/-»- A]} 
A*(/) A = 

where we use the conditional notation /*°(f) =/(0. Hence, 

A *( f ) - [  z r k ( t )  
. t s o  

The function A*(f) allows us to express the so-called characterization point 
process function which we denote by A*(f): 

A*(M + r*) = f' + t * X * ( t ) d t  J t  

Using this function, we can write 

Pr{no failures in [ f, t  +  t  * ]} = exp 

= _-A*('.< + <*> = _-[A*(/-w*)-A*(0] = 

(1.100) 
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The function A i t )  is defined to be the "instant" conditional density of the 
failure distribution F i t ) .  We emphasize that the functions AO) and A* i t )  are 
quite different. 

Now consider the main characteristics of a renewal process. One of the 
characteristics of a renewal process is the mean number of events occurring 
up to a moment t .  Denote the random number of events by N i t )  and the 
mean number by H i t )  =  E{ N i t ) ) .  H i t )  is called the renewal function. The 
derivative h ' i t )  =  H i t )  is called the renewal density. Consider a renewal 
process composed of i.i.d. r.v.'s with distribution F i t ) .  We can write 

Pr{N(r) £ A:} = £ ? r { N i T )  =;} = Pr{ £ < A = F**(r) 
k£j<<"> Ms/st ' 

where F* k i t )  is the &th-order convolution of F i t ) :  

F* k i t )  = f' F* i k - l \ t  - x ) d Fi x )  J o  

JF* 1  -  F i t )  

The expression can be easily written as 

Pr{any event occurs in interval [ t , t  +  dt\\ 
= E Pr{thc fcth event occurs in interval [r, t  +  d t ] )  

=  h i t )  d t  =  f i t )  d t  +  £  f * k i t ) d t  (1.101)  
2sk <oo 

Integrating (1.101) allows us to write an expression for H i t ) :  

H { t )  =  F i t )  +  £  F* k ( t )  (1.102) 
2<.k <oo 

Of course, H i t )  can be found in a standard way as the mean number of 
events during time f. The probability that exactly k  events happen up to 
moment t  is expressed as 

Pr{N(0 = k )  = Pr{N(r) ;> Jt} - Pr{JV(r) £ k  -  1} 

=  F* \ t )  -  F*<* +  1 ) ( 0   
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Thus, the distribution of N ( t ) is defined. H ( t )  can be found by 

H ( t )  = E { N ( t ) }  =  E  *P r { N ( r ) = fc }  
1  f c < ° °  

= E *[f**(0 

= F(r) + E k F* k ( t )  -  E ( k  -  l ) F* k ( t )  
2sk<<x> 2 

- E F*k(0 
1 <«> 

For h i t )  we can write 

Pr{any event occurs in interval [t,t + At]} 

= Pr{the first event occurs in interval [ t , t  + A]} 

+ Pr{thc last event happens in interval [ t ,  t  +  A t ]  (1.103) 

and the following random time £ is such that x < £ < x + A*} 

With A t  -» 0, (1.103) can be rewritten in differential form as 

A(r)- / ( * ) +  f ' h ( t - x ) d F ( x )  (1.104) 

Naturally, the renewal density function at time t  is the sum of the densities 
of the occurrence of all possible events of the renewal process: the first, or 
the second, or ..., or the kth and so on. From (1.104), by integration, 
we obtain 

H ( t )  =  F( t )  +  f ' H ( t - x ) d F( x )  (1.105) 

It is important to note that F* n  ;> [F(r)F. Indeed, 

F* m ( t ) ~ V t {  E £*<*} 

<  P r i m a U  Nf* < *) - 
" 1  <.k ' \<.k<,n 

This states the simple fact that the sum of n  nonnegative values is not less 
than the maximal one. (Equality occurs only if at least n  —  1 values are equal
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to 0.) From this fact it follows that 

F( t )  
o- L  ? * k*  £ [ n t ) ] k - m  L  

1 <,k <°° t s A < ®  1  r V ' /  

Using (1.102) and observing that the integral on the right side of the 
equation is positive, we obtain two-sided bounds 

F( t ) < H ( t )  <  y-^-ry (1-106) 

The next interesting bounds for a renewal process, built with "aging" r.v.'s 
i ,  can be obtained if we consider the following natural condition. Let N i t )  
events be observed up to a moment t .  Thus, 

< * L £/ 
I s/sMrt 

Using the Wald equivalency, we write 

f < E U } [ H ( / )  +  l ]  

which produces 

"t^inr1 
For an aging r.v, the residual time f i t )  is decreasing, which allows us to 
write 

H { t )  <  
m  
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EU} 

Thus, for a renewal process with aging r.v.'s we can write the two-sided 
bounds 

t  
-T-r - 1 < Hit) < —— (1.107) 

in practical reliability problems we are often interested in the behavior of a 
renewal process in a stationary regime, that is, when t  - *  «. This interest is 
understandable because repairable systems enter an "almost stationary" 
regime very quickly (see Section 6.1), Several important facts are established 
for this case.  
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Theorem 1.2 For any F ( t ) ,  

H ( T)  1  
f t  —  " l i f l  (U08) 

In a mathematical sense this theorem is close to the Wald theorem. In a 
physical sense it means that, for a large interval of size t ,  the mean number 
of events is inversely proportional to the mean interarrival time. 

Theorem 1.3 If £ is continuous, then 

1 
lim h { t  )  =  

EU1 

This theorem reflects the fact that with increasing t  the renewal becomes 
stationary and its characteristics become independent of the current time. 

Theorem 1.4 (Blackwell's Theorem) For a continuous r.v. £ and an arbitrary 
number r, 

lim [ H ( t  + r) — H ( t ) ]  =  "E77T ( 1 1 0 9 >  

It is clear that this theorem is a simple generalization of the first one. 

Theorem 1.5 (Smith's Theorem) If £ is a continuous r.v. and V( t )  is a 
monotone nonincreasing function, intcgrable on (0, <»), then 

lim f ' v ( t - x ) d H( t )  =  - l - r - f v ( t ) d t  (1.110) 

The function V ( t )  can be chosen arbitrarily between those which have a 
probabilistic nature. The choice of this function depends on the concrete 
applied problem. An interpretation of this theorem is provided in the 
following particular case. 

Corollary 1.1 The stationary probability of a successful operation (the 
stationary interval availability coefficient) equals 

Here t 0  is the time needed for a successful operation. The proof of this is left 
to Exercise 1.10.  
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1.5.3 Thinning of a Point Process 
We often encounter where a unit failure leads to a system failure only if 
several additional random circumstances happen. For instance, in a system of 
a group of redundant units, a unit failure is the cause of a system failure if, at 
a particular moment, all of the remaining units have failed. Such a coinci- 
dence of random circumstances may be very rare. We may consider the flow 
of "possibilities" which generate a relatively rare flow of system failures. This 
procedure is called a thinning procedure. 

Poisson Process The thinning of a Poisson process produces a Poisson 
process. To prove this fact, we consider the sum of a geometrically dis- 
tributed random number of exponentially distributed r.v.'s. Indeed, thinning 
means that with some probability q  an event remains in the final process and 
with probability p  -  1 —  q  it is removed from it. Thus, we have a sequence 
of Bernoulli trials. 

Of course, in the particular case of the Poisson process, we can apply a 
simple deduction based on its three characteristic properties. Indeed, station- 
arity is not violated by the Bernoulli-like exclusion of events from the initial 
process: all p's are constant over the entire time axis. Ordinarity is also 
preserved because we only exclude events. The memorylessness property of 
the resulting process follows from the independent character of the event 
exclusion from the Bernoulli trial sequence. 

General Case Consider a stationary recurrent point process for which the 
intervals between events have a distribution F i t ) .  Sometimes this distribution 
is called a "forming distribution." Apply the thinning procedure to this 
process. According to this procedure, each event remains in the process with 
probability q  or is deleted with probability p  =  1 -  q .  Thus, after such a 
procedure, the average number of points which remain in the newly formed 
process is \ / q  times less than in the initial process. In other words, the time 
interval between points in the new process is 1 / q  times larger. The explana- 
tion of the procedure is depicted in Figure 1.9. 

Each interval between events represents the sum of a random number of 
r.v.'s. Thus, the problem of renewal process thinning is equivalent to the 

  

Initial point process 

 

Thinned point process 
Figure 1.9. Example of the thinning procedure for a point process. 
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summation of a geometrically distributed random number of r.v.'s. (This was 
considered in Section 1.4.) In particular, in Section 1.4.5 we developed some 
asymptotic results. Here we use the standard terminology and methods of 
renewal theory, because this helps us to obtain some additional results. 

Consider a special transformation of the renewal process, Tq: events are 
deleted from the process with probability p ,  and, simultaneously, the time 
scale is shrinking by a factor of \ / q .  This normalization of time keeps the 
length of the average interarrival interval the same as in the initial process. It 
is clear that the TQ transformation is equivalent to the summation of a 
geometrically distributed random number of r.v.'s with a d.f. F i t )  and the 
further normalization of the resulting r.v. 

Sequential applications of the transformations TQ and TQI to the process 
are equivalent to the single transformation TQ  .  We ask the reader to prove 
this is Exercises 1.11 and 1.12. 

Limit R&nyi Theorem The Renyi theorem is very important in many 
applications. These asymptotic results can be used if the thinning procedure 
is intensive enough. They are also very useful in developing heuristic ap- 
proaches (see Chapter 13). 

Theorem 1.6 If transformations TQI, TQ ,.,., are such that, for n -* «>, 

Qn = Q \ d 2  •*•«„-» 0 as n  -> 0 

then their application to some point renewal process with an initial finite 
intensity A leads the resulting limit process to a Poisson process with the 
same intensity A. 

We omit the proof because, in general, it coincides with the corresponding 
proof of Section 1.3.5. 

Later this result was generalized for the superposition of n  different 
renewal processes with different thinning procedures. 

We remark that a Poisson process is sometimes called "a process of rare 
events." From formulations of the above results, one can see that the TQ  
transformation generates the flow of "rare" events from a dense initial 
process. 

1.5.4 Superposition of Point Processes 
In reliability practice we frequently encounter a situation which might be 
described as the formation of a common point process from the superposi- 
tion of several point processes (see Figure 1.10). 

For example, consider the flow of failures of different units in a series 
system. Each unit generates its own renewal point process of failures: a failed
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Resulting point process Figure 1.10. Example of the 

superposition of two point processes. 

unit is replaced and the process continues. Unfortunately, even if we con- 
sider a small number of renewal processes, their superposition cannot be 
analyzed in terms of renewal processes! (The only exception is the superposi- 
tion of Poisson processes.) 

At the same time, fortunately, if the number of superimposed point 
processes is very large, the superposition of these processes produces a point 
process that is very close to being Poisson. In the theory of stochastic 
processes, the Poisson process plays a role which is analogous to that of the 
normal distribution in probability theory. 

Poisson Process For the superposition of n  Poisson processes, the result- 
ing process is Poissonian. If the initial processes have parameters 
Ap A2,..,, An, the resulting process has the parameter AL = £Ar 
To show this fact, consider an arbitrary moment of time t .  Let (k denote 
the residual time of the kth process, that is, the time from an arbitrary but 
fixed t  until the appearance of the next event in the process. The memoryless 
property says that two r.v.'s £k and £k, which represent the time between 
events for the A th process, are statistically equivalent. Thus, for the &th 
initial process we can write the distribution of the residual time 

Pr{^ >/} = Pr{^>r} -exp(-Ar). 

If we consider n  processes, then, from a fixed (albeit arbitrary) moment t  
until the next arriving event, we observe an r.v. 

U « tnin ik 
1 ^k<.n 

with d.f. 

Pr{& ^ t }  = Pr{ min {k > A 
\ ] £ k < n >  

- n n e-**'-exp( ~ t  £  A ,  
1 Stin litiii A  

First 
process
" 
Second, 
process 

TT 
t I 

i i 
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Thus, the distribution of the time interval between neighboring events is 
exponential. As we know, only the Poisson process is characterized by such a 
property. 

Of course, as above, we can prove this fact by checking that all three 
characteristic properties of the Poisson process are satisfied. Indeed, station- 
arity is kept because of the stationarity of all initial processes. Ordinarily is 
also preserved, because, for a continuous process, the probability of a 
coincidence of events equals 0. The memorylessness property of the resulting 
process follows from the independence of all the initial processes and their 
original memorylessness property. 

General Case The proofs and even the formulation of the strict conditions 
of the related theorems are complex and lie outside the scope of this book. 
We only formulate the main results, sometimes even on a verbal level. The 
first strict result was formulated in the following theorem. 

Khinchine- Ososkov Theorem If the limit 

Iim £ Anr = A 

exists, a necessary and sufficient condition that the process Jr„{r) converges to 
a Poisson process with parameter A is that, for any fixed t  and n  - >  

 

Later general results, relating to the superposition of stochastic point 
processes, are contained in the Grigelionis-Pogozhev theorem. On a qualita- 
tive level, the theorem states that a limit point process which is formed by the 
superposition of independent "infinitesimally rare" point processes converges 
to a Poisson process. The parameter of this resulting process is expressed as 
a sum of the parameters of the initial processes. 

1.6 BIRTH AND DEATH PROCESS 

The birth and death process is an important branch of Markov processes. We 
will not give details for the general Markov processes, but we will consider 
some special models of renewal systems in a later chaptcr. This approach is 
also very useful for the analysis of renewal systems. 

1.6.1 Model Description 
The behavior of a number of practical systems can be portrayed with the help 
of the birth and death process (BDP). Birth and death processes are widely
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used for the construction of mathematical models in microbiology, zoology, 
and demography. They are also used in reliability and queuing theory. 

Let us explain the nature of the BDP with three simple examples. 
Consider a queueing system with one service unit and an unlimited number 

of input call sources. Suppose there are k  calls on the line waiting for service 
at a moment t .  We say that at this moment, the system is in state H k .  At the 
moment t  +  A t ,  where At  is infinitesimally small, the state changes to H k + ]  
if an additional call arrives during the interval A t .  If during A t  a call service 
in the system has been completed, at the moment / + Afthe system changes 
its state to Hk_v Recall that, for a Markov process, the probability of more 
than one state change is o ( A t ) ,  which means that o(At) 0 as A t  -» 0. 
From our assumption of an unlimited number of input sources of calls, it 
follows the line length could be infinite. In other words, a BDP may have an 
infinite number of states. Suppose there is a specified criterion of system 
effectiveness; for example, a line of length more than m  is considered to be 
inadmissible. Then the set of all system states may be divided into two 
subsets: the "up states" H 0 , , . . ,  H m  and the "down states" H m  + 1, H m + 2 , . . .  . 

As another example, consider a parallel system with one main unit and m  
identical active redundant units. There is one repair facility. This system may 
be thought of as a queuing system with a limited number (namely, n  + 1) of 
input "call" sources. Indeed, if there are k  units under repair, then only 
m  +  1  -  k  of the remaining units may fail. The state Hm + i corresponds to 
system failure, and only a transition from this state to state H m  is possible. 
State Hm +, is called reflecting. 

As the final example, consider a parallel system with n  main units and m  
identical active redundant units. Again, there is one repair facility. It is clear 
that the mathematical description of this system is very close to that of the 
above example. In this case there are, in total, n  +  m  sources of failure. The 
states H m + U . . . ,  Hn+m correspond to system failure states. 

The last two examples are of BDPs with a finite number of states. In 
reliability theory it is sometimes reasonable to consider separately these two 
very similar cases. 

The transition graphs for all three examples are shown in Figure 1.11. 
If the system is in state Hj at a moment t ,  there are three possibilities 

during the next interval A t :  

' The process passes to state Hj+X with probability: 
A, A t  +  o (  Ar) 

• The process passes to state H J _ 1  with probability: 
M j  A t  +  o ( A t )  

• The process remains in state Hj with probability: 
1  -  ( A y  +  M j )  A t  +  o ( A t )   
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( 1 ) ( 1 ) ( 1 j 

K f  V  ( m  -  1 ) \  f  \  *  ( m  +  n - l ) \ /  V  

p, |JL P 

p, p p. 

(a) (b) (c) 
Figure 1.11. Three examples of death and birth processes: ( a )  a queuing system with 
an infinite source of demands; (b ) a unit with m  active redundant repairable units; (c) 
a series system of n units with m active redundant repairable units. 

The failure state with the smallest index, say m  + 1, may be considered 
absorbing. The other system failure states are of no interest because there 
are no transitions from them to the set of up states. In this case the process 
behavior in the subset of up states can be used to find the probability of a 
failure-free operation, the MTTF, and the mean time between failure 
(MTBF). Notice that if we are interested in finding repair (idle time) indexes, 
the state Hm must be chosen to be absorbing. In this case we consider the 
behavior of the process in the subset of system failure states. 
If there are no absorbing states, the process is considered for finding the 
availability coefficients, both stationary and nonstationary. For a finite set of 
states, the state with the largest index is reflecting. 
In reliability problems the state H() is always considered as reflecting (if 
the process is not of a special type with states H  H  _ 2 , . . . ) .  
For reliability problems it suffices to consider only BDPs with a finite 
number of states. 
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1.6.2 Stationary 
Probabilities 
Consider a finite BDP with N + 1 states (see Figure l.lltr). For each state K 
and for two infinitesimally close time moments t  and (  + A t ,  we can write
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the expression 

p k ( t  +  A t )  =p*_,(0[A*_, Af +o(A0] 

+ M')[1 - (A* + Mk) A/ + o(Ai)] 

+  +o(A/)] + o ( t )  

p k ( t  +  A O  ~ p k ( t )  
 - - - - - - - -  ̂  - - - - - - - - - -    A k - i P k - i ( t )  ~  ( A *  +  M k ) p k ( t )  +  M k  +  i p k  +  i ( t )  

In the limit as A / -» 0, we obtain 

p k ( t  +  A t )  -  p k ( t )  
hm  ------------ — ----------  = />'(/) 
At >0 A t  

-  Ak - i Pk - i O )  -  (Ai +Mjt)pA(r) 
+ M*+1/>*+.(0 (1.112) 

Because we are considering a finite process, we must set A_, = Af„ = AN = 
, = 0. In other words, 

P'oiO = "A0Po(0 

and 

^(0 = -A„_,pw_,(f) + MN/7N(r) 

We add to this system of equations the normalizing equation 
L pk(0 - i  
0<:/<;JV 

and exclude any one of the above. 
We note that (1.112) represents the equation of dynamic equilibrium. In 
other words, state k  "loses each unit of its mass" p k ( t ) with intensity 
A k  +  M k  and "receives" a corresponding mass from states k  -  1 and k  +  1. 
If there is no absorbing state, the process has stationary states. Thus, there 
are limits 

lim P k ( t )  = p k  

Moreover, if for any k ,  

(1.113) 

the stationary probabilities of these states do not depend on the initial state
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at t  = 0. The condition (1.113) means that there are no separated groups of 
states. 
Consider this stationary case. If we take the limit as ; -* <x> in (1.112), we 
obtain the system of linear equations 

0 = -A 0p0 + M i p 1  

0 - A k - i Pk - i  -  ( A k  +  M k ) Pk  +  M k  +  l p k  +  ]  (1U4) 

0 = -A N - t p N + ]  + M N p N .  

Wc again must replace one of the above equations with the normalizing 
condition 

E P* = l {1-H5) 

Now let us recall that (1.114) represents an equilibrium. It means that if we 
consider any cut in the transition graph, for instance, a cut between states 
k  - 1 and k ,  there is an equality of flows "up" and "down": 

M k p k  =  A . k _ ] p k _ l  (1.116) 

From (1.116) we obtain the recurrent relationship 
A*-1 

Pk=~j^-Pk-1 (1-117) 

which allows us to obtain 

Aq AJ  . . . . .  A A _ t  
Pk  =  ......... =7 Po  - A k P o  (1.118) 

M,M2 ............ Mk 

From (1.115) it follows that 

n A, 
O z j z k -  1 

n ^ 
^k  l z j z k  

 -------------------- TTT (,119) 
0 rZj^N £ OS'S/-! 

<wsAf n M. 
1 SiS/ 

where A 0  =  1 .  

1.6.3 Stationary Mean Time of Being in a Subset 
Consider a BDP whose total set of n states is divided into two subsets; one 
subset of up states, E+= {//„,..., H m ) ,  and another of down states, E.,= 

+1> - - - * Hn}.  
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To find the stationary mean time of the process present in a specified 
subset of states, we use a well-known result. Let us distinguish two subsets of 
so-called boundary states: e +  which is a subset of E+ and e _  which is a 
subset of E_. The process may enter the subset leaving only a state 
belonging to the boundary subset e+. The subset e_ plays an analogous role 
for the subset E + .  In considering case e +  consists of only one state H m ,  
Briefly repeat the idea of the conclusion. The process may leave subset E+ 
only from state H m ,  and being in this state it leaves with intensity A*. Hence, 
the intensity of leaving subset £+ equals 

A + «P * A m  (1.120) 
where p *  is the conditional probability that the process is in state H m  under 
the condition that this is in subset E+: 

Pm  
Pl  =  

L  Pj  
0  s j s m  

where p )  can be found from (1.119). Finally, we find that the mean stationary 
time of the process being in subset E +  is T+= 1/A+: 

r+= = (1.121) 
A m P m  

Obviously, the mean stationary time of the process being in subset E _  is 
similar to the above except for the following notation: 

A/_=A/m+,/>**-! 
where 

m  +  1  

£ />, m +1 

and, finally, 
E * 

r _ - ( 1 . 1 2 2
)  

M m  +  i p m  +  l  

1.6.4 Probability of Being in a Given Subset 
The BDP with an absorbing state Hn + ] can be described with the help of the 
following system of differential equations: 
d  
"/>(/) = A ~  ( A y  +  M j ) p j ( t )  + M j + i P j  +  i ( t )  O s / ^ n  

+  1  

E />;(<) = 1 (1.123) 
1 

A_ i  =  A„ + 1 = M0 = A/„ + 1 = Mn + 2 = 0  

P m+ I  
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where p } ( t )  is the probability of state H j  at moment t .  Let the probabilities 
Pj(t) satisfy the initial conditions: 

Pj { *  ~ 0) =p,(0) 0 < j < n  +  l  

Let 0 n  +  l  be the duration of time before the system has reached the 
absorbing state Hn+l for the first time. We need to find the distribution 
function Pr{0„ + 1 ^ /} = pn + ,(f). This is the probability that the system has 
not reached the absorbing state Hn + i at time t. Let us apply the LST to 
(1.123). Then we find the system of linear algebraic equations: 

A -  ( A ; .  +  M j  + + AJ + l 9 J + l ( s )  = -/>y(0) 
0 5 < n  +  1  

Ay_, = A„ + 1 = M0 = Mn+l = Mn + 2 = 0 (1.125) 

By using Cramer's rule, 

(1.126) 

where 

(1.124)
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(1.128) 

Expanding the determinant £>„ + ,(s) along the last row yields the recurrent  

 - (A0  + ») M, 0  0  0   

  A« — (A|  + A/|  + J)  M2  0  0   

=  0 A|  -(AJ+A/J+J)  0  0   

  0 0 0  1+H,- , + S) M „    

  0 0 0  AN-. -(A n  + 
M n  

+  s )   

 (
-  -1)
" + 

1 

n (s  +  x " k  +  l )     

(1.12
7) 

   

1 £  k  < .  

n  +1 

      

 ( s )          

-(A„ + I) M,  0 0  0  - P<|(0) 
A
« 

 -(A + M,  + S)  M2 0  0   

0   A,  -(A 2  +  M 2  +  S )  0  0  - P2(0) 

0   0 0 • -<A„_ ,  + 
M n  

-1 + 

S) 
M „   -  Pn  -,(0

) 
0   0 0 A.-L  ~(A„ + M„  - P„(0) 
0   0 0 0  A»  -P„+|(0) 
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equation: 

A,+,(*)  = -P„+|<0) E (-i)n+ Pi(0)  A((j) n \k 
(1.129) 

The probability p„ + ,(f) is found with the help of the inverse LST: 

1  ,  1  ,  D n  +  l ( s ) e s ' d s  
P . . M  -  J S I S - . M ' " * -  n l  - . a . » , ( . )  ( , 1 3 0 )  

where i  =  / —  1.  

We are now faced with the problem of calculating the roots (eigenvalues) 
of (1.130). It can be shown that An + 1(s) is a polynomial of power n ,  and all of 
its roots + 1 <  k  < ,  n  + 1, are distinct and negative. Also, all roots of 
the polynomials of the neighboring orders n  and n  +  1 are intermittent. This 
fact facilitates the computation of the recurrent equation (1.130). 
We omit the cumbersome intermediate transformations and write the final 
result, taking into account that the probability of interest P ( t )  =  1 -  p n  +  l ( t ) :  

P{ t )  - E p,(0) n A, E V r̂ 
O n i z n  t & j s n  i s k & n + 1  

1  £ i £ n  
i  +  k  

In (1.131) we need to insert the roots which are usually calculated by 
numerical methods. 
Two cases are of special interest. They are given without special explana- 
tions: 

1. When all units are in up states at moment t  — 0. 
2. When the system has just come out of a failure state at r = 0. 

If the system begins its operation at the state with all units completely 
operational: 

po(0) = 1 p,(0) =0 1 < i < n + 1  
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then 

/>«»(<) = A0A, ... A„ Z e  , , n  +  i ) _ , n  +  i)) (1.132) 
im n + l S i  1 1  \ S k  s i  )  1 + t k + i  

If the system begins its operation just after coming out of a failure state. 

P„(0) = 1 p , ( 0 ) = 0  i  =  0 , 1 , . . . , / 2 -  \ , n  +  1  
then 

p<">(/> = (-ox z '  n  (4"+ , )-*r , ))  
lsUsn + l S

> 1 1 1 
k +i  

(1.133) 

1.6.5 Mean Time of Staying in a Given Subset 
Now let us determine the mean time of the process staying in the subset 
£  +  =  { / / „ , . . . ,  H m )  starting from the state H0. Of course, we may use a 
standard procedure for calculating this value: first, find the probability of 
staying in this subset with the initial condition H0(0) = 1 and then integrate 
the obtained expression. But this approach is too difficult. (Also, we did not 
obtain the result in a form which is easily integrated!) Thus, we choose 
another method. 
A transition of the process from the initial state H0 to the absorbing state 
H n  + , can be considered as consisting of n  + 1 steps:

                                            
2 from H{) to Hu plus 
• from //, to H2 (with the probability of going back and forth to the state 
//o), plus 
• from H 2  to H i  (with the possibility of going back and forth to the states 
H0 and //,), plus 

• from Hn to Hn + l. 

Let us find the mean time of passing from Hk to Hk + ] where k > 0. 
Consider the auxiliary BDP with only k  + 1 states where Hk+, is absorbing. 
We can use the stationary mean time of entrance in the absorbing state 
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found in (1.131). Thus, the value of interest can be found to be 

L  A-  
T  —  V T  — V ^fc 
/ n , n  +  ] ~  Z-T * k , k  +  \  L i  .  

0 sitsn O s k s m  a k Pk  

1.6.6 Stationary Probability of Being in a Given Subset 
Let us again consider two subsets, E+ = {H0, , . , , Hm} and E_ = 
[Hm+ One can find the stationary probability of being in a given 
subset, say E+, in two ways. Denote this probability K. The first way amounts 
to finding 

A: = lim Pr{tfy(r) e£ + } = £ Pj 

The second way uses the means T +  and T_  determined in (1.121) and 
(1.122), respectively. Let K  -  1 =  k .  For the stationary process, the probabil- 
ity of being in a given state is proportional to the portion of time occupied by 
this state over the entire interval of observation on the time axis. This leads 
to the condition ( K / k )  =  ( T + / T_ ). With the condition K  +  k  = 1 we find 

T +  

1.6.7 Death Process 
A particular class of birth and death processes is the so-called death process. 
From the name of the process, it is clear that this can be obtained from the 
BDP by putting all M j ,  1 < ,  j  £  N ,  equal to 0. We consider this mathematical 
model because it is very useful when dealing with certain redundant systems 
without repair. For example, a redundant system consisting of n  identical 
dependent units might be analyzed with this technique. The units can be 
dependent in a special way when the failure rate of each of them depends on 
the number of failed (or, equivalently, the number of operating) units at the 
moment. 
This process can be described by the linear transition graph (see Figure 
1,12). Let the process have N  +  1 states: H 0 , . . . ,  H N .  Let A k  denote the 
transition rate from state Hk to state Hk+t. Using the same technique as 
above, we can write the equation: 

p'kU) - -Ak P k ( t )  + Ajt_,pA_i(r) (1.134) 

for all 0 ^ k  <  N  - 1 and A _, = \N = 0.  
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Figure 1.12. Example of a death process. V __ ' 

We add the initial condition to the system of linear differential equations. 
In reliability problems this is usually /*0(0) = 1; that is, the system is sup- 
posed to be in the state with all units up at the initial moment t  = 0. 
Using the Laplace-Stieltjes transform, we can represent (1.134 - in the 
form of the linear equations 

-I +s^0(s) = -A0<p0(5) 

s < p k ( s )  = A -  A k < p k ( s )  
s < p N ( s )  =  A w_,<fV-i(s) 

Solving (1.135) beginning with the first equation and sequentially substituting 
the obtained results in the next equation, we obtain 

1 

 

»*(») = ~!  < p k ~ i U )  
s  +  A k  

A J V - l  
t p N ( S )  -  — < p ^ „ , ( 5 )  

The solution for <p„(s) is 

A0 A,. . . . . . . .  A*, ,  
<Pn(S) = 
5(5 +  A0)(s + A,) . . . . . . . . . . . .  ( s  +  AN_ J)   

(1.135)

(1.136)

(1.137) 
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For different A/s the solution for p n U ) ,  which is the probability that at 
moment t  the process enters state HN, can be found by using the inverse 
Laplace-Stieltjes transform 

P N( 0  = 1" II A, E A . (1.138) 

where «(*) is a polynomial of the form 

«(*) - (* + A0)(* + A,) . .  , ( x  +  A„_j) (1.139) 

and O>'(-Aa) is the derivative with respect to x  with the corresponding 
substitution. 

If not all A k  are different, the expression for p N ( t )  becomes more 
complicated. But even (1.138) is not particularly convenient for practical use. 

In a very important practical case, A k  = A for all 0 < k  <  N  -  1. (Notice 
that this case corresponds to spare redundancy of identical units.) In this case 
(1.137) may be written in the form 

9 n ( S )  = ~7~~77w (1-140) 
5(5 + A) 

In this case we find (with the use of a table of the LSTs) that 

/ * 1 V <A,>* - 
MO - 1 - X. e 

l & k & N  * •  

This fact becomes clear if we consider a sequence of N  identical exponen- 
tially distributed r.v.'s which represents a sample of the process until the 
entrance into state HN (see Figure 1.13). As we mentioned above, a sum of 
N  such r.v.'s has an Erlang distribution. The Poisson distribution is the 
cumulative function for the Erlang density and the result follows immedi- 
ately. 

  

At 
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The mean time of the process entering into state H N  in the general case 
can easily be calculated as the sum of the time periods during which the 
process is remaining in each state 

N ~ ~T~ 
1  < , k < , N  

Some details concerning death processes will be discussed later. 

CONCLUSION 

Two distributions which are often used in engineering practice are the 
normal and the exponential. Each has its advantages and disadvantages. First 
of all, these distributions are very convenient for varied mathematical manip- 
ulations. But this argument is weak for practical applications. The question of 
their reasonable use, as with any modeling of real objects with the help of 
mathematical abstraction, always requires special "physical" verification 
based on experience and engineering intuition. 

A Weibull-Gnedenko distribution is very convenient as a model for 
various physical phenomena because it is two parametrical. Besides, it has a 
clear physical sense as a distribution of extremal values. This distribution, as 
it relates to applied mechanical problems, was first mentioned in Weibull 
(1939). shortly after this, Gnedenko (1943) found classes of limit distributions 
of extreme values. A particular type of limit distribution has the form of the 
distribution discovered by Weibull 

F( t )  =  1- ~ exp | - exp | J J 
where the new parameters are expressed as b  = 1/0 and a  - log A. 

The reader interested in a deeper understanding of the probabilistic 
fundamentals of reliability theory should pay attention to special mono- 
graphs. It is practically impossible to enumerate the books dedicated to this 
subject. An older, but nevertheless highly recommended book, is the book by 
Feller (1966). This book along with the book by Gnedenko (1967, 1988) were 
the main textbooks for several generations of statisticians and applied mathe- 
maticians. 

For everyday use the books by DeGroot (1987) and Devore (1991) are 
recommended. 

Concerning the limit theorems in the theory of stochastic processes, we 
must especially mention several works. Khinchine (1956a, 1956b, 1960) and 
Ososkov (1956) considered superposition of point processes, and later Grige- 
lionis (1963) and Pogozhev (1964) generalized their result. Renyi (1962) 
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formulated the theorem on "thinning" of point processes which later was 
generalized by Belyaev (1962). Summary of all of these results can be found 
in Gnedenko and Kovalenko (1987). 
The reader can find details concerning generalized generating sequences in 
Ushakov (1986, 1987, 1988a, 1988b). 
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APPENDIX: AUXILIARY TOOLS 

1.A.1 Generating Functions 

Let v  be a discrete random variable (r.v.) with distribution 

p r { ! /  =  k }  k  «  0 , 1 , 2 , . . .  

L Pk  -1 
V k  

The generating function (g.f.) of v  denoted by < p ( z )  is defined as 

<PU) ~ Y ,PkZk 
V k  

Thus, the coefficient of z k  equals the probability that v  equals k .  The g.f. is 
very convenient when one deals with the summation of discrete r.v.'s. 
Generating functions are especially effective when algorithms for computer 
calculations are involved. 
For example, suppose we have two discrete r.v.'s a and (i, with distribu- 
tions a k  and b k ,  respectively. We are interested in the distribution g k  of the 
new r.v. y = a + f3. Of course, we could find the desired distribution directly: 

pr{r = m pr{« = 0} Pr{/3 = + Pr{a = 1} Pr{0 =  k  -  1} 

+ ... +pr{« = 4} Pr{/3 = 0} 
=  Z  a j b k - j = Z  " k - j b j  ( 1 1 4 1 )  

0 <j<.k 0 

But such an approach is not always simple or convenient. For computational 
purposes it is often better to use the g.f.'s of a and f3. Let < p a ( z ) ,  0p(.z), and 
< P y ( z )  be the g.f.'s of the respective distributions. Then we have 

#,(*) = < P a ( z ) < Pf > ( z )   
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In the new polynomial the coefficient of z k  is automatically equal to 
expression (1.141). This example does not exhibit all of the advantages of 
generating functions, but below we will show other cases where the use of 
g.f.'s is very effective. 
Suppose we wish to find PT { V  £  k ) .  We note that

 
Pr{i/ <; k }  = 

z - 0  

where M i - o ^  operator that turns any negative power t  of the term z '  
into 1. Thus, after the substitution z = 0, 

Pr{y < A:} = £ P k

 

Furthermore, it is clear that 

d  

E * p k z k - *  
z- I 

= E * P k  =  E {v ]  
z - 1

 
To obtain higher moments, it is more convenient to use the 

so-called 
moment generating function (m.g.f.) < p ( s )  of the r.v. v .  This function can be 
written formally by simply substituting 2 = e s  into the generating function, 
that is, < p ( e s )  -  < f > ( z ) .  Then

 

 

E k *p k e*  1 = E = = 
VJt2t 1 Ji-o VJtal

 
1 .A.2 Laplace - Stieltjes Transformation 
With continuous r.v.'s the Laplace-Stieltjes transformation (LST) is often 
used. This transformation allows one to solve integral-differential equations 
with the "reduced" mathematical technique. The essence of the LST is 
depicted in Figure 1.14. 
In this book we usually consider distributions of nonnegative r.v.'s. The 
transforms of such r.v.'s are defined for the distribution function (d.f.) F i t )  as 

< p F ( s )  =  [ ~ F( t ) e — d t  
J  a   

 
1: < P( Z )

 

 

dz   

 
= ' E kpke'k 

5 — 0 .v/ra 1 
= E  kp k  =  E{v ]  

r-0 VAa l  

d  

J -O  ds  ds  
 

d
_2 

d
s  

= m(2)2 < P( e s )

j = 0
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and for the density function f i t )  as 

< p f ( s )  = r f ( t ) e " s l d t =  fC°e~s' d F{ t )  J o  J o  

If we consider the LST corresponding to the density function, the LST can be 
rewritten in the form 

< p f { s )  =  f ~ e ~ " d F( t )  -  E{ e ~ t > }  

The correspondence between the original function f i t )  and its LST < p ( s )  is 
usually denoted as 

f { t )  * *  < P / i $ )  

We now consider some properties of LSTs. 

Sum of Functions the transformation of the sum of functions is the sum of 

the transforms: 

This follows directly from the property of the integration. Obviously, (1.142) 
is true for any number of functions in the sum.  

 

Figure 1.14. Scheme of the Laplace-Stieltjes transform usage. 
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Convolution of Functions The convolution of two functions /}(t) and 
f 2 ( t )  is the function f i t )  defined by 

A0 = j ' f y ( t - x ) f 2 ( x ) dx ~  f f 2 ( t - x ) f l ( x ) dx  J o  J o  

This operation over the functions /,(/) and f 2 i t )  is also denoted by 

AO ■ /i * A(0 
The transform of the convolution of a pair of functions is the product of the 
transforms: 

/i*/2(0 <Pj(s)<M5) 

The proof of this is left as Exercise 1,14. Obviously, the correspondence is 
true for any number of functions in the convolution: 

f l * f i *  ■ ■ ■  * W )  ( s ) - - - 9 n ( s )  

Derivative of a Function The transform of the derivative of a function can 
be expressed in terms of the transform of the function as 

no «♦**>(*) - A®) 
The proof of this is left as Exercise 1.15. 

Integral of a Function The transform of the integral of a function can be 
expressed by the transform of the function as 

f ' f ( t ) d t  ~  
J  n  X  
J 0  S  

The proof of this is left as Exercise 1.16. 

Property of the LST of the Density Function If the function /(/) is the 
density of the distribution of the r.v. that is, f i t )  =  [ d Fi t ) ] / d t ,  then

 
/ AO' 
J n

 
and

 
=  - / V t o *  =  - m)  

J  n

(1.143)

(1.144)

(1.145)

 

d t  (1.146)

.'ns - 0
 

 

~/V(o< 
J  n d t  S-0
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Property of the LST of the PFFO If P i t )  is the probability of a failure-free 
operation, that is, P i t )  ~  1 -  F i t ) ,  then the corresponding LST at 0 is 

r p ( t ) e ~ s , d t  = f "p ( t ) d t  =  T  J 0  Jj».o Jo 

where T  is the mean of the distribution F i t )  —  1 —  Pi t ) .  This value is 
called 
the mean time to failure (MTTF). 

Initial Moments of a Distribution The Laplace-Stieltjes transformation of 
the density function allows us to obtain the moments as

 
(1.148)

 
These moments are obtained more conveniently with the help of the continu- 
ous m.g.f. which coincides with the LST except in the sign of the power in the 
exponential: 

- r f ( t ) e s ' d t  
J i  i 

In this case there is no change in the sign: 

ds* s—o 

The Laplace-Stieltjes transformation represents a very useful mapping 
from one functional space into a new one where the original functions are 
replaced with transformed ones. Operations over these new functions are 
often simpler in the transformed space. The general idea is reflected in 
Figure 1.14, 

1.A.3 Generalized Generating Sequences 
The method of generalized generating sequences (GGS) is based on a new 
approach which is genetically tied to generating functions. It is very conve- 
nient for a computerized realization of different enumeration problems 
which often arise in discrete optimization. We begin with a simple example to 
illustrate the main features of the GGS. 
Consider a series connection of n  resistors. Each unit in the series has a 
resistance which has a random value (for various reasons, e.g., manufactur- 
ing, storage, environmental influence, etc.). This random value of the unit's

(1.147)

 d k  

ds
* 

s - 0
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resistance is characterized by some distribution. We assume that this distri- 
bution is discrete and the resistance of the ith resistor equals the value ru 
with probability p(}, so that 

L Pa =  1  
I Z / S M ,  

where M, is the number of discrete values of the ith resistor. For each unit 
we can construct the generating function of the distribution of the resistance 
values: 

G ; ( Z )  = E PuZ'" 
1 <,i<.M> 

To find the distribution of the resistance of the entire series connection, we 
can compute its g.f. 

G ( z ) =  n <?/(*) = n L Pij*rii (1-149) 
\ s i s f  1  s i s n  1  s M j  

After simple algebraic transformations, we write the final expression in the 
form of a polynomial 

C ( z )  =  £  P,zR- (1.150) 

where the coefficient Ps of the term zR' equals the probability that the series 
system's resistance is Rv 
We remark that, in a computational sense, the introduction of the auxiliary 
variable z permits us to separate the variables of interest: p  and r .  (We omit 
other useful properties of the g.f. for this discussion because they are 
irrelevant here.) To compute P s  and R s ,  one needs only to multiply the p 's 
and to add the r's. 
This example is very clear and contains no new information for those who 
know how to work with generating functions. Of course, if the problem is to 
calculate the resistance of a parallel connection of resistors, it is impossible 
to use (1.149) and (1.150) in any direct way. To use the g.f., one has to 
consider r.v.'s which measure conductivity (instead of resistance) and then 
find the desired result in terms of conductivity. Finally, the result can be 
transformed from units of conductivity to units of resistance. 
Now suppose it is necessary to analyze the pipeline capacity of a set of 
pipes connected in series. In this example the collective capacity is the 
minimum of the capacities of the individual units. The usual generating 
function does not work here at all! We suggest a new approach which we call 
the generalized generating sequence (GGS).  
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To explain how the GGS works, we use the above example with resistors in 
series. First, we analyze the computations involved in moving G ( z )  as 
expressed by (1.149) to G ( z )  as expressed by (1,150). For the moment, 
consider a series system of two resistors labeled A  and B .  In terms of 
calculations, we perform the following operations. 

1. The probability distributions of the resistances are stored as sequences 
of ordered pairs. We can associate these sequences with the symbols A  
and B  and so write 

A - { [ P \ u r u } , { p X 2 y r l ^ , . . . t { p l e t r i v ) )  

and 

B  =  ( i P 2 l * r 2 \}> {P 2 2 >  r 2 2 J  > • • - > {  P 2 n  >  r 2 w)  )  

where, for example, the pair { p u ,  riy) exhibits the probability that 
the resistance of resistor A  will have the value r l j ,  

2. Now introduce a new operator CI which operates on the pair of 
sequences A  and B  and produces a new sequence C of ordered pairs 
iPM,r3k). The sequence C represents the probability distribution of 
the resistance of the series connection of A  and B .  Thus, 

( l ( A ,  B )  =  C  

or, since each term of the sequence C is a pair of numbers, it can also 
be rewritten as 

r l ( A , B )  =  ( n p ( A , B) , S l r ( A , B ) )  

The sequence C  is formed under II from the pair ( A ,  B )  as follows: 
(a) For each pair (p)Jsr]() and (py,r^) compute the pair ( p u P 2 f i r u  

+ r 2A 
(b) Order the obtained pairs according to increasing values of their 

second components. 
(c) When two or more pairs in the newly obtained sequence are tied in 

their second components, combine all such pairs into the single 
pair. The first component of the new pair is the sum of all first 
components of the tied pairs, and the second component of the new 
pair is the (common) product of the tied second components. 

Note that the operators and have a very specific meaning in this 
example. But this meaning can be substituted by others in different situa- 
tions. For example, for the pipeline consisting of a series connection of units 
with different capacities, one can write Oc(c,,c2) = min(c,,c2) where c,- is
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the capacity of the ith pipe. All of the remaining formal operations and the 
order of their performance are similar. Therefore, the above-described 
computational algorithm, in general, can be used with no restrictions on the 
polynomial form. The new approach can be used for enumeration problems 
involving different physical parameters. We will show the effectiveness of this 
operator for computational problems of complex system reliability analysis 
and discrete optimization problems. 

Now let us describe the procedure in more general terms. Keeping in mind 
the use of a computer, we introduce a more formal description. 

For a more vivid presentation we will use a special terminology to distin- 
guish the GGS from the g.f. This will relieve us of having to use traditional 
terms in a new sense, which often leads to confusion. Moreover, we hope that 
this new terminology can help us, in a mnemonical sense, to remember and 
even to explain the procedure. 

In an ancient Roman army, a cohort was the main combat unit. Each 
cohort consisted of maniples which were independent and sometimes special- 
ized simple combat units. Several cohorts composed a legion. The use of this 
essentially military terminology appears to be convenient in this essentially 
peaceful applied mathematical field. We set up a one-to-one correspondence 
between the above-mentioned military units and the GGS with its attributes. 

Consider a system consisting of n  units. Each unit j  is characterized by its 
GGS. Let the GGS of a unit be called a legion. Each legion j  includes Vj 
cohorts: 

Each cohort C j k  is composed of some set of the unit's parameters, special 
characteristics, and auxiliary attributes. We call these components of the 
cohort maniples. Therefore, 

CJ K =  (M J K , ,  M J K  2 , . . . ,  M J V . S )  

where M J l  t is the corresponding maniple and s  is the number of different 
maniples (assumed to be the same for each cohort). 

The operation of interaction between legions is denoted by ClL. This 
operator is used to obtain the resulting legion 

L  =  NL  L ,  

The operator ClL denotes a kind of "n-dimensional Cartesian product" and a 
special "reformatting" of the resulting cohorts. This reformatting depends on
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the specific nature of the problem [see, e.g., item (c) of the series resistors 
example]. 
As a result of this interaction of the legions, one obtains 

N =  N OJ 
1 

new cohorts. For each cohort the following notation is used where Clc 

denotes the cohort's interaction, k  is the subscript of this cohort in the set 
obtained as a result of the procedure 

c, = nc ctl 
i 

i ^ k  

(before using the formatting procedure), and ij are corresponding subscripts 
of the cohorts taking part in the interaction (this fact is conditionally 
reflected in the notation ij ** k). The new cohort can be represented as 

C k  =  ( M k X , M k 2 , . . . , M k s )  

Each new cohort is obtained as a result of a vector product-type interac- 
tion of maniples: n  maniples of the first type interact between themselves, n  
maniples of the second type interact between themselves, and so on. The 
interaction between maniples of a specified type can be called a "natural" 
interaction because they involve a real physical sense of the corresponding 
parameters:

 
- Of A% 

1 
i.efc

 
Here the subscript I defines the type of maniple interaction. 
The resulting legion consists of a set of cohorts obtained by using the 
formatting procedure. It can be written as 

L  =  ( C j i j ,  C ( 2 ) , . . . ,

where N *  <  N .  This formatting procedure can consist of special operations 
over N  cohorts. For example, several cohorts can be joined into an equivalent 
one in which some specified maniple equals the sum of others: we have the 
same solution with the g,f. when we add the probabilities of the terms with 
the same power of z. It may also be the selection of a "priority" (or 
"domination") of one cohort over another. Such a formatting procedure will

 
M  k l  
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be encountered in Chapter 10. The essential ideas of the proposed method of 
generating sequences can best be explained with the help of concrete 
examples. Such examples will be provided in Chapters 3, 8, and 10. 

EXERCISES 

1.1 Prove the equivalency of expressions (1.29) and (1.30), that is, prove 
that 

1.2 Prove that a  is the mean of a normal distribution with density function 

f N ( x \ a , a )  =  - J Le - f - r f / * 1  
<TV2V 

1.3 Prove that cr2 is the variance of a normal distribution with density 
function 

f N ( x \ a , v )  -  - J L , - < * - - > W 
crV2ir 

1.4 Using the m.g.f. for the normal distribution, find the expression for the 
first moment (the mean). 

1.5 Using the m.g.f. for the normal distribution, find the expression for the 
variance. 

1.6 One observes two Bernoulli sequences with n, and n 2  trials, respec- 
tively. A successful trial appears at the first sequence with probability 
px  and at the second sequence with probability p2 .  
(a) Find the probability, R k ( n 1 , n 2 ) ,  that there will be k  successes in 

the entire n  = n, + n 2  trials. 
(b) Show that for p, = p 2  =  p  the probability of interest equals 

1.7 Prove that  
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1.8 Prove that 

 

1.9 Prove that 

 

1.10 There are two variants of equipment: one performs its operation 
during time t  and another performs the same operation during time 
I t .  Both units have an exponentially distributed time to failure. The 
systems under consideration have different reliability: the first one has 
a failure rate equal to 2A, and the second one has a failure rate equal 
to A. What variant of equipment will perform its task with larger 
probability? 

1.11 A production line manufactures good quality items with probability 
0.9. Find the probability that in a sample of size n  = 500 the number 
of failed items does not exceed 80. 

1.12 The average portion of deficient items equals 0.01. Find the probability 
that in a sample of size n  = 100 the number of failed items does not 
exceed 2, 

1.13 A flow of the equipment failures is formed by superposition of the 
flows of different types of units. Each type of unit produces a failure 
flow which can be described as a Poisson process. During a given 
period of time, the average number of failures of some specified type 
of unit, equals 36. How many spare units should be supplied for this 
period of time to support failure-free operation of this type of unit 
with probability 0.95? 

1.14 Prove that the LST of the convolution of a pair of functions is the 
product of the LSTs of the transforms of the initial functions in 
convolution. 

1.15 Prove that the LST of the derivative of a function can be expressed as 
f ' U )  ** stpis) - fiox 

1.16 Prove that the LST of the integral of a function can be expressed as 
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SOLUTIONS 

1.1 For a binomial coefficient one can write the well-known expression 

1 2  . . . . . . . .  n  

(J ( I "  
( 1 *2  . . . . . .  x ) [ l - 2  . . . . . . . . .  ( n - x - 1 ) ]  

( n  -  m  +  1 )  •  ( n  -  m  +  2) ........ ( n  -  1 )  •  n  
1 - 2  . . .  m  

As one knows from mathematical combinatorics, the latter expression 
is true for any n —even for a negative noninteger. Thus, setting n  
negative, one obtains 

/  \  ( - n  -  m  -  1) • ( - n  -  m  +  2) ........................ (- n  -  1) •  ( - n )  

\  x )  1 - 2  . .  m  

or, after trivial transformations, 

„( n  +  m  -  1 )  •  ( n  +  m  -  2 )  . . . . . ( «  +  ! ) ■ «  

1 - 2  . . . . .  m  

Because 

one can finally write 

1.2 Introduce a new variable 

x  -  a  
y  =  

ry/2 
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Then the initial expression takes the form 

~i= f  ( o - y j l y  + a ) e ~ y '  d y  
Vir J-a> ' 

n  r  _ 2 a  _ 2 
= o--7=- / ye y dy + -j=r I e y dy 

V7T — oo V7T •'-00 

The first term of the latter sum equals 0 because the function under 
integral is symmetrical in respect to y  = 0. The second term is the 
well-known Euler-Poisson integral 

e ~ y ~  d y  = 2 I  e ~ y ~  dy = /ir 
-00 A) 

Thus, the final expression of the integral of interest equals a. 

Introduce a new variable 
x  -  a  

Then the initial expression takes the form 

2a2 2 
/  y  e  y  d y  

V7T J-vi 

which can be represented as 

Taking the latter integral by parts, one obtains 

+£•- ' '*)  

The first term of the latter sum equals 0 because an exponential 
function grows faster than a linear one. The second term is the 
Euler-Poisson integral obtained above. Thus, the final expression of 
the integral of interest equals a1. 

/ 
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L4 Consider (1.54). Assume that the first derivative with the substitution 
j = 0 derives the mean:

 d I 1 2 A / j \ / 1 2 

—  exp^as +  — a  s  j = (a + cr sjexp^as + ~<x s  J  

1.5 Using the intermediate 

result of Exercise 1.4, one 

obtains 
d  
d  I  
=  —  ( a  + <r2s) expl i  
ds y  '  \  

= a2 exp|«5 + + (« + ( r 2 s ) 2  exp|as + — cr2s2 j  

= |cr2 + (as + a'2)2j exp|as + — <r3

 
This gives the second initial moment which is equal to the sum of the 
variance a2 and the mean squared a 2 .  Substituting s = 0 gives the 
desired result. 

1.6 Denote by b ( k , n )  the probability that there will be k  successes in n  
trials. Then 

(a) 

and, finally, 

(b) If p i ~ p 2 ^ p  one can consider two experiments as one experi- 
ment with a total number of trials equal to n  =  « ,  +  n 2 .  For this 
case one has 

p k q n ~ k  

1.7 The solution follows immediately if one considers a binomial of the 
form (1 + 1)": 

 

=  a  
s - 0  

 d 2  d  
=  d s  

1 
T as + —a 2s2

 

1

(HI .2)
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( i  +  i ) n =  £  ( " W - 1 -  £  ( " )   
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1.8 The solution follows immediately if one considers a binomial of the 
form (1 - 1)". 

1.9 Compare solutions (El.l) and (El.2) obtained in Exercise 1.6. Substi- 
tution of P i  = p 2  =  p  into (El.l) gives 

 

Comparison of the latter expression with (El.2) leads to the desired 
result. 

1.10 Both systems are equivalent in terms of the chosen criteria. 
1.11 Apply the normal approximation with mean = 450 and a standard 

deviation <j = 745 = 6.7. Use a standard table of the normal d.f. for 
an argument = (420 - 450)/6.7 = -4.48. 

1.12 Apply the Poisson approximation with parameter (0.01X100) = 1. Use 
a standard table of the Poisson d.f. 

1.13 Apply the normal approximation with mean = 36 and a standard 
deviation <J  — \/36 = 6. Use a standard table of the normal d.f. 

1.14 The convolution of two functions is defined as 

/ * ( ' ) = / l * / 2 ( 0  =  f w - x ) f 2 d x  

By definition, the LST is 

* > ( * )  =  f  f ' f l ( t - x ) f 2 d x  e~sl dt 
J n  J n  

Using the Dirichlet formula, we obtain 

.oo 
< p ( s )  =  /  d x  /  e - * > f l ( x ) f 2 ( t - x ) d t  

■'O Jx 

= rdx C e - s x f , { x ) e - s i ' - x ) f 2 { t  - j x )  d t  

Substituting y  =  t  —  x ,  we obtain 

< p ( s ) =  f J / 2 ( x ) e - "d x j y j l ( y ) e - ^ dy  =  < p  s )  

Thus, /j * f 2 U )  ( p x ( s ) ( p 2 ( s )  which corresponds to (1.3).  

.00
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1.15 By definition, the LST < p * ( s )  of the derivative f i t )  =  d f / d t  is 

9 * ( s )  =  f f \ t ) e - "d t  
J o  

The following simple transformations need no explanation: 

f f ' ( t ) e - "d t  =  f e ~ "d f ( t )  - f ( t ) e - f £  -  / " / ( » )  < * ( * "" )  J o  J o  J o  

-  - f ( 0 ) + s f f ( 0 e - "< i t  =  — f ( 0 )  +  s < p ( s )  J o  

Thus, the desired equality is proven. 
1.16 This relationship follows from the chain of simple transformations:

 
1 

/ f' f ( x ) dx  e~" dt = - - /  f' f ( x )  
s ■'o L-'o

 
=  - l e - " f f ( x ) d x  -  f f ( t ) e - « d t \  =  - 4 > ( s)  

S  J n  n  J n  S  

Thus, the validity of the equation is proven. 

 
d x  d e  

 



 

 

CHAPTER 2 

RELIABILITY INDEXES 

Reliability indexes are basically needed for the quantitative characterization 
of a system's ability to perform its operations. These indexes must reflect the 
most essential operating properties of the system, be understandable from a 
physical viewpoint, be simple to calculate at the design stage, and be simple 
to check at the test and/or usage stage. 

Sometimes it is practically impossible to characterize a system with only 
one reliability index. But, at the same time, the number of reliability indexes 
has to be as small as possible. Psychologists say that more than three 
numerical characterizations of the quality of some object can only lead to 
confusion and misinterpretation of a situation. Those who deal with multicri- 
teria optimization also know that the Pareto set should be of a small 
dimension. (One might recall the classical example from medieval French 
literature: the Buridan donkey died trying to solve a two-dimensional prob- 
lem when he could not choose one bunch of hay from two!) 

Simultaneously, one has to avoid the use of different "integrated" or 
"weighted" indexes: Such indexes generally have no clear physical sense and 
may mask an unacceptable level of one index by uselessly high levels of the 
others. 

Reliability indexes may not only be used for the characterization of a 
system as a whole, but also some of the indexes may have an intermediate 
character. For example, the system, considered as an independent object, 
might be characterized by an availability coefficient. If the same system is 
part of a more complex structure, it may be more reasonable to characterize 
it separately with the mean time to failure (MTTF) index and the mean 
repair time index because they might be used to more accurately express the 
complex system's availability index. Moreover, the system as a whole can be 
86 
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1 00 RELIABILITY INDEXEScharacterized with indexes in the form of nondimcnsional real numbers. But 
for the system's subsystems, we sometimes need to know special functions 
(distribution functions, failure rates, etc.). 

Almost all reliability indexes are of a statistical nature and depend on time. 
We now make several points about unrepairable and repairable (renewal) 

units and systems. The distinction between repairable and unrepairable items 
is relative. The same system may be considered as repairable in one circum- 
stance and as unrepairable in another. The main indicator is a system's 
ability to continue its operation after repair. For example, a computer used 
for routine calculations with no special time restrictions may be considered as 
repairable. The same computer used for a noninterruptible technological 
process or in a military action (which is almost always dangerous if inter- 
rupted!) may be considered as unrepairable. But if in the latter case the 
computer is used in an on-duty regime, it might be considered as repairable 
during the idle period. 

Of course, some technical objects are essentially unrepairable. Some of 
them, such as a light bulb, cannot be repaired at all. As another example, a 
missile cannot be repaired during its mission. For convenience, in these cases 
we speak of a "renewal socket" in which unrepairable units are installed one 
after another in the case of a failure. Thus, after a first unsuccessfully 
launched missile, another one may be launched; after a first bulb has failed, 
another one may replace it. 

2.1 UNREPAIRABLE SYSTEMS 

2.1.1 Mean Time to Failure 
If the criterion of a system's failure is chosen and perfectly well defined, we 
can determine its reliability indexes, in particular, the mean time to failure 
(MTTF). 

After observing N  failures of N  unrepairable systems, there are records of 
nonnegative values: t ,, t z , . . . ,  t N .  One of the most natural characteristics of 
this set of observations is the sample mean, or the mean time to failure 
(MTTF): 

r -  ( i / AO ( f ,  + r 2 +  • • •  +'N) (2-1) 

This reliability index means that the system, on average, works T  time units 
before a failure. 

Consider these values in increasing order, that is, present the observations 
as 

t \  < < 2  <  ■ ■ ■  <  



 

UNREPAIRABLE SYSTEMS 89 In this new notation the following equivalent equation can be written: 

T  =  N t \  +  ( N  —  1  ) ( t ' 2  - * ' , )  +  • • ■  +(t'N - t'^) 

The equivalency of the formulas follows from consideration of Figure 2.1 
where a histogram of the values t k  is presented. 
If a prior distribution F i t )  of a system's TTF is known, the expected value 
of T  can be calculated in the standard way: 

(2.2) 

For nonnegative random variables, the following equivalent 
expression can 
be written (see Exercise 2.1) 

 

(2.3) 

where P i t )  =  1 -  F i t ) .  
The equivalency of (2.2) and (2.3) follows from the fact that we are only 
using different means of integrating the same function (see Figure 2.1). On a 
heuristic level this result may be explained by comparing this case with the 
analogous discrete case depicted by Figure 2.1. 
The reliability index MTTF is very convenient if the system's outcome 
linearly depends on the time of its successful performance. For example, 
consider a form for producing some plastic item. After a failure the form is 
replaced by a new one. Thus, this form can be considered as a socket in the 
above-mentioned sense. In this case the effectiveness of using the form 
depends only on the average time to failure. But in other cases this reliability 
index may prove to be inconvenient. 

2.1.2 Probability of a Failure-Free Operation 
Consider a system performing an operation with a fixed duration tQ. In this 
case each t k  <  t 0  corresponds to a system failure. A natural reliability index 
in this case is the probability of a failure-free operation, which reflects the 
frequency of appearance of the condition tk > tQ. We introduce the so-called 
indicator function 

 

otherwise 

In other words, we define a system failure in a new form: the system fails 
when d  = 0.  
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Figure 2.1. Explanation of two types of summation on a histogram of random
variables. 



 

UNREPAIRABLE SYSTEMS 91 For the same data we have to calculate the new reliability index as 

P( t 0 )  =  ( l / N ) ( d i  + d 2 +  ■ ■ ■  + d N )  

where d k  =  d ( t k ,  f()). If we know the distribution F i t )  of the system TTF, the 
probability of a successful operation can be expressed as 

P{ l 0 )  =  1  - F ( t 0 )  

Sometimes the duration of a task is a random variable itself, with a 
distribution H i t ) .  We may then speak about the expected probability of 
success for the random performance time. The general expression for this 
index is 

/ > =  f p { t ) d H { t )  (2.4) J o  

Several particular cases are considered in Exercise 2.2. 

2.1.3 Failure Rate 
As we mentioned above, we sometimes have to know some special functions 
in order to calculate the reliability indexes of a complex system. One such 
important function is the failure rate A(f). In strict probabilistic terms this is 
the instant conditional density function at moment t  under the condition that 
the random variable under consideration is not less than t ,  that is, 

/CO 
AC )  -  J^ (2.5) 

At first this function, called the hazard rate, appeared in demography 
connected to the insurance business. The physical sense of this function can 
be easily explained in the following simple terms. If we know the prior 
distribution F i t )  with density /(/), then an element of the conditional 
probability 

Pr( d t \ t )  = A(0 d t  

is the probability of the death of an individual of age t  during the forthcom- 
ing time interval [/, / + d t ] .  
This function has exactly the same sense in reliability theory when one 
substitutes the corresponding terms. We refer to this function as the failure 
rate. To explain it, consider the uniform distribution F i t )  on the interval 
[0,10]. In this case A(0) = /(0) = 0.10 because P(0) = 1 for a nonnegative r.v. 
Next, consider the moment t  = 1. The area of the domain for the r.v. under



 

 

1 00 RELIABILITY INDEXESthe condition that it is larger than 1 become smaller: now it is [1, 10]. So 
A(l) = 1/9. Of course, the same result can be obtained directly from (2.5) if 
we substitute /(l) = 0.10 and P(l) = 0.90. Then for the next moment, say 
t  = 5, we have A(f) = 0.20; for t  = 9 we have AO) = 1.0; for t  = 9.9 we have 
A0)  - 10.0; for t  = 9.99 we have AO)  = 100.0; and so on. The function AO)  
approaches o° at ( = 10. 

For a norma! distribution with mean a  = 10 and standard deviation a  = 1, 
we can calculate AO)  using a standard table of  the normal distribution. 

In both cases we observe that the function AO) is increasing and un- 
bounded. Thus, the unit's reliability for such a TTF distribution becomes 
worse in time. Such an aging process is very natural for most real objects. But 
this type of increasing function is not the only one. As we considered in 
Chapter 1 for the exponential distribution, the failure rate is constant in 
time. Moreover, the so-called "mixture of exponential distributions" has a 
monotonically decreasing function AO). 

For the mixture of two exponential functions, we can write 

F ( t )  = 1 -p[exp(-avf)] - (1 — p )  [exp( ~ a 2 t )] (2.6) 

The expression for A(r) can easily be obtained 

_  ^ a i [ e x P( _ a i O ]  +  0 ~P)«i|"PC-«2*)l 
p[exp(-a,0] + (1 -p)[exp(-a2/)] 

We will analyze this equation "on a verbal level" using only simple 
explanations. For f = 0 we have 

A(0) -pa, + (1 - p ) a 2  

that is, A(0) is a weighted hazard rate at this moment. Then note that the 
function AO) is a monotonically decreasing function. If a, > a2, then 
lim, AO) = a2. 
From (2.5) it follows that

 
This immediately yields

 -  f ' \ ( x )  d x  J i  i

d P (
t )  
d t  
n o  

d F{ t )  
d t  

P ( t )  

d[InP(0] 
A(r) = d t  

 

 

P ( t )  = exp (2.7)



 

UNREPAIRABLE SYSTEMS 93 From the condition 0 < P ( t )  < .  1, it 
follows that, for any t ,  

0 <; [ ' \ { t ) d t  <  oo 
J o  

and 

lim f ' x ( t )  dt -* oo 

Thus, the function is such that A(f) > 0 and 
possesses properties (2.7) and 
(2.8). 
In most practical cases we observe a 
so-called "U-shaped form" of the 
function A(r), as depicted in Figure 2.2. 
During the first period of time, we 
observe a "burning-out" process. This process consists in the early failing of 
weak or defective items. Then follows a period of "normal" operation during 
which the failure rate is constant. During this period a failure only occurs 
"completely incidentally," or, as one sometimes says, "as a brick fallen from 
the roof." It is a period of wcaring-out, fatigue, and other normal phenomena 
of aging. 
We will show below that qualitative knowledge about the failure rate is 
very important for reliability analysis. 

2.2 REPAIRABLE SYSTEM 

2.2.1 Description of the Process 
During the observation of a repairable system, we can record the sequence of 
periods, each of which consists of a successful performance time plus an idle  

m

 

Figure 2.2. U-shaped function of A(f). 
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time. Such a process is illustrated in Figure 2.3. Let denote the random 
time from the completion of the (k  - l)th repair to the k  th failure, and jet 
7jk denote the duration of the fcth repair (renewal). 

In the simplest case with a socket (a one-unit system), we suppose that a 
repair is equivalent to the replacing of a failed unit. This corresponds to a 
complete renewal. In this case we consider an alternating stochastic process 
with i.i.d. r.v.'s £ and 17, having distributions F i t )  and G i t ) ,  respectively. We 
denote this alternating stochastic process by 7 7 } .  

Of course, the corresponding process for a system consisting of several 
renewal units may be much more complicated. Almost all the following 
explanations will be—for simplicity—presented for a renewal unit, or a 
socket. 

All indexes used for an unrepairable system can also be used in this case 
for the appropriate purpose. But for repairable units and systems wc have to 
consider several special indexes. They are more complicated and need more 
explanation. 

2.2.2 Availability Coefficient 
Consider a system which has to work in a "waiting" regime and, at the same 
time, the duration of the task performance is negligibly small. In this case a 
natural reliability index is the so-called availability coefficient K i t ) ,  This index 
is the probability that the system will be in an operating state at a specified 
moment ( in the future. 

The numerical value of K i t )  depends on the specified moment of time t .  
For example, if we know that at t  — 0 the system is new and, consequently, is 
in an operating state, then at moment e ,  where e  is small, the probability that 
the system is in an operating state is close to 1 and approximately equals 
K i e )  =  Pie). 

The behavior of K i t )  in time can be periodically attenuating or strictly 
attenuating. This depends on the types of d.f,'s F i t )  and G i t ) .  For illustra- 
tive purposes, consider the case where Fit) is a normal d.f. with a small 
coefficient of variation k  and G i t )  is a degenerate function (i.e., 17 is 
constant). K i t )  for this case is presented in Figure 2.4. 

It is clear that the first time to failure has a normal d.f. with some mean T  
and a relatively small <7. The renewal completion time has the same distribu- 
tion biased on the time axis. If r\ > 3a-, there may be some interval between 
T  and T  +  7 7  where K i t )  = 0. The second time to failure also has a normal  

 

Figure 2.3. Graphic description of an alternating process. 
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 ---------------------------------------------------------  
Figure 2.4. Example of the oscillating behavior of Kit) in time. 

d.f. but with the standard deviation larger by times. Thus, the zone 
between 2T and 2(T + TJ), where K i t )  =  0, will be smaller. Finally, for 
(  »  T  + 7j, K i t )  will be almost constant. 
If both d.f.'s F i t )  and G i t )  are exponential, the function K i t )  is strictly 
decreasing with exponential speed. We will consider this case later. 
For large t  the initial state has practically no influence on the behavior of 
K ( t ) .  In this case the probability that the system is in an operating state 
equals the proportion of the total up time to the total operating time. Later 
we will show that for this case 

E U )  
K  = —' - (2.10) 

The index K is called the stationary availability coefficient, or simply, the 
availability coefficient. 
Sometimes we are interested not in a "point" characteristic K i t )  but in 
the average time spent in an operating state during some period of time, say 
t .  We introduce the index 

1 f t  
K * ( t )  =  - / K { x ) dx  

t  J Q  

If t  - *  oo, both K i t )  and K * i t )  have the same limit, namely, K  defined in 
(2.10). 

2.2.3 Coefficient of Interval Availability 
If the duration of the system's task is not negligibly small, we speak about the 
coefficient of interval availability, that is, the probability that at a time t  the

 

Kit)



 

 

1 00 RELIABILITY INDEXESsystem is found in an up state and will not fait during the performance of a 
task of length, say tn. Denote this index R i t ,  r„): 

i?(M0)=X(r)/»(/0ir) 

We will consider this index later in more detail but now we note that 
P(r0[r) =  P( t { ) )  only when F i t )  is exponential. 

If the system is not a socket with renewal unit, the situation is more 
complicated. In Chapter 7 we will illustrate this statement on a duplicated 
system consisting of two identical renewal units. 

2.2.4 Mean Time Between Failures and Related Indexes 
Mean Time Between Neighboring Failures In general, the mean time to 
a first failure 7(]) differs from the mean time from the first repair termination 
to the second failure T(1), and so on. In other words, all intervals of 
failure-free operations T ( k ) ,  k  =  1 , 2 , . . , ,  may be different. We consider 
several typical situations. 

For a socket, or a one-unit system, the MTBF coincides with the MTTF 
because a new unit, put into the sockct, is supposed to be identical to the 
failed one. But this equivalence of the MTTF and MTBF cannot be ex- 
tended, even for the simplest two-unit system. 

Consider a Markov model of a redundant system of independent and 
identical units [in other words, both F ( t )  and G i t )  are exponential]. Assume 
that we know how to compute the mean time to a forthcoming failure for this 
system for the following two cases: starting with the state when two units arc 
up (T12'), and starting with the state when only one unit is up (T1®1) (see 
Figure 2.5). 

On average, the time to failure from state 2 is larger than the TTF from 
state 1. Indeed, in order to fail starting from state 2, the system must first 
enter slate 1 and then from this state transit to the failure state. (Of course, 
from state 1 the system might even return to state 2 again.) In other words, 
jlA = j* + where T* is the time of the system staying in state 2 until 
entering state 1. 

In this particular case all of the remaining intervals of failure-free periods 
are i.i.d. r.v.'s, because for this particular Markov process all of the initial 
conditions are the same. 

Now consider the behavior of a series system of two independent units. For 
simplicity, suppose that the repair time is negligible. Let each unit have a 
normal d.f. of TTFs with a mean T  and a very small variation coefficient. If at 
the moment t  = 0 both units are new, then the first and second failures of 
the system are expcctcd to appear close to cach other and are around t  =  T .  
If the random TTFs of the units are denoted by £, and £2, respectively, then 
r[(] = min{£j, £2) and T [ 2 ]  = max{£„ £2) - min{£„ If the r.v.'s f s  are as  
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(a) 

c 
e2 >■ %2 

( b )  

Figure 2.5. Examples of two time diagrams for a two-unit system: (a) a system of 
independent units; (£>) a system working until both units have failed. 

described, = E{£}, and T [ 2 ]  has the order of <r. By assumption, A-  T  
(see Figure 2.6). 
The next couple of failures are expected to appear close to t  =  2 T ,  but the 
expected deviation is J2 times larger than the initial deviation. For the case 
A «  T,  

rpi- + + (2.11) 

and 

r(4] = max(^> + ^>,^) + ^>) (2.12) 

[Notice that strictly speaking (2.11) and (2.12) should be expressed in a more 
complicated way. We must take into account the mixture of the failure flows 
of the two sockets. This is explained by the appearance of extremely small 
and extremely large r.v.'s.] 
Thus, if 7[|) > T [ 2 ] ,  then T [ 2 ]  <  7*[3] and r[4] < r[3j. At the same time, 
7"(l] > 7p, and r[2] < 7"[4j. The process continues in the same manner for 
larger numbers of intcrfailure intervals. 

T{ \ )  T (  2 )  T( 3) T{4) T {  5) T(6) 

-x ---------- o—x ---------------------  x o x -------------------------------x o x ---------------------------- t  
T  2 T  3 T  

Figure 2.6. Example of the failure flows of a series system of two units. 

i 
1  n 



 

UNREPAIRABLE SYSTEMS 98 With rt s> 1, for any variance a2, the value ajn begins to be larger than 
T .  This leads to a strong mixture of moments of failure of both sockets of the 
system. In theoretical and practical terms, this means that Tj^j ~ + and, 
moreover, T[n] -> » with n -» «>. Thus, even for the simplest two-unit system, 
all MTBFs are different (though they may have the same asymptotical value). 
More complex cases appear when we consider a series system of more than 
two units. Notice that in reliability theory the term MTBF is usually used for 
the stationary regime, that is, as t  - *  

There are other indexes used in reliability theory which are connected with 
the time to failure. One of them is the instantaneous MTTF at time t .  This is 
the mean time to failure from a specified moment t  under the condition that 
a failure has happened just at this moment. From qualitative arguments it is 
clear that for t  comparable with T  this new index will differ from the MTTF. 
We remark that for the stationary regime, the values of both of these indexes 
coincide. 

To conclude the discussion about the MTBF, we must emphasize that each 
time one should understand what kind of a particular TTF is under consider- 
ation. If we again regard a renewal series system of n units, each of them 
with a normally distributed TTF with a very small coefficient of variation, 
then we have the following: 

1. For the MTTF 

T  ~  min 
1 £/s;n 

2. The next n  —  1 MTTFs might be extremely small depending on the 
number of units and the smallness of the variation coefficient: 

j(I) _ E{£1 '+ I)  - 

where is the i'th-ordered statistic, 1 < i  <  n  - 1. A possible behav- 
ior of t ( k )  for a series system is presented in Figure 2.7. 

3. The stationary MTTF for any recurrent point process with continuous 
distributions of TTFs is 

7 = 

T  
1 &i<.n i 

This value is the limit for T { k )  when k  - »  oo. 

In practice, we are often interested in the mean time of a failure-free 
operation starting from some specified moment t .  In the theory of renewal  
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I ------1 ----- 1 ----- 1 ----- 1 ----- 1 ----- 1 ----- 1 ----- 1 ----- 1----- 1 ---  
J<0) -jil) j(2) J(3) jii] fi 5) J<6] y(7) y<8> j«9) jilO) 

Figure 2.7. Example of changing the mean time between failures depending on the 
current number of failure for which this value is evaluated. 

processes, this value is called the mean residual time. In general, this index 
differs from the MTTF and any version of the MTBF. 

If t  -» oo, for a recurrent process this index differs from both of those 
mentioned above. The exception is a Poisson process for which all three 
indexes coincide. 

2.3 SPECIAL INDEXES 

Now we consider some special reliability indexes for repairable systems. 
These indexes are nontraditional: they describe not a failure-free operation 
but rather a successful operation during a specified time. In some sense, 
there is no "local" failure criterion. The determination of a succcssful or 
unsuccessful operation is made, not at the moment of a current failure, but 
only after the completion of the entire system's performance during an 
acceptable operational time. This means that some interruptions of the 
system operation might be considered as not being destructive. 

2.3.1 Extra Time Resource for Performance 
Sometimes a system has some reserve time to perform its task; that is, the 
interval of time 60 given for the performance of the system operation is more 
than the time t 0  required for a successful operation. 

Examples of such situations can be taken from different areas of applica- 
tions: conveyer production lines, electronic equipment with special power 
supplies, a computer performing routine calculations not in real time, and so 
forth. (Other detailed examples will be provided below.) In all of these cases 
not all failures of the system lead to the failure of the overall system's 
performance. 

Consider a computer performing a computational task whose duration is 
f0. The computer has a resource of time 9 0  for its performance which is  



 

 

1 00 RELIABILITY INDEXESlarger than the required time t0. Random negligibly short interruptions 
(errors) may appear, each of which will destroy the results of all of the 
performed calculations. 
In this case the probability of success can be written as 

Pr{at least one t k  >  t ( ) \ k :  t k  e 0O} 

Let the computer's task be segmented into phases and assume that the 
computer works in a restarting regime. After the completion of each phase, 
all intermediate results are put into the computer's memory. Each short 
failure has destroyed only the very last phase of the overall solving task. After 
the error has been found, the calculations for this particular phase are 
repeated. We do not give the formal definition of the corresponding reliabil- 
ity index but it is understandable that this index may be defined with the help 
of (2.13). We will consider this case in the special section dedicated to time 
redundancy. 

2.3.2 Collecting Total Failure-Free Time 
Suppose a system is required to accumulate some given amount of successful 
operating time during some given period 9 0  for the successful performance 
of the task. The probability of success can be written as 

(2.14) 

As an example, we may again consider a computer 
system with a restarting 
regime for which each failure takes some time to repair but the operation of 
the system can be continued without loss of the previously obtained results. 
This situation may be observed if the restarting phases are very short, so 
there is practically no loss of the intermediate results but the system needs 
some time for restoration. 

A close phenomenon occurs when one considers the transportation of 
some load. Failures and consequent repairs may only delay the termination 
of the task, but will not lead to a total failure. Of course, if the total idle time 
exceeds some limit, the task should be considered as not fulfilled (e.g., in the 
transportation of fresh food). 

This index can obviously be written as 

(2.15) 

where is the specified allowable total down time 
during the period 0O. 

k  

(2.13) 

k  
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2.3.3 Acceptable Idle Intervals 
Some systems possess the property of time inertia: they are insensitive to 
short breakdowns. As an example, consider a responsible computer system 
which has an independent power supply to prevent the system from occa- 
sional short failures of the common power system. In this case, if a failure of 
the main power system occurs, the computer system can operate with the 
help of this spccial power supply. Another example can be represented by a 
multistage conveyer system with an intermediate storage of spare subprod- 
ucts in the case of a breakdown in the previous stages. 

Thus, roughly speaking, an operational interruption of any such system can 
be noticed only if the duration of the down time x k  exceeds some specified 
value jc0. In this case the reliability index is 

Prfall x k  <  JE,,!.** e fl0} (2.16) 

In real life wc meet more complicated situations. For example, a redundant 
power supply may demand substantial time to recharge, and this fact must be 
taken into account. 

Of course, some combinations of the listed criteria for a system's failure 
may be considered. Some of them will be presented later. 

2.4 CHOICE OF INDEXES AND THEIR QUANTITATIVE NORM 

2.4.1 Choice of Indexes 
The problem of choosing a reliability index arises before an operations 
research analysis. The solution of this problem depends on the nature of the 
object to be analyzed, its operations, and its expected results. 

Depending on the operational level of the system, reliability indexes can be 
divided into two groups: operational and technical. If we deal with a system 
performing its individual and independent operation with a concrete final 
output, the reliability indexes should characterize the system's ability to 
perform its operation successfully. Such indexes are called operational. 

If we deal with an object that is a subsystem and only performs some 
functions that are necessary to fulfill the operation of the system as a whole, 
the reliability indexes may be auxiliary. We can express the operational 
indexes of the system as a whole through these indexes. Such indexes are 
called technical. They are used to describe the reliability of a system's 
components and parts. 

Starting with operational indexes, consider a computer that can be used to 
perform several quite different operations. The computer which is used for 
routine calculating tasks may be characterized with the help of an average 
percentage of useful operational time. The availability coefficient is the 
appropriate reliability index in this case. 
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The same computer used for supporting a long and noninterrupted techno- 
logical process can naturally be characterized by the probability of a failure- 
free operation (PFFO). 

If the computer is used for an automated landing system in an airport, and 
the duration of each operation is negligibly small in comparison with the 
computer's mean time to failure (MTTF), the reliability index should reflect 
the number of successfully served airplanes. In this case the availability 
coefficient is also the most appropriate reliability index. 

If the same computer is unrepairable, for instance, its task consists of 
collecting and processing information in a spy satellite, the best characteriza- 
tion of it is the MTTF. 

In all of these cases the reliability index corresponds to the system 
predestination and to the nature of its use. 

Now consider an example when a reliability index is used to characterize 
"inner" technical abilities. Consider two identical computers connected in 
parallel. The natural reliability index for this duplicated system is the PFFO. 
In this case each computer is only a subsystem taking part in the performance 
of a system's operation. What should we know about each separate computer 
to characterize this system? To compute the complex PFFO, one needs to 
know the probability distributions of both the time to failure and the repair 
time of the computer, as well as the parameters of these distributions. The 
distribution itself is not an index; it is a function. But parameters of the 
distribution can be considered as technical reliability indexes of the com- 
puter. These parameters have no relation to a system's operation, they only 
reflect an ability to work in general. 

Note that the type of reliability index chosen does not depend on the 
responsibility of the performed operation. The responsibility of the system's 
operation defines the level of requirements but is not part of the nomencla- 
ture of reliability indexes. 

When choosing reliability indexes we should take into account the follow- 
ing simple recommendations based on common sense:  
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2.4.2 Required Reliability Level 
The problem of choosing the level of reliability is a very complcx one. In 
practice, this problem is usually solved on the basis of engineering experi- 
ence. For the purposes of determining reliability requirements, equipment 
may be divided into three groups by its "level": systems, subsystems, and 
units (components). 

A system is considered as an object with its own goals of performance. A 
system performance is evaluated with the help of operational reliability 
indexes which are a measure of its success. 

A subsystem is a more or less independent part of the system. It is 
considered to be an assembly of objects within a system. Each subsystem 
performs functions that are necessary for the operation of the system as a 
whole. The system's subsystems can be characterized by operational indexes 
if their functions can be measured with independent indexes or by technical 
indexes if these indices are used to express the system's performance effec- 
tiveness index. 

A unit, or a component, is the smallest indivisible part of an object. The 
term unit is sometimes also used as a generic term for one physically 
separate item. In general, the term component is usually used for the 
smallest technological part of an object: electronic components, mechanical 
details, and so on. 

The only problem which can be formulated as a mathematical problem is 
the assignment of reliability requirements among subsystems (parts of the 
system) when the requested level of reliability is known for the system as a 
whole. In this case the problem is reduced to the problem of the optimal 
allocation of some resources used for the improvement of reliability. The 
technical aspects of the problem will be considered in Chapter 10. Here we 
explain the nature of the problem. 

Consider a system consisting of N independent subsystems. Assume that 
the probability of successful operation of the system as a whole must not be 
less than R 0 . Each subsystem can be designed with different levels of 
reliability. Such levels depend on the expenditure of some kind of resource, 
for example, money. Suppose that we know all functions P k ( c )  which reflect 
how the reliability index of the Ac th subsystem increases as a function of the 
expenditure of the resource c. 

If the system's reliability index can be represented as 

p(cQ) = n pk{ck) 
and the value of C0 is specified, then the problem is to find the optimal 
allocation of the total resource C0 in such a way that the resulting system 
index is maximal, that is, find C3 = {C,,C2 ............... C^} such that 

                                            
3 The chosen indexes must allow one to analyze them with the help of 
analytic or computer models at the stage of system design. 
• The total number of reliability indexes chosen for a system's characteri- 
zation should be as small as possible. 
• The chosen indexes should be easily interpreted. 
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P(C*) = maxf n P k { C k )  E  Q < C 0 \  
I  1 l z k & N  I   

                                                                                                                
• The indexes should allow one to formulate clear requirements on relia- 
bility. 
• The indexes must allow one to estimate the achieved reliability level 
after field tests or experimental exploitation. 
• Complex "integrated" indexes must be avoided: various "convolutions" 
and "weightings" of different indexes usually have no real meaning. 
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with a required level of reliability, for example, R0. Then the problem may be 
reformulated as

 
A solution to both of these problems is presented in Chapter 10. 

Unfortunately, even such simple problems cannot usually be solved in 
practice because the functions P k ( C k )  are often unknown. In such cases we 
usually use heuristic methods based on a proportional distribution of reliabil- 
ity "quotas" among the system's units. 

What must one do in the general case when it is necessary to assign a 
reliability level to the system as a whole? In our opinion, there is only one 
thing to do: perform an evaluation based on engineering experience. Proto- 
types can be used for comparison with the designed system and, on the basis 
of this, the decision about a possible or desirable reliability level might be 
made. 

Naturally, if one fixes the amount of available resources for the production 
of some type of technical system, then we not only have to solve the problem 
of an optimal reliability level, but we must also answer the question of how 
many such systems we intend to produce? In turn, the number of systems of 
some chosen type depends on the number of other "competing" systems in 
the same area of use or utility. Assume that we are considering the design of 
a new type of jet. First of all, too high a level of reliability wiii demand a high 
level of expenses for the production of each jet and, as a consequence, will 
lead to a decrease in the total number of jets produced. It is clear that it is 
useless to have only one extremely highly reliable jet and it is equally 
unreasonable to have a large number of jets, each of which has a very low 
reliability. To choose "a golden middle" is a problem which lies outside the 
scope of mathematics and even outside the scope of engineering. The only 
way to solve this problem is to rely on expert's opinions and traditions. 

But the experts' opinions are also not isolated. Taking into account all 
considerations concerning this particular type of a jet, experts have to think 
about the number and reliability of other jets owned by the airline. But this 
total number depends on a specific situation, considering the transportation 
system of the country as a whole. In turn, it depends on the level of the 
national economy. The level of the national economy depends on a number 
of unformulated and nonformulated factors: the political stability of the 
country, the external situation in the world, and so forth. Thus, we are 
convinced that any attempt to try to solve this problem in some "precise" 
sense is doomed. 

But then one may ask: Why use mathematical methods at all? Why not rely 
on experts' opinions to solve all problems of this kind? The answer is that

P(C*) = min Pk(Ck)zR  
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mathematical methods of analysis of situations help one to make logically 
strong decisions; mathematical models of technical systems help one to 
understand the nature of systems being designed. We begin to make local 
solutions in optimal ways. This leads to a kind of process of "natural 
selection." As in nature this process allows for the survival of only those who 
have best adapted to existing environments. And, in this situation, those 
technical systems which are "locally optimally designed" have a better chance 
to "survive" under currently existing circumstances. 

We now consider possible methods of establishing reliability. 

System Level Consider two principal cases. One of them consists in the 
use of practical experience and engineering intuition. Mostly it is based on an 
analysis of prototypes of the new technical system to be investigated. This 
method needs no special comments. 

Practically, the only time a system's reliability requirement appears is if: 

- The system's outcome can be measured in cost units, that is, in the same 
units as the costs of the system's design, production, and maintenance. 

• The system's structure and operational modes are well known in ad- 
vance. 

• Necessary statistical data for all components are determined with a 
satisfactory degree of confidence. 

In this case the designer has an opportunity to compare M different 
variants of the system's design and to choose the most profitable one. The 
objective function of the system's performance for the fcth variant can be 
written in the form 

F k ( R )  =  E k ( R )  -  y C k ( R)  

where R  is the system's reliability index, E k ( R ) is the outcome of the &th 
variant of the designed system, and C k ( R ) is the expenditure needed to 
design, produce, and maintain the system with index R ,  \  <  k  <  M  and -y is 
a dimensional coefficient analogous to a Lagrange multiplier. The value of R  
depends on the structure of the fcth variant, S k ,  and on the reliability indexes 
of the subsystems used, r j k \  \  <  i  <  n k ,  where n k  is the number of subsys- 
tems in the £th variant of the system. Thus, R  itself can be written in a 
general form as 

R  = R ( S k , r } k H  \  < k  < ,  M ,  \  < n k )  

For simplicity, suppose that all functions are differentiate. Then the 
optimal level of the reliability index R  can usually be determined by solving 
the equation 

d   
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or, equivalently, 

d E k ( R )  d C k { R)  
d R  d R  

Each optimum can be evaluated and then the variant k  with the highest 
value of F k ( R k

p t )  is selected. Unfortunately, such an ideal situation appears 
extremely rare in engineering practice. 

Subsystem Level Suppose that the system's reliability requirement is 
specified. Then the problem is to distribute the given value of the index over 
the subsystems. We consider several cases, each of them representing differ- 
ent information concerning the system's structure and the availability of 
statistical input data. 

Uniform Allocation of Requirements This method is usually used when 
one can imagine only the approximate size of a subsystem of the main system. 
A reliability index R  of a probabilistic nature (e.g., the probability of success 
or the availability coefficient) is specified for the system as a whole. The 
simplest assumption is that the system has a series structure and consist of n  
subsystems. The reliability requirement for each subsystem is then given by 

R ^ TR  I  <  i  <  n  

Clearly, if subsystem indices are chosen in such a way, the system reliability 
index equals R .  
If requirements can be specified as the system's MTTF T ,  we can choose 
for each ith subsystem 

r ,  =  n T  

This means that we additionally assume that the TIT of any subsystem has 
an exponential distribution. 

Allocation in Proportion to the Number of Units Assume that the same 
conditions exist as before, but in addition subsystem / consists of «, units 
which are essentially similar in their complexity. In this case the requirement 
(in terms of the probability of success) should be chosen to be 

Rt = "IfR 1 z i  < n  (2.17) 

where 

n ,  
ai = —= -------  

L  n i  
I z i s N  
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This method can be useful if different subsystems are designed by different 
subcontractors. It is reasonable to specify "softer" demands for more com- 
plex subsystems. 

Allocation in Proportion to the Expected Failure Rate Suppose a de- 
signer has more complete information about the system: the unit failure rates 
are known (perhaps from previous experience), and the hypothesis about the 
exponential distribution can be considered valid. In this case the previous 
method can be improved. We can use (2.17) but we substitute at defined by 

£ A jfiji 
_  ) z j s M _____________  

£ £ V/i 
lsisn 1 S j < M  

where M is the number of types of units and n« is the number of units of the 
yth type in subsystem i. 

Optimal Allocation of Reliability Requirements This method is applied 
if we know the system's structure 5 and can predict the cost-reliability 
trade-off for each subsystem. The problem is to find the values of 
1 <  r <  n ,  that yield the required reliability index at the lowest cost. 
This problem can be written in mathematical terms as 

rainj £  C, (K,) | j l (* , , l*f s i» |S);fc*o}  
\  I £i'  I  

where C^R,) represents the subsystem's costs as a function of its reliability 
and 5 is the conditional notation of the system structure. For instance, if we 
consider a series system, the reliability function can be represented as 

KWCiMsfsfia) - n Ri(C() 
1 S i S n  

In other words, the optimal allocation of reliability requirements between 
subsystems is a type of optimal redundancy problem (see Chapter 10). 

T 

 

When all distributions are assumed to be exponential, the requirements
can be formulated in terms of the MTTF as 
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Reliability Requirements for a Component Almost all equipment com- 
ponents in engineering are of general usage. The only method in this case is 
based on the "natural selection" principle. In other words, the better and 
cheaper components among existing ones survive the competition in a techni- 
cal and economic environment. And, at the same time, new components 
appear and replace technical "dinosaurs." 

CONCLUSION 

This chapter does not need any special comments. In one form or another, 
reliability parameters are discussed in any book on reliability engineering or 
theory. As examples, we refer the reader to the wide list of general refer- 
ences at the end of this book. 

The nomenclature of reliability indexes in a systematic and structured form 
can be found in Kozlov and Ushakov (1970) and Ushakov (1985, 1994). The 
methodological problems of choosing indexes and quantitative requirements 
in reliability engineering are discussed in Gnedenko, Kozlov, and Ushakov 
(1969). 
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EXERCISES 

2.1 Prove that the mean value of a nonnegative r.v. v  with distribution Fit)  
can be expressed in the form of (2.4) which is equivalent to (2.3). 

2.2 A system has an exponentially distributed TTF with parameter A. The 
operation to be performed also has a random duration. Find the 
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probability that the system successfully performs its operation if 
(a) the operation duration is distributed exponentially with parameter 

a; 
(b) the operation duration is distributed normally 

fN(x \a,  <r)  =  
ayzir  

with mean equal to a  and variance equal to a2 .  We also assume 
that ACT 1. 

2.3 Build the graph of the failure rate for the mixture of two exponential 
distributions (2.6) with the following parameters, respectively, 

(a) A, « 1 [1/hour], A2 « 1 [1/hour]; 
(b) A, = 0.5 11/hour], \2 " 1 [1/hour]; 
(c) A, = 2 [1/hour], Aa = 1 [1/hour], 

SOLUTIONS 

1.1 

r =  f t d F ( t )  = f  t d [ I - / > ( * ) ]  =  - f t d p ( t )  

'o •'o 

and, after integrating by parts, 

-  f tdPit)  = - tP(t)  + fV(f) d t  = r^ iO d t  = A1 ~ ^0)3 dt 

1.2 
(a) Using (2.4), one writes 

/>= re-Xxae-~*dx - aCe'^^dx  =» 
-'O ■'O A + A 

(b) First of all, consider the given conditions. Almost all "probabilistic 
mass" is concentrated in a relatively very compact area related to 
the MTTF of the system. This means that in this area the exponen- 
tial function can be successfully approximated by the set with at 
most two terms: 

(A*)  
1 - Ax +



 

 

SOLUTIONS 109Thus, one has 

/>= r e-X x fN(x \a,<r)dx = r

 
(A xy f i f C Vn A i = / fN(x \a,a)dx -  I x\a,cr) dx  + / —-—fN(x \a,a)dx  

'n •'n J n A 
(a\y  

= 1 - aX + 

In the first case there is no mixture at all; the second and third cases 
differ only by the scale. In general, one can write 

/ (f)  =p,A ] e- A"  + p2k 2e~^' 

p , k . e +  p2 \2e  

A(/)  

pxe *«' + p2e 

(The numerical solution is left to the reader.) 

(A XY  
fN(x \a,tr)dx  1 - Ajc + 

 

and



 

 

CHAPTER 3 

UNREPAIRABLE SYSTEMS 

In this chapter we will consider the main types of unrepairable systems. The 
only type that we will not address is a general network structure, which will 
be considered in a later chapter. 

3.1 STRUCTURE FUNCTION 

For convenience in future mathematical explanations, let us introduce the 
so-called indicator function xi for unit i: 

(3.1) 

Let us introduce a similar function for the system as a whole. This new 
function depends on all of the x,'s, the system's structure, and the criterion 
of system failure that has been chosen:  

1 if the /th unit is operating
0 otherwise 

(3.2)f( x l '  x2> • • • ' xn)  ~  
1 if the system is operating
0 otherwise 

In reliability theory this function is called the structure function of a 
system. If each unit has two states—up and down—then a system of n units 
may have 2" different states determined by states of the individual system's 
units. The function (3.2) is determined by the system failure criterion. 

Of course, system states may differ from each other by their level of 
operational effectiveness. This case will be considered in Chapter 8. Here we 
110 
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restrict ourselves to the case where a system has only two possible states: up 
and down. 

From the definition of (3.2) it is clear that the x/s are Boolean variables 
and /(*,, x 2 , . . . ,  x„) is a Boolean function. We also denote this function by 
f ( X )  where X = ix l ,x 2 , . . . ,x n ) .  System reliability structures are often dis- 
played as a two-pole network. One of the simplest examples of such a 
network is presented in Figure 3.1. The connectedness of this two-pole 
network is equivalent to the equality of the Boolean function (3.2) to 1. 

Each unit i may be in state JC, = 1 or xt = 0 in random. If each Boolean 
variable x: is considered as a Bernoulli r.v., then E{JC,} is interpreted as the 
probability that unit / is in an up state, and E{/(X)} is defined as the 
probability of the system's successful operation: 

= and Psysl = E{/(X)} 

We consider only monotone functions /(X) for which /(X) > /(X') if 
X > X'. Here the inequality X > X' means that > x\ for all i and there is 
a strict inequality at least for one i. This assumption is very natural. Indeed, a 
unit failure generally will not improve a system's operational state. There- 
fore, if a system is down in state X, it cannot be up in state X' with some 
additionally failed units. (Of course, it is correct under the assumption that 
the system was correctly designed.) We emphasize that it relates only to 
systems whose operation can be described in terms of Boolean functions. 

3.2 SERIES SYSTEMS 

The series structure is one of the most common structures considered in 
engineering practice. A system with such a structure consists of units which 
are absolutely necessary to perform the system's operation: a failure of any of 
one of them leads to a system failure. Schematically, this structure is 
represented in Figure 3.1. 

Of course, the series system in a reliability sense does not always corre- 
spond to a real physical series connection of the system units. For example, 
the parallel connection of capacities (Figure 3.2) subjected to failures of a 
shortage type corresponds to a series structure in reliability terms. 

Let us denote the structure function of a series system as a ix v  x 2 , . . . ,  *„) .  
This function is 
«(X) = a(*„*2 , . . . , *J = p| 

I  

 

Figure 3.1. System with a series structure. 

(3.3)



 

11 6 UNREPAIRABLE SYSTEMS Figure 3.2. A parallel connection of ca- 
pacitors which represents a series struc-  ____  
ture in a reliability sense. 

where the symbol f| denotes the Boolean product (disjunction). The same 
expression can be written in an equivalent form 

a(X) = min xt 

In reliability theory systems consisting of independent units are usually 
considered. In this case the computation of the probability of a successful 
system operation is easy. We are interested in the probability 

Pr{a(x,, x2,...,x„) = 1} = E{a(x,, x 2 , . . . , x„ ) }  (3.4) 

For independent units (3.4) might be rewritten in two equivalent ways 

pr{ n *, = i } =  n pr{x,. = i } =  n p, (3.5) 
Is/f in 

e{ n 4 = n e{x(. = 1} = n P, (3.6) 
1 SiSn ' 1 1 

Expressions (3.5) and (3.6) make the following statements true: 

1. A series system's reliability decreases (increases) if the reliability of any 
unit decreases (increases). 

2. A series system's reliability decreases (increases) if the number of units 
increases (decreases). 

3. A series system's reliability is worse than the reliability of any of its 
units. 

The first two statements reflect the monotonicity property. 
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as constant. But the process of a system's operation develops over time, so it 
is reasonable to consider a random function x,(f): 

_ j 1 if the ith unit is operating at moment / 
~ 10 otherwise * ' ) 

This function is monotone and nonincreasing over time for unrepairable 
units; that is, after a failure the unit cannot return to state 1. In other words, 
jc,(f + A) < x tU)  for any A > 0. Thus, for the system as a whole, it follows 
that /(X(f + A)) </(X(0). 
From (3.5) it follows that 

= n m o

 (3
.8) 

1 sisn 

Obviously, (3.5) and (3.8) can be written in a direct way from the verbal 
definition of a series system's successful operation: 

Pr{a series system operates successfully} 

= Pr{all system's units are up} 

= Pr{unit 1 is up, AND unit 2 is up,..., AND unit n is up} 

= Prfunit 1 is up} Pr{unit 2 is up} ... Pr{unit n is up) 

In a more general case, direct calculations must be used for obtaining the 
function P(t) for the system. But in one important particular case, when 
each Pj(t) is an exponential function, we can write a very simple expression 

>W') = n = exp(-< E  A,.)=e-A' (3.9) 
lsisfi  v  Is/sn  ' 

where 

A= E A, 
1 

Suppose a system consists of highly reliable units: p((r) = 1 - e^t) where 
Ej(t) is very small; for example, 

1 
max e ( t )  < K —  

Is/sn n  
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number of units.] Then, for a system with units having arbitrary distributions 
of time to failure, 

nvs,(o = n [ i-e,(o]- i-  £  « ,(o  (3 .io) 
1 sis." Uisn  

The error of the calculation in this case will not exceed the value 

^,(0 - n [1-6,(0] < L e,(0«i(0 < (?)[  max e,(0|2 
1 sisn lrsjc/sn V^/tlSiiSn J 

(3.11) 

Let us consider a particular case. Suppose a series system consists of n 
units, each of which has a continuous failure distribution with a nonzero first 
derivative at t = 0. Suppose the system is operating during a small period of 
time t0 .  The Taylor series restricted to the first term is

 
'o=/(0)'o 

( - 0

 
Note that, at t = 0,

 
/(0) 

m - m - m  

Then, for a series system consisting of a large number of highly reliable 
identical units with an arbitrary d.f. F(t) ,  

" [1 - A(0)<o]n - exp[-nA(0)*0] 

If the units are different but some of them have distribution functions F)(/), 
i e a, with nonzero first derivatives at t = 0 equal to A,(0), then for small t0  

 

F ( t )
dt 

 

 

(3.12)

■'oLA,(0) (3.13)P^tCo)~  n(l -A,(0)r0)  = exp

Of course, we assumed that |a| » 1; that is, the number of distributions with
a nonzero derivative is large. Therefore, we see one more example of an
exponential distribution in reliability theory. 
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1 

If the distribution of a unit's TTF is such that dFi^/dt' = 0 for i < k and 
d kFiO) /dt k  = a, then 

=  

[ l ( 3 - 1 4 )  

For large n one can write the approximation 

where A = na.  Thus, this series system has a Weibull-Gnedenko distribu- 
tion of time to failure. One practical example of such a system concerns a set 
of bearings in a machine. Another example will be presented in Section 3.4. 
In the ideal case, if all of the series system's units have a constant TTF, 
that is, a degenerate distribution of the type 

11 if t Tt ^ ^ 
\ 0 otherwise 

then Pit)  coincides with the pf(() of the worst unit, that is, 

i W ' J - l 1  i f  r - m i n r '  (3.16) 
\ 0 otherwise 

Of course, such a distribution does not exist in a real life. (Mathematics 
always deals with ideal objects!) But normally distributed r.v.'s with very 
small coefficients of variation can be considered as "almost constant" or 
"almost nonrandom." 
Now consider the MTTF of a series system. For any series system the 
random TTF, say Y, can be expressed through the random TTFs of its units 
i y t )  in the following way: 

Y = min yf

 (3.17

) 

The MTTF can be found in a standard way as 

rsys, = E{y) = j~ysyjt)dt (3.18) 

where P^U) is determined above. 
For an exponential distribution, p/f) = exp(-A,(), 
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Tsysl - fexp(-r E A,) dt = 1 =  -----------------------------  ------  (3.19) 
V Isisn ' L. A< V -I 

y _ 
T 

where is the MTTF of the ith unit. 
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Figure 3.3. System with a parallel structure. 

For units with a degenerate distribution 

7syst = min T, 

that is, the MTTF of the system equals the MTTF of the worst unit. 

3.3 PARALLEL STRUCTURE 

3.3.1 Simple Redundant Group 
Another principal structure in reliability theory is a parallel connection of 
units (Figure 3.3). This system consists of one main unit and m — 1 redun- 
dant units. We call such a system a simple redundant group. A system failure 
occurs if and only if all of the system's units have failed. In other words, the 
system is operating as long as at least one of its units is operating. Sometimes 
parallel systems are called systems with an active {or loaded) redundancy. 
Thus, the redundant units are in a working regime during the entire time of 
the system's operation. A main feature of active redundancy is that all of the 
reliability characteristics of the redundant units are assumed to be the same 
as the system's operational units. 
The structure function of a parallel system, j3(X), is 

f i ( X ) ~ f i ( x l > x 2 t „ , t x m ) ~  U 
1

where the symbol U denotes Boolean summation (conjunction). The same

 

(3.20)

(3.21)
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expression can be written in an equivalent form: 

$ ( X )  = max jt; 
lSi'sm 

For further discussion we need to acknowledge the following result. 
 

DeMorgan's Rule For two Boolean variables x and y, the following 
equivalences are true (see the exercises): 

^ V y = i A j i  (3.22 a) 

x  A y  =  x V y  (3.22b )  

x V y = x A y (3.22c) 

x Ay = Jt V y (3.22d) 
All of these equivalences express the same property but in slightly different 
form. The most important one for us is (3.22a). If one considers a series 
system of two units x and y, and "1" means an up state, then x V y = 1 
means unit x and/or unit y are in an up state; that is, the system is in an up 
state. At the same time, x A y = 0 means unit x and unit y are in a down 
slate; that is, the system is in a down state. It is clear that these two events 
are complementary. To prove (3.22), one may use a Venn diagram. This 
diagram graphically depicts random events, their sum and intersection, 
complementary events, and so on. A simple case with two events A and B is 
presented in Figure 3.4. The proof of (3.22c) one can find in Figure 3.5. 

B 

B AvB

 AA B 

Figure 3.4. Samples of main Venn diagrams. 
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From the above-given particular forms of DeMorgan's rule, the following 
generalizations can be easily obtained: 

 

ISiSH 
These latter statements can be proved by induction and we leave their proofs 
to the exercises. 
Another (almost purely verbal) explanation of (3.23) follows from the 
definition of a parallel system's failure which was given at the very beginning 
of this section: 

Pr{a parallel system operates successfully} 

= Pr{at least one unit operates successfully} 
= Prfunit JC, is up, OR unit x2 is up,..., OR unit xm is up} 

= Pr{ U *,= l} 
MSiSm ' 

At the same time, 
Pr{a parallel system has failed} 

= Pr{all of its units have failed} 
= Pr{unit X] is down, AND unit x2 is down,.,., 

AND unit xm is down} 

- p r (  n X j  =  =  e| n n ei^ = n 

u *, - n (3.23a) 
 1 S i S n  

 

n ** - u (3.236) 
I <,i<,n l^JSn  

U - n (3.23c) 
 1 sisw  

c = U ( 3 . 2 3
d )  
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We note that if two events, say z and z, are complementary, then 

Pr{ z = 1} + Pr{z = 1} = I 

Consequently, 

Pr{ U X, - l) - 1 - Pr{ n x A - 1 -  n Qi (3.24) 
Msism ' M stsm ' lzi<.m 

Now the equivalence of (3.23) can be confirmed in an inverse way by the 
equality of the probabilities. 
We repeat that a detailed inference was done above only from a method- 
ological viewpoint to provide further discussion. Of course, it was enough to 
use a verbal definition of a parallel system of independent units and to write 
the final expression. Sometimes a different form equivalent to (3.24) is used 

Psys. = P \ +  QlPl  + QlQlPl  + ' •• +<?1<?2 ....... Qm- \Pm  

= Pl + h(Pz +  h ( P 3  +  • • •  ) )  

This expression can be explained as follows: 
Pr{a parallel system operates successfully} 

= Pr{the first unit is up, OR if the first unit has failed, the second one 

has not failed; OR if both of these units have failed, 

then the third one has not failed, OR • ■ • } 

If each of the system's units has an exponential TTF distribution, p,(f) = 
exp(-/A,), for a highly reliable system where max <?,(/) « l/m, one can 
write <?,(/) = fA(, and, finally, 

.̂C) = 1 II A, (3.25) 
1 s/sra 

If each unit of a parallel system has a constant time to failure (a degenerate 
distribution of TTF), then 

= (i  f° r  'Sm a X 7 ;  (3-26) 
syi,v ' 10 otherwise v '  
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Now consider a parallel system's MTTF. For this system the random TTF 
(£syst) is expressed through the random TTFs of its units (£,) as 

£sysl = max & (3.27) 

Thus, this is equivalent to the statement that a parallel system operates 
successfully until the last failure of its units. 
When each unit has an exponential distribution of TTF, an analytic 
expression can be derived. For this purpose write the probability of failure- 
free operation in the form 

W')- l -  n  ( l - e -V )  
I <.m 

« £ e-V £ + V + £ (.-(Ai + Ay + AtX 
I  I  £ i < j s m  I  £ i < j < k s m  

+ (-I)"exp(-r £ A,) (3.28) 

ISiSm ' 

Integrating (3.28) gives 

1 
T5yS| = £ T( ~~ £ 

\< . i& m  1 z i< j s m  +  

+(-1)"—=r ---------  (3.29) 
t - z l< j< k * m  A i  +  A J  +  £  

1 

If, at the same time, all units are identical 

In this case the MTTF has the form 

(3,30) 

where T is the MTrF of a single unit. For large m, a well-known approxima- 
tion for a harmonic set can be applied: 

Tsysl « r(ln m + C) (3.31) 
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where C is Euler's constant: C = .57712.  
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Formula (3.30) can be explained in a simple and understandable way with 
the use of the memoryless property of the exponential distribution. At the 
moment t = 0 the system of m active redundant units has a failure rate 
Am = mA. The first failure occurs in a random time Zm with an exponential 
distribution with parameter Am. After this failure the system consists of 
m — 1 units, so its failure rate is now Am_, = (m — 1)A. The second failure 
occurs in a random time Zm_, with an exponential distribution with parame- 
ter Am_,. And so on, until the last unit has failed. 

The total time of a successful system's operation consists of the sum of all 
these intervals, that is, Tsysl = E{Z, + Z2  + • • • +Z m) .  Obviously, this result 
coincides with (3.30). 

From (3.30) and (3.31) it follows that, at least theoretically, the use of 
active redundancy potentially allows one to construct a system with an 
arbitrarily large MTTF value. Of course, one needs to understand that such a 
mathematical model is strongly idealized. First of all, one must take into 
account the necessity to use a switching device which itself possesses a 
nonideal reliability. On the other hand, even with absolutely reliable switch- 
ing devices, the growth of the system's MTTF is very slow. Several examples 
are shown in Table 3.1. 

Hardly anybody would ever use such redundancy (even with absolutely 
reliable switches!) to improve the MTTF. But this kind of redundancy can be 
successfully used if one considers other indexes of reliability, for example, the 
probability of a system's successful performance. In this case if the initial 
value of q( t)  is much less than 1, each new parallel unit decreases the 
system's unreliability level by the order q. 

Note that for a nonexponentially distributed TTF with an increasing failure 
rate (i.e., for "aging" units), the growth of a system's MTTF" is even slower. 

3.3.2 "k out of n" Structure
For some technical schemes one sometimes considers a special structure—the 
so-called "/c out of n" structure, or voting system. In engineering practice 
such a system almost always consists of identical units. In this case the system 

TABLE 3.1 Dependence of a System's MTTF on Its Units' MTTF 
Number of Redundant Units Relative Growth of the System 

MTTF 
0 1 
9 2.88 

99 5.18 
999 7.48 

10'° 23.6 
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operates successfully if at least k out of its total n units are operating. The



 

11 6 UNREPAIRABLE SYSTEMS 

structure function of the system is illustrated here by a simple example with 
"2 out of 3": 

f { x t ,  x 2 ,  X 3 )  = A x 2  A jr3 V X ]  A x 2  A X3 V JCj A X 2  A JC3 V jcj A x 2  A 
X 3  

(This case is most often encountered in engineering practice.) 
In general, the structure function of a "k out of n" structure can be written 
in the form 

¥>(X) - 
l £ ( £ «  

where 

+ \0 otherwise 

We will use an explanation based on combinatorial methods, avoiding the 
structure function. Considering a "k out of n" structure corresponds to the 
binomial test scheme, so 

Pr {v=j} = J") pJq»-t 

and, consequently, the probability of a system's failure-free operation equals 
Psyst(0 = Pr{^M =  L ("W"' 0-32) 

puo - i - < k }  =  \ -  z  (7W-' (3-33) 

For a highly reliable system where q l/n  from (3.33) one can easily write 

The task of finding the MTTF of such a system for arbitrary unit failure 
distributions is not simple. One may use any numerical method. The only 
case where it is possible to obtain an analytical result is the case of the 
exponential distribution p( t) = exp(-A/). 
We will not integrate (3.32), but we will use the method described above. 
The system starts with n operating units and operates, on the average, 1/«A
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units of time until the first failure. After the first failure, there are n — 1 
operating units in the system. They work until the next failure, on the 
average, 1 /(« - 1)A units of time, and so on until the (k + l)th failure has 
occurred. Thus, the system's MTTF equals 

For an arbitrary distribution p ( t \  one should use a direct numerical integra- 
tion of PrVM) or a Monte Carlo simulation. 

3.4 MIXED STRUCTURES 

Pure series or pure parallel systems are rarely encountered in practice. 
Indeed, mixed structures with series and parallel fragments are common. For 
example, a duplicate computer system may be used for monitoring a produc- 
tion line. Each of these two computers, in turn, is represented by a series 
structure, and so on. 
A combination of series and parallel structures can generate various mixed 
structures. First, let us consider "pure" series-parallel and parallel-series 
types of structures (see Figures 3.6a and 3.7a) because they will be of interest 
in further discussions. 
For these structures the following expressions can be easily written. For a 
parallel-series structure, one has 

 

where 

 

or 

 

(3.34) 

where N  is the number of units in a series subsystem. 
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(b) 

Figure 3.6. Parallel-series structure: (a) in an aggregate form; (b) in a detailed form. 

For a series-parallel structure, one writes 
/vo = E{ n *,-(*/)} 

jvp( o- e n  A x 2 i  a  a x M i \  
hsisN  > 

-  n  ( i -  n «#) (3.35) 
1 I s i s M  '  

where M is the number of units in a parallel subsystem and = 1 — p. 
In conclusion, we make the following remark. If we would like to improve 
the reliability of a series system of N  units using redundancy, there are two 
ways to do so. The first way is to use M redundant systems as a whole. The 
second way is to use M redundant units for each of the main units (see 
Figure 3.8). 
Comparing (3.34) and (3.35), one can find that it is more effective to use a 
series-parallel structure rather than a parallel-series structure. In particular,  

 

(a) 
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(b) 
Figure 3.8. Parallel-series (a) and series-parallel (ft) structures of size  

 

(a )  

 

(b) 

Figure 3.7. Series-parallel structure: (a) in an aggregate form; (ft) in a detailed form. 

 

(a) 

 

N x M .  
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for identical units 

1 - (I *~PN)M £ (1 - qM)N (3.36) 
From Figure 3.8 one sees that in a series-parallel system there are more 
"degrees of freedom," more possibilities to avoid failures. To check this 
statement, we suggest the extremely simple and clear proof of the statement 
based on the inequality 

max min xu < min max xu (3.37) 
I sisM IS'SM  I 

This inequality means that under any splitting of the set of xly.'s by subsets, 
the minimal value among the maximal values for all these subsets is always 
larger (not smaller) than the maximal value among the minimal values. 
Now, using this fact, one can prove the statement. Notice that if is the 
random TTF of the yth unit in the *'th subsystem of series units, then the 
random TTF of this subsystem is 

fi= min (3.38) 

and, consequently, 
£ps = max ft (3-39) 

1 iisJU 
is the random TTF of the parallel-series system as a whole. 
Consider the same set divided in such a way that is the random 
TTF of the jth unit in the ith subsystem of parallel units. Then the random 
TTF of this subsystem is 

max ft, (3.40) 
1 S/fim, 

and, consequently, 
£SP = min ft (3.41) 

I  < . i s N  

is the random TTF of the series-parallel system as a whole. 
A substitution of (3.38) to (3.41) in (3.37) gives, for any sample of r.v.'s ft/f 
that £SP > £PS. From this it automatically follows that 

Tps = eUps} ^  E{£sr}  = T s p  
and 

W) = *MfPS P'USP ^  ')  - PSPW 
For a "long" series-parallel system (when N > 1), the Weibull-Gnedenko 
distribution might be applied if the system's reliability is relatively high. 
Consider a system of independent identical units. The distribution of the 
TTF of each parallel subsystem is such that M is the first order of the 
derivative which differs from 0. As we considered in Section 3.1, in this case
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for small t0 and relatively large N, the Weibull-Gnedenko distribution can 
be used for the description of the TTF of the system as a whole. 
Thus, any series-parallel or parallel-series system can be understood as a 
two-pole network of a special type. This network possesses the so-called 
reducible structure. A sequential application of the following procedures—(a) 
replacement of each series connection by a single equivalent unit and (b) 
replacement of each parallel connection (or "k out of n" structure) by a 
single equivalent unit—allows one to transform any reducible structure into a 
single equivalent unit. 
Such a reduction is very convenient for the calculation of the probability of 
a system's successful operation. For instance, consider the structure shown in 
Figure 3.9. This figure depicts the sequential steps of the system reduction. 
We hope that the figure is self-explanatory. 
Using a similar procedure in an 

 L<iK!>J 

L 

!  

<D-Gs> 
I 
—©— 

 

2 3 
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Figure 3.9. Examples of the reduction of a complcx structure with parallel and series 
inner substructures to the simplest kinds of structures. 
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inverse way, one can construct various reducible structures from a single 
equivalent unit by a detailed disaggregation at each step. Examples of 
irreducible structures (different arbitrary networks) are presented in a later 
chapter. 

3.5 STANDBY REDUNDANCY 

A number of systems have standby redundant units. These units are not 
included in an "active" system's structure. Moreover, these redundant units 
cannot fail before they occupy an active position. A standby unit instantly 
replaces its corresponding main unit after the latter's failure. Generally, such 
a replacement does not occur instantly, but most mathematical models 
assume that the time of the standby unit's switching into a main position is 0. 

The spare parts supply problem is usually analyzed in terms of standby 
redundancy. For this problem the sufficiency of the stock of spare parts for 
replacement (or repair performance) is considered rather than the system's 
successful operation. (Usually, in this case, one considers the inventory 
system itself. But for simplicity of terminology we will use the terms system 
failure and instant replacement in further discussion,) 

For standby redundancy it is convenient to speak about "a socket" and a 
set of units which are put into it one by one after each failure. All units for 
the socket are considered to be identical. In reality, a standby unit of some 
type must be able to replace the main unit only with a unit of the same type. 

3.5.1 Simple Redundant Group 
If a system consists of a single main unit and m — 1 standby units, we call it a 
simple redundant group. In this case the random time of the system's 
successful operation 0m equals 

Z i, 
I 5i<.m 

Thus, a system's MTTF can immediately be written as

 

t <is«

 
The MTTF does not depend on the switching order of the steady units. If all

 

Tw = E{9J - E = E m) = E 7] (3.42) 
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units of the system are identical,

 
Tiyst =mT 

where T  is the single unit's MTTF. 
Jt is clear that standby redundancy is much more effective than active 
redundancy: here the growth of rsyst is linear, and for the active redundancy 
case the growth is only logarithmic. But again we would like to emphasize 
that this mathematical model is a very idealized picture of reality. Remember 
the well-known property of the mean: formula (3.42) is valid even if the 
standby units are dependent. 
The probability of a system's successful operation Pt(r) can be written as 

= ?v{em ^ f} = Pr( E = fM^-, (3.43) 
^ Uism ' 

The system's TTF, = 0in, represents the sum of independent r.v.'s. As we 
know from Chapter 1, in this case 

=  1  -  F * m { t )  =  f'P^-'Kt - x) d F ( x )  Jo 

where P^Jit) is the probability of a failure-free operation of the system with 
k — 1 standby units (k units in the redundant group). 
As known from Section 1.3.1, only a very restricted number of d.f.'s allow 
one to find convolutions in convuluted form. The reader can use the above- 
mentioned results for probability calculations. Of course, if the number of 
standby units in the redundant group is large, a normal approximation based 
on the central limit theorem (see Section 1.3.2) can be used. 
In engineering practice, especially in electronics, the most frequently used 
distribution Fi t)  is exponential. The standby group's random TTF has an 
Erlang d.f. of the wth order, and the probability of a failure-free operation is 

= E E = E 
(3.44) 

For A( 1 the approximation can be written as 

(Af)~ 
pv«(0 - 1 -------------- r (3.45) 

m \
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If A/ is not too small, the following inequality is true:

 
(AO2  

(« + l)(n + 2) 

(A/)2 
 - - - - - - -   +  . . .  
(n -f  I )2

 
(3.46) 

This can be used for approximate computations. The substitution of (3.46) 

into (3.45) produces an approximation of Psm(t): 
— A t  

e

 
Note that this value is smaller than the exact value; that is, it delivers a 
"guaranteed result." 
In conclusion, note that standby redundancy is more effective than active 
redundancy (at least in theory!). This follows from the simple fact that 

f (standby redundancy) = ff a max ft = £ (active redundancy) 

The equality is never attained because of the strongly positive values of the 
£'s. (Of course, we are considering the case where rn > 1.) Of course, the 
reader should never forget that standby redundancy, in practice, requires 
some time to switch a unit into an active regime. 
Finally, we would like to point out the relationship between the MTTFs for 
series and parallel systems of two units. (The result can easily be expanded by 
induction to an arbitrary number of units.) Suppose that one unit has a 
random TTF f, and another has It is clear that 

+ £2 = min(f„f2) + max(ft,f2) 

because one of these r.v.'s is obviously larger and another is smaller. Taking 
the mean of both sides of the equality, one gets 

 
+ +  • *  

n + 1 

+ < 

 
e 
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E{£, = E{min(f„e2)} + E{max(f„ £2»  
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Now we can see that these values are, in order: 

* The first is the MTTF of a duplicated system of two standby redundant 
units which are working sequentially one after another. 
* The second is the MTTF of a series connection of these units. 
* The third is the MTTF of a parallel connection of these units. 

In particular, when both £'s are exponentially distributed, one can obtain a 
convenient expression for the MTTF of a parallel system of two different 
units; 

11 1 
Tt + ~k2 = Aj + A2 + 

or, in final form, 

1 1 1 
T —  _  i  ___  _  _______  
1 parallel i v i l 

A j A2 A J A 2 

Of course, the latter expression has such a simple form only because both 
distributions are exponential, 

3.5.2 "/r out of n" Redundancy 
The use of standby units for several main units is very common. For example, 
consider a system which includes k main units. To support the system, there 
are n - k spare units which can replace any main unit of the group. This 
method of redundancy is very efficient because of the large number of 
"degrees of freedom" in the usage of standby units. Indeed, no unit is 
predetermined to replace some specified main unit. (We repeat that this 
mathematical model is mainly used to describe a spare units supply system.) 
For standby redundancy the formulas for P^it) and rsyst cannot be 
written in a convoluted form except for the case of an exponentially dis- 
tributed random TTF of the units. We may write the result basing our 
explanation on simple arguments. 
Recall again that we assume that the units are independent. The system 
consists of k identical units and has n - k standby units. The system failure 
rate equals kA. After a first failure the failed unit is replaced by a redundant 
unit and the system continues its operation. The random TTF equals r, and 
has an exponential distribution with parameter k \ .  The MTTF in this case 
equals T/k where T is the MTTF of a single unit. The memoryless property 
of the exponential distribution and the independence of the units ensure the 
exponentiality of the system's random TTF. Hence, a random period of a 
system's successful operation consists of the sum of n — k + 1 i.i.d. TTFs.  
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(One period to the first system failure and then n - k replacements of spare 
units.) 
Therefore, the system's MTTF is 

T 
Tsyst = E( £ m>n U — (rt -  k  + I ) —  (3.47) 

The probability of a system's successful operation when its units have 
exponential distributions is 

t \ „ (A ktV /W«(0 = Pr E min U E ^-e"**' (3.48) 
M s i s n - t t l  ISysAr ) Ojsisn-fc + t 

In general, the problem is very complicated. The most reasonable way to 
calculate accurate values of the reliability indexes Ps y % t( t)  and 7~syst is via 
Monte Carlo simulation. 
Below we give a simple method for obtaining lower and upper bounds for 
these reliability indexes. It is clear that the best use of the standby units 
would be in a so-called "time-sharing" regime. Here the MTTF of the "/c out 
of n" structure could be calculated as the total operation time of all units 
divided by k. The upper bound for rsys, follows: 

T^ < E &} = \T (3.49) 

Comparison of (3.47) and (3.49) shows the difference between the accurate 
value of Tsyst for the exponential distribution and its upper bound. An upper 
bound for Psyst(f) can be obtained via the use of similar explanations: 

/ W O s P r f i  £  £  ^  Pr{ E * *'} (3-50) 
V K 1 SI^/I I  1 sisn  '  

To obtain lower bounds, we use the fact that the joint use of redundant 
units is more effective than an individual one. Let us equally allocate all 
redundant units among k initially operational units of the system. Then we 
have k  series subsystems, each with n/k  redundant units. 
If n/k  is not an integer, the procedure will be slightly more difficult. 
Denote the integer part of n/k  by m*  = [n/k] .  Then a = n — km* subsys- 
tems have m* + 1 redundant units and all of the remaining b = k - (n — 
km*)  ones have m*  standby units. Thus, a lower bound for P s y s (( t)  is 

> 1 - [1 - F*m*(0j'[l - F*^ + l \ t)] '  (3.51)  
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where F i t ) is the d.f. of the random TTF of a single unit. A lower bound of 
the MTTF can be found by integrating (3.51). If the coefficient of variation of 
Fi t )  is small, (3.51) can be reduced to 

where the previous notation is preserved. 

3.5.3 On-Duty Redundancy 
The use of standby redundant units in an operation requires a special regime 
on duty. This regime is intermediate between the two previously considered 
types: active and standby. 

We illustrate the subject with several examples. An electronic monitor 
needs at least a portion of a second to be ready to display information. A 
redundant computer in a control system must be supplied with current 
information before it is switched to an operational regime. Usually, the unit 
on duty has a regime which is lighter than the working unit but harder than a 
total standby one. Practically, there is no realistic input data for this on-duty 
regime and, moreover, even a confident knowledge about the process is 
absent. Even with the appropriate input data, the problem of a reliability 
evaluation in this case is hardly solvable analytically under general assump- 
tions. As a rule, Monte Carlo simulation allows one to obtain numerical 
results. But even in this case a lack of input data makes the result very 
problematic. 

The only mathematically acceptable model arises when all units have an 
exponential distribution of their TTFs: the main ones with parameter A, and 
the redundant ones with parameter a A where a < 1. In general, a system 
may have on-duty units which are used for the replacement of failed main 
units and standby units which are switched into an on-duty position. 

Consider a system of k main (operational) units, / on-duty units, and m 
standby units. Let N = k + I + m. For this case one can build the transition 
graph in Figure 3.10. On the basis of this graph, the following system of 

i 
t t i t 1 t 

N  N - l  N-m N-m-1 N- m -1 + 1 = ft+1 N-m-1= k  

Figure 3.10. Transition graph for an unrepairable system of k main, / on-duty, and 
m standby units.  
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differential equations can be written: 

P' N( t)  = +  /«A] 

PN-M = ~PN-  I('H*A +/«A] 

"Pw-«(')[*A + l a \ ]  

+  ( / -  1)«A] 

K + I(0 = -P*+I(0[*A +«A] 

P*(0 = -Pk(  O ^ A  

The initial state for this process is the system state 
with all operating units, so 
pff = 1. The system MTTF can be found immediately 

from the transition 
graph in Figure 3.10: 

1 1 
T'y"X = m A( A: + /a) + A ( *  + (y  -  ! ) «)  

The method described in Chapter 2 can be used to find the probability of a 
failure-free operation. But we avoid writing bulky and boring expressions. 
The obvious upper- and lower-bound models can be written with common 
sense: one for an upper bound (see the transition graph in Figure 3.11), and 
another for a lower bound (see Figure 3.12). The first graph contains all 
transition intensities equal to the maximal one, A( k  +  a l ) .  The second one is 
constructed under the observation that as soon as at least one on-duty 
redundant unit has been spent, all of the remaining units become standby 
units. 

$ i % t i 3  3  i 

N  N - 1  N - m  N - m - I  N - m - 1 + 1  N - m - 1  

Figure 3.11. Transition graph for obtaining the lower bound.  

PN-m(0 = 

PN-m-1(0 

=  

PN-m -l+  l(') = 

PN-m-liO =  
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N  N - \  N - m  N - m - 1  N - m - 1+1 N - m - 1  

Figure 3.12. Transition graph for obtaining the upper bound evaluation. 

For the graph of Figure 3.11, we can write the result immediately without 
solving the system of differential equations. Indeed, we have the sum of 
m  + I  i.i.d. exponential r.v.'s with means equal to 1/A( k  +  a l ) .  Therefore, 

JWO = L 1 V ., J e-***^" 
1 <.j<,k + l J- 

For the second case we have the sum of m exponential r.v.'s with means 
1/A(fc + a l )  and of one exponential r.v. with mean 1/Ak: 

where

 
+ al) t] \_u k  +  

A(k + al) t  
J\

 
and

 
(A la) 1  

^(0 = E 
0&jsnt+l J"  

These boundary estimates are given not as essential results but rather as 
examples of the possible thinking involved in finding simple solutions to 
complex problems. 
We repeat that on-duty redundancy, in general, is a real problem in 
practice, not because of the solution difficulties but because of the lack of 
information. Usually, nobody has the slightest idea of the kind of distribution 
parameters (or even the distributions of the TTFs themselves!) which a unit 
in an on-duty regime has. 
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3.6 SWITCHING AND MONITORING 

Traditional mathematical models of redundant systems reflect an idealized 
redundancy: no switching device, no operational monitoring, and no mainte- 
nance are investigated. These idealized mathematical models help a re- 
searcher to understand the redundancy phenomenon but they could also lead 
to very harmful mistakes if these models are used without corrections. 

For example, the mathematical formulas show that it is possible to reach 
any specified level of system reliability with the use of redundant units. But 
engineering practice convinces us that real system reliability improvement 
depends on the reliability and quality of the monitoring and switching 
devices. Both of them are usually far from ideal themselves. 

Of course, taking into account all of these various factors will lead to more 
complex and less elegant mathematical results. But in engineering, the results 
must be not only elegant but also useful! 

3.6.1 Unreliable Common Switching Device 
In practice, active redundant units are not really operating in parallel. In the 
case of electronic equipment, the simultaneous presence of several output 
signals from all redundant units could lead to a real mess. In the case of an 
information system, the superposition of output information from several 
computers can produce false signals. Usually, active redundant units are 
operating in an on-duty regime although their reliability characteristics may 
not be distinguished from the main unit. All functions of monitoring, switch- 
ing, and special interface duties are performed by some special device which 
we call a switching device (SD). Of course, a model of such a group of 
redundant units almost coincides with the model of a group of active 
redundant units. But at the same time one needs to take into account the 
presence of the SD. 

Consider a group of m  redundant units which uses a common SD for 
switching from a failed unit to an active redundant one. First of all, note that 
the SD itself might be one of two main types: 

1. The SD is always necessary for the normal operation of the redundant 
group as a whole. 

2. The SD is necessary only at the moment of switching performance. 

In the first case, the SD can be, for example, an interface between the 
redundant group and the remaining equipment. It can be of a various 
physical nature (electrical, mechanical, hydraulic, etc.). The successful opera- 
tion of the redundant group depends directly on a failure-free operation of 
the SD.  



 

SWITCHING AND MONITORING 141 

In the second case, the SD becomes necessary only at the moment of 
switching. Even if the SD has failed, the system can successfully operate until 
the main unit fails. But then the system will have failed even if there are 
available redundant units. 

Necessary Switching Device Denote the random TTF of the ith unit of 
the redundant group of m  units by ft and the random TTF of the SD by 0 .  
For the first case, we can write that the random TTF of the redundant group 
£ is min(0, max ft). For the redundant group as a whole, 

= PS D( t)Pm( t)  (3.52) 

where Pm(t) is the probability of a failure-free operation of the redundant 
group. In other words, for such an SD, the redundant group can be investi- 
gated as a simple series-parallel system (see Figure 3.13). The MTTF for this 
case can be generally found by integrating P^O) as determined 
in (3.52). 

 

Switching Device Using Only for Switching The second case should be 
considered in more detail. There arc two possibilities for an SD failure: 

1. The SD may fail during the time of the system's operation. 
2. The SD may fail with probability Q only at the moment of switching, 

independent of the time when it has occurred. 

Switching Device Failure Depending on Time Consider a redundant 
group of identical and independent units with an exponential distribution of 
their random TTFs. The probability of a successful operation of the redun- 
dant group is denoted by PR G( t) .  The distribution of the switching device 
TTF FS D( t}  is arbitrary. There are two possibilities for the system's opera- 
tion:  

 

Figure 3.13. Approximate representation of the duplicated system with the switch as 
a series connection of the two redundant units and a non-ideal switch. 



 

11 6 UNREPAIRABLE SYSTEMS 

Notice that both cases—active and standby redundancy—are equivalent, 
in the sense of the general formula (3.53), under the assumption of exponen- 
tially of a unit's TTF. These conditions can be written as 

PU O^sdWUO + f'PRG{x)e-M'-xydFSD(x) (3.53) 

where PSD(0 = l - FSD((). 
The exponentiality of a unit's TTF permits us to use (3.53) for both active 
and standby redundancy. The expressions for the redundant group, PRG(t), 
are different, but the residual time of the remaining unit after an SD failure 
is exponential in both cases. 
From (3.53) one sees how the reliability of an SD influences the reliability 
of the system as a whole. 
A system's MTTF Tsyst can be obtained only by integrating the correspond- 
ing P^O). Now we would like to consider some limiting cases. If TnG » TSD, 
then TsyN( equals 7*RG for all practical purposes. If TRG TSD, then Tsys, 
approximately equals TSD + T, where T is the MTTF of a single unit. 

Example 3.1 Consider a duplicate system with an active redundant unit. 
The distributions of the random TTFs for the unit and for the SD are 
exponential with parameters A and ASD, respectively. Find the probability of 
a failure-free operation during a time interval t: 

+ 1 - (1 — e~jkJC)4]e_A(,~*)ASDe~Asi>*dx 

This solution can be easily obtained in closed form. 

For a unit with an arbitrary TIT" distribution, the solution is not so simple, 
though its general form does not seem especially awkward. (Very often—in- 
cluding this case—a "simple" form of a formula hides numerical difficulties 
which arise during computation!) 
Consider active redundancy. Assume that the current operating unit of the 
redundant group is chosen randomly. The residual unit's TTF begins from 
the moment .r (the SD failure). Equation (3.53) transforms into 

W) =^SD(0(X - [«(<>n+JK0j£(i - M-Or'l^y^sDt*) 

                                            
4 The SD fails at some moment x < t, the redundant group has not 

failed until x, and, after this moment, the current main unit does not 
fail during the remaining time t — x. 
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(3.54) 
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where p i t )  is the probability of a unit's failure-free operation and q i t )  —  
1  - p i t ) .  

For a standby redundant group, the expression is slightly bulky: the 
conditional distribution of the residual time of a unit which appears in the 
operational position at the moment x  depends on the number of failures 
which have occurred before that moment. We obtain an approximation by 
considering the process of failures before x  as renewal. 
Then we can write 

^syst( 0 ~ f ) ^siandhy RC( 5  )

                                            
5 The first unit chosen at random operates without a failure during 
period t .  
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f X p ( x  - y ) p ( t  -  x \ x  -  y ) d H ( y )  
J f i

 
^Sd( 0 ^standby Rg( 0 

+  ( '  
f l p { t - y ) d H ( y )  Jo ^o

 
where //(() is the renewal function, Jn other words, H i t )  d t  is the probability 
that some failure has occurred in the time interval [ t , t  +  dt} .  We use H it)  
though we observe a finite sequence of r.v.'s but not the point renewal 
process. We should remark that, for highly reliable systems, this approxima- 
tion is quite good. 
Both cases also allow the following approximation: 

P^  =  p ( t ) + q { t ) P s o ( t ) P^ - n U)  (3.56) 

where P^' is the system with an SD and a redundant group of size k .  
This approximation gives a lower bound on the probability of interest 
because we assume that the SD operates successfully during the entire period 
t. As a matter of fact, an SD failure may not lead to a 
system failure. 

3.6.2 Common Switching Device with Unreliable Switching 
Consider an active redundant group of n independent and identical units. 
The system's successful operation is possible in two situations:  

 

+ I Aland by RC,( X ) '0 
dx 

 

dFso(x)  (3,55)
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This permits one to write a recurrent relationship in the form 

=  p ( t )  +  R f 'p£-»(t -  x \x)  d q ( x )  (3.57) 

where R  is the probability of a successful switching. 

For a standby redundant group of m independent and identical units, the 
system's successful operation is possible in two situations: 

1. The first unit chosen at random operates without a failure during 
period 

2. The first unit chosen at random fails at some moment x < t, the SD 
performs a successful switch, and from this moment on the new system 
of m — 1 redundant units and SD perform successfully until time t. 

This description permits one to write the recurrent relationship 

- x ) d q { x )  (3.58) 

where P^(t) is the probability of a successful operation of the active 
redundant group of k units during a time interval f. 

3.6.3 Individual Switching Devices 
We assume that each unit of a redundant group may be chosen to replace a 
failed main unit at random. After the main unit's failure, an individual SD 
associated with the next unit in the redundant group may successfully 
perform the next connection, or it may fail. Assume also that a unit's failure 
leads to a corresponding SD's failure. The absence of an operating unit with 
an operating SD leads to the system's failure. As follows from the above 
description, the SD is necessary for the unit to operate. 

Switching Devices That Fail with Time For active redundancy a system 
operates successfully in the following situations:  
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The probability of a system's successful operation can be written as 

1

 
Pi0 + /'[ L *2&t-*\*) (mk *)  

1 SM- I

 
where pit) = pSD(f)p((). 
For a standby redundant group, the expression is simpler. The following 
are situations wherein a system operates successfully: 

1. The first unit operates successfully. 
2. After its failure there is a group of m — 1 redundant units with a 

random number of operating SDs; this new system operates successfully 
during the remaining time. The random number of operating SDs 
appears because of SD failures during the on-duty regime. 

The probability of a system's successful operation can be written as 

+ jf'{ Z o * ~ k  6 )[pSD(*)l*[<?sD<*)r-*"1} (3.60) 

Of course, (3.59) and (3.60) can be practically utilized only with the aid of a 
computer. 

Switching Devices That Fail at the Time of Switching First, consider an 
active redundant group. There are again two situations where the system can 
successfully perform its operation:  

                                            
6 The first unit operates successfully. 

 
M*) (3.59)j  p k ( x ) q ' " - k - \ x )  
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that the new system of — k redundant units must successfully operate 
during the remaining time period t — x. 

This verbal description corresponds to the expression 

« ( o - p ( o + * / f  E ("rMipwi'irf*)]""7-1 

•{ E Q kP}&{ t-x\x) \dq{x)  (3-61) 

where Q = 1 - R. 
When we consider standby redundancy, the system can successfully oper- 
ate if: 

1. The first unit operates successfully. 
2. After its failure at some moment x, there is a group of m — 1 standby 

units. In some order we try to switch each of these units to the main 
position until a first successful switching occurs. The number of at- 
tempts before success is distributed geometrically with parameter R. 
After k SDs have failed during switching, a successful attempt occurs 
(k is random). The new system of m - k - 1 redundant units must 
successfully operate during the remaining time interval t — x. The 
appropriate probability is 

PZ^pO+ R f '  E Q k P ^ ~ k ~ n ( t  - X ) d q ( x )  (3.62) 
0 ls*sm-l 

The MTTF for both systems can only be found numerically. Note that for 
the exponential distribution and large m, (3.62) can be approximated by 

= (3.63) 

and the MTIT can be approximated by 

7;ys, = \ (3-64) 

Both (3.63) and (3.64) are obtained under the assumption of the correctness 
of the application of the result of the random summation to exponentially 
distributed r.v.'s. (Note that in our case we consider a fixed number of 
Bernoulli trials.)  
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This brief review does not, of course, cover the entire theme. There are 
various cases in practice which lie outside the scope of this material. Our 
main purpose was to display some inferences in this area and not to give the 
reader a "cook book." 

3.6.4 Periodic Monitoring 
In this section we do not try to examine the monitoring problem but rather 
give a simple example of the possible influence of monitoring on a system's 
reliability. Above we considered a redundant system with the possibility of an 
instant replacement of a failed main unit by a redundant one. In many 
practical cases such a situation is unrealistic. In many cases the state of the 
units, main or redundant, can be checked only at some prespecified mo- 
ments, usually at periodic intervals. 

Consider a simple system consisting of two parallel units and one standby 
redundant unit which cannot be switched immediately to either of the 
parallel units. This redundant unit can replace either failed parallel unit only 
at some predetermined moments t s  — sA, s  = 1,2,... . At these moments 
the state of the two parallel units is checked and a failure may be detected. 
(In other words, the monitoring of the units is not continuous.) All units are 
assumed identical and independent, and their TTF distributions are assumed 
exponential with parameter A. 

The system is considered to have failed if: 

1. Both parallel units have failed inside a period between two neighboring 
check points, even if there is a standby unit. 

2. There are no units operating at some moment. 

Consider the probability of a system's failure-free operation during N 
cycles. For this case the following discrete recurrent equation can be written: 

nyst(A0 -  1) + 2pc,[ l -  Q ( N  -  1)] (3.65) 

with Psys,(0) = 1. Here Q ( K )  is the probability of a failure-free operation of 
two parallel units during K  cycles, QiK)  =  1 -  [1 -  pK]2, and p =  1 -  e~X A .  
Equation (3.65) can be solved numerically. 
For the system's MTTF, one can write 

Tml = p 2 [ A  +  7^3 + 2pq[A + T2]  + qlA* (3.66) 

where after a successfully operating cycle of length A the system starts its 
failure-free operations from the beginning. A cycle with two failures contains 
a portion of useful time which is denoted by A*. Setting A* = A, we can write
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the approximation 

- A + p2T^ + 2pqT2 (3.67) 

where T2 is the average number of successful cycles of the two parallel units. 
We essentially use here the Markov nature of the model. Even in this 

simple case we have no strong results in a simple form. But we see that 
monitoring essentially changes the operation process and, consequently, 
changes the reliability indexes of the system. 

Equations (3.65) and (3.66) are complicated enough to make some quanti- 
tative conclusions, but wc consider two simple limiting cases. It is clear that 
A -> 0 leads to the continuous monitoring model, and, hence, the system 
reverts to a system composed of two active redundant units and one standby 
redundant unit. Incidentally, the MTTF of such a system equals 

1  1 1 2  
= 2A + 2A + A = A 

If, on the contrary, we assume that A -»■ oo, it means that factually the system 
has no redundant units at all because they will never be used. In this case 
rsys( = 3/2A. Thus, for intermediate A's, the value of Tmt lies somewhere 
between the mentioned values. 

It is clear that for a series system of units with an exponentially distributed 
TTF, it is totally unreasonable to have any redundant group which can be 
switched only after periodically checking the system's state. (We consider 
reliability indexes such as the probability of failure-free operation or the 
MTTF.) 

3.7 DYNAMIC REDUNDANCY 

This interesting redundancy class is very close to the classical problems of 
inventory control. Consider a redundant group of n units. A part of them 
might be used as active and another part as standby. There is a possibility of 
checking the currcnt state of the active units only at some predetermined 
moments. Thus, there is no feedback information within the interval between 
two neighboring check points. The system can be found to be failed at a 
moment of checking even if there are some standby units available to be 
used. The following questions arise: How many units should be reasonably 
switched between two checking moments? How does one refill the active 
redundant group? 

From a qualitative point of view, it is clear that it is not reasonable to 
switch all redundant units to an active state: the reliability at the first stage of 
operation will be high but the redundant units will be rapidly spent. To 
switch a small number into the active redundant group is unreasonable 
because a system failure can, with a high probability, appear before a current 
check. 
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This kind of problem may appear in connection with nonmonitoring 
technical systems, for example, space vehicles designated for an investigation 
of the solar system. The time of response can be excessively long, and it 
becomes impossible to control the situation, so that one needs to find some 
prior rule of autonomous switching of the redundant units over time without 
external signals, 

A possible solution to the problem is to choose moments of switching spare 
units into acting positions. We will discuss the problem of finding the optimal 
moments of switching in Chapter 11. Now we only consider how to calculate 
the reliability indices for such a system. 

We call such a kind of redundancy a dynamic redundancy. We will only 
investigate dynamic redundancy with exponentially distributed unit ITFs. Ail 
units are also supposed to be identical and independent. 

3.7.1 Independent Stages 
The system possesses n identical and independent units to perform its 
function up to some time /0. Then an initial group of units, n0, is installed as 
an active redundant group and ail remaining units are placed in a standby 
regime. The duration of the system's operation is divided into k stages. 
There are moments 0 < T, < T2 < "" < RK < t0 when the new group of 
standby redundant units are to be switched into an active regime. When we 
consider independent stages, such switching is performed at some predeter- 
mined moments. Such a procedure is called a programmed controlled switch- 
ing. The previous group of units is expelled from the operation with no 
consideration of their real state. (As a matter of fact, no active units may fail 
before the beginning of the next stage.) In this case all stages are indepen- 
dent. Such a situation arises if the deployment of previously used units for 
use at the next stage is a difficult or even impossible engineering task. 

In this simple case the probability of a system's successful operation during 
a time interval equals 

n  { l - k W P }  (3-68) 

where Qjitj) is the probability of a failure-free operation of a single unit. 
The calculation of a system's MTTF is not very simple in this case. Assume 

that a failure of the system occurs at some stage k. This means that the 
system operates successfully for k — 1 stages and during some random time 
within the last stage. The A:th stage duration equals Ak = rk — The 
conditional value of a failure-free operational time during stage k (denote 
this by Ck) is 

f* -  {  max t, \A k)   
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This conditional mean time can be found in the standard way, 

f  p(x)dx h _________  
p( A) 

and only the group of units at the last stage operates until complete 
exhaustion of all redundant units. 

Finally, for the 
system we have

 
(3.69) 

Once can use an approximation by replacing £k> with Ak or one can obtain 
lower and upper bounds by substituting £k = 0 and (k = A*, respectively. 

3.7.2 Possibility of Transferring Units 
A more interesting and more complicated case arises if one considers the 
possibility of using all nonfailed units at some stage for the next stage. Of 
course, in this case it is possible to analyze only the systems whose units have 
an exponentially distributed TTF. If stage j has a duration A a n d  there are 
m units in the active redundant group (including those from the previous 
stage), then the probability of a failure-free operation is given by 

^j(Aj) = 1 — [l — exp(—AAj)]"' 
After the first stage of a successful operation, the system has a random 
number, say y, I <;' < «„ of operating units. These units can be used at the 
second stage, starting at the moment T, with n2 new units switched in by the 
prior rule. Thus, the total number of units acting at this stage equals n2 + j. 
The probability of exactly j units {j > 0) being transferred to the second 
stage is 

i>i~I 
PWi 

where p = 1 — q. If the system performed successfully during the first stage, 
j units (;' > 0) leave to operate at the sccond stage. At the same time, at 
moment r,, new n2 units are switched into the system. So, for a two-stage 
process with « ~ «j + n2 ,  one can write the probability of interest as 

PU*2) = E ("2
(
+J

 (3-70
) 

m*) = 

e (a,) n P(^) E A,. + E{(J} 
t sis/-! E{ max 

V1ii^rti >  

J  
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Similarly, the expression for a system with three stages can be written as 

£  h W - '  £  fBa+y)p5fl2"1+J-'(i-«3"s+') 
1 W / 1 \ 5 1 

(3.71) 

Of course, equations such as (3.71) might be considered as the basis for 
computational algorithms, not for hand calculations. At the same time, it is 
possible to write a recurrent equation which could be used for computer 
calculations: 

/'sys«(folnt;»)= £ 7  ^ ' ^ . ( ' o - +  ; ; » - » , )  ( 3 - 7 2 )  
1 \ 3 I 

Notice that in such systems the most important thing is to define the 
optimal intervals Ak and the number of units rij that should be switched each 
time. A simple heuristic solution of this optimization problem is presented in 
Chapter 13. 

3.8 SYSTEMS WITH DEPENDENT UNITS 

In the real world different random events and random variables are often 
"associated" and not independent. For instance, units of a system can be 
dependent through the system's structure, the functioning environment, the 
inner state changing, and so on. In all of these situations, reliability usually 
tends to change in the same way for all units: all of a unit's parameters 
increase or all decrease. 
Two r.v.'s X and Y are associated if their covariance is positive: 

Cov(*,Y) = Cov(y,^) = E{(*~ E{*})(y- E{>>})} > 0 

A stronger requirement for the association of two r.v.'s demands that the 
inequality 

Cow [ f l ( X , Y ) , f 2 ( X , Y ) ]  >0 

holds, where both /, and f2 are increasing or both are decreasing functions. 
The vector X  =  ( X x ,  X2 , . . . ,  X n )  consists of associated components if 

Cov[/ t(X), /2(X)] £0  

A more formal discussion of associated r.v.'s can be found in Barlow and 
Proschan (1975).  
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3.8.1 Series Systems 
Consider a series system of two units. Let x t ,  i  = 1,2, be the indicator 
function of the ith unit. Suppose the jcf's are associated. For instance, both 
of them are dependent on the same environmental factor ft; that is, nota- 
tionally, they are jt,(/|ft) and ;t2(r|ft) for some specified ft. Then for these 
two units one can write 

Pr{x {  Ar2 = l ) =  Pr{x, = l}Pr{x2 = 1} + p(x l t  x 2)  (3.73) 

where p(jfl5 x 2 )  is the correlation coefficient 

This normalized value satisfies the condition — 1 < p <i 1. For n associated 
r.v.'s it is possible to consider only the case p > 1. From this condition and 
(3.73), for a series system of two associated units, it follows that 

Pr{*, A x2 = 1} > Pr{jc, = l}Pr{ jt2 = 1} (3.74) 

This result can be immediately generalized for a series system of n associated 
units: 

= Pr{a(X) = 1} > II P I  (3-75) 

From (3.75) it automatically follows that for a series system of n associated 
units: 

f II P,i 0 (3-76) 
■'O Uisn 

Consider the example when each unit of a series system depends on the 
same factor p, for instance, the temperature. The system is designed for use 
at two different temperatures, p, and p2. The designer decides to check the 
probability of a failure-free operation of the series system of n units. For this 
purpose, the designer arranges for a unit testing under these two conditions. 
The probabilities of the unit's failure-free operation under these two 
conditions are /?, and p2 ,  respectively. The average unit failure-free opera- 
tion probability equals p  = (1/2)(p, + p2) . At a first glance, it is very 
attractive to try to compute the system reliability index as = p" if we 
know nothing about the real conditions of the system's use. 
But let us assume that the first condition appears in practice with fre- 
quency R ,  and the second condition appears with frequency Q  =  1 -  R .  (Of 
course, the frequency R  can be considered to be a probability.) Then a
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realistic value of the index is Piyst = Rp" + Qp\. It is easy to check that 
^sysi — Avst ■ (To convince yourself in a particular case, do it with n = 2 and 
R = 1.2.) Of course, the same phenomenon will be observed if one considers 
more than two different environmental conditions. 
Another example of a system with associated units is a system operating in 
a changing regime. Assume that a system operates with probability pk at the 
k t h  regime. Under this regime the system's units have a failure rate equal to 
\k. It may happen if the system switches from regime to regime periodically 
(or, perhaps, randomly). In this case 

UO = Lpke~x'"' 
v* 

This is larger than 

v v* ' 

So, for a series system we can use the hypothesis of the unit's indepen- 
dence to obtain a conservative bound on the reliability index of types P ( t )  
or T. 

3.8.2 Parallel Systems 
Now consider a parallel system of two associated units. For this system we 
have 

Pr{x x  V*2= 1} 

= 1 - Prj*! AiJ = 1 - [Pr{5, = 1} ? T { X X  = 1} + p ( x u  x 2 ) }  (3.77) 

< 1 - Pr{JE, = 1} Pr{Jt, = 1} = 1 - fl,(r)*2(0 

where p ( x t ,  x 2 )  is the correlation coefficient for the indicator functions. It is 
easy to show that 

- V a r ^ V a r K) ^ 

But Cov(x,, x 2 )  = OM xy ,  jc2) and Varfx,} = Var{jef}, i  =  1,2. 
Equation (3.78) can immediately be generalized for a parallel system of m 
associated units: 

Psyst - Pr{/3(X) - 1} £ 1 - n 4, (3.79) 
1 sism  
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O -̂oJi-O-̂ -o 

C l ) — O — < D  
Figure 3.14. Transition graph for obtaining the upper and lower bounds for a parallel 
system with dependent units. 

The reader can consider the previous examples applied to a parallel 
system. We consider several examples connected with the death process 
which, as we mentioned above, can successfully be used for describing 
unrepairable redundant units. We consider a special type of dependence. 

For simplicity, consider a parallel system of three units. AH units operate 
in the system in a nominal regime. For such a regime, each unit has a failure 
rate A. If the units are independent, the transition graph is presented in 
Figure 3.14a. Assume that, after the failure of the first active redundant unit, 
the two remaining units are forced to operate in a harsher regime. For 
example, in an electrical parallel circuit, as the flow through each resistor 
becomes larger, the resistors produce more heat, the surrounding tempera- 
ture increases, and, consequently, the failure rate increases. In a hydraulic 
circuit, after one of the parallel pipes is closed, the remaining are under a 
higher pressure and, consequently, can fail with higher probability. Thus, a 
unit's failure rate often depends on the state of the other units. 

Assume that A of each unit is an increasing function of the flow through 
the unit. In this case A3 = 3A, but A2 = 2(A + A2) and A,-A + A, where 
A( 2; A2. The transition graph for this case is presented in Figure 3.14b. It is 
clear that this system of associated units is less reliable than the initial system 
of independent units. 

Now let us consider a case which is, in some sense, the inverse of the 
previous one. All parallel units are operating in a restricted room. A single 
unit operating in this room has a nominal failure rate A. Each working unit 
generates a heat which accumulates in the room and influences all of the 
remaining units. Thus, the more units that arc operating, the higher the 
temperature, which leads to the decreasing reliability of each unit. (At
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the same time, remember that the system is a parallel system!) We begin the 
analysis of the transition graph for this case with state 1. 

A single unit operates with A, = A, When two units are operating, the 
temperature in the room is higher and, consequently, A2 = 2(A + A*). When 
all three units are operating, A3 = 3(A + A*). Under the conditions of the 
example, A* < A*. The transition graph for this case is shown in Figure 
3.14c. 

A comparison of these two cases with the initial system of independent 
units shows that both of them possess a less favorable reliability index than 
the initial system: in each case the transition intensities are higher than in the 
initial case. Thus, on average, systems with associated units reach a failure 

state more quickly. We finish this comparison with a comparison of 
the 
MTTFs: 

1 1 1 1  1  1  
3 A  +  2 A  +  A " 3 A  + 2(A + A2) + A + A, 

1 1 1 1  1 1  
3A + 2A + A ~ 3{A + A*2) + 2(A + A*) + A 

3.8.3 Mixed Structures 
We consider this concept in more detail in Chapter 9 when we address 
two-pole network bounds. Here we only illustrate some kind of dependence 
between the system's units when the system has a mixed structure. Consider 
the simplest series-parallel and parallel-series systems with different forms 
of unit dependence. To perform its operation, the system should have at least 
one unit of type A and at least one unit of type B. Assume that we analyze a 
system whose two units (say functional blocks) have their own power 
supply (PS). The power supply is not absolutely reliable. Of course, a power 
supply failure leads to an immediate failure of both units which are supplied 
by this PS. 

First, consider a series-parallel system. There are two possibilities of 
switching the power supply (see Figure 3.15). Denote the probabilities of a 
successful operation by pA ,  pB ,  and pP S .  Then for structure (a) we can write 

Pa  =pU[l -  (1 -pApB) 2 \  + 2Pp sq v s PA PB  

and for structure (fo) we can write 

P 6 = P 2
PS[ I - ( 1  ~PA PB f \  

It is obvious that structure (a) is better than structure (b) .  

T - 
syst 

and 

T = 
J syst 
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Now consider two variants of the parallel-series structure (see Figure 
3.16). For structure (c) we have 

K =PPSO ~ ~ <ll) + 2Pps1PSPAPB 

and for structure ( d )  we have 

Again, we can deduce that P c  >  P d  without calculation, based only on our 
previous knowledge about the reliability of a series system with associated 
units. 
A consideration of these examples shows us that the reliability of some 
auxiliary units may have an influence on other system units in such a way that 
the reliability of a parallel-series structure might be worse than the reliability 

  

 

Figure 3.15. Two variants of the power supply of a series-parallel structure. 

 

Figure 3.16. Two variants of the power supply of a parallel-series structure. 
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of a series-parallel structure. Indeed, it is possible that for some fixed pA, 
pB ,  and p PS, for instance, the inequality pa  > pd  is true: 

P p s I 1  -  (.1-PAPB)*\ + IPpsIPSPAPB > PP^ 1  " " 1B)  

Avoiding general deductions, take pA  =  pB  —  p. Denote for simplicity p PS  = 
/i and <2 = 1 — /?. Then the condition 

/?2[l - (1 - p2) 2]  +  2P<2P2 > «2(1 " Q1) 2  

is equivalent to 

( i - 0 2 - [ i - 0  -P2 ) 2} 
R2  >  2p2  

The right part of the inequality is restricted by 1 for any p .  Thus if Q > R2 

this inequality holds for any p. The solution of the corresponding equality 
gives 

3 ± y/5 
Q  «  -----   ---- a 0.382 

In other words, for an unreliable common unit (in our case the power 
supply), with a reliability index lower than approximately 0.6, one should 
choose a parallel-series structure rather than a series-parallel one. 
For some additional examples of the analysis of systems consisting of 
dependent units, see Gnedenko, Belyaev, and Solovyev (1969). 

3.9 TWO TYPES OF FAILURES 

Some units have two types of failures. For instance, a resistor may be 
disconnected (leaving an open circuit) in an electric circuit, and in this case 
no flow goes through the unit. Or it may burn out, and so will not provide any 
resistance at all (a short circuit). One observes an analogous effect with 
capacitors: no capacity at all (a short circuit) or infinite capacity (disconnec- 
tion). In pipelines, holes allow the leaking of pumped liquid, which decreases 
the user's consumption and, simultaneously, decreases the hydraulic resis- 
tance. Rubbish in the pipe results in the same decrease in user consumption, 
but, at the same time, increases the hydraulic resistance. 
In a most essential way, this phenomenon appears in relay circuits. These 
circuits are assigned for connection and disconnection and the nature of their 
failure can be one of two kinds: they may fail to connect or they may fail to 
disconnect. Each unit (relay) itself is subjected to two similar failures. It
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makes the problem of redundancy of such systems more difficult: a parallel 
structure of relays fails if at least one unit makes a false connection when it 
should be disconnected, and a series structure fails if at least one unit causes 
a false disconnection when it should be connected. As a matter of fact, mixed 
series-parallel (parallel—series) structures are more effective in this case. 
Moreover, for a relay with known probabilities of failure of both types, there 
is an optimal mixed structure. We consider this problem separately in 
Chapter I I .  
Consider a parallel-series relay system. This system can be considered as a 
two-pole network with an input on the left and an output on the right. Each 
unit of the system at any moment of time can be in one of three jointly 
exclusive possible states: failure-free with probability p ,  failed in a "con- 
nected" state with probability c, or failed in a "disconnected" state with 
probability d. First, we consider the case where the system must provide a 
connection between the input and output. For each series circuit of n units, 
the probability of a successful connection Rcon can be written as 

t f t o n  =  ( p + c ) n  (3.80) 

and, for the system as a whole, 

„ = i -  ( i  -  *con ) m  -1 -  [ i  ~ ( p  +  oT (3-8]) 

If the system must provide a disconnection, the corresponding probabilities 

1 - < 1  - / > - < * ) " =  1 - C  (3.82) 

and 

PdlsCon = [1 ~ cT (3-83) 

A relay system operation consists of alternating cycles of connections and 
disconnections. It seems that for this system it is reasonable to choose a 
reliability index in the form 

Psyst = min(FC(m,F[Jiscon) (3.84) 

It is clear that a single relay with the same parameters can perform 
successfully in both cases only with probability p. (Any kind of failure makes 
one of the operations totally impossible.)  
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Pcon = 1 - [1 - 0.92]2 = 0.96 

and 

^discon = [l ~ 0.12]2 = 0.98 

Thus, the system operates successfully with a 
probability of not less than 0.96 

under either type of operation: connection or 
disconnection. Both probabili- 
ties Pcon and Pdjscon are larger than the 

corresponding initial probability of a 
single unit (under the condition that it equal 0.9). 
Now let us consider a general series-parallel relay system. Again consider 
first the case when the system must provide a connection between the input 
and output. For each parallel circuit of m units, the probability of a 
successful connection Rcon is 

/?con = 1  -  ( 1  - p - c ) m  =  1  - d m  (3.85) 

and for the system as a whole 
^  =  ^  =  ( 1 - ^ ) "  (3-86) 

If the system must provide a disconnection, the corresponding probabilities 
are

K d i s C o n  =  ( P + < O m  =  ( l - O m

 -0—> 

  

Figure 3.17. Parallel-series and se-
ries-parallel relay schemes for Exam-
ples 3.2 and 3.3. 

s system with n — m = 2, p = 0.8,
this system, 

r@n  r€h 

  L@J 

Example 3.2 Consider a parallel-! 
and c - d = 0.1 (see Figure 3.17a). 

(3.87)
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and 

/,discon = l - [ l " ( / >  +  < O T  

Again wc can use (3.84) to characterize the system as a whole. 
Again in this case a single relay with the same parameters can perform 
successfully in both cases only with probability p. 

Example 3.3 Consider a system with n = m = 2, p = 0.8, and c = d = 0.1 
(see Figure 3.17£>). For this system, 

Pcon = 1 - [l - 0.12]2 « 0.98 

and 

^discon " [1 - 0-92]2 = 0.96 

Thus, the system operates successfully with a probability of not less than 0.96 
under either type of operation: connection or disconnection. Again both 
probabilities Pcon and Pdiscon are larger than the corresponding initial proba- 
bility of a single unit. 
One can notice that the structures of Figures 3,17a and b are "mirror 
images" with respect to the probabilities c and d. Thus, both structures are 
equivalent for the relay with c — d. 

3.10 MIXED STRUCTURES WITH PHYSICAL PARAMETERS 

A unit presented with an indicator function xt reflects a "dichotomic" object 
which can only be one of two states: for reliability problems they are termed 
"success" and "failure." But sometimes we need to analyze systems consist- 
ing of units with physical parameters whose particular value plays an essen- 
tial role. 
In Chapter 1 we introduced the generalized generating sequence (GGS). 
Here we use it and make some concrete additions to the general method. 
These additions are helpful for the designing of appropriate computer 
algorithms. 
We present the discussion via simple examples. 

Series System This case has been considered in Chapter 1. Thus, we 
consider only simple examples. 

Example 3.4 Consider an oil pipeline consisting of n pipes (units) con- 
nected in series. Each unit has a random capacity which decreases for 
different reasons: the accumulation of so-called "heavy" fractions on the pipe
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walls, a deformation of pipes, and so forth. The distribution of the capacity 
for each pipe is supposed to be known. We also assume that the distributions 
are determined by a finite number of values, say vt, for the ith pipe. The 
GGS for the i t h  pipe is presented in the form of the legion 

Li - {(cii*Pii)>"*>(<V/>i(,i)} 

Here we try to avoid the complexity of a general notation and so denote 
M i k ]  = c k k  and M i k 2  = p, k ,  which corresponds to their natural notation as a 
capacity and a probability. 
The interaction of n  legions produces N  = nv i  different cohorts Ck ,  
1 < k  z N ,  

ck = ( ck>Pk)  

The capacity and the probability are determined by the rules of the cohort 
interactions: the "cells" with the values of capacities and the "cells" with the 
values of probabilities are considered separately. The capacity is determined 
by 

= ft" cu = min cu * 1 '' l s / s r t  ?Ji 
j jSk  »  K 

and the probability is determined by 

Pk « ^ pUi, = n P,J, 
i  > Si< , n  

The operator ft1' in this particular case possesses the following property. If 
for two terms of the final GGS there are Ck and Ck + i with ck = ck + l, then 
these two terms form a new term with parameters c* and pk determined by 

C* = Ck + i and pt = p k  =p k  +  l  

Let us call this the absorption property. 
Now assume that there is a known failure criterion for this pipeline, for 
example, suppose it is considered to be failed when ck < c°. In this case, to 
obtain the resulting reliability index, one has to revise the operators fl' and 
Qc in an appropriate way. 
If ck must be larger than c°, the actual capacity does not play any role. 
The operator ftc must be determined in such a way that any ck S: c° might 
be considered as some c3ccept and the remaining ck s are set equal to 0. In 
this case one has cohorts of two types: the ones with cacctpt and the other 
with 0. Incidentally, a computer procedure for finding the minimal value may  
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c* = 

min(C[, c2) 

c* = min(c*,c3) 

c* = min(c*_,,c„) - min(c 

One may stop the procedure as soon as the value c* < c° appears at 
some 
intermediate step of the calculation. 
Now let possess the above-mentioned absorption property and, addi- 
tionally, the preference property. In our case the latter means that if two 
cohorts have different sets of maniples, then under some specified conditions 
the one which possesses the "better" maniple is kept for further considera- 
tion and the one with the "worse" maniple is excluded. 
In the case of cohort interaction we, at first, use the absorption property 
and obtain the final legion in an intermediate form 

^ = ((C a c c ep t ,P), (0 ,p 0 ))  

where p is the sum of all p's of the cohorts with caccept. The 
resulting legion, after applying the preference 
operation, will have the form 

L - (  c  

It is clear that Rxyst = p. 

A Parallel System The formal technique used for parallel systems com- 
pletely coincides with the above-described method. But, for convenience, we 
will use the corresponding operators 1 3  L ,  Uc, and 1 3  M .  We use these new 
symbols to distinguish the operations over the maniples. Indeed, for instance, 
for resistance 

O" = £ rf 
l& is n  

and 
 

for the time to failure caused by a short connection 

nM max 
lii'Sn 1 SiSn  

P)  

 

t Sn 

O 

be solved in a sequential way:
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and 

UM ft = min ft 
1 s i si i  ! s i&n  

and so on. 
In Table 3.2 we present the principal kinds of maniple interaction opera- 

tors for systems with series and parallel structures (the considered parame- 
ters are denoted in the table by w). 

Of course, the functions listed in Table 3.2 do not exhaust all possibilities. 
After this brief review of the possible interactions between maniples, we 

might begin with a consideration of the system with a reducible structure. 

Mixed Structures Here we illustrate how to use the GGS for the analysis 
of a mixed structure with a simple example. We will not produce detailed 
transformations and calculations because for us and for the reader it is more 
reasonable to leave it to a computer. We ignore the physical nature of the 
system and its units for the moment.  

TABLE 3.2 Main Kinds of Maniple Interactions 
Physical Nature Series Structure Parallel Structure 

of Maniple  fl<w> 

Probability of success   

(a cutoff failure type) w,w2 1 -(1 - WjXl - w2 )  
Probability of success   

(a short-connect ion   

failure type) 1 "(1 - H-.X1 ~W 2)   

Probability of failure   

(a cutoff failure type) 1 - (1 - w,Xl - W 2 )  W xw2 
Probability of failure   

(a short-connection   

failure type) wlw2 1 - (1 - WjXl - WZ)  
Random TTF for a   

cutoff minfw,, w2} itiax{IFL,H'2} 
Random TTF for a   

short connection max{w],H,
2} min{w,, w2]  

Electrical capacity [W,-1 + wi IV J + w2 

Ohmic resistance «-! + W2 K"1 + wi"1]"1 

Ohmic conductivity K-'+wr'r* JV, + w2 
Capacity of communication   

channel minfwj, w2 )  W, + w2 
Cost of transportation   

through network VVT + w2 minftV], wz) 



 

 

MIXED STRUCTURES W!TH PHYSICAL PARAM ETERS 167

 

Example 3.5 A parallel-series system is presented in Figure 3.18. For the 
system 

L =  U L  a L  L j j  
U / s m  5 in, 

The remaining interactions depend on the concrete nature of the system. 

Example 3.6 The series-parallel system is presented in Figure 3.19. For the 
system 

L = aL  UL  Ljj  
1 £i£n  1 i/ifSm, 

The remaining interactions again depend on the concrete nature of the 
system. 

Example 3.7 The system with a mixed structure is presented in Figure 3.20. 
For this system the following chain of operations for obtaining the resulting 

  

 

Figure 3,18. Structure of the system considered in Example 3.5. 

 

Figure 3.19. Structure of the system considered in Example 3.6. 
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legion can be written: For the system as a whole, Figure 3.21a, we obtain 

L  =  f l / j ( L , ,  L(J4)) 

Subsystem ( A )  can be presented itself as Figure 3.216. Then 

DA) = Ul(Ub\L(C)) 

We will write expressions for L ( B )  and L(C>, again with no explanations (use 
the ancient rule: "see the sketch"): 

L<B> = 13 L ( L 4 , C l L ( L 2 t L 3 ) )  

and 

L(C) — C I L ( L 7 , U L ( L 5 ,  L 6 ) )  
Therefore, the final macroalgorithm for the system GGS computation can 
now be written in the final form  
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Figure 3.21. Sequence of the system structure transformation for Example 3.7. 

CONCLUSION 

In general, the investigation of unrepairable systems—series and 
parallel—can be reduced to combinatorial problems. It is almost impossible 
to find a track to the first works in this area. We suspect that if one finds such 
a work it would be (in terms of the terminology) a work of one of the three 
Bernoullis—Jacob, Daniel, or Nicholas! Seriously speaking, almost all of the 

first works and reports on reliability contained such 
types of analysis. The methods of analysis of unloaded redundancy 
have the same long history. 

Therefore, we restrict ourselves to the following comments. We 
would only 
like to mention that some special problems (aging systems, systems with an 
irreducible structure) will be considered in the following chapters. The 
reader can find material dedicated to this problem in almost any book on 
reliability theory or engineering (see the list of general references at the end 
of this book). We find that for general purposes it is enough to refer to 
handbooks. 

(a) Subsystem consisting of unit 1 and subsystem A

(6) Subsystem consisting of subsystem B and subsystem C

(c) Subsystem B

-CD-

(d )  Subsystem C
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EXERCISES 

3.1 Prove (3.22a) using the Venn diagram. 

3.2 Prove (3.22i>), (3.22c), and (3.22*/) on the basis of the result of Exercise 
3.1. {Hint: Use the "double rejection" rule of Boolean algebra: x  =x.)  

3.3 Prove identities from (3.23 a) to (3.23 d). 

3.4 Write the Boolean function tpiX^ for the scheme depicted in Figure 
E.3.2. 

  

3.5 Write the Boolean function <p{X,)  for the scheme depicted in Figure 
E3.3. 

 

Figure E3.2. 
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3.6 A system consists of 10 identical and independent units connected in 
series. The requirement of the probability of a failure-free operation 
equals 0.99. What reliability level must a system unit have to satisfy the 
system requirements? 

3.7 A system consists of three identical units connected in parallel. The 
requirement of the probability of a failure-free operation equals 0.999. 
What reliability level must a system unit have to satisfy the system 
requirements? 

SOLUTIONS 

3.1 For given sets X and Y (see the shadowed areas in Figures E3.1a and 
b, the union is a set of elements belonging tojit least one of them (see 
the shadowed area in Figure E3.1c). Then X and Y are depicted in 
Figures E3.1 d and e (see the shadowed areas). In Figure E3.1/ one 
finds the area X A  Y shadowed. Consequently, the complementary area 
is X A V. Obviously, the latter area coincides with the shadowed area in 
Figure E3.1c. Thus, the desired result is obtained. 

3.2 For example, let us prove identity (3.22b) 

X A  Y = X V  Y 

Take a rejection operation from both sides of the identity which does 
not violate it 

X A Y = X V P= X V Y 

Now use a rejection operation to all arguments which also does not  

 

Figure E3-3. 
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violate the identity 

X  A  Y = * X v  Y  =  X v  Y  

Thus, this identity is reduced to the first one, (3.22a), which was proven 
in the previous exercise. 

3.3 Using (3.22a), one has for the three arguments 

X x  V X 2  V X 3  = (X ,  V X 2 )  V X 3  = ( X ]  V X 2 )  A X 3  

Using the identity 
X x  V X 2  =  X y  A  X 2  

one finally obtains 

V X 2  v X 3  =  X x  A X 2  A A"3 

Now if for rc — 1 arguments we have 

U  x i  =  0

(a)  (b) 
 

(c) 
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then, using the previous rule, one 
finally obtains 

U  X, =  (  u  v  
F M — 1 ' I ^ iV « I ' 
1 SiSn - 1 M <iSB - I

 

u x] A  xn — |  n  X, 
1SiSB- 1 ' \J S i —  t

 
n x\ ax„~  n xt 

V 1 SiSB - i ' 1 </Sn 

This completes the proof. 

Denote Yl - X} A  X2 and Y2 = XA v A^. In this notation 

A  [ <* ,A * 2) V(* 4 V* 5)J 
1 SiSB-1 

In reliability computational practice, one usually uses such expressions 
without "ORs"; that is, one reduces an initial form in a special way 
using DeMorgan's rule. In the example under consideration, one has 

<P(X ()  = J f , A  [ ( A  JT2) A A 

Denote X4  V X s  -  Y l t  X2  A Y t  = Y2 ,  Y2 V X3  = Y4. In this notation 
tpiX,)  = X {  A  Y4  or in open form 

— Xj A { X 3 V  [ X 2 A ( X 4 V X 5 ) ] j  

The final expression using only logic AND and rejection operators has 
the form 

Xx A 

A unit has to have p  = ]y^L99 ~ 0.999. 

1 SiSn- 1

 
A X ,  n 

1 Si SB - 1 J SI SB - 1

 

1 <i<.n

 



 

 

Let an unknown probability of failure of a unit be denoted by q .  For the 
system under consideration, one can write 

1 - 0.999 = q3 

Thus, q = kt.OOl = 0.1, that is, p = 0.9.  
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CHAPTER 4 

LOAD - STRENGTH 
RELIABILITY MODELS 

For many reliability engineering applications, one needs to investigate the 
ability of a structure or a piece of equipment to survive under extreme 
conditions. For a mechanical construction, one speaks of the probability that 
it can withstand a specified external load (a shock, vibration, etc.) or internal 
tension. For electronic equipment, one is concerned with the probability that 
it is able to withstand a specified voltage jump in its power supply or a 
significant change in its input signals. 
Both an external load and a construction strength might be considered as 
random. The first is random in a very natural way, as it depends on 
environmental factors. The second is random because of the inherent insta- 
bility of any technological process. 

4.1 STATIC RELIABILITY PROBLEMS OF "LOAD - STRENGTH" TYPE 

4.1.1 General Expressions 
Generally, the construction strength X  and the applied load Y  are random. 
The problem is to find R,  the probability of the system's successful operation, 
that is, the probability that the applied load does not exceed the actual level 
of construction strength: 

= Pr{X> r} (4.1) 
167 
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Let Pr{A' < j r }  = Fix)  and Pr{y <  x)  = G(jc). Then the probability of a 
successful operation of the system can be calculated as 

R =  Pr(* > x)  dG(x)  = I" ?T( Y < x ) d F ( x )  
00 — 00 

=  / " [ ! -  d G ( x )  =  f  G ( x )  d F ( x )  (4.2) 
— CO J —X 

If both distributions are continuous, then

 
/? = /  /  / (* )<&

 
where f ( x )  is the density of F(x) and g ( x )  is the density of G(JC). 
If X and y are considered to be independent r.v.'s, it is convenient to 
introduce a new random variable, Z = X -  Y,  with distribution H(x) .  Then 
(4.1) can be rewritten in the form 

R  = Pr(Z > 0) = rdH(x)dx  

4.1.2 Several Particular Cases 

Fix) and G(x) Are Normal In this case 

f i x )  = _l=e-<*-*>W (4.4) 
oyv^fl- 

where S and crf are, respectively, the mean and the standard deviation of the 
strength's distribution Fi t) ,  and 

g i x )  =  (4.5) 

where L and CRG are, respectively, the mean and the standard deviation of the 
load's distribution Gi t) .  
Notice that we consider the area of domain of both distributions to range 
from -oo to Of course, one should consider truncated distributions such 
that their r.v.'s cannot be negative. But, in practice, S > 3af and L > 3crg, so 
that such a truncation does not lead to any crucial numerical errors.  

 

dx f ( x ) d x
 

(4.3)
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Now introduce the new r.v., Z = X  -  Y .  The mean of this new r.v. equals 
E{Z} =  S  -  L  and 

<rh - i/tf + 

which immediately gives the required result

 R  = Pr(Z > 0) = f  —j^exp 
•'o ( r h v 2 v

 
(4.6) 

Numerical results can he found from a standard table of the normal distribu- 
tion. 

From (4,6) one can see that the reliability of the construction decreases 
if the variances of X and/or V increase. Roughly speaking, the more uncer- 
tain the conditions of use and the more unstable the quality of the construc- 
tion, the lower is the reliability of the construction. 

Example 4.1 The span of a bridge has a safety coefficient c s  equal to 5. The 
safety coefficients is determined as c s  =  S / L .  The coefficient of variation of 
the strength K s  equals 0.05 and that of the land K ,  equals 0,2. (a) What is 
the probability of a successful operation of the construction? (b) What is the 
probability of a successful operation of the construction if the coefficient of 
variation of the strength is twice as large? 

Solution, (a) Assume that L = 1. (By an appropriate normalizing this is 
always possible.) Then, taking into account the value cs, we obtain S = 5. By 
definition, the coefficient of variation of the r.v. Z is the ratio Var{Z}/E{Z}2. 
Therefore, <rg = 0.2 and ay = (0.05X25) = 1.25. The probability of a success- 
ful operation equals 

of 7 5 = j = of — ) = $(3.33) = 0.999517 
\ v 1-25 + 0.2 J \ 1.2 ) v 7 

(b) In this case the value of the variance is 2.50 and the probability of a 
successful operation equals

 
I  ( x - E{Z}) S  —  L

d x  =  < f >
L A22cr,
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F(x) and G(x) Are Exponential In this case

 
(4.7)

 
where S  is the main strength, and

 
1 

g(x) « - e 

where L  is the mean load. Using (4.2), we obtain 

j  1  S  
R = j*-~e-x/Le-x/s dx = — r < s x p [ - ( l / L  +  \ / S ) x ]  d x  =  -----------  ----  -----  (4.9) 

'o L L. 'o S + L 

In this case the variances do not influence the resulting probability. Of 
course, it should be mentioned that exponential distributions in problems 
such as this are very seldom encountered in practice (especially for a 
distribution of strength). One can find an example of this in Exercise 4,2. 

F(x) Is Normal and G(x) Is Exponential Let us use the expression 
(4.8)

 
R  =  f  f ( x )  f  g ( y )  d y  d x  

Jo I/O 

Notice that 

f X g ( y ) d y  = f X \ e ~ A y  d y  =  l -  e  
 

Therefore, we can write 

1 
o 

o-fi/2-rr 

 

 

 

 

exp 

ex
p 

I — exp 

I  I  x  -  S

K)* = / 
•'ii 

d x

rr;V2-rr h )

1 cxp(~l)pr~ ( exP 
a,\l7T J0 

d x

Combine the powers of the exponential functions of the second 
terms to get 
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f 
J n
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the complete square form and the free term:

 
Then

 
( J f \ ! 2  I T  

(Ti 
* -

s + t + 2 S T " 7F

                                            
V 2 l T  
J [ - S - ( r f / L ) \ /
O f  

( x - S  x  

T i L  
L x  -  S  +  +  2 S ~ ~  -  

Lj  2 af  

 

a  i<Te
d x  

2  o f  
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Change the variables as

 
t = — - 5 + Aoy2) and <rf dt = dx

 
Now the final expression becomes

 
_ } _ < ! >  - - - - -  _  exp 
Notice that for most practical problems such as this, the strength S  should 

be located "far" from the point 0. This means that the value S / L  1 .  
Incidentally, this corresponds well to the assumption that we do not take into 
account the truncation of the normal distribution in / = 0. In this case, of 

course, 

R  =  1 - exp  

 

 

 

 

" i  >s ~ t
(4.10)

l - d>
2 l  L  L 2

 

 

o>

1 - <t>
(4.11)2 r t  L 2  
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2 12L L2

 
Therefore, if one takes into account that the mean load equals L  = 1/A, 
(4.12) can be rewritten as 

R  ~  1 - exp| — S A  + ^(Aoy)2J 

F(x) Is Normal and G(x) Is Biased Exponential The biased exponential 
distribution with parameter A = 1/L and bias I* is presented in Figure 4.1. 
In this case

 

R - f -  J0 cr,

 
where

 
. 0 for x  I *  

(X) \ 1 — e ~ M x ~ ' * )  for x > l *

 
After changing variables, (4.14) becomes

 
[l - e ~ A x ] d x  (4.15)

(4.12)R « 1 — expIf, in addition, Aoy is small, say of order 1, then it is possible to write the
next approximation 

 

(4.13)

 

1  l x - S  1 

G * ( x )  d x  exp 42K 2 I (Tf 

 

 
(4.14)

 

 
1 f x  -  ( S  -  I * )
2  expyi/lTTJ yI* cr,

Omitting the transformations which are quite similar to the above, we 

Figure 4.1. Sample of a biased exponential 
distribution. 
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present the final result

 
/  S  -  I *  \  

R = 1 - 4> -----------------  ----  exp

 
(5 - /*) - A<rf 

1 - <t> -

 
In this case the similar approximate expressions become

 
--[2(S-f*)A+A2ff/]

 
(4.17)

 
for (S  - l * ) / a f  » 1 and

 
--[2(S-/*)A+AV/]

 
for small values of Aoy. 

F(x) Is Biased Exponential and G(x) Is Normal Consider the biased 
distribution of the strength. We do this because it is unreasonable to consider 
any construction with a strength equal to 0. By assumption, the strength 
might not be less than s*, so in this case 

R - T g ( x )  r  f ( y )  d y  d x =  f  g ( x ) d x  +  f g ( x )  f f ( ( y ) d y  
y0 / x z s *  J 0  V J x  

Notice that we again use the lower limit of 0 in the integral. As we pointed 
out above, for numerical calculations the truncation of the normal distribu- 
tion at f = 0 to the left can be neglected. 
A simple transformation leads to 

R  -  f  d G ( x )  +  r t p ( x ) e ~ l x - ^ d x  
J - v >  JS *  

s *  -  L  
-I- (  < p (x  +  s * ) e ~ * x  d x  

 

_-[2(S-/*)A+AV/] 

 

(4,16)X

 

 (5 - /*) - Aoy?

1 - <J> R  =  1 - exp 
 

 

 

(4.18)R  =  I — exp
 

d x  

(4.19

) 

(4.20)
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j f \
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or, in detailed form, 
e-^dx (4.21) 

Avoiding repetition of the transformation which completely coincide with 
those above, we write the final result directly as 

' s* - L + na*

 
Additional results for some other important particular cases can be found 

in Kapur and Lamberson(1977), We would like to mention that this reference 
contains useful formulas for the Weibull-Gnedenko distribution which is 
important for description of the strength of mechanical construction. 

4.1.3 Numerical Method 
In general, it is reasonable to use an approximate numerical method. This 
method is good for calculations using histograms as well as standard statisti- 
cal tables. In the first case, the approximation is defined by restricted 
statistical data and their inevitably discrete nature. In the second case, the 
approximate nature of the solution is explained by a discrete representation 
of continuous distributions. Because of the approximate nature of these 
calculations, it is sometimes reasonable to consider the upper and lower 
bounds of the calculated values. 

First, assume that a set of statistical input data is given. The set of 
observed values of the material strength is X u . .  . , X „  and the set of 
observed values of the load is Yj,.,., Ym. Arrange the ordered set < • ■ ■ 
< Wn+m where each Ws is one of the .Y/S or one of the 1^'s. 

 s *  -  L 1/ - 
Ja cr. 

R = <P|

exp

y/l^ I d }
 

 
'  s *  -  L

R „ $

-(s* - L ) n  +  <P (4.22) + exp 
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For each Ws = X, calculate the number of Wr's where Wr = YJ and r < s. 
Denote this value by k s .  This value means that, on the average, in k s  cases of 
m  possible observations of the r.v. Y ,  the load will be smaller than the given 
strength X .  In other words, we might say that with conditional probability 
ks/m, the investigated system with fixed strength X, will operate successfully 
if the load will take on one of the possible values of Y .  Thus, the complete 
probability of success is 

Obviously, the same numerical result can be obtained if we consider 
W s  = Y j  and calculate the number of W ' s where W r  = X L  for each W s  =  Y j ,  
r  <  s .  Denote this value by k * .  This value means that in k *  cases of m
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possible observations of the r.v. X ,  the strength will be smaller than the 
specified load Y. It means that with conditional probability k * / m ,  the 
investigated system will fail under the load Y; that is, the complete probabil- 
ity of success is 

R - 1 - -  Z  k t  
m 

Example 4.2 The following data are available: X x  m  98.1, X 2  = 98.2, X 3  =  
99.4, X 4  = 100.3, X 5  = 101.2, X 6  = 103.5, X 7  = 103.9, X 8  - 104.1,..., 

X ] 6  = 110.2; Y, = 79.1, Y2 = 82.4 ................ Ylf! = 98.0, Yiy = 98.3, Ym  = 98.5, 
Y 2 l  = 99.5. Calculate the probability that the construction will operate suc- 
cessfully. 

Solution. We find from the data that ki = 18/21, k2 = 18/21, k3 - 20/21, 
k 4  —  •  •  •  —  k  15=1. Thus, the result taken by the first expression is

 
18 18 20 
21 + 21 + 21 + 13

 
From the same data, one finds that k* = • • • = k*8 
- 
2/16, k  ?] — 3/16. Using the second expression, one has the 
following result:

 
If tables of the distributions F(x) and G(JC) are available, the numerical 
calculation of the index R  can be performed using the following formulas:

 
[G((m + 1)A) - G(mA)] (4.23)

 
R  = Z  G ( { m  +  TU)[^((IFI + - F(mA)] (4.24) 

1 sm<.M U 2/ / 

where A is the chosen increment and M is the number of increments. 
it is clear that the summation can only be performed in the area of the 
distribution's domain where the corresponding values of the product terms 
are significant. For practical purposes, the increments may be chosen to have 
a value ranging from 0.5 to 0.05 of the smallest standard deviations of the 
distributions F ( x )  and G(JC). Obviously, the more accurate the result that is 

 1 32
9 
33
6 

» 0.9792

 k n  0, k ~ 2/16, &20 —

1 2 2 3 
— + — + — 
16 16 16 1  -------- « 0.9792 

336 
 

 
R -  Z  

1 SM 
SM 

\ - F \ \ m  +
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needed, the smaller the increments must be. For practical calculations, the 
left bound m  of the summation must begin with the value k  =  { m :  F( - m A )  
< e} where e  is chosen in correspondence with the needed accuracy.  
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Example 4.3 The strength has a normal distribution with S  = 10 and 
arf = 1, and the load also has a normal distribution with L = 5 and crg = 2 
(all values are measured in some conditional scales). Calculate the probability 
of success R using a standard table of the normal distribution. 

Solution. We present Figure 4,2 to illustrate the solution. This figure helps 
us to see that, for example, the point 7 corresponds to L  +  cr, and, at the 

same time, corresponds to S — 3oy, and the point 9 corresponds to L + 2<rK 
and to S  -  oy, and so on. Use a standard table of the normal distribution 

and arrange (only for illustrative purposes) the new Table 4.1 with the input 
data for numerical calculation. Thus, the probability of failure equals 0.98385. 
A calculation with the use of the strong formula gives 

 

TABLE 4.1 
Value of Argument Value of Intermediate 

G ( k  +  1)  -  G ( k )  k  +  1/2 F ( k  +  1/2)

 

 

5 6 7 
1 = 5 

8 9 10 
S=  1 0  

Figure 4.2. Explanation of the solution of Example 4,3. 

A m

 

Interval 
[ k , k +  1] 

[7,8] 
t8,9] 
[9,10] 
[10,1
1] 

0.0062
1 
0.0668 
0.692 
0.308 

0.00057 
0.00295 
0.01114 
0.00149 

0.0920 
0.0441 
0.0164 
0.0049 

7.5 
8.5 
9.5 
10.
5  
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0.01615
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The relatively large error is explained by the use of excessively large incre- 
ments. 
REMARK. The unreasonably high level of accuracy of the calculations is presented only to 
compare the obtained solution with the exact solution. Once more we would like to emphasize 
that for practical purposes the use of "too accurate" a solution can be considered almost 
incorrect because of the very rough statistical data which we usually have in practice. 

Sometimes it might be more useful to obtain lower and upper bounds on 
the value R  because this allows one to evaluate the accuracy of the result. 
Lower bounds can be written as 

R  -  £  [1 -  F( m  +  l)A][G((m + 1)A) - G(mA)] (4.25) 
1 £m <,M 
R  = £ G(m)A[F((m+l)A)-f(mi)] (4.26) 

I -zm<.M 

and upper bounds as 

r = £ [l - F(m)A][G((m + I)A) - G(mA)] (4.27) 
1 im < M  

R= E G{(m + l)A){F((ffl + l)A)-F(mA)] (4.28) 
1 <,m <,M 

Example 4.4 Suppose the construction has a truncated exponential distribu- 
tion of the strength with parameters p  = \ / S  = 0.5 and s *  = 10, and a 
normal distribution of the load with parameters L = 6 and ag = 2. Find the 
probability of success R  for this construction. 

Solution. Find upper and lower bounds on the probability R. For the 
purpose of numerical calculation, construct a special table (see Table 4,2) 
based on standard tables of the normal and exponential distributions. Table 
4.2 contains the meaning of the corresponding distribution G i x ) and the 

  

TABLE 4.2 
m  X Z | O(m)  Fi m )  Aim) 
1 10.0 2.00 0.9773 0.00 0.000 0.221 
2 10.5 2.25 0.9878 0.25 0.221 0.173 
3 11.0 2.50 0.9938 0.50 0.394 0.134 
5 11.5 2,75 0.9970 0.75 0.528 0.104 
7 12.0 3.00 0.9987 1.00 0,632  
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increments of F i x )  in the area of interest. The calculation of lower and 
upper bounds is performed using formulas (4.26) and (4.28). 

In Table 4.2, m  is the number of the term in the sum, x  is the absolute 
value, z t  is the argument of the standard normal distribution, and z 2  is the 
argument of the standard exponential function A*(m) = A i m  + I) - A(m). 
Using (4.26), we obtain 

R  = (0.9773)(0.221) + (0.9878) (0.173) 
+ (0.9938)(0.134) + (0,9970)(0.104) + r = 0.9917 

where r is the probability of the "tail" of the strength's distribution with an 
insignificant influence of the load (all this area must be considered as the 
area of the "practically absolute" reliability). Using (4.28), we obtain 

R  = (0.09878)(0.221) + (0.9938)(0.173) 
+ (0.9970)(0.134) + (0.9987)(0.104) + r = 0.9956 

The difference between the two values is significant—about 100%. (Notice 
that if the probabilities are close to 1, one should consider the complemen- 
tary probabilities, i.e., 0.0083 and 0.0044 in the investigated case.) This means 
that the values of A  are chosen too large. 

4.2 MODELS OF CYCLE LOADING 

The static models of the "strength-load" type which we considered in the 
previous section may be referred to as one-cycle loading models. Moreover, 
this single cycle is assumed to be short enough (but not a shock!), so the 
strength of the material is assumed to be constant in time. In other words, 
there is no time for any deterioration or fatigue effects to appear. For 
practical tasks, such a consideration is important even if the cycles are 
considered to be independent and identical. Anyway, this more accurately 
reflects the physical process than a totally static situation. A consideration of 
the cycle loading is supported by the results of the previous section: the 
probability determined there is considered as a characteristic of the ability of 
the chosen construction to withstand a specified fixed load during one cycle.
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In real life, the strength of a mechanical construct might monotonically 
change in time, due to deterioration, fatigue and aging processes, environ- 
mental influences and so on. (For electronic equipment, the "strength" can 
fluctuate: the actual tolerance limits can change in time depending on the 
temperature, humidity, and other environmental influences. Below we often 
refer to mechanical systems.) The load can also change in time for various 
obvious reasons. We consider only a simple case: a sequence of shock-type 
(practically instantaneous) loading. Notice that an investigation of continuous
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loading with a simultaneous changing of the load and strength is a very 
sophisticated physical problem which an only be solved for some particular 
cases. 
We will discuss a very particular case of cycle loading when the strength X  
and the load V are independent random variables with known distributions 
Fix) and G ( x ) ,  respectively. For compactness, the mean value of the 
strength E(JO will be denoted by S  and the mean value of the load E{Y} by 
L .  The strength is assumed to be fixed (known or unknown) or monotonically 
changing and the load can be represented by a sequence of independent r.v.'s 
from cycle to cycle. 

4.2.1 Fixed Level of Strength 
Known Fixed Level Suppose that the level of strength is known and equals 
some value s°, while the load is random with distribution function G i x ) .  The 
values of the load at each cycle are mutually independent r.v.'s. Denote the 
random number of failure-free cycles by v .  
The probability that exactly k  cycles will be successful equals 
Pr{i> = /c|s0} = p k q ;  that is, the r.v. v  has a geometrical d.f. with p  =  G(s°) 
and q  =  1 -  p .  The probability of success during K  or more cycles equals 

Pr{^ >  K \ s „ )  =  p K  where p  = Pr{Y £ 5°} = G($°) 

The mean number of cycles before failure equals EM = \ / q .  If q  •«: 1, an 
approximation in exponential form can be written as 

Pr{n S K \ s 0 }  =  e ~ « K  

Unknown Fixed Level Now assume that is unknown but constant 
during the total period of the system's operation. The only thing we know is 
the prior distribution Fix). In this case 

Pr { u ^ K }  = / [ G ( x ) ] K d F( x )  J c  

where C  is the domain of the distribution F i x ) .  
Let the probability q i x )  = 1 — G(JC) be small "on average." In practice, 
this corresponds to the condition 

  

where a s  is the standard deviation of the d.f. F i x ) .  We can conclude that the 

S - L  
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right "tail" of the distribution G(JC) is concave in the essential area of the 
domain of the distribution F(JC). Then the following simple bound is true: 

Pr{f > A:} < [G(S)]* 

The mean number of cycles is 

E H  = / [  1 ~G(*)]-'c/F(x) J c  

The corresponding approximation for small q is 

E H  <  [ 1  - G ( S ) ] - 1  

4.2.2 Deteriorating Strength 
If the expected number of successful cycles is very large, that is, the 
operational time is sufficiently large, we might assume that the level of the 
system's strength decreases in time. Indeed, most materials deteriorate with 
time and, consequently, the system strength becomes weaker and weaker. We 
will consider several simple models. 

1. Assume that the material strength decreases from cycle to cycle in such 
a way that pk + i = apk where pk is the probability of success at the 
fcth cycle and a  is constant, 0 < a  < I. Then 

Pr { i /  a  K \ s ° , a }  = p ( p a ) ( p a z )  ■ ■ ■  { P < * K ~ l )  

= pK Ft ak=pKa(K^2/2 

and the mean number of successful cycles is 
EH = £ pV*-'^ 

2. Again consider the case where the level of the strength is known and 
the deterioration is described by an exponential decrease of this level: 
at the fcth cycle, the level of the strength is xk = s°ak where 0 < a < 1. 
The probability of success over at least K cycles equals 

Pr{*> > X*|s°, a} = n G(s°a*) 

Note that G(J°A*) > and for the most commonly used 
distributions, this discrete function is concave. Then 

Pr{y > K|s0,a} < G(sV*/2>)  
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The mean number of cycles until the system fails equals 

W = lpj + 2 p(p2 + 3 p t p 2 p 3  +  
= p,(l + p2(l + p3( 1 + • ■ ■ ) ) )  

3. For a known distribution F(*) of the initial value of the strength, the 
probability of success equals 

Pr{* £ K \ F{ x ) , a )  -  /  f l  G ( a k ) d F( x )  
J C is k ^ K  

We do not have a simple approximation for this case, 

4.3 DYNAMIC MODELS OF "STRENGTH - LOAD" TYPE 

In the previous sections we considered a simple version of the dynamic 
loading process, that is, the cycling process. That scheme is sufficiently good 
to describe some specific mechanical systems. But for most electronic systems 
the process of "loading" should be described as a continuous stochastic 
process. Indeed, in this case one considers a process of randomly changing 
the system parameters inside the tolerance zone. We will consider only a 
simple case where one-dimensional stochastic process crosses a specified 
level. 

4.3.1 General Case Consider a differentiate stochastic process x { t ) .  
We are interested in the distribution of intervals between neighboring 
intersections of a specified level a  by the process. At first, we find the 
probability that the process will intersect the level a  at moment t .  This event 
happens if the two following events have occurred: 

{ * ( / )  <  a }  and {*(( + d t )  >  a }  

In other words, the probability of the event equals 

Pr{(jt(r) < + d t )  >  a)}

 (4.29) 
Let v ( t )  be the speed of the process, that is, v ( t )  =  d x ( t ) / d t .  Now we can 
rewrite (4.29) in the new form 

Pr{fl - v ( t )  d t  <  x ( t )  <  a } (4.30) 

To find this probability, we need to know the density function of the joint 
distribution f i x ,  t>|/) of the ordinate x  of the process x ( t )  and its derivative 
for the same moment of time t .  Using these terms, we can write 

Pr{a - l>(() d t  <x(f) <«)- f ^  f  f ( x , v \ t ) d x d t  (4.31) 
J 0  a  — v d t   
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The internal integral can be computed instantly because of its special limits 

/ a  
f ( x , v \ t ) d x  =  d t v f ( a , v \ t )  

< j ~v d i  

Substitution of (4.32) into (4.31) gives us 

Pr{« -  v ( t )  d t  <  x ( t ) a )  =  d t  C f ( a , v \ t ) v d v  (4.33) 
J o  

This formula shows that the probability of the intersection of the specified 
level by the stochastic process during the infinitesimally small time interval d t  
is proportional to the length of the interval. This allows one to introduce the 
time density for this probability p ( a \ t ) .  Using (4.33) gives 

Pr{a - u ( t )  d t  <  x(f) < a} = p ( a \ t ) d t  (4.34) 

and, consequently, 

p ( a \ t )  m  r f ( a , u \ t ) v d v  (4.35) 
■'o 

Analogously, one can find the derivative of the probability p ( a \ t ) :  

d  ,  
- ~ p ( a \ t )  -  -  j f ( a , v \ t ) v d v

 (4.36
) 

Adding and subtracting (4.35) and (4.36), one can easily obtain the two 
following equations: 

p ( a \ t )  +  — p ( a \ t )  =  f ( a , u \ t ) \ v \ d u  (4.37) 
d t  J  —  o a  

and 

p ( a \ t )  -  ~ p { a \ t )  =  f ( a , v \ t ) v d v  (4.38) 
d t  ^  —  o o  

It is clear that 

f ( a , v \ t )  - f ( v \ a , t ) f ( a \ t )  

Then one can rewrite (4.37) and (4.38) 

p ( a \ t )  +  j [ P { a \ t )  -./(«|r>E( |^r)||Jf( f )  = a )  (4.39) 

p ( a \ t )  -  ~ p { a \ t )  ~ f ( a \ t ) E { V ( T) \ X ( t )  =  a }  (4.40) 
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Using (4.35) for any time interval T ,  one can obtain the mean time of x ( t )  
being over the specified level a .  To obtain the result, we use the following 
simple arguments. Let us divide the total period T  into n  small nonoverlap- 
ping intervals located around the points t j ,  ) < j  <  n .  For some t j ,  we can 
write 

Pr{A-(fy) > a} = rf(x\tj)dx (4.41) 
a  

Assume that the intervals S / s  are chosen so small that changing signs by 
the function x(t) - a  can be neglected. Next, introduce the indicator func- 
tion { d t j } +  such that 

IS, if *(0 - a > 0 , 
tj= ' Y (4.42) 

\ 0 otherwise 

Using this notation, one can write that the total time for which the 
function jv(f) exceeds the level a  equals 

Ta~ L A, (4.43) 
1 <,i<,n 

and the mean time when the function jt(r) exceeds the level a  equals 

E{rfl}= L E{A,}
 (4.44
) 

1 S.j £ n 

At the same time, 

E{A,)-a, f f ( x \ t j ) d x  (4.45) 
a  

Using (4.45) and taking the limit in (4.44), we obtain the expression for the 
total time for which the process ;c(r) exceeds the level a :  

E{Ta} = rrf(x\t)dxdt (4.46) 
J a  

If one is interested in the average number of intersections na during a time 
interval T ,  the same simple arguments can be used. Now introduce another 

indicator function 

1 if JT( r) — a  >  0 in the interval at least once 
10 otherwise  N ,  =  



 

 

DYNAMIC MODELS OF "STRENGTH - LOAD" TYPE 191 

The total number of intersections during period T equals 

K =  Z  N j  
I s/sn 

Again the mean value can be expressed as 

E(Nfl)= £ E{Wy} (4.47) 
1 

where 

E { N j )  ~  p ( a \ t J ) 8 J

 (4.4

8) 

Taking the limit of (4.48) with the substitution of (4.35), we obtain 
E { A U  -  [ T r v f ( a , v \ t ) d v d t
 (4.49
) 

-'o -'o 

In addition to (4.46), the last expression permits us to write the expression for 
the mean time t a  for which the process x ( t )  exceeds the level a during a 
single intersection. Indeed, 

* BJAU <4'50) 

or, using the corresponding complete expressions, 

f T f f ( x \ t ) d t  
ta = - J o J a  ------------------  (4 51) 
a j oo \ ' 

/  /  u f ( a , u \ t )  d v d t  yo o 
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All of these results are essentially useful for stationary processes because 
in this case all of the functions do not depend on the current time, that is, 
f ( x \ t )  =  f i x )  and f ( x , v \ t )  =  f { x , u ) .  Then all of the previous results can be
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rewritten in the simpler form, namely,

 
E { r f l }  =  T f ° ° f ( x )  d x  

a  

E TO  =  T[ ° ° u f ( a , v )  d v  

f f ( x ) d x  
.  a  

Tl  v f ( a ,  v )  d v  
o

 
Naturally, for the stationary process the values of E{TJ and E{/V„} depend 

only on the length of the period T .  More precisely, they are proportional to 
T .  The mean time E{fa} for which the process exceeds the level a  does not 
depend on T .  For a stationary process one can also introduce the mean 
number of itersections per unit of time Aa: 

 

(4.55) 

that is, the probability of a level crossing in a unit of time. 

4.3.2 Gaussian Stochastic Process 
To calculate all of the above-mentioned parameters of the specified level 
intersection, one needs to know the characteristics of the stochastic processes 
f ( x \ t )  and f ( x , v \ t ) .  For stationary processes, one needs to know f i x )  and 
f i x ,  v ) .  Fortunately, for the most important practical case—the Gaussian 
stochastic process (GSP)—sufficiently simple formulas can be obtained. 

Note that the Gaussian process is often taken as the mathematical model 
of the random change of electrical parameters over time. There are many 
physical reasons to use this model because the influence of the number of 
internal and external factors leads to the formation of conditions for the 
validity of such a model. Indeed, these various factors might often be 
considered as relatively independent, and the influence of each of them on 
the resulting process is relatively small. Of course, the correctness of these 
hypotheses should be checked or verified each time. 

We consider only a stationary process for which we know the mean E{X} 
and the variance crj. For a normal process in a stationary regime, the 
ordinate distribution is 

 
(4.52) 

(4.53) 

(4.54) 

 

where = K x i 0) and K x i r )  is itself the correlation function.
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It is known from the theory of stochastic processes that the ordinate of the 
GSP and its derivative for the same moment of time are noncorrelated. Thus, 
the joint density function can be presented as the product of the two 
separated densities 

f ( x , v )  - R x ) f ( v )  

or

 
( x ~ E { X ) ) 8 

2 a2

                          
8 a ?  

(4.56)

 
- V2  

f ( x , v )  = 2r2 . <«*) exp exp 
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Note that the variance cr3 can be expressed through the correlation function 
of the process as 

(4.58) 
T-0 

and v(t) equals 0 because the stationary process is considered. 
An expression for Aa can be obtained from (4.55) after the substitution of 
(4.57)

 
( a  - E{A"})

 
The expression for E{ra} can be obtained in an analogous way: 

a  —  x
r = t t — exp

 
where <f>(.t) is the normal distribution function. 

4.3.3 Poisson Approximation 
The crossing of a "high level" threshold by a stochastic process is of great 
interest for reliability analysis. It is clear that the probability of the crossing 
in this case should be sufficiently small; that is, such intersections are 
"rare events." As we mentioned above, the sequence 
of rare events forms a Poisson 
stochastic process. We omit the proof of the fact that in this particular case 
this hypothesis is also valid. Here we accept this as a known fact. 

In general, we may assume that the mean number of intersections E{Na) of 
level a for a specified period T  approximately equals the mean number of 
events AT for some Poisson process with parameter A. Thus, this parameter  

 

Ty  —  

 
c r  
u  (4.59) =  P ( a )  = exp 

'.7T(T
,. 

 

(4.60)1 - <t> 

2 7Tu} 
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A ------- (4.61) 

where E[ N J  is determined by (4.51) or (4.55), depending on the type of 
stochastic process under consideration. 

We will not write the expressions for the Poisson probabilities. The reader 
can do it easily him/herself. We only write the expressions for the probabil- 
ity of a failure-free operation (i.e., no intersection during the time T) for the 
nonstationary and stationary cases using the corresponding values of E { N a ) .  
For the nonstationary process one has

 
-  f T  Tv f  ( a ,  v \ t ) d t  
Jn Jc\ 

'0 J o  

and for the stationary process one has

 
Tf  v f ( a , v ) d t  J o

 
For Gaussian processes, the probability P 0 ( T )  can easily be written with the 
use of A0 from (4.59). 

It is difficult to estimate the error obtained via the use of such an 
approximation for the Gaussian process. The only simple physical explana- 
tion lies in he fact that there is practically no correlation between neighbor- 
ing moments of intersections of the specified "high level." (To check this 
fact, one should take into consideration the mean time between two neigh- 
boring intersections: "too much water has passed under the bridge" after the 
previous intersection!) 

Example 4.5 Consider equipment characterized by a two-dimensional pa- 
rameter with components X  and Y .  Both components X  and Y  are fluctuat- 
ing in time. Their fluctuations are described as the identical independent 
stationary Gaussian processes with means equal to 0 and correlation func- 
tions 

K x { t )  =  K y ( r )  = <r2e-°|r'|cos /3|r| + ^ sin /3|r|j (4.64) 

The tolerance limit area of the equipment parameter is represented by a 
sphere with radius a. Find the mean time that the system's parameter is 
spending inside the tolerance limit area if, at the moment t  = 0, both X ( t )  
and Y ( t )  are in the center of the tolerance sphere.  

can be easily expressed as

 

(4.62)Po = CXP 

 
(4.63) P 0  = exp
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Solution. Let 

R ( t )  =  y / x \ t )  +  Y \ t )
 (4.65
) 

and 

d R ( t )  
= (4-66) 

Using (4.56), we can write 

f f ( r ) d r  
T =  ----------------------  (4.67) 

/  v r f ( a , v r ) d v r  
J n  

where f ( a ,  v r )  is the joint density of the distribution of the two r.v.'s R  and v r  
for R  =  a .  
Consider an arbitrary period of time T .  There are, on average, k a T  
intersections, and the vector parameter represented by the point ( X , Y )  is 
outside the specified tolerance zone during the mean time E{ra}Aa7\ Conse- 
quently, the system parameter will be inside the tolerance zone, on average, 
during the time T [  1 - E{fa}Aa], The mean time that the parameter spends 
inside the tolerance zone is 

r = 1 Tx al =r-E{U (4.68) 

Using (4.56), we can write 

f f ( r ) d r  J o  _________  
-oo 
/  v r f { a , v r ) d v r  
J n  

r = 
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Now we find the corresponding densities and compute the final result in a 
compact and constructive form. At first, notice that the r.v.'s X  and Y  are 
independent and have normal distributions, so

1 
2tr 

I 
2tt<T 

( x 2  +  y 2 )  f ( * , y )  =  (4.69) exp 
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Further, 

f ( r )  d r  - Pr{r < R  <  r  +  d r )  =  
/ /  

J
 
J

r
<
 
i
f
)  

n
 

that is, /(r) is a Rayleigh density. 
To determine the density f i r ,  u r ) ,  we need to consider a system of four 
normally distributed r.v.'s: X ,  Y ,  v x  =  d X ( t ) / d t ,  and v y  =  d Y( t ) / d t .  
For a 
Gaussian process, all of these r.v.'s are independent. The variances of v x  and 

v y  are identical and equal 
=  a 2 ( a 2  +  p 2 )

 
Thus, v x  and V y  do not depend on the 
coordinates of ( X ,  Y )  and have a 
circle normal distribution; that is, the projection of the vector ( v x ,  u y ) on the 
direction of R  has a normal distribution with variance (4.71). Thus, the 

two-dimensional density f ( r , v r )  can be expressed in the following way: 
f ( r , v r )  = f ( r ) f W  =  — e x P ~

 
Xexp 

l a 2 { a 2  + p 2 )  

After substitution of (4.70) and (4.72) into (4.68), we obtain the final result 

a  y  a  +  f t  ^  '  
"
2

 + p2 
This example shows that the use of stochastic process theory to find 
reliability indexes is not a simple task. But difficult practical problems always 
need the use of more or less complicated mathematical tools. Note also that 
besides the technical complexity of the solution there are also some special 
needs concerning the input data. Such data are not always available. 

f ( x , y )  d x d y
x 2 + y 2  < r  +  d r

1 ,r+dre_r2/2„2rdrd(p _ '-rWdr (4.70) 

cr 

2Tt(T2 JQ 

 

 

d 2 K x ( r )  

(4.71)
d r 1  r = 0  

 

1 
2cr2 J  y j 2 i T ( T 2 { a 2  +  
p 2 )  
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CONCLUSION 

We presented only a very brief description of the problem which could be 
explained by our intention to consider, primarily, system reliability. The 
problem related to the degradation of mechanical constructions under the 
random load and fluctuation of their physical parameters and the strength
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are special branches of modern reliability theory. Each of these branches 
must occupy a separate book. 

The reader can find some appropriate formulations of the problem of 
reliability of mechanical systems and many useful related results, for exam- 
ple, in Kapur and Lamberson (1977). We would also like to mention Bolotin 
(1975). In Becker and Jensen (1977) one finds an analysis of a similar 
mathematical problem related to the reliability of electrical equipment under 
a stochastic fluctuation of parameters. Mechanical problems in reliability 
engineering are considered in Konyonkov and Ushakov (1975). Some results 
concerning the reliability of mechanical systems are contained in Ushakov 
(1985, 1994). 

Interesting results concerning accumulations of random shocks can be 
found in Barlow and Proschan (1975). Elegant mathematical results can be 
obtained with the use of the Kolmogorov equations if the process of the 
parameter fluctuation can be described as a Markov process. 

One can find a lot of interesting results in the extensive literature on noise 
analysis in radio equipment. This powerful branch of applications was stimu- 
lated by the pioneering work of Rice (1944, 1945). 

At last, we would like to mention that this problem must be considered 
on a serious physical level. This chosen mathematical model must correspond 
to a real object, either electronic equipment or a mechanical construct. 
Writing a set of abstract models covering this subject area seems to be a 
hopeless task. Besides, it is not a simple task to find the appropriate 
statistical data for the models dealing with the random behavior of real 
parameters. 
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EXERCISES 

4.1 The distributions of both a strength and a load are normal. The mean of 
the load is known: L  = 10 conditional units and the standard deviation 
a g  = 2. Find the parameters of the distribution of the strength S  and oy 
which deliver a probability of failure-free operation equal to R = 0.995. 

4.2 The distributions of both the strength and the load are exponential with 
parameters 1/5 and 1/L, respectively. L  = 1 conditional unit. Find S  
which delivers a probability of failure-free operation equal to R = 0.995, 

4.3 The strength's distribution is normal with unknown parameters S  and oy 
and a known coefficient of variation k = 0.04. The distribution of the 
load is exponential with L  = 1 conditional unit. Find the parameter S  
which delivers R = 0.999. 

SOLUTIONS 

4.1 First of all, notice that the problem as formulated here is incorrect: one 
should know in advance the mean of the strength a or its standard 
deviation or the coefficient of variation k = o-*/S2. Without this 
correction the problem has no unique answer. 

Let us assume that one knows 4k — 0.04. The problem can be solved 
by sequential iterations. For choosing a first value of S ,  notice that 
because of the requirement, R = 0.995, there must be at least more 
than L + 2.5<7-K. Choose S(1) == L + 3ag = 16. Then 

<t} = J k ( S ( l ) ) 2  - vT0704)(256y = 3.2 

Now it is clear that this level of strength is unacceptable. Choose the 
next value, for instance, 

S(2) =  L  +  3 o ■ +  3<rr
(1> = 26  
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This value of S<2) leads to 

o)n = k ( S (2>)2 = /(0" 04) (676) « 5.2 

Check the above obtained result 

26 - 10 
I 26 - 10 \ 

(MT53)_,1,(2'22)°0-987 

Thus, the value 5 is still smaller than one needs to deliver R  =  0.995. 
The procedure continues. (We leave it to the reader to obtain the final 
numerical result.) 

4.2 From (4.9) one can write 

LR  1 • (0.995) 
= 199 conditional units 
I  -  R  

This coefficient of safety is too large. The assumption that both strength 
and load distributions are exponential is unrealistic in practice. At the 
least, this is quite unreasonable as a distribution of strength. 

4.3 For a highly reliable construction, one can use (4.12) or (4.13). This 
gives

 
1 / 2 5  0.0452 \ 

~  2 \ T  U ~ j

 
or

 
0.025

= 0.001 

The latter can be rewritten as 

0.0252 - 5 = 6.9 

We leave to it to the reader to complete the solution.

P =  0  

S  =  
0.005 

 

= 0.999 R  = 1 - exp 
 

 

exp



 

 

CHAPTER 5 

DISTRIBUTIONS WITH MONOTONE 
INTENSITY FUNCTIONS 

For a quantitative characterization of reliability, we must know the failure 
distributions. Such detailed and complete information is not always available 
in engineering practice. Fortunately, in some cases we do not need to know 
the particular type of distribution, it is enough to know only some parameters 
of the distribution and the fact that this distribution belongs to some special 
class of distributions. In this case we can often obtain bounds on the 
reliability indexes based, for example, on the known mean and variance or 
other similar parameters of the distribution. Concerning the distributions, we 
need only know that they belong to the class of distributions with a monotone 
failure rate. There are several main classes of such distributions and these 
are described below. 

5.1 DESCRIPTION OF THE MONOTONICITY PROPERTY 
OF THE FAILURE RATE 

A very natural phenomenon of reliability as it changes over time is often 
encountered: the longer an item is functioning, the worse the residual 
reliability properties become. For many practitioners this phenomenon seems 
almost to be unique. Indeed, deterioration, fatigue, and other similar physical 
processes lead to a worsening reliability. Such phenomena (and their associ- 
ated distributions) are called aging. 

Probabilistic Reliability Engineering, Boris Gnedenko and Igor Ushakov  
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time, we become more sure of its reliability. Sometimes this property follows 
from a physical phenomenon connected with a change in the chemical and 
mechanical features of an item: a penetration of one material into another 
through contacting surfaces, a strengthening of the joining materials, a 
"self-fitting" of frictional parts, and so forth. Sometimes this is connected 
with a "burning-out" effect. This phenomenon is called younging. As an 
example of the latter property, consider a mixture of two equal parts of 
items: one with a constant M'lTF equal to 100 hours and another with a 
constant MTTF equal to 900 hours. We observe an item chosen at random 
from this mixed group of items. At the moment t  =  0 the MTTF equals 

T -  T x p  +  T 2 ( \  - p )  = 100(0.5) + 900(0.5) = 500 hours 

and the probability of a failure-free operation, say during 200 hours, equals 

Pr{£ ^ 200[ starting at t  = 0} - 0.5 
But if it is known that at t  = 101 hours the item is still functioning, the values 
of both reliability indexes under the condition that the new trial starts at 
f = 101 hours change: 

T*  -  T 2  =  799 hours and Pr{f a 200|starting at t  - 101} - 1 

Both values for the used item are larger than for the new item on the 
average. Of course, there is no change in the item itself. We have only new 
information which allows us to make a posteriori a new conclusion about the 
item's reliability. An analogous example was considered in Chapter 1 when 
the mixture of exponential distributions was analyzed. 

Notice that we observe a similar effect in "burning-out." It is normal 
practice to use some stress tests (temperature shocks, accelerated vibration, 
etc.) for selecting technologically weak items. The same effect is observed 
when weak units and manufacturing defects are eliminated during a high- 
failure "infant mortality" period under normal conditions. 

It is the appropriate time to recall the ancient Greek myth about the 
Spartans who killed their weak and ill infants by throwing them from a high 
rock into a canyon. They did this to ensure that their remaining children 
would be healthy and strong. (We must state that this is only a myth: it was 
not a custom in the ancient democracy. As new sources claim, rich, free 
citizens of Greece replaced their weak and ill infants with the healthy babies 
of poor families.)



 

DESCRIPTION OF THE MONOTONICITY PROPERTY OF THE FAILURE RATE 207 Of course, there are no "immortal" items. First of all, if a failure rate 
decreases in the initial phase, an increase in the failure rate at some point is 
inevitable. Many items have the failure rate function of a "U-shaped form 
(see Figure 2,2). Second, even a probability distribution with a decreasing



 

 

208 DISTRIBUTIONS WITH MONOTONE INTENSITY FUNCTIONSfailure rate has P ( = 1 - F(<») = 0. (Of course, this puts a special condi- 
tion on the decreasing failure rate function.) The exponential distribution is 
the boundary distribution between distributions with increasing and decreas- 
ing rates. 
One of the basic characteristics in further analysis is the "conditional 
instantaneous density" of the time-to-failure distribution. For this conditional 
density, we usually use the terms failure rate or failure intensity. The strict 
mathematical definition of this, as we mentioned above, is 

A C ) - ^  (5-.) 

Thus, in reliability terms, this is the instantaneous failure distribution density 
at time t  under the condition that the item has not failed until t .  A better 
explanation can be presented in terms of an "element of probability." A(OA 
is the probability of an unrepairable unit failure in the interval of time 
[ / ,  t  + A] under the condition that the unit has not failed by moment t .  This 
conditional density changes continuously with time. 
Sometimes it is useful to consider the function: 

A(/) = f ' \ ( x ) d x  
J n  

Integration of (5.1) and (5.2) yields

 
f ' \ ( x ) d x

 
In this chapter we consider only the simplest properties of distributions 
with a monotone failure rate. A more detailed analysis of the subject can be 
found in Barlow and Proschan (1975). 
We do not consider the U-shaped A(/)'s or the nonmonotonic ones. Notice 
that a nonmonotonic A(f) is not very unusual at all. The following example 
from Barlow and Proschan (1975) can be analyzed in very simple terms. 

Example 5.1 Consider an unrepaired system consisting of two different 
units in parallel. Each unit has an exponentially distributed TTF. For this 
system 

P ( t )  =  1  -  ( 1  -  -  

and 

A1e~A,f + X 2 e - (A, + A2)e-(A'+A^' 
=  +  e A 2 I  _  g - ( A ,+ A 2 ) ,  —
 (5.4)  

(5.2)

 
= e - M »  P ( t )  = exp (5.3)
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To find the maximum of (5.4) directly by differentiation is a boring problem. 
We may analyze it in more simple terms. From a physical viewpoint, if the 
parallel system is functioning for a very long period of time, the most 
probable situation is that there is only one unit which has survived. If so, this 
unit, on average, is the most reliable one. Moreover, the longer the period of 
observation, the higher the conditional probability that the survivor is the 
best unit. Suppose that, in our case, Ai < A2. Thus, for the system A it) -» A,. 
At the same time, for any parallel system A(0) =■ 0. Show that at some f the 
function AO) is larger than A,: 

A,*"*'' + A2e~x*' - (A, + 
H O  =  e - x , ,  - ~ " "  > A: (5'5) 

The inequality (5.5) easily transforms into 

+ A2e"Aj' - (A! + A2)<r<A|+A*>r > A^"*'1 + K^' - A1e_(A,+A*>' 

and after the simple transformations 

>  e ~  

The last inequality is valid starting from 

1 A2~ A, 
rn = ------- ln- 
° A, A, 

Thus, the function A(r) for the system starts from 0, then intersects the level 
Aj from below, and after this reaches its maximum and exceeds the limit 
value of A! from above. From (5.5) one can see that A(f) is monotonically 
increasing if A, = A2 = A. Figure 5.1 presents the A(f) behavior over time for 
three characterizing proportions between A, and A2, 
Below we consider the distributions with an increasing failure rate (IFR 
d.f.'s) though this is only one (and the most narrow class) of the "aging" 
distributions. The reader can find other subclasses of the "aging" distribu- 
tions, as well as the "younging" distributions, in the original interpretation, 
in the excellent book by Barlow and Proschan (1975).  

(5.6)
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5.2 UNIT WITH IFR DISTRIBUTION OF TTF 

The evaluation of a 
unit's indexes is 

equivalent to 
finding the 

parameters of 
the corresponding 

distribution of the 
unit's TTF. If we do 

not know any 
additional 

information about the distribution, 

the general evaluation is a 
Chebyshev inequality of the type

 
Pr{|£- E(f}|i«} £

 
where e is an arbitrary positive value. 
This inequality is very well known in probability theory. To give the reader 
a sense of the result, we follow the proof given in Gnedenko (1988). By 
definition, 
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Figure 5.1. Example of a nonmonotone failure rate function for a duplicate system of
two different units both with an exponential distribution of time to failure. 
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Becausc in the domain of integration ( l / e ) \ x  — E{£}| > 1, 

/  d F ( x ) < \ (  ( x  -  E { t ) f  d F { x )  

1 r" , , ,2 Var{^} o-2 
O  - CC C  c  

This completes the proof. 
Inequality (5.7) is universal and so is not too constructive for practical 
purposes (as with any universal tool). For instance, one sees that (5.7) only 
makes sense when e > tr. In other words, this estimate is not true in some 
area around the mean. But notice that, at the same time, at the distribution's 
tails, the estimate is very rough. Suppose that additional information is 
available. Then we can obtain narrower bounds. Consider the class of IFR 
d.f.'s. We first prove several additional statements. 

Theorem 5.1 The graph of an IFR d.f. P i t )  crosses the graph of an 
arbitrary exponential function e ~ A I  at most once from above. If these two 
functions do not cross, P i t )  lies strictly under this exponential d.f. (see 
Figure 5.2). 

Proof. The intensity function A(f) for the IFR distribution might increase 
infinitely or be bounded above by some number A*. In the first case, there 
exists a moment tn when 

A('o) = /'°A(Jc)<fr-A*c 
J n  

and, for any y ^ r0, 

A(y) 
Ay 

Figure 5.2. Explanation of the contents of 
Theorem 5.1: possible types of relationships 
between the exponential function and dif- 
ferent IFR distributions of time to failure.   
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(5.8) 

In the second case, for any t  >  0, we have A(r) s 
A* and, consequently, A(/) 
never crosses A t .  Thus, for any t ,  

P(r) < e"A '  

From (5.8) and (5.9) it follows that the "right tail" of the IFR distribution 
decreases faster than the corresponding tail of the exponential function. 

Corollary 5.1 If an IFR d.f. P i t )  has a first derivative different from 0 at 

/ = 0, say 
 

then P ( t )  lies everywhere below e  at. 

Proof. The proof follows from the fact that A(f) > at for all t. Some hint of 
a graphical explanation can be found in Figure 5.2. 

Corollary 5.2 An IFR d.f. P i t )  necessarily crosses e ~ x '  from above once if 
both distributions have the same MTTF equal to T .  

Proof. By Theorem 5.1 both d.f.'s have to intersect once or not intersect at 
all. The second statement contradicts the corollary, so we need to check this. 
Suppose that both d.f.'s do not intersect. This means that 

 

which contradicts the statement concerning the equality of the MTTFs. For a 
graphical explanation, refer to Figure 5.2. 

Theorem 5.2 For an IFR d.f. P i t ) ,  the function 

7P( T )  

d

—  
a  

(5.9)

because AO) increases. Thus,
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decreases with increasing t .   
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Proof. AO) is convex, so log P i t )  = -A(() is concave. But then 

log J^ Q - togP(O) 
t  -  0  

decreases with increasing t .  Consequently, 

1 ^(0 
7losm 

decreases in t .  After substituting P(0) = 1 and using an exponential transfor- 
mation, the proof of the theorem follows. 

This theorem produces the following interesting corollaries. 

Corollary 5 3  For an IFR d.f. P i t ) ,  

P( x )  < ;  [ P i t ) } 1 ' '  

for all x  >  t .  

This allows us to predict (i.e., to compute a lower bound) the probability of 
a failure-free operation of an IFR unit for a specified time, if we know the 
value of P i t )  for a smaller interval of time. This corollary can be of great use 
for an application in testing IFR units during a short testing period. 

Corollary 5.4 For an IFR d.f. the initial moments of all orders are finite. 

Proof. Indeed, for any t, 

f ™ x r P( x ) d x <  f " x ' { [ P( t ) ] V y  d x  =  f"xre~p* dx < oo 

where [P(f)],/" is replaced by The reader knows that the exponential 
d.f. has the moments of all orders. 

The last corollary shows that arguments about the properties of "aging" 
units, which seem to be just qualitative statements, have led to very strong 
restrictions on the moments of an IFR d.f. Incidentally, note that the 
coefficient of variation of the IFR d.f. is always less than 1. 
Now, using all of the above results, the following important characteristics 
of IFR d.f.'s can be obtained.  
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Theorem 5.3 If is the quantile of an IFR d.f. P i t ) ,  
PrU > = p ,  then 

a e~a(>> for t <, 

< e~a*r for t > ip 

ln(l -p) 
a   -   - - - - - -    - - - -   

Proof. An exponential function can be found which goes through the point 
( £ p ,  1 -  p ) .  The parameter of the exponent can be found from the equation 

e - « f p  = i - p 

We then use Theorem 5.1 to complete the proof. 

Theorem 5.4 A lower bound for an IFR d.f. is determined 

by 

n o  = {e0 

where t  is the MTTF 

r  =  f p ( t ) d t  
J o  

Proof. We first present a rigorous proof. For an IFR distribution the function 
A(r) is an increasing convex function, so by Jensen's inequality 

E{A(£)} < A(E{£}) — A(T) (5.10) 

Denote P i t )  = y and rewrite 

E{A(£)} -E{-ln/»(f)} = E{-Iny} - [ \ n y d y ~  1 (5.11) 
■'o 

From (5.10) and (5.11) 

E{A(f)} = 1 ^ A(T) = -In P i T )  

immediately follows where 

P { t )  

where 

,/T for t  < T  
for t  >  T  
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P i T ) > e ~ 1 (5.12) 
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0 

[ P{ t ) \ W '  >  [ P( T ) ] 1 / T > e - V T  

and, finally, for t  <  T  the 
required result is obtained 

P ( t )  >  e ~ ' / T  

The same result can be derived from simple explanations based on a 
graphical presentation (see Figure 5.3). 
The first inequality follows immediately from a comparison of the exponen- 
tial function e ~ ' / T  and a degenerate function G ( t ) with the 
same MTTF 

for t  t z T  for t  >  T  

The degenerate function (i.e., a distribution of a constant 
value) is the 
boundary distribution for the class of IFR d.f.'s. By Theorem 5.1 the 
degenerate function crosses the exponential function from above at point 
t  =  T .  All strictly IFR d.f.'s may cross the graph of a given exponent only for 
t  >  T  which follows from the equality of the MTTFs. The second inequality 
is trivial because P ( t )  is a nonnegative function. Notice that a lower bound is 
reached by the exponential d.f. for t  <  T  and by the degenerate d.f. for 
t  >  T .

 
Figure 5.3. Explanation of the proof of Theo- 
rem 5.4: relationships among IFR, exponen- 
tial, and degenerate reliability functions.

or, equivalently, 

[ P( T ) ] i / T  > e ~ i / T  

Now from Corollary 5.3 for t  <  T  we can write 

 

 

G i t )  

z 1

t
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Theorem S.5 An upper bound for an IFR d.f. is determined as 
. /1 for t *  T  „  . . .  

for t *  >  T  ( 5 ' U )  
where (i)r depends on f * and is found from the condition 

f t *  
dt = T 

or, equivalently, 
1 - w,T = e "<'* 

Proof. The first inequality in (5.13) is trivial and follows from the definition of 
a d.f. The second inequality is equivalent to the statement that for t* > T 
the IFR function P { t )  crosses the graph of the function E* { t )  from above, 
which is the exponential function truncated from the right at 
point t * ,  

e~"<' for t < t* 0 for t > t* 

at some point ( < t *  if both P ( t )  and E* ( t }  have the same MTTF. 
This fact can be proved immediately by assuming the contrary. Suppose 
that there is no such crossing. Then P ( t )  lies above E* ( t )  everywhere, but 
then 

r n t ) d t  >  rv<o d t  

which contradicts our suggestion about the equality of their MTTFs. A 
graphical explanation of (5.13) is given in Figure 5.4. 

  

f  
J

o  

E* ( t )  =  

 

Figure 5.4. Explanation of the proof of Theorem 5.5: finding to, by constructing the 
exponents truncated from the right. 
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As a result, we have lower and upper bounds for the IFR function P i t )  
which are represented in Figure 5.5. In this figure P x i t )  is the function with a 
coefficient of variation close to 0, and Pxit) is the function with a coefficient 
of variation close to 1. 

Theorem 5.6 An upper bound for the quantile of the IFR distribution 
is expressed by its MTTF, T ,  and corresponding probability p ,  p  =  1 -  
Pr{f > £p), as 

ln(l -p) 

Proof. Notice first that, from Pr{f > = P(£p) = 1 - p, 

H Q  = « 

Now the chain of obvious inequalities based on the previous results can be 
written as 

T  = [  p { t ) d t *  f " p ( t ) d t >  r [ p ( t p ) ]  
J o  J o  J o  

f t ,  ['"0- P )  . = I exp ..............  ...   ■ x  d x  J n

Upper bound 

 

Figure 5.5. Area of possible values of IFR reliability functions with the same MTTF 
and samples of different IFR reliability functions. 

= _ln(l -/>) 
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and simple integration gives us 

(exp[ln(l -p)] - 1) 

[ ( 1  ~ P ) ~ A

 
which produces the desired result. 

Theorem 5.7 A lower bound for the quantile £ of the IFR distribution is 
expressed by T  and p  as

 
(-ln(l-p)Jr for 1 ~ p >  

T  for 1 -  p  z  e

 
Proof. We prove the first of these inequalities separately for £p ^ T and 

>  T .  For the first case 

1  —  p  =  P( £ p )  >  e ~ l  ^  ex p j -  ^  j  

For the second case with the use of Theorem 5.2, we immediately write 

1-p-!>(*,) a 

Thus, the desired inequality is valid in both cases. 
The second inequality, which is valid for the condition 

1  -  p  =  / > ( £ , )  <  e  

follows immediately if we recall (5,12). Thus, 

which corresponds to the desired condition £ p  >  T .  

 
l n ( l  - p )

d x  =exp
l n ( l  - p )  

S n  

l n ( l  

- p )  

PtP 
- l n ( l - p )  

■'n

 

 
1

-i 

 

-l 
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Corollary 5.5 For the median M of an IFR d.f., the following bounds are 
valid: 

(-ln|)7 < M  <. (-2ln{ ) T  

M  M  
 ------  < 7 <  -------  
2 In 2 In 2 

Proof. The proof follows automatically from Theorems 5.6 and 5.7 after the 
substitution p  = 1/2. 

If instead of the MTTF, we know the variance of the IFR distribution, the 
bounds can be improved. We do not consider these more complex eases and 
advice the reader to refer to Barlow and Proschan (1975). for an excellent 
discussion of the subject. 

5.3 SYSTEM OF IFR UNITS 

As we saw above, an IFR type of distribution of a unit TTF leads to 
interesting and constructive results. An extension of these results appears 
when we consider systems consisting of units with IFR types of TTF d.f.'s. 
We will formulate all of the results in the form of theorems because each 
of them requires a mathematical proof. First of all, we prove a lemma, which 
is simple but very important for future considerations. 

Lemma 5.1 If (1) the function f i x )  is monotonic, restricted, and nonnega- 
tive on the positive semiaxis, (2) the function g ( x )  is absolutely integrable on 
the positive semiaxis, (3) the latter function is such that g(jr)>0forjt<a 
and < 0 for x  >  a ,  and (4) 

r g ( x ) d x = o  
J o  

then, if f i x )  decreases (increases), the following inequality is true: 

r f { x ) 8 { x ) d x ^ i > ) o  
•'n  
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Proof. The proof can be presented as a chain of simple transformations: 

f ~ f ( x ) g ( x ) d x -  f f ( x ) g ( x )  d x  +  f f ( x ) g ( x ) d x  
J0 ■'o Ja 

< ( > ) f [  max  f ( x ) ] g { x ) d x  +  min/(x)lg (x)  d x  
} Q  l O z x z a  J J a  L x > a  J 

=  / ( « )  f g ( x )  d x  +  f  ( a )  f g ( x )  d x  = / ( « )  f g ( x )  d x  
J0 }a •'o 

- 0 
The sense of the lemma is clear from Figure 5.6 where an increasing 
function f i x )  is shown. Obviously, the square 5, is taken in the resulting 
expression with less "weight" than the square S 2 ,  and thus the sum turns out 
to be negative. 

 

5.3.1 Series System 

Theorem 5.8 A lower bound on the probability of a failure-free operation of 
a series system of IFR units with known MTTF is 

no- n for 
\.0 for t  >  t *  

where t *  =  min T r  

Proof. The proof immediately follows from Corollary 5.2 by a simple substitu- 
tion. 

This lower bound is very important in practice because it gives a guaran- 
teed estimate of the real but unknown value of the reliability index.  

 

Figure 5.6. Graphical explanation of the proof of Lemma 5.1. 
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Theorem 5.9 An upper bound on the probability of a failure-free operation 
of a series system of IFR units with known MTTF is

 
1 

exp(-®<j?r) 

exp[-HP + < o f ) t ]  

for t  <; min 7] = T, 
1 <.is.n 

for T ^ t  < T 2  

for T2zt < T3

 
expl- £ a><?f) 

V I s i z n  '  

where T h  1 < ,  i  < ,  n ,  are ordered MTTFs and each <y$ is found from the 
equation 

1 - <4>7; = exp(- ( o t f t )  

Proof. The proof follows immediately from (5.13) of Theorem 5.5. 

Theorem 5.10 An upper bound on the probability of a failure-free opera- 
tion of a series system of IFR units with known a = A(0) is 

P(I! <Ta'' = exp(-r Z «;') (5-16) 

for t  <  min T r  

Proof. The proof follows immediately from Corollary 5.1. 

Theorem 5.11 The MTTF of a series system of independent IFR units has 
the following bounds: 

1 

 

P ( t )  <

 

(5.15)

for t  £  T  

(5.17)
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r - ,min T> 
1 

E r 
Proof. An upper bound follows trivially from the obvious statement that for 
any t  the system is less reliable than any of its units: 

p,( o* n p,{ o 
1  
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Therefore, 

7; - f p , ( t )  d t  S f  n P t ( 0  d t  =  rsys( 
'0 -'o 1 si'sr 

We may use Lemma 5.1 to obtain a lower bound. We show that the 
replacement of an arbitrary unit with an IFR distribution of TTF with a unit 
with an exponentially distributed TTF, which has the same MTTF, leads to a 
decrease of the series system's MTTF. Suppose that such a replacement is 
done for the «th unit of the system. We need to prove that 

f  n P i ( t ) d t ±  fe-'T* n r , ( 0 d t  
J 0  liiirt J 0  JiJin-t 

or, equivaiently, 

A  =  f [ P n ( t )  -  e-«T*] ]1 P A t ) d t > Q  
J 0  litin-l 

Note that, by Theorem 5.1, Pnit) crosses expi ~ t / T„ )  once and from above 
and, by assumption, both these functions have the same MTTF, Thus, 

p n ( l )  -  e~ ' / T"  

corresponds to the function of Lemma 5.1. At the same time, the 
function 

n ^(o 
lilin- 1 

corresponds to the decreasing function f i x )  in Lemma 5.1. Thus, by 
Lemma 5.1, A > 0, and the desired intermediate statement is proved. 
The systematic replacement of ati system units with an IFR distribution 
with units with a corresponding exponential distribution produces 

/ 1 \ 1 
rsyst s / n e ~ , / T ' d t  - / exp - t  E T \ d t  =  -------------------------------- p J 0  lsis» 0 \  1 T { ) y 

L*  j  
i  

Thus, the theorem is proved. 

The upper bound can be improved if we possess additional information 
about the distribution P,-(f)> for example, if we know the first derivatives in 
t  =  0 .   
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Theorem 5.12 The upper bound of the series system MTTF can be written 
as 

1 - exp — min £ ^(0)

 
where a, is determined from the condition

 

 

Proof. Consider an exponential distribution truncated from the 
right:

 
This distribution E * { t )  has the same MTTF as the initial distribution Pn(t). 
Hence, E * ( t )  crosses P n ( t )  from above (see Figure 5.7). 

T  <  
'syst — 

(5.18) L A,(0) 
I SiSn 

 

 

 

-A,<0
)J for 

for 
t  < ,  
a i  

t  >  
a ,  

E * ( t )  =   
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IFR reliability function and the exponential function truncated from the right where 
their derivatives in / = 0 are equal. 
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In the expression for the system MTTF, replace the unit with distribution 
P„(t) by E*(l). The new system MTTF is 

f E W )  n P , ( t )  d t  =  n P , { t ) d t  

We now find the value of A: 

A=fE*M n p L { t ) d t -  r n PM d t  

= H e x o ) - p n ( t ) ]  n p x t ) d t  

Again we can use Lemma 5.1, noticing that E * ( t )  -  P„(t ) corresponds to the 
function g ( x )  from Lemma 5.1 and corresponds to the 
decreasing function from Lemma 5.1. Thus, by Lemma 5.1, A > 0, that is, 
the replacement of any IFR unit, say the nth, with a unit with distribution 
E * ( t )  might only increase the system's MTTF. 
Thus, the systematic replacement of units in the above-described 
manner leads to the final 
result 

J 0  I 

- min a{ £ A;(0) 

L A,<0) 
1 S i £ n  

and this completes the proof. 

5.3.2 Parallel Systems 

Theorem 5.13 An upper bound for the probability of failure of a parallel 
system of IFR units can be expressed as 

f  F T  ( 1  ~ e " / T ' )  for t £ t *  
Q(0 = n Qi(') * (5.19) 

i s i s m  I J for t  >  t *  

where 

/* = min Tj 

Proof. The proof follows directly from Theorem 5.4,  

d t

1 - exp 
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For the probability of a failure-free operation, the following lower bound 
follows from (5.19): 

[ 1 - EI (l-«",/r<) for t < t *  
P ( t )  >  I  isisn. (5.20) 

\ 0  for t  >  t *  

Theorem 5.14 A lower bound for the probability of failure of a parallel 
system of IFR units has the form 

PI [l - exp(-«(./)l for t  £  t *  
Q ( t )  >  {  l i d J
 (5.21
) 

for t  <  t *  

where 

t *  —  max Tj 
1 SfSm 

Proof. The proof follows immediately from Theorem 5.5. 

For the probability of a failure-free operation, the following upper bound 
follows from (5.21): 

for t  <  t *  
n o ^ i -  n [l ~ exp(-w^r)] for t > t *  ( 5 - 2 2 )  

1  S i S m  

Theorem 5.15 The MTTF of a parallel system of independent IFR units has 
the bounds 

1 
max ij isys, i i i j 
. . .  i  i  

l ^ i ' ^ r n  1  £i<j<.m __ y, 

T  T  

1 
+  * • •  +  ( - ! ) " '  - - -  y  (5-23) 

ISiSm i 

Proof. This proof is analogous to the proof of Theorem 5.11 and so we omit 
it. 

T, < Tiyst < £ T t ~  Z
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Again note that the lower bound is trivial and can be instantly found for a 
degenerate distribution, that is, for the case when ail T/s are constant. 
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Wc rtow mention that, for a parallel system, the MTTF is larger if the unit 
failure distributions have larger variances. (In qualitative terms, this result is 
close to that obtained for dependent units.) It seems paradoxical that an 
unstable production of some units for a parallel structure is better than a 
stable production: we used to think that stability is almost always better than 
instability. But there is no enigma at all if one notices that the random time 
to failure of a parallel system is the maximum of the unit's random time to 
failure. 

Theorem 5.16 A lower bound for the MTTF of a system consisting of units 
with an IFR distribution, for which we know the first derivative in t  —  0, is 

Tjyst — E Z /  
1  £ /S (B  

x[l - exp(-min{7;,7}l[A,.(0) + A,(0)])]

 
min T ,  Z  A , ( 0 )  
Ulsm ijgij-^

 
Proof. The proof here is analogous to that of Theorem 5.12. We only need to 
notice that the probability of a failure-free operation for this case after all 
substitutions of P((f) for E * ( t )  has the form 

p ( t )  = i — n [i- e t c ) ]  
lsism 

where £*(/) is defined in Theorem 5.12. 

5.3.3 Other Monotone Structures 

Instead of writing detailed formulas with the simple substitution of IFR d.f.'s 
PU ) for degenerate or exponential d.f.'s, we mention only that one can 
obtain a lower bound for the system reliability by substituting lower bounds 
of the corresponding units' failure-free probabilities. Analogously, after the 
substitution of the upper bounds of the units' probabilities, a lower bound for 
the system probability is obtained. The reader can find some related results 
in Barlow and Proschan (1975). 

CONCLUSION 

This relatively new branch of reliability theory was initiated by Barlow and 
Proschan and became widely known after their book [Barlow and Proschan 
(1975)] was published. First papers on the properties of distributions with a

1

 
AAO)!1

+ (-1)' expz 
1 sisin  
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monotone failure rate appeared in the previous decade [Barlow, Marshall, 
and Proschan (1963); Barlow and Marshall (1964); Solovyev and Ushakov 
(1967); Gnedenko, Belyaev, and Solovyev (1969); among others]. 
We would like to present here a simple but important result concerning 
repairable systems [Ushakov (1966)]. The stationary interval availability co- 
efficient of a system with an "aging" distribution F ( t )  of TTF has lower and 
upper bounds of the form 

^ ( 1 - 7 )  to"0'7 

where K  is the stationary availability coefficient and T  is the mean of the 
distribution F ( t ) .  These bounds can be easily obtained with the help of 
Lemma 5.1. Indeed, R ( t 0 )  for any distribution F ( t ) can be written as 

*('„) - W ( t o )  

where P*(t0) is the distribution of a stationary residual time: 

P m ( t ) - j f ' p{ x ) d x  

Substitution of degenerate and exponential d.f.'s into the latter expression 
and application of Lemma 5.1 produce the necessary result. This result and 
some others can be found in Gnedenko, Belyaev, and Solovyev (1969). Some 
new results can be found in Gnedenko (1983). 
A collection of practical results on aging units and systems consisting of 
aging units is presented in Ushakov (1985, 1994). This problem is especially 
important in practice when one possesses only very restricted statistical 
information but has some reasonable physical arguments about the possible 
behavior of a time-to-failure distribution. 
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EXERCISES 

5.1 Two units have the same mean T. One unit has a uniform d.f. and 
another has an exponential d.f. Which one will deliver the larger 
probability of failure-free operation at moment / = T? At moment 
t  =  2 T 1  

5.2 Consider the Erlang d.f. of a high order (e.g., n  = 10). Explain (without 
exact proof) how A(0 behaves. 

5.3 One has to choose a system for the continuous performance of an 
operation during 100 hours. There are two possibilities: to choose for 
this purpose a system with an MTTF of 200 hours or to choose another 
system with an MTTF of 300 hours. Which system should be chosen. 

5.4 What kind of A(r) has the system depleted in Figure E5.3? 

x  

 

x Figure E5.3. 

SOLUTIONS 

5.1 See Figure E5.1. 
5-2 Consider a clear physical example where such a distribution appears: A 

standby redundancy group of n identical and independent units. One 
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knows that a large number of random variables has an approximately 
normal distribution (at least far from the 
"tails"). One knows (see the 
approximation for a highly reliable 
redundant group) that A(0) = 0 and 
A(f) is increasing by t and convex near 0. 
Then consider large t. If the 

redundant group is still operating, 
the probability that there is only 

one 
up unit is increasing in t. But one unit with an exponentially distributed 
TTF has a constant failure rate. So, the time diagram for A(f) has the 
form shown in Figure E5.2. 

XTT)A

 
Figure E5.2.

 
5.3 The problem as formulated here is 

incorrect: everything depends on the 
kind of distribution. If both distributions 
are exponential, then one 
should choose the second system. If both systems have an almost 
constant TTF, there is no difference between them although, from a 
common viewpoint (with no particular sense in this case!), everybody 
will again choose the second system. This might be, as a matter of fact, 

unreasonable if the first system is, for 
instance, cheaper. But if the first 
system has any "realistic" distribution of TTF 

(exponential, normal, 
etc.) and the second one has a "two-mass" 
distribution, that is, 

with probability p  
with probability 1 —  p  

where r2 > 300, the solution is not unique.  

0.5 

T  0Figure E5.I. 
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Consider an exponential d.f. with A = 1/200. For this distribution 
PFFO,dOO hours) = e ~ K  For the second case let p  = 0.9 and r2 = 
3000 hours. This corresponds to MTTF2 = 300 hours. In this case 
PFF02(100 hours) = 0.1 which is worse than the exponential distribu- 
tion considered above. 
Now assume that p  = 0.5 and r2 = 600 hours. Then PFF02(100 hours) 
= 0,5, which is better than the previous case. For other distributions 
one can obtain similar conclusions (with other numerical results). 

5.4 One should repeat all of the arguments used in the solution of Exercise 
5.2 taking into account that: 

* Unit 1 might be the cause of the system failure during all periods of 
time. 
* For a large time period, the parallel connection of units 2 and 3 with 
probability close to 1 will consist of only one unit; thus the entire system 
also will almost surely consist of two series units: unit 1 and one of the 
units 2 or 3. 

The solution is represented graphically in Figure E5.4. 

 

 

 

0 
Figure E5.4.
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CHAPTER 6 

REPAIRABLE SYSTEMS 

In engineering practice, one of the most important objects under investiga- 
tion is a repairable system. In general, repairable systems might be analyzed 
with the help of Monte Carlo simulation. There are no essential analytical 
results for the most general mathematical models cxcept for some very 
particular cases. The most important analytical models frequently used in 
practicc are Markov models. For these models all the system units' random 
TTFs and repair times are assumed to be exponential. (More accurately, each 
random duration of being in any state has an exponential distribution.) These 
assumptions might be far from valid, and so each time their appropriateness 
must be carefully considered. Note that if the suggestion about exponentially 
distributed TTFs is admissible (especially for electronic equipment), it seems 
artificial for the repair time. Indeed, the residual repair time should depend 
on the time already spent. We have discussed this issue earlier. But as we will 
show below, sometimes the assumptions of a distribution's exponentiality 
produce acceptable numerical results that can be utilized in engineering 
design. At any rate, Markov models are very popular for practical engineer- 
ing problems because of their clarity and mathematical simplicity. 

6.1 SINGLE UNIT 

6.1.1 Markov Model 
We first consider the simplest possible repairable system: a single unit. At 
any moment in time, the unit is in one of two states: it is either operating or 
216 
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it has failed. The transition graph is presented in Figure 6.1. Here state 0 
denotes an operating state, and state 1 corresponds to a failed state. This 
graph has a simple interpretation. When in state 0, the unit might go to state 
1 or stay at the current state. Leaving state 0 occurs with an intensity A, and 
leaving state 1 occurs with an intensity f i .  
The unit transition process can be described as an alternative renewal 
process. It is represented by a sequence of mutually independent r.v.'s £ (a 
unit up time) and t; (a unit repair time). Both £ and 17 have exponential 
distributions with parameters A and n, respectively. A sample time diagram 
is presented in Figure 6.2. 
Using the graph of Figure 6.1, we can easily construct the following 
formula: 

P Q ( t  +  A t )  = (1 - A At ) P 0 ( t )  +  f i  A t P j( ( )  

This expression means that the transition process may appear in state 0 at 
moment t  4- Af under the following conditions: 

* It was there at moment t and did not leave during the interval At. 
• At moment t it was in state 1 and moved to state 0 during the interval 
A t .  

The conditional probability of leaving state 0 equals A A t ,  and the condi- 
tional probability of leaving state 1 equals p  A t .  

 

Figure 6.1. Transition graph for a renewable unit.

 
STATES 

Figure 6,2. Time diagram for a renewable unit.  

(6.1)

 

 

UP 
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From (6.1) we obtain 

p0(t + 
t o ) - p 0 ( t )  

A t  

Jn the limit as A t  —► 0, we obtain

 
^-P0{t) = -A P0(r) +/*/>,(') 
tfc 

This represents the simplest example of Kolmogorov's equation. This equa- 
tion expresses a condition of dynamic equilibrium. To solve it with respect to 
any P k ( t ) ,  we need to have one more equation. It is clear that another 
equation cannot be obtained in the same manner: it would be linearly 
dependent on the first one and, consequently, would not be useful in 
obtaining the solution. The second equation which should be chosen is the 
so-called normalization equation: 

P o ( < ) + P i  ( 0 - 1  

which means that at any moment the unit must be in one of two possible 
states. 
We also need to determine the initial condition for the solution of the 
system of differential equations. In this simple case the problem can easily be 
solved in general when P 0 ( t 0 )  =  p  and, consequently, P£t0) = q, p + q — 1. 
This problem can be solved with the help of different methods. We will use 
the Laplace-Stieltjes transform (LST) to make the presentations in the book 
uniform. 
Recall that the LST <p(.0 of the function f i t )  is defined as 

 

(6.5) 

(In this context we consider functions f i t )  defined over the positive axis.] 

Nonstationary Availability Coefficient The system (6.2) and (6.4) for this 
case has the LST: 

~ P +  - * < Po ( 0  =  ™ A < Po ( 0  +  
f K Pl ( 0  
1 

<p0(O + = - 

-A P 0 ( t )  +  f i P . O ) (6.2)

 (6.3)

(6.4)

(6.6)

(6.7)
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or, in canonical form, 

(A + s ) < P 0 i s )  -  wi s )  =p 
s<Po(s) + 5<Ps(0 = 1  
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Thanks to the LST, the system of linear differential equations turns into a 
system of algebraic equations. To solve (6.7), we can use Cramer's rule:

 

 
To invert this LST, we have to present it in the form of a sum of terms of 
type a / s  or b / ( s  + a). The inverse functions for these terms are a constant 
and an exponential function, respectively. 

To present the solution (6.8) in the desired form, we should find the roots 
of the denominators of (6.8). They are: = 0 and s 2  —  -(A + p). Now we 
can write

 

A  
= — + 

s  +  A + f t

 
where A  and B  are the unknown constants to be determined. To find them, 
we should note that two polynomials with similar denominators are equal if 
and only if the coefficients of their numerators are equal. Thus, we set 
the two 

representations equal: 
A  B  
s A +  p  +  s s(A + ( i + s)

 
And so we obtain a new system for A  and B  by equalizing the coefficients of 
the polynomials: 

A  + B - p  
A (  A + p) - p 

It is easy to find 

A  =  
A + p.

 
k p  -  p , { \  ~ p )  
B  =  p  —  

A + p . A + p 

 
 P    

 1 5  p s  +  p .  

A + s - p  s 2  +  (A + f t ) s  
 s  s    

<Po(s) = (6.8
) 

 

 B
B  

<Po(*) = (6.9)

s  ~  s ,  5 - 5 ,
 

 
PS  +  p

(6.10)

 

(6.11) 

 

(6.12)
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Thus, the LST of interest can be written as 
M 

£  A p  -  -  p )  
A + p  +  s

V -  

< P o ( s )  (6.13)
A + p .  s A + p. 
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Finally, the nonstationary availability coefficient, that is, the inverse LST of 
(6.10), is 

I L  A p  ~  u (  1  —  p )  
K (  0 =  p 0 ( t )  = —~-r + —ji -------------------(6.14) 

f j L  ~R A  A T" f J L  

If the original system state is operational, that is, if Pa(t) 1, the solution is 

=  - A -  +  
— — ( 6 . 1 5 )  
A + fx, A + fi 

The function K ( t )  showing the time dependence of the system availability is 
presented in Figure 6.3. 

Stationary Availability Coefficient It is clear that if t  - *  K ( t )  ap- 
proaches the stationary availability coefficient K: 

(6.16) 
A  +  f J L  1  +  T  

where T — 1/A is the unit's MTTF and r = 1/n is the unit's mean time to 
repair (MTR). 
We should notice that, in general, such a method of obtaining a stationary 
availability coefficient is not excusable in a computational sense. For this 
purpose, one should write a system of linear algebraic equations in a direct 
way without the use of the system of differential equations. It is important to 
realize that the stationary regime represents static equilibrium. This means 
that all derivatives d P k ( t ) / d t  are equal to 0 because no states are changing in 

  

 

A+P 
Figure 6.3. Time dependence of nonstationary availability coefficient K i t )  for expo- 

nential distributions of TTF and repair time. 
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time, "on the average." Consequently, all Pk's must be constant. It is also 
clear that the initial conditions (the original state of the unit at moment 
/ = 0) also will not make any sense. This assumption leads directly to the 
following system of algebraic equations: 

-A P a  + = 0 

P 0  +  F ,  =  1  

where 

P k  -  h m  P k ( t )  

are the stationary probabilities of interest. 
Again, the solution can be obtained with Cramer's rule

 

 
Of course, we mention Cramer's rule not as a computational tool, but rather 
as a methodological reference. Everyone might choose his or her own 
method for this particular computational task. 

Probability of a Failure-Free Operation Considering previous reliability 
indexes, we assumed that both unit states are transient. But if one needs 
indexes such as the probability of a failure-free operation during a specified 
time interval, or the MTTF, the transition graph should be reconstructed. In 
these cases the unit failure state has to be absorbing. 
The transition graph for this case is presented in Figure 6.4. There is no 
transition from state 1 back to state 0, that is, fi = 0. In this case we have the 

(6.17)

(6.18)

 
 0 fL   

 1 1  

-A ( i   

1 1 
A + ( i  T + t  

P0 = K = (6.19) 
 

6 
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0 
Figure 6.4. Nontransitive graph for computation of the MTTF of a renew- 
able unit with an exponentially distributed TTF.  
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equation 

~ P 0 ( t )  =  ~ X P 0 ( t )  (6.20) 

This differential equation can again be solved with the help of the LST. First, 
we write the following algebraic equation with the natural initial condition 
P0it) » 1: 

-1 + s<p0(i) = -A<p0($)

 (6.2

1) 

and then solve it to obtain 

W

 (6.22

) 
Mean Time to Failure To find the unit's MTTF, we should recall that the 
mean of nonnegative r.v.'s can be found as 

E { X }  =  [ ~ P( x ) d x  (6.23) 
A) 

where P i t )  =  1 -  F i t ) .  Using the previous notation, we take P i t )  =  P 0 i t ) .  
At the same time, we can write 

E{*} = f>(*)e_JW<fcUo 
o 

It follows that, to find the MTTF, we can use the solution for P0it) in 
terms 
of the LST and substitute s = 0. In fact, it is even sometimes simpler to solve 
a corresponding system of equations directly with the substitution 5 = 0. 

Considering a single unit, there is no technical difference: 
= - (6.25) 

j — 0 A

 

1 
T*= 

A + j 
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Notice that if we need to find the MTR, it is necessary to start from state 1 
and choose state 0 as absorbing. 

We present an in-depth analysis of this simple case in order to make future 
explanations of more complex models more understandable. We do this to 
avoid explanations below with unnecessary additional details. The same 
purpose drives us to use a homogeneous mathematical technique for all 
routine approaches (though, in general, we try to use various methods 
because our main purpose is to present ideas and not results).  
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6.1.2 General Distributions 
Many results can be obtained for a renewal unit. We remark that it might be 
very useful for the reader to review Section 1.6.5. 
Consider an alternative renewal process {ft 77} starting with a subinterval of 
type ft that is, at t  =  0 an r.v. ft starts. This process can be considered as a 
model of the operation of a socket with installed units which is replaced after 
failure. In this case £ is the random TTF and 17 is the random repair time. 
Let F i t )  and G i t )  be the distributions of the r.v.'s £ and 17, respectively. Let 
us call 9k = ft + -r)k the fcth cycle of operation of the socket. The distribu- 
tion of 6 can be written as 

B i t )  =  f ' F ( t  - x ) d G (x )  = f ' G ( t  - x ) d F( x )  J  n  J  i i  

Nonstationary Availability Coefficient This reliability index 
means that at 
moment t ,  a unit is in an up state; that is, one of the r.v.'s £ covers the point 
t  on the time axis (see Figure 6.5): Consider a renewal process formed with 
{0} and denote a renewal function of this process by H i t ) .  Then, using the 
results of Section 1.5.2, we immediately obtain the following integral equa- 
tion: 

K ( t )  - 1 - F i t )  + ( ' [  1 ~ F ( t -  je)1 d H ( x )  
' a  

In other words, (6.27) means that either no failures have occurred or—if 
failures have occurred—the last cycle 8  is completed by moment JT, 0 < x  <  t ,  
and a new r.v. £ is larger than the remaining time, £ > t  —  x .  The function 
H i t )  in this case is 

H ( t )  =  £ f l * * ( / )  
VA: 

where B * k i t )  is the border convolution of B i t ) .  Thus, in general, K i t )  
could be found with the help of (6.27). 

  

(6.26) 

(6.27) 

 

Figure 6.5. Time diagram for an alternative renewal proccss describing a unit opera- 
tion. 
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Stationary Availability Coefficient Intuitively, it becomes clear that (6.27) 
has a limit when time is increasing: K ( t )  - * ■  K .  (Strictly speaking, the in- 
volved distributions must be continuous.) Indeed, applying the Smith theo- 
rem (Section 1.5.2), we obtain 

1 E{£} 

* " fr.™ " iw /»[1 " A " iifiTlM (6'28) 

On a heuristic level, this result can be explained by the following arguments. 
Consider some interval of time L  such that the number of cycles on it n  is 
sufficiently large. Then 

The index K  is the probability that an arbitrary moment will be covered by 
an interval of type It is clear that this probability is proportional to the 
total portion of time occupied by all intervals of type f: 

E ii ^ E 6 
j^ _ 1 <,i£n _ lsifi 

E h + E V i  r V T T i  r „  
!  s i s n  1  <Li<.n - ^ .. ^ 

n I£/£« n 1< i z n  

and, if n  is large, one may replace each sum with the coefficient 1 / n  for the 
mean of the respective r.v. 

E{£} 
K - m r m  (6'29> 

Nonstationary Interval Availability Coefficient Again, we can write the 
integral equation 

f i (Mo) =  1 ~ F ( t  +  t Q )  +  / ' [  1 -  F( t  +  t 0 ~ x ) ] d H ( x ) (6.30) 
o 

The explanation of (6.30) is similar to the explanation of (6.27). 

Stationary Interval Availability Coefficient Again, we use the Smith 
theorem and write 

R { t 0 ) m  lim = />(*)<& (6.31) 
''fy 
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where £ is the residual time of the renewal process formed with the r.v.'s {£}. 
From (6.32) it becomes clear that R U 0 )  differs from ffwrong(f0) = KP{t0\ 
In engineering practice, nevertheless, i?wroi,g(f0) is often erroneously used. 
We should emphasize that £ and its residual time £ are statistically equiva- 
lent only for an exponentially distributed r.v. Consequently, in this case (and 
only in this case!), 

R ( t a )  ~  K P( t 0 )  =  R ( t 0 )  =  K e  

For a highly reliable unit, (6.32) can be written in the convenient form of 
two-sided bounds if F i t )  is "aging." For this purpose we use a result from 
Chapter 5. Recall that 

 

where F ( t ) is an "aging" distribution with mean T  and D T U )  is a degenerate 
distribution, that is, a constant T ,  Then it follows that 

where f is the residual value of the renewal process formed with {£}. 
For a highly reliable unit, we can write a very simple and very convenient 
approximation 

P( *  o )  =  1 ~ 

Thus, for the index of interest, 
we write 

(6.33) 

and for a highly reliable unit 

 

It is convenient to rewrite (6.31) in the form 

T  
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(6.34) 
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6.2 REPAIRABLE SERIES SYSTEM 

6.2.1 Markov Systems 
Consider a series system of n  independent units. Assume that distributions of 
the TTF, Fj(t), and distributions of the repair time, G(0), are exponential: 

F ( t )  -  1 - e~x' G ( t )  «  1  -  

Here A, and n, are the parameters of the distributions, or the intensities of 
failure and repair, respectively. 

Reliability indexes depend on the usage of the system's units during the 
system's idle time. We consider two main regimes of system units in this 
situation: 

1. After a system failure, a failed unit is shipped to a repair shop and all 
of the remaining system units are switched off. In other words, the 
system failure rate equals 0 during repair. In this case only one repair 
facility is required and there is no queue for repair. 

2. After a system failure, a failed unit is shipped to a repair shop but all 
the remaining system units are kept in an operational state. Each of 
them can fail during the current repair of the previously failed unit (or 
units). In this case several repair facilities might be required. If the 
number of repair facilities is smaller than the number of system units, a 
queue might form at the repair shop. 

System with a Switch-Off During Repair The transition diagram for this 
system is presented in Figure 6.6. We will not write the equations for this 
case. As much as possible, we will try to 
use simple verbal explanations. 

Figure 6.6. Transition graph for a series 
system which is switching oif during idle 
time.   
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1. Probability of Failure-Free Operation 

Any exit from state 0 leads to failure. Hence, 

/>(/) = exp(- £ A,7)=«rA' (6.35) 
^ 1 si sn ' 

where 

A = I 
1 sisn 

Thus, by this reliability characteristic, the system is equivalent to a single unit 
with a failure rate A. 

2. MTTF 

If P i t )  =  e ~ A l ,  the MTTF of the system equals Tsyst = 1/A. No comments 
are needed. 

3. Mean Repair Time 

Let us consider a general case where all units differ by their repair time 
1 /n(. The current repair time of the system depends on which unit has failed. 
The distribution of the system's repair time can be represented in the form 

Pr{77 ^  / }  =  £  p k e (6.36) 

where p k  is the probability that the /cth unit is under repair. The probability 
p k  can be easily found as 

A*  
Pk  =  ^ A
 (6.37
) 

J SLS/L 

Notice that the distribution of the system's repair time has a decreasing 
intensity function; that is, with the growth of the current repair time, the 
residual repair time becomes larger and larger.  
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We consider this phenomenon in more detail. Write (6.36) in the form 

(0 - E />*^' = exp(- f ' p ( x ) d x )  
r  

1  Sk < . n  

From here we find 

d r ( t )  Z  HtPke-*" 
M  }  r { t ) d t  Z  Pke~»" 

1  s . k < , n  

Now we note that f i ( t )  is a monotone function. For t  = 0, a simple qualita- 
tive analysis gives us 

Z v-kPk 
=   - - - - - - - - - - -  „  £  p . k p k ~ E ( p }  

i —  P k  l ^ k &n  
J  S I S N  

Now, as t oo, 

, . P-k*Pk> 
im MO = „ 

where /c * corresponds to the subscript of a minimal fik. Obviously, the 
average value is larger than the minimum. This function is never below the 
minimal Hence, n . ( t )  decreases from the average value of p  at f = 0 to 
the minimal value among all ji's. It can be shown that this decrease is 
monotone. 
Of course, from (6.36) and (6,37), it follows immediately that 

Tsyst ~ syst} ~ E T i  y  ,  A 
1 '  I 

1 iiin 

where T(- = l/PT; is the MTTF of the ith units. 

4. Nonstationary Availability and Interval Availability Coefficients

We are able to find these reliability indexes only with the help of general 
methods of renewal process theory, in spite of the exponentiality of a TTF 
distribution. One can also use standard Markov methods applied to the 
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transition graph presented in Figure 6.6. The corresponding system of equa-
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tions for the availability coefficient is 

no - - n M * )  +  *k Po ( t )  1 

= 1 taken for 0 £ k  n  

and the initial condition P0(0) = 1. We will not solve these equations here. 
But if K ( t )  is found, then—because of the exponentiality of the TTF 
distribution—R ( t ,  t 0 )  =  K ( t ) e ~ A ' .  

5. Stationary Availability Coefficient 

With known 2"syst and rsyst, this index can be found in a standard way as 
K  =  (Tsys,)/(7LSI + rsyst). Note that in this particular case it is convenient to 
write 

K  = 1  (6.38) 
1 + L A ,r, 

1 sirsn 

6. Stationary Interval Availability Coefficient 

Because of the exponential distribution of the system TTF, we can use the 
expression R ( t 0 )  =  K P( t 0 )  where P ( t 0 )  is defined in (6.35). 
Notice that if all arc constant (equal to fi), the above-described system 
is transformed into a single repairable unit with an intensity of failure equal 
to 

A -  E  A, 
1 rsiin 

and an intensity of repair n. In most practical cases it is enough for the first 
stages of design to put /J. - E{/x} in this model and to use this approximation 
instead of using the exact model. We remark that in most practical cases, 
when the equipment has a modular construction, the mean time of repair 
might be considered almost equal for different system units. But an even 
more important argument for such a suggestion is that a mathematical model 
must not be too accurate at the design stage when one does not have 
accurate input data. 

System Without Switch-Off During Repair First, consider a series system 
of n  different repairable units when there are n  repair facilities in a 
workshop; that is, each unit might be repaired independently. The units' 
failures are assumed independent. In this case the system can be considered  
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F ig ur e  6 .7 .  Set of transition graphs for independently operating units of a series 
system. 

as a set of independent repairable units. A set of corresponding transition 
diagrams is presented in Figure 6.7. In this case

 

pwo)= n wo)=« 
I SiS/x 

1 
T  =  —  sys' A 

KW) = n KXO  
1  S . i &n 

z 
= n = n T^T T = n 

1 Siin 7)- + Tj I 1 + 

In this case it is not a simple task to find T^, in a dircct way. But if wc use 
the direct definition of Ksyst, 

T  
w  _  K  

T + T sysI 
1 syst ' sysl 

then 

1  -  K  
T  -   ------------- T  
syst ^ syst 

where all variables on the left side are known. 
In more complex cases when, for instance, the number of repair facilities k  
is less than n ,  the results concerning reliability indexes cannot be obtained so 
simply, especially if we consider a system with different units (this is the most 

H2 —

 
- M  

(6.39)

 

(6.40)

1 
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realistic practical case, by the way). In this case there is no way other than to 
construct a transition graph, to write a system of linear differential equations, 
and then to solve them.  
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6.2.2 General Distribution of Repair Time 
If the TTFs of all the units remain exponentially distributed, the main simple 
results can be obtained practically in the same form as for the Markovian 
model. 

System With Switch-Off During Repair First of all, fsyst(/0) and Tsys, 
remain the same as in the previous case. The mean repair time is defined 
with the help (6.36). Consequently, the stationary availability and interval 
availability coefficients can be expressed in standard form. At the same time, 
nonstationary indexes can be found with the help of the general methods of 
renewal process theory. The model of the investigated operation process 
forms an alternative process {£*, T J *}. Each is an exponential r.v. with 
parameter A and 17* is an r.v. with a complex "weighted" d.f. 

G * ( / ) - P r { , T  < £ / } - -  E  A , G , ( 0  
A 1Z i Z n  

For analytical purposes it is more reasonable to use Monte Carlo simula- 
tion. We would like to emphasize again that a detailed exploration of a 
nonstationary regime is usually a task far removed from practical needs 
becausc of the insufficiency of the input data. 

Sysfem Without Switch-Off During Repair In this case Psyst(f0) and Tsysl 
remain the same as in the previous cases. Even such a stationary index as K 
can be found only for the case when the number of repair facilities equals the 
number of system units, that is, when all system units are totally independent. 
In this case K is defined as 

1 
^ _  ___________  

1 ^sysl^syst 

If the system units are dependent through the lack of repair facilities, we 
recommend the use of Monte Carlo simulation for the computation of 
nonstationary indexes. 

But if K  or K i t )  is known, to find R ( t 0 )  or R ( t , t 0 )  is a simple task 
because of the exponentiality of the system TTF: R ( t 0 )  =  K P( t 0 )  and 
R ( t , t 0 )  =  K ( t ) P( t { } ) .  

6.2.3 General Distributions of TTF and Repair Time
This case is especially difficult if one considers nonstationary indexes. They 
can only be found with the help of Monte Carlo simulation. Let each unit of 
the system be described with the help of an alternative renewal process. The
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superposition of these processes is not an alternative renewal stochastic 
process. The new process has more sophisticated structure: it does not have 
the regeneration moments that appeared when one considered a system of 
units with exponential TTF. 

But to find the stationary coefficient K ,  we can use the idea that stationary 
probabilities do not depend on the distribution of the repair time. Therefore, 
one can use a Markov model with the following parameters for each unit: 

11 11 
A . =   -----------------------------------  and 
f  [ 1 - F , ( t ) ] d t  T >  / [l-Gf(f)I 

'ii
 i'n 

If the number of repair facilities equals the number of system units (all 
units are totally independent), the system stationary availability coefficient 
can be found as 

T>  
1  s i s t  li * ~i 

The stationary interval availability coefficient can also be found with the help 
of the following arguments. For each unit we can easily find the conditional 
stationary probability of a failure-free operation under the condition that a 
unit is in an operational state at the starting moment: 

1 ,» 
= Pr{£ * f0} =-/ P ( x ) d x  

* i  %  

Then for the system 

i S/Sn 1i ^ ~i 

Now it is possible to write J?(r0) as 

I 
I S i S n  ' i  +  Ti 'u 

Also, we can again use the two-sided 
bounds (6.33) if the unit TTF distribu- 

tions are "aging": 

n  — n  — ^ - e x p ( - r 0  Z  ^ f  
I  

Isi'sn 1 4. — \ * i  f  I SIS" 1 + — \ l s i s n  l i )  

(6.41) 

Z  dt 

^ C oJ - ^ ^ C o) -  n ytt fp'(x)dx 
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Naturally, using (6.34) for a highly reliable system, we can write 

*syst('o) = l- £ (6-42) 
l^i^rt i  

Of course, analogous approximations could be written for all of the above- 
considered cases in this section. 

6.3 REPAIRABLE REDUNDANT SYSTEMS OF IDENTICAL UNITS 

6.3.1 General Markov Model 
Let us consider a redundant system consisting of k  main operating units and 
n  =  n }  +  n 2  +  redundant units. Here we use the following notation: 

• «[ is the number of active redundant units in the same regime as the 
main operating units; each unit has a failure rate A; 

• n2 is the number of units in an underloaded on-duty regime; each unit 
has a failure rate A', A' = v \ ,  where v  is the so-called loading coeffi- 
cient, 0 <  v  <  1; 

- n3 is the number of standby units; each unit has A" = 0. 

A failed unit is shipped to the repair shop. A failed operating unit is 
replaced with an active redundant unit. Instantly, this unit is replaced by a 
unit which is in an underloaded regime, and, in turn, the latter is replaced by 
a standby unit. An analogous chainlike procedure is performed with a failed 
unit of other levels of redundancy. There are I  repair facilities, 1 < ,  I  <:  n  +  k .  
All units have an exponential repair time distribution with the same parame- 
ter /i. 

Let Hj denote a system state with j  failed units. Obviously, the system can 
change its state Hj only for one of two neighboring states: HJ_l after the 
repair of a failed unit or H J + 1  after a new failure. Hence, this process is 
described with the help of a linear transition graph (see Figure 6.8) and 
belongs to the birth and death process (sec Section 1.6). 

The transition from state H }  to state H j + l  within a time interval [t , t  +  A ]  
occurs with probability A j  A t  +  o ( A t ) .  The transition to state H j _ {  in the 
same time interval occurs with probability M j  A t  +  o ( A t ) .  With probability 
1 - A, A t  -  M j  A t  —  o ( A t ) ,  no change occurs. For underloaded units, the 
coefficient of loading is v ,  0 < v  <  1. 

A system with n  redundant units has n  +  k  + 1 states 
H 0 ,  H \ ,  H 2 , . .., H n + k .  States H n + j  with n + j  failed units, 1 < j  <  k ,  are 
states corresponding to a system failure. After an exit into the first system 
failure state, H n  +  l , the process develops further: it may move to the next  
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(a)  (b)  

Figure 6.8. Two linear transition 
graphs for a redundant system: 
(a) without an absorbing state; (ft) 
with an absorbing state. 

system failure state, H n + 2 ,  and so 
on, or it may return to the up 
state, H n .  If the state Hn + ] is 
absorbing, the system of 
equations must be changed: all 
absorbing states must have no transition to the set of 

operational states. This 
new system of equations can be 

used for calculating the probabilities of 
successful operation, the interval 
availability coefficient, the MTTF, and the 
MTBF. 

 
 

If we consider the nonstationary and 

stationary availability coefficients, the 
stale Hn+k is reflecting. The corresponding system of 
equations can be used 

for calculating the nonstationary availability and/or interval availability co- 
efficients.  

N- 1-1 N~  1  -  
1 

States of 
> the system's 

failure 

State of the 
system's 
failure 
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Considering the transition graph without an absorbing state, for a state H j r  

0 <;'<«= n, + «2 + n i  + k ,  one may write Ay and M f .  

A0 = k X  + «,A + n 2 v X  
A, = /cA + n, A + n 2 v X  = A0 

= Ao 

A„i+, = k X  + n, A + («2 — 1)PA 

A„i+2 = &A + rtj A + («2 — 2 ) u X  

A
n.,+„2 = *A + «,A 

A „ 3 + „ 2 + ,  =  k \  +  ( n ,  -  1 ) A  

Anj+fl2+2 = + ("i - 2)A 

AMj + n2 + n, = ^A 

A n , + n 2 + n ,+  l  =  ( k  ~  1 ) A  

AH,+«a+n,+ 2 = (* ~ 2)A 

A/i|+n2 + n3 + A 

and for all M j ,  0 <  j  <  n  +  k  =  n x  +  n 2  +  n3 +  k ,  

Mj  =  n, M2 =  2 / J L , . . . ,  M, =  In, M,+ ] =  l n , . . . , M n + k  =  l p  
The system with the absorbing H n  +  X  state is the system which operates 
until a first failure. This system can be analyzed with the following system of 
differential equations: 

d p j ( t )  
-  A , _ , / > , _ , ( * )  -  ( A y  +  M j ) p j ( t )  +  M j + i P j + i ( t )  0 < j  z n  +  1  

(6.43) 
A_, - A„ + 1 = A/0 = A/fl = ••• =A/n+, = 0 (6.44) 

where P j ( t )  is the probability that the system is in state H t  at moment t .  The 
normalization condition is 

E PA O  =  i 
0s/sn+1 
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The system with the reflecting Hn+k state can be described by the 

following system of differential equations: 

d p  i t )  

~~di~ =  V i * / - i ( 0  ~  ( A j + M j ) p j ( 0  + M j + i P f + t ( 0  0 < j  < n + k  

A^, = An+Jt = M0 - Mn+k+l « 0 

with normalization equation 

E MO = 1 

Because our goal is not to write down formulas for very general models but 
to show the methodology and methods, we hope that the reader can use the 
corresponding equations from Section 1.6 dedicated to the death and birth 
process. 

Precise formulas for such a general case are almost always long and 
complicated. If one deals with highly reliable systems, we recommend the 
reader refer to Chapter 12. (If one deals with an unreliable system, we 
recommend a redesign of the system, not a useless calculation!) 

The next section is devoted to general methods of analysis of repairable 
systems. 

6.4 GENERAL MARKOV MODEL OF REPAIRABLE SYSTEMS 

6.4.1 Description of the Transition Graph 
From the very beginning, we would like to emphasize that a Markov model is 
an idealization of a real process. Our main problem is not to solve the system 
of mathematical equations but rather to identify the real problem, to deter- 
mine if the real problem and the model are an appropriate fit to each other. 
If, in fact, they are a good fit, then a Markov model is very convenient. 

Now let us assume that we can construct the transition graph which 
describes a system's operation. This graph must represent a set of mutually 
exclusive and totally exhaustive system states with all of their possible 
one-step transitions. Using some criterion of system failure, all of these states 
can be divided into two complementary disjoint subsets, up states and down 
states. A transition from the subset of up states to the subset of down states 
may occur only when an operating unit fails. An inverse transition may occur 
only if a failed unit is renewed by either a direct repair or by a replacement. 
Let us consider a system with n  units. Any system state may be denoted by a 
binary vector 

s - (*!,..., sn)  
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where s i  is the state of the z'th unit. We set s( = 1 if the unit is operational 
and s■ = 0 otherwise. The transition from ( .s l , . . . ,s i  =  1,...,s n )  to (5,,,.., 
5, = 0,..., s n )  means that the /th unit changes its state from up to down. The 
transition rate (or the transition intensity) for this case equals the /th unit's 
failure rate. 

A transition from system state (s,,,.., = 0,.,., .?„) to state (5,,..., 
Sj = 1,..., s„) means that the /'th unit was in a failed state and was renewed . 
The transition rate for this case equals the 1 th unit's repair rate. These kinds 
of transitions are most common. For Markovian models we assume that only 
one unit may fail (or be renewed) at a time. (If several units may change 
states simultaneously, for example, under a group repair, we will consider 
this separately.) Of course, there are other possible interpretations of states 
and transitions. For instance, s, = 1 may be a state before monitoring or 
switching, and s, = 0 is the same state after the procedure. We denote these 
transitions from state to state on transition graphs with arrows. The rates 
(intensities) are denoted as weights on the arrows. The graph structure is 
determined by the operational and maintenance regime of the system's units 
and the system itself. After the transition graph has been constructed, it can 
be used as a visual aid to determine different reliability indexes. An example 
of such a transition graph for a system consisting of three different units is 
presented in Figure 6.9. 

6.4.2 Nonstationary Coefficient of Availability 
Let E ( k ) denote the subset of the entire set of system states which includes 
states from which a direct transition to state k  is possible, and let e ( k )  
denote the subset to which a direct transition from state k  is possible. The 
union E ( k )  U e ( k )  is the subset of system states that have a direct connec- 
tion to or from state k  (see Figure 6.10). For each state k  of the transition 
graph, we can write the following differential equation: 

d  
0  =  "M O  £  Alk + £ A i k P i ( t )  (6.45) 

a l  i ^e(k)  / e£(A )  

where Aik is the intensity of the transition from i to k, and p,(f) is the 
probability that the system is in state //, at moment t. 

The transition graph and the system of differential equations can be 
interpreted as those which describe a dynamic equilibrium. Indeed, imagine 
that each node i  is a "basin" with "liquid" which flows to each other node j  
(if there is an arrow in the corresponding direction). The intensity of the flow 
is proportional to Au (specified in each direction) and to a current amount of 
"liquid" in the source P J( t ) .  

If there are n  states, we can construct n  differential equations. To find the 
nonstationary coefficient of availability, we take any n  — 1 equations, add the  
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normalization condition 

L PiO) = 1 (6-46) 
I 

and add initial conditions of the type p f ( 0) =  p t  where p,-(0) is the probability 
that the system is in state i at t = 0. In turn, the p/s are probabilities that 
conform to a normalization condition similar to (6.46). If Pi =■ I for some i, 
then p j  = 0 for all j ,  j  +  i . In most problems the initial system state is the 
state when all units are up. 
To find the nonstationary availability coefficient, we can use the 
Laplace-Stieltjes transform (LST). Then the system of n  linear differential  

 

Figure 6.9. Transition graph for a system consisting of three different renewable 
units. 
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Figure 6.10. Fragment of a transition graph 
for compiling a system of differential equa- 
tions. 

equations transforms into the system of linear 
algebraic equations: 

"Pa = -<P*(s) E A*, + E (6.47)
i ee(k)  i ^Eik) 

E »<*(«) = 1 (6
I 

where <p,(s) is the LST for p , ( t ) :  

f t ( * ) -  f p ( ( t ) e - "d t  (6.49)J o  

For writing a system of algebraic equations 
directly in terms of the LST, 
one can construct a special graph which is 

close to the one depicted in Figure 
6.11. This new graph includes a state (distinguished by shadowing) which 
"sends" to each state i  of the graph a "flow" equal to the value of p,(0). 
Recall that this is the probability that the system is in state i  at time t  —  0 .  
At the same time, each state "sends" to this special state a "flow" equal to s 
(argument of the LST). The construction of this graph can be clarified by a 
comparison with the previous one depicted in Figure 6.10. 
In (6.47) we use any n  — 1 equations of the total number n ,  because the 
entire group of equations is linearly dependent. This is always true when we 
consider a transition graph without absorbing states. In this case, in order to 
find all n  unknown £p;(.0's, we must use the normalization equation (6.46).  
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This system of equations may be written in canonical form: 

f>n<Pi(s) + f>„<p2(s) + ■ ■ • + b l n ( p „ ( s )  =  ct 

b 2 l < Pl ( s )  +  +  '  '  '  +b2n<Pn(s) = C2 
(6.50) 

& n l ¥ » i ( j )  +  b n 2 < p 2 ( s )  +  + b n n < p n ( s )  -  c „  

where b u  is the coefficient of the yth term of the rth row and c {  is the 
corresponding constant. 
To solve this system of linear equations, we can apply Cramer's rule: 

Z)j(s) 
*<•> - m (6-51) 

where D ( s )  is the determinant of the system and £>,(5) is the determinant of 
the matrix formed by replacing the ith column of D  by the vector 
(c(, c 2 , . . . ,  c „ ). Once more, we repeat that the reference to Cramer's rule is 
made for explicit explanations, not as a recommendation for computation. 

 

Figure 6.11. Fragment of a transition graph for compiling a system of algebraic 
equations in LST terms. 
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We then find the LST of the availability coefficient: 

<p(s) = E V i ( s )  - 75777 E D , ( s )  (6.52) 

where £ is a subset of up states. We can use the following procedure to 
invert this LST. 

1. Write <p(s) in the form 

A 0  +  A . s  + A 2S 2 +  + A  s "  
< p ( s )  -  ----   ------  , "

 -------------------------------------- (6.53) 
'  B 0  +  +  B 2S 2 +  • • •  + B n+is" + l K ' 

where A/ and Bj are known coefficients. 
2. Find the polynomial roots: 

B 0  +  B ts + B 2S
2 +  • ■■  + B n  + ls" + l = 0 

Let these roots be bvb2,...,b„+1. Thus, 
B 0  +  B j S  +  ■■■  + B l f + 1 i " + l  «  f i  -  b j )  

1 Sn + t 

3. Write < p ( s )  in the form of a sum of simple fractions: 

, . P i  , +  \  , .. 
9 s _ + -------  + ... + -------------  -----  (6.54) 

s ~ b t  s - b 2  s -  bn+t 

where the jS/s are coefficients to be found. 
4. Rewrite in the form 

E 
< p { s )  =  

( s  -  &, ) ( $  - b 2 ) - - - ( s  -  bm+l) 

After elementary transformations, we obtain 

f  +  a 2 s 4  +  •  ■  *  (j - i>,)(i- b 2 )  • > •  ( J  -  b m + l )  

where the a/S are expressed through different and bj's. 
5. Polynomials of the form </>(s) and of the form of (6.53) are equal if and 
only if 

Ao — ®o» Ai = a,, ~ • • ■' ~ a,, 

The a,s's are defined from these equations.  

=
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6. After we have found a/s, the inverse LST is applied to < p ( s )  in the form 

of (6.54) 

f(0-  £ ~T ~  K(t)  - £ /Hj eb'' 
\ S j £ n  +  l  5  + I  

REMARK. If a(r) has multiple roots for the denominator, that is, if several b/ s are equal, then 
(6.54) may be rewritten as 

*•>- £ T h V  
Isisn' ($ ~ b j )  

where k  is the number of roots equal to b,  and n'  is the number of different roots. To all terms 
of the form 

Pi  
(s-fy)* 

the corresponding inverse LST is applied: 

p.  r*~ 
(M - b f Y  '(*-i)! 

6.4.3 Probability of Failure-Free Operation 
To determine the probability of a failure-free operation, absorbing states are 
introduced into the transition graph. They are the system's failure states. 
Transitions from any absorbing state are impossible, which means that all 
transition intensities out of an absorbing state are 0. We can change the 
domain of summation in the previous equations in a way which is equivalent 
to eliminating the zero transition rates. Using the previous notation, we can 
write for an operational state k: 

d 
-RTPK{*) - -P*(0 E AKL + E AIKPI(0 
a l  j e e ( f c )  i ^ E ( k )  

If the transition graph has m operational states, we can construct m 
differential equations. (In this case the equations are not linearly dependent. 
Of course, we may use the normalization condition as one of the equations in 
this new system, excluding any one of the differential equations.) These 
equations and initial conditions are used to find the probability of a failure- 
free operation of the system.  

,b,t 
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We again use the LST to find the following system of linear differential 
equations: 

s < p k ( s )  -  p k =  - < p k ( s )  £  Aki + £ AikVi(s) (6.55) 
i e e ( k )  i e E ( k )  

for all k  e  E .  The solution of this system of equations can be found with the 
help of the same methodology as before. 

6.4.4 Determination of the MTTF and MTBF 
Recall that 

T  -  f "p ( t ) d t  
' n  

If <p i s )  is the LST for the probability of failure-free operation of the system, 
then 

re~"Pit)dt 
J n  

Thus, we can find the MTTF (or MTBF) by solving the following system: 

-p* = <p*(0) L L Artft(0) 
ie«{ *) ieEflfc) 

for all k  e E .  Note once more that this system was derived from (6.55) by the 
substitution of s  —  0. To find the MTTF, one sets the initial conditions as 
PiiO) = I, where i is the subscript of a state in which the system is totally 
operable. Obviously, pjiO) = 0 for all the other states. To find the MTBF, we 
set the initial conditions in the form p*i0) - pf where the />*'s in this case 
are the conditional stationary probabilities of the states i  that belong to E * .  
The latter is a subset of the up states which the process visits first after the 
system renewal. 
The conditional stationary probabilities p f ' s can be obtained from the 
unconditional ones as 

P,( 0) 

E />,(o)  

T  =  

Pf  =  



 

 

GENERAL MARKOV MODEL OF REPAIRABLE SYSTEMS 271
Example 6.1 Consider a repairable system of two different units in parallel 
(Figure 6.12). The parameters of the units are A,, A2, and p2. Both units 
can be repaired independently. The transition graph is presented in Figure 
6.13. Here //n is the state with both units operational; H x  ( H 2 )  is the state 
where the first (second) unit failed; H n  is the state where both units failed. 
Let p k ( t ) equal the probability of the &th state at moment t .  There are 
two systems of equations to calculate the reliability indexes. If the system's 
failure state H n  is reflecting, the system of equations is 

d  
-7T/>o(') = -(A, + A2)p0(/) + + M2P2C) 

d  
-TPi(0 = A , P 0 ( 0  ~  ( A 2  +  P-x)Pi{t) + P i P nO )  

d  
— p 2 ( 0  = A2p0(0 - (A, + p 2 ) p 2 ( t )  +  P i P n ( t )  

P o(0 +Pi(0 + P i ( t ) + Pn ( 0 - 1 

Hi

 
Figure 6.12. Repairable system of two different 
indepen- 

dent units connected in parallel. 

 

 

H2
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Figure 6.13. Transition graph for the system 
depicted in Figure 6.12.  
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= ~( AI  + A 2 >/ 'o ( f )  +  M , P ](  t )  +  M 2 P 2 O )  

=  AI P O(0  -  ( A2  +  M 1) />, ( ')

 
™P 2(0  =  A 2 P 0( R)  -  ( A ,  +  ^ 2 )p 2 ( t )  

~ p 1 2 ( 0  =  A 2 p , ( f )  + A ,p 2 ( / )  

The corresponding solutions in the form of the Cramer determinants are

 
1 0 

M 2  M O(0)  

0 p,(0) 

-( A ,  +  f i 2 )  p2( 

0)  

- ( A ,  +  A 2 )  M i  

A ,  ~ ( A 2  +  M j )  

A ,  0

 
1 
0 

-(A, + fi2) 

M2 

0 
- ( A ,  +  m 2 )

 

If state Hn is absorbing,

 

 

T=  -  
M 2  

0 
+ f i 2 )  

1 
Mi 

( A O  +  M I )  
0 

1 
( A ,  +  A 2 )  

A ,  

 

J t . 0 )  _  _ .
(A,+A2) 

A] 
A ,  

Mi 
- ( A 2  +  f L i )  

0 

1 
~ ( A o  +  M i )  

0 
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1 I  1  1  
-( A ,  +  A 2)  M I  M 2 0  

A, -( A0  +  M I )  0  M 2 

a2 0 - ( A ,  +  n2 )  M I  

1  1  1  1  
" ( A , + A 2 )  M I  M 2 0  

A ,  ~ ( A 2  +  M I )  0  M 2  

A 2  0  " ( A ,  +  M 2)  M I  
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The solutions are not presented in closed form because of their length and 
complexity. 

6.5 TIME REDUNDANCY 

Considering reliability indexes, we emphasize that so-called time redundancy 
might be a very effective measure of a system's reliability improvement. This 
type of redundancy can be used in two main cases: 

• The required time of operation completion by an absolutely reliable 
system is less than the time admissible for operation performance. 
• System failures leading to short idle periods might be ignored in the 
sense of successful operation performance. 

These problems are solved with special mathematical methods differing 
from the usual ones used in other reliability problems. Let us consider 
several main types of systems with time redundancy. 

6.5.1 System with instant Failures 
Consider a system performing an operation of duration tQ. System failures 
are very short, practically instantaneous. The flow of these failures can be 
successfully described by a point renewal process. Each failure interrupts a 
system's successful operation, and the system is forced to restart its operation 
from the beginning. In other words, we assume that a failure destroys the 
result of an operation. For restarting the operation in an attempt to complete 
the required performance, the system must have a time resource. 

Such situations are encountered in practice if one considers a computer 
operating with short errors which destroy a current result. A computer 
performs a task which requires t ( )  units of failure-free time for its successful 
performance. Thus, if there is a time resource, a computer can perform its 
operation even after the appearance of some error. 

We assume that the total time for the system performance is 7 9. Let us 
also assume thai the system begins to operate at the moment t  —  0 when it is 
"new." The distribution of the TTF is Fit). Let R Q i 6 \ T )  denote the probabil- 
ity that during interval [0, T] there will be at ieast one period between 
failures exceeding the required value 0, and let P(f) = 1 — F i t ) .  

The system performs its operation successfully during time T  if two events 
occur: 

• There are no failures during time interval [0, 0], 
• A failure has occurred at x  <  8 ,  but, after this moment, the system 
successfully performs its operation during the remaining time T  —  x .  

The latter event is complex. First, a failure might occur at any moment of 
time between 0 and 0, and, second, at the moment of a failure the process
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starts from the beginning but for a smaller time interval. This verbal explana- 
tion leads us to the recurrent expression 

R 0 ( e \ T )  =  P( 9 )  +  [ B R 0 ( e \ T  -  x ) d F{ x )  (6.56) J o  

If the remaining interval is smaller than 9, the operation cannot be per- 
formed successfully. This leads to the condition 

R 0 ( 6 \ x  <  0 )  =  0 

Equations of such a recurrent type are usually solved numerically. We will 
not provide a mathematical technique for this solution. 
Above we considered a situation where a system begins to operate at 
moment t  = 0. Now let us assume that a system is in an on-duty regime and a 
request for starting the operation arrives in a random time. More exactly, we 
assume that we consider a stationary process, and a random time from the 
request arrival to a system failure is a residual time. Such a situation is 
typical of many military systems which must be ready at all times to perform 
their duties: no enemy in modern times informs you about the beginning of 
hostile actions. 
Let the tilde denote a distribution of the residual time. In this case the 
expression of interest is not changed significantly. We give it without explana- 
tion because of its obviousness: 

/?O(0|T) =  P( 0 )  +  ( 8 R o ( 0 \ T  -  x )  d F( x )  (6.57) J o  

where the function R 0  under the integral must be taken from (6.56) with the 
corresponding condition. 
Of course, in this case we must again write the condition 

K(0U < f „ )  =  0  

which means that a system cannot successfully perform its operation if the 
time resource is smaller than the required time of operation. 

6.5.2 System with Noninstant Failures 

If failures are noninstant, one must take into account the lengths of idle 
periods between up periods. Let G ( t ) denote a distribution of idle time. If a 
failure has occurred within the first interval [0, f0], a random period of idle 
time is needed to restore the system. In general, there are no restrictions on 
the length of the idle time y .  Thus, we must consider the possibility that this 
value changes within the entire interval [*, T  - *]. At the same time, if the 
system spent x  units of time for unsuccessful operation and then y units of
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time for restoration, only T  ~  x  —  y  units of time remain to perform the 
operation. 
This verbal description permits us to write a recurrent expression 

R ( d \ T ) = P( d )  +  C  X R ( t 0 \ T - x - y ) d G (y )  
J n  J q  

where Jt(0U < t 0 )  = 0. 
Now we consider the above-analyzed system which is operating in an 
on-duty regime. In principle, the explanation of the equation remains similar 
to the previous case. We must additionally take into account the fact that the 
system at an arbitrary stationary moment of time can be found in one of two 
possible states: up or down. We only explain the situation where a system at 
the beginning of operation is in a down state. In this case one first observes a 
residual restoration time and after this a system is considered as "new." 
Again, we use a tilde to denote the distribution of a residual value. 
The 
expression for this case can be written in the form 

R ( t 0 \ T ) = K  P( 0 )  +  f  [  ~ x R { t 0 \ T - x ~ y ) d G {y )  J o  L-'o 

+  k ( ' R (e \ T  - x ) d G (x )  
' n  

where K  is the availability coefficient and k  =  1 -  K .  Recall that K  =  
t / ( T  + r) where T  is the MTTF and r is the MTR. 

6.5.3 System with a Time Accumulation 
Some systems must accumulate time of successful operation during a total 
period of performance. Of course, in this case we consider an alternating 
process of up and down periods. Denote the probability that a system will 
accumulate more than 6  units of successful operation during period T  as 
S(0|r). For this probability one can consider two events that lead to success: 

• A system works without failures during time from the beginning. 
* A system failed at moment x  <  6 ,  was repaired during time y ,  and 
during the remaining interval of T  —  x  —  y  tries to accumulate 6  — x  
units of time of successful operation. This description leads us to 
the 
recurrent expression 

S ( d \ T )  =  P( 0 )  +  f 0  f r  X S ( t 0 - x l T - x  -  y ) d G ( y )  J o  l/o  

d F( x )  (6.58) 

d F( x )  

d F(  x )  



 

278 REPAIRABLE SYSTEMS 

This expression is correct for the case where a system starts to perform 
at t  = 0. 

If a system is in an on-duty regime and begins to accumulate time of 
successful operation at a stationary arbitrary moment, one must take into 
account that a system may occur at an up or down state. Each of the 
corresponding periods is represented by a residual time. The expression for 
the probability that a system will accumulate more than 6 units of successful 
operation during period T  as S(0|7") starts to perform at an arbitrary 
moment is

 
S ( 0 \ T )  =  K  P( 6 )  +  f T  * S { 0  - x \ T - x  - y ) d G ( y )  

Jo l/o 

+  k [ ' R { 0 \ T~ y ) d G( y )  
J n

 
where F ( x )  =  1 —  P( x )  is the distribution of a time of failure-free operation, 
G(x) is the distribution of a repair time, and S(0|7 - Jt) is taken from (6.58). 
Expression (6.59) is correct with the additional condition S(jc|y < *) = 0. 

6.5.4 System with Admissible Down Time 
A system is considered to be successfully operating if during period T  there 
will be no down time larger than T J . This case in some sense is a "mirror" for 
that considered on page 249. We will omit the details and write 
the recurrent 
expression immediately: 

Q { v \ T )  =  P( T )  +  f 7 \ ( V Q ( V \ T - x - y ) d G ( y )  J o  l/o 

This expression is correct under an additional condition: 

Q ( v \ x ^ v )  = 1 

The same system may be considered in an on-duty regime. We 
again will 
omit the details and write the recurrent expression 

P( T)  +  [  f  Q ( V \ T - x ~ y ) d G (y )  
A) l/o 

+  k f V Q ( V \ T - y ) d G ( y )  
Q ( v \ T )  - K   

 
d F( x )  

(6.59) 

 

d F( x )  

d F(  x) 
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This expression is correct under an additional condition: 

Q ( v \ x < r , )  = 1 

This subject as a whole requires a much more detailed discussion. There 
are many interesting detailed models concerning, for instance, computer 
systems. The reader who is interested in the subject can refer to Kredentser 
(1978), Cherkesov (1974), and Ushakov (1985, 1994). Some applications of 
these methods to oil and gas transportation systems can be found in Rudenko 
and Ushakov (1989). 

CONCLUSION 

The models of repairable systems discussed in this chapter concern some 
ideal schemes: switches are supposed to be absolutely reliable; monitoring of 
the operation of the system's units is continuous; after repair, units are 
considered to be as good as new; and so forth. Besides, when using Markov 
models, one must assume that all distributions of failure-free intervals and 
repair times are exponentially distributed. 

All of these assumptions seem to make such kinds of models practically 
useless. But the same can be said about any mathematical model: a mathe- 
matical model is only a reflection of a real object or real process. Each 
mathematical model may only be used if the researcher understands all of 
the model's limitations. 

First of all, Markov models are very simple though simplicity is not a good 
excuse for their use. But using Markov models for highly reliable systems very 
often gives the desired practical results in reliability prediction. 

Next, the lack of some realistic assumptions concerning switching and 
monitoring may be taken into account. (We try to show this in the next 
chapter.) This point is really very serious and must be taken into considera- 
tion. To demonstrate the importance of continuous monitoring of redundant 
units, let us consider a simple example. 

A repairable system consists of n  units in parallel (i.e., this is a group of 
one main and n  — 1 loaded redundant units). A system unit has an exponen- 
tially distributed TTF. Redundant units are checked only at the moment of 
failure of the main operating unit. At this moment all failed units are 
repaired instantaneously! If there is at least one nonfailed redundant unit, 
this unit replaces a failed main unit and the system continues to operate 
under its initial conditions. It seems that such a system with instant repair 
should be very reliable. But this system has no control over the system's unit 
states.

Find the MTTF of this system on the basis of simple explanations. A main 
unit has failed, on average, in T  units of time, and with probability \ / n  up to 
this moment all of the remaining n  -  1 units have failed. It is clear that such
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a system will work, on average, nT units of time until a failure. But as the 
reader will recall, a standby redundant group of n  units without repair has 
the same MTTF! 

It is difficult to find out who wrote the pioneering works in this area. The 
reader can find a review in the next chapter dedicated to renewal duplicated 
systems—a particular case of redundancy with repair. The reader can find 
general information on this question in a number of books on reliability, 
some of which are listed at the end of this book. For a brief review, we refer 
the reader to the Handbook of Reliability Engineering by Ushakov (1994). 

Time redundancy represents a separate branch of renewal systems, closely 
related to the theory of inventory systems with continuous time. The reader 
can find many interesting models for reliability analysis of such systems in 
Cherkesov (1974) and Kredentser (1978). The reader can find applications of 
these methods to gas and oil pipelines with intermediate storage in Rudenko 
and Ushakov (1989). General methods of time redundancy are briefly pre- 
sented in Ushakov (1985, 1994). An interesting discussion on repairable 
systems can be found in Ascher and Feingold (1984). 
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EXERCISES 

6 .1  A system has an exponentially distributed TTF with a mean t  -  100 
hours and a repair time having a general distribution G ( t )  with a mean 
r = 0.5 hour. Find the system's stationary interval availability coefficient 
for the operation during 0.5 hour. 

6 .2  Construct a transition graph for a repairable system consisting of two 
main units, one loaded redundant unit which can replace instanta- 
neously each of them, and three spare units. After a main unit has 
failed, a loaded redundant unit replaces it. In turn, one of the spare 
units replaces the redundant unit. Failed units are subjected to repair 
after which they become as good as new. All units are identical, each 
with a failure rate equal to A. There are two repair facilities, each of 
which can repair only one failed unit at a time. The intensity of repair 
by a repair facility is equal to fi. After a total exhaustion of all 
redundant units, repair is performed over the entire system with inten- 
sity M .  

6 .3  Construct a transition graph for the 
system depicted in Figure E6.2. 

Figure E6.2. Structure diagram for the sys- 
tem described in Exercise 6.3. 

SOLUTIONS 

6 .1  The stationary availability coefficient depends only on the mean and not 
on the type of distribution of the TTF and repair time. Thus, K  =  
(100)/(100 + 0.5) = 0.995. If the system is found within a failure-free 
interval, which is exponentially distributed, then the probability of 
successful operation of length f0 beginning at an arbitrary moment of 
time can be written as 

lim P ( t , t  +  t 0 )  =e~">/T 
l  —  oo  
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SOLUTIONS 255 

Finally, after substituting the corresponding numerical data, one has 

exp(-(0.5/100)) = 0.995 
and 

R ( t 0  = 0.5) = (0.995)(0.995) = 0.99 

6.2 The solution is depicted in Figure E6.1 

 

 

3X 3 \  3 X  3X 2 A. 

 

Figure E6.1. Transition graph for the system described in Exercise 6.2. 

6.3 See Figure E6.3. 



 

 

 
 

Figure E6.3. Transition graph for the system described in Exercise 6.3. 



 

 

CHAPTER 7 

REPAIRABLE DUPLICATED SYSTEM 

Duplication refers to the particular case of redundancy where there is a 
single redundant unit to support a single working (main) unit. We distinguish 
this particular case for both practical and methodological reasons. First of all, 
when a designer feels that the reliability of some unit is low (sometimes this 
understanding may occur on a purely intuitive level), duplication is a simple 
way to improve it. Indeed, if a failure may occur with a relatively small 
probability, it is generally not necessary to have more than one redundant 
unit. In general, the number of redundant units depends on the desired value 
of the system's reliability index and/or on permissible economical expendi- 
tures. 

From a methodological viewpoint, duplication presents the clearest way to 
explain certain special mathematical tools, their idiosyncrasies, and their 
ability to treat a real technical problem. It allows for the possibility of 
following mathematical transformations in detail. (Unfortunately, nobody has 
either the capacity or the desire to present similar detailed explanations for 
more complicated cases.) 

7.1 MARKOV MODEL 

As we have pointed out, a duplicated renewal system is one of the most 
frequently encountered structures in engineering practice. In the reliability 
analysis of electronic equipment (at least, in the first stages of design), the 
distributions of the time to failure and of the repair time arc usually assumed 
exponential. In this case Markov models are adequate mathematical models 
256 
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MARKOV MODEL 285 to describe such systems. We note that the final results obtained with Markov 
models are usually acceptable in a wide variety of practical cases (especially 
when applied to highly reliable systems). 

7.1.1 Description of the Model 
Consider a duplicated system consisting of two identical units. Usually, the 
following assumptions are made: 

• The system units are mutually independent. 
• After a failure of the operating unit, its functions are immediately 

assumed to be performed by the redundant unit. 
• Repair (renewal) of a failed unit begins immediately. 
• A repaired unit is considered to be a new unit. 
• The switching device is considered absolutely reliable. 

Two important aspects of a renewal system should also be taken into 
account: the regime of the redundant unit and the attributes of the repair 
workshop. 

The following regimes of a redundant unit characterized by failure rate A' 
might be considered: 

1. The redundant unit operates under the same conditions as an opera- 
tional unit; that is, their failure rates are equal, A = A'. 

2. The redundant unit is in a completely idle state, that is Ar = 0. 
3. The redundant unit is in an intermediate state between completely idle 

and operational, that is, 0 < A' < A. 

The first case is often referred to as internal redundancy, the second as 
standby redundancy, and the third as waiting redundancy. 

The renewal regime might be distinguished by the number of repair 
facilities (places for repair, the number of technicians special equipment), 
that is, by the number of failed units which can be repaired simultaneously. 
We consider two cases: 

1. An unrestricted renewal when the number of repair facilities equals the 
number of possible failed units (in this particular case, two facilities are 
enough). 

2. An extremely restricted renewal with a single repair facility. 

The transition graphs describing these models are presented in Figure 7.1 
(there are two of them: with and without an absorbing state). Corresponding 
particular cases for different regimes of redundant units and different at- 
tributes of the repair shop are reflected in Figure 7.2.
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Figure 7.1. Transition graph for a renewable dupli- 
cated system: («) state 2 is reflecting; ( b )  state 2 is 
absorbing. 
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Figure 7.2, Transition graphs for four main models of a renewable duplicated system: 
(a) a loaded redundant unit, two repair facilities; (fc) a loaded redundant unit, one 
repair facility; (c) an unloaded redundant unit (spare unit), two repair facilities; 
(d) an unloaded redundant unit, one repair facility. 

Using the above-described technique, corresponding systems of equations 
for obtaining the various reliability indexes can be easily written. In this 
particular simple case, the solutions can be obtained in a general form. The 
final results for particular cases can be derived easily. 

7.1.2 Nonstationary Availability Coefficient 
The system of differential equations (in canonical form) with the initial 
conditions Pa(0) = 0 is 

d 
■ p 0 ( O  =  ~ x 0 P Q ( t )  
dt 

-/>,(() - A0i>0(f) - (A, + p l ) P i ( t )  + ( * 2 P 2 ( t )  

i  =  / > 0 ( 0  + ^ . ( 0 + ^ ( 0  
P0( 0) = 1  

(b)

© 
X" 

a 
i k 
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Q 
r i  t t  
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Q, 
\ v  
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(7.1) 
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The LST of (7,1) is 

(A0 + j)<p0(j) -Mi<Pi(s) - 1 
- A0<p„(s) + (5 + A, + Mi)<Pi(-0 + H 2<P2(s) = 0 

s<Po(s) + 5<p,(s) + s<PzO) = 1 

Notice that the availability coefficient equals 

*<o = n c ) + ^ ( 0  =  1 - ^ ( 0  

Thus, to find the LST of K i t ) ,  we can find [see the last line in (7.2)] 

I 
<P(i(s) + <Pi(s) = j ~ 

From (7.2) it is easy to write 

+ f t  i  +  s  0

 
+ S(A0 + Ai + Mi + f t  2 )  +  AoAi + a

OM2 + M1M2]
 

Thus, 

+ fit-1) = 7 ~ ( f 2 ( s )  
-  g 2  +  +  A '  +  +  ^  +  A q M z  +  
s[i2 + s(A0 + A, + /a, + fi2) + A0A[ + A + /i,/i2] 

Now we should refer to the technique described in Chapter 6 in the section 
on Markov processes: 

1. Represent the LST as the sum of simple fractions 

j2 + i(A„ + A( + /it + n2) + A oM 2 + M1A2 
s[53 + s( A0 + A( + ju,, + + A0At + \0n2 + 

A B C  
5 — 5 - 1  

where A ,  B ,  and C  are unknown.  

(7.2)

A0 + 
s 
— 
A„ 

0 

~ti 
2 
S  
A()A
, 

A0 + 5 
"An 

-Ml 
A]  + + s  

s  

 

 

s  — s ,  
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2. Find the roots of the denominator. The first two roots of the denomina- 
tor are conjugate, that is 

 

where, in turn, 

a = A0 + A, + fjLx + 

P =  A 0 A l  +  A 0 M 2  +  M l / ^ 2  

and s 3  =  0. 
3. Find the unknown values A ,  B ,  and C  by equalizing the polynomial 

coefficients of the numerators. 
4. Apply the inverse LST to obtain simple fractions with the numerators 

A ,  B ,  and C  found above to obtain the final result. 

After these transformations the result is obtained

 
A0A, 

K ( 0  =  1 -  
s i s->

 
Obviously, if s, = s 2 ,  I'Hospital's rule must be used. 

Now any result of interest can be obtained by substituting the appropriate 
values of A and /i. In general, the solution for a duplicate renewal system can 
be obtained in a closed form, but this solution is not very compact, even for 
the simplest case. 

Of course, we should notice that, for active redundancy and unrestricted 
repair, the final result can be written immediately with the use of the 
appropriate result for a single unit:

 
^ ( 0  =  ! - ( ! -  K *( f ) )  =  1  -

 
where K * ( t )  is the nonstationary availability coefficient of a single unit. This 
result is obvious because both units are supposed to be mutually indepen- 
dent. 

7.1.3 Stationary Availability Coefficient 
The solution can be derived from (7.1) by putting the derivatives equal to 0. 
The same result can be directly obtained from the corresponding transition

 

 
(7.3)

J iJ'-

 

 
.-(A+pOM( I"

A + JLA 
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graph by writing the equilibrium equations: 

~\0PQ + - 0 

Aq/q - (A, -Jtt,)?! + /*2P2 = 0 

+ + P 1  = 9 

The solution is

                                            
9 + 

(7.4)
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« Mi

A0 -(A 0 

1 1 1 
-A, 
A 0  - ( A t  +  M i )  M 2  

1 1 1 

1 
aoM2 + M1M2

 
To obtain values of this reliability index for different cases, the specific A's 
and /A 'S  should be substituted. The results for the four most important cases 
depicted in Figure 7.2 arc presented in Table 7.1. In this table we used the 
notation y = For highly reliable systems with A « I, all of the expres- 
sions in Table 7.1 can be easily transformed to obtain the approximations 
given in Table 7.2. The expressions in Table 7.2 allow one to give an 
understandable explanation of all of the effects. Naturally, the worst value of 
K gives the case of active redundancy and restricted repair (the failure rate 

TABLE 7.1 Availability Coefficient for Four Main Models 
of a Renewable Duplicated System 

(a) (b) 
1 1 

, v 
1 +  -----------------------  ---- T— 1 + 

1 + 2y 1 + 4y 

1 1 
y1 y2 

1 + — --------------r 1 + 
2(1 + y )  1  +  y  

(A) Loaded redundant unit; (B) unloaded redundant unit; (a) two repair 
facilities; (b) one repair facility.  

 

0-A

A n A
K = 1 - P 2

i = 1 ~  = 1 - 
0 A0A, + A0^2 + M1M2Mi 

 

(7.5)
A 0 A t

A0M2 + M1M2

 

(A)

(B)
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A0 is the largest and the repair rate p2 is the smallest). The case of 
unrestricted repair yields a mean repair time of less than one-half of the 
restricted repair time (1/2/a and \/fi, respectively). Below in this section we 
will show that the MTTF of highly reliable systems of active redundancy is 
one-half of the MTBF for standby redundancy. 
Of course, for two independent units, that is, when the redundancy is 
active and the repair is unrestricted, we can write 

K =  i  -  ( i  -  K * y  =  i  -  

using the availability coefficient for the single unit 

K * .  Then 

2A + n2 1 1
 

A2 + 2A + \j}

 
The intermediate case with either the "underloaded" redundant unit 
(when A < A() < 2A) or with the "dependent" repair when (/a < p2 < 
can be easily obtained numerically from the general expression (7.5). Of 
course, this index can be realized as 

lim K ( t )  
t 

but this is not effective when K i t ) is not available. 

7.1.4 Probability of Failure-Free Operation 

TABLE 7.2 Approximation lor Availability Coefficient 
for Highly Reliable Duplicated System 

 (a) (b) 
(A) 1  +  2 y  1 + 4-y 

 v 2  y 2  
(B) 1  Y 

2(1 + y )  
1 7 

1  

(A) Loaded redundant unit; (B) unloaded redundant unit; (a) two repair 
facilities; (b) one repair facility. 

A + p 

 
1 + 1 +

1  +  2 y2A + M2  
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To find this probability, it is necessary to construct a system of differential 
equations using the graph of Figure 7.1b with absorbing state 2. In this case 
the equations are not linearly dependent. For the initial conditions P0iO) = 1,
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the system of linear differential equations is 

- p 0 ( O  =  - \ 0 P 0 ( t )
 

/> , ( ' )  =A 0 /> 0 (0  -  ( A,  + f i l ) P 1 ( t )  

PO (0 )  =  1
 

The LST of (7.6) is
 

(A 0  +  s ) ( p 0 ( s )  -  =  1  

-  A 0 < p 0 ( s )  +  (A,  +  M i +  s ) ( p , ( s )  =»  0

 
and the solution has the form

 

 

— A 0  A,  +  M i +  s  

s  +  A 0  4 -  A,  +  M i  

s 2  +  s (A 0  +  A,  +  M i)  +  A 0 A,

 
Applying the procedure that we used to obtain (7.3), we find

 
1 

(s?ef*' — s2es1') 
r* - t* 
J ,  S 2

 
where the superscript (0) stands for the initial conditions Po(0) = 1 
and also 

<«*r 
-P  

a *  =  A 0  +  A[  +  M i  

(3* =  A 0 A,  

If we are interested in the system's PFFO immediately after its repair, it is 
necessary to set P,(0) — 1. The corresponding system of linear algebraic 
equations in the LST is 

 
(7 .6 )d t

 
 

(7 .7 )

 

 
1  "M i   A 0  1  

0  A,  +  M i +  s   -A 0  0  

A 0  +  s "
M i  

<Po(s) + = 

(7.8)

 

 
p«»(0 = (7-9) 

 
a  
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(A 0  +  s )< p 0 ( s )  -  M i<P i( s )  =  0  

-  Ao <P o (^)  +  ( A i  +  M i +  s ) ( p i ( s )  =  1   



 

MARKOV MODEL 295 

 

s 2  +  s(A0 + A, + ju-j) + A0A, 

Notice that the denominator in (7.10) is the same as in (7.8), so we 
can use 
the roots (eigenvalues) obtained above. Omitting routine 
transformations, we 
may write the final result for this case 

P°\0 = "T^ [(*? - A0 - A,)** - (4 - Ao - A.Kf] ( 7 . 1 1 )  

where the superscript (1) indicates the corresponding initial conditions. 

7.1.5 Stationary Coefficient of interval Availability 
The task can be solved by setting the initial conditions: P0(0) = P0 and 
P,(0) = P, in (7.6) where P0 and P, are the stationary probabilities obtained 
from (7.4). The p's can be found from (7.4) separately as

 

0  - M l  

1  A ,  +  M i  +  J  
+ 

A 0  0  

- A 0  1  

 
A 0  +  s  - M i  

—  A 0  A )  +  M i  +  $  

 

A0 + Hi 

( 7 . 1 0 )  

and the solution in the LST is

 

" A
0  

Mi  0 A 0 Ai  +  A 0 M J  +  M 1M 2  

A0 " ( A,  +  Mi) M
2 

 

1 1  1  

 -A0 0 0   

 A0 0 M 2    

 1 1 1  AOM2 
- A
0  

Mi  0 A0A, - A0M 2 + M 1M 2  

Ao " ( A,  +  Mi) M
2 

 

1 1  1  

0 Ml 0 
0 -(A, + Ml) M2 
1 1 1 

M 1M
2 Pn = 

and 

P, = 
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In other words, the following system needs to be solved: 

(A 0  +  5 )p 0 (0  ~  M i<P l(5 )  -  P o  

-  A0 < p 0 ( s )  +  (A„  +  A t  +  s) tp l  =  P ,  

This index can also be found in a different way, using the Markov property 
of the process. We can write 

= / > „ / > < >„ )+ / > , / > <  Vo) 

where the P/s are the above-mentioned stationary probabilities of the 
corresponding states. In this case they are the initial states of the PFFOs 
P 0 ) ( t o y s  until they reach the absorbing state 2 (the state of the system 
failure). PWU0) and P(1)(f0) are found in (7.10) and (7.11). 
We will not obtain the large expression for the nonstationary coefficient, or 
interval availability, because it is tedious to obtain it. Technically, this task is 
no different from the previously addressed task. 

7.1.6 MTTF and MTBF 
From the LSTs (7.8) and (7.10), the desired 
expressions follow immediately: 

j  +  A n  +  A.  +  u.  
MTTF = r<°> = 
s2(A0 + A, + + A„ A,  

s + A0 + 
MTBF = T { ] }  =  

s 2 ( A 0  +  A ,  +  M i ) s  +  A 0 A,  

It is often more reasonable to use (7.7) directly with the 

substitution of s  = 0: 
A i  A o A i  

Ao0o ~ M i ^ i  =  

1  

-  A 0 e 0  +  (A,  =0  

1 1 Mi 
= — + — + 

A, A0 A,,A 

1 Mi 
(7.12) 
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where 0, and d2 are values such that the MTTF = 0, + 02. The solution of 
this equation system yields 

1  A ,  +  M i  1  M i  

0 n  = — and 0 ,  =  —  - - - - - - - - - - - -    -  —  +  
A[  1  A 0 A,  A 0  A 0 A j  

Of course, this result coincides with (7.12). 
The MTBF may be computed in the same manner, and we leave this as an 
exercise. 
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To find the system's MTTF, it is sometimes more convenient to use the 
following arguments. Consider the transition graph in Figure 7.1. Let us find 
the system's MTTF (this means that at / = 0 the system is in state 0). Denote 
the mean time needed to reach the absorbing state 2 from the initial state 0 
as T()2 and from state 1 as T(Apropos, T02 = MTTF and T„ « MTBF.) 
Obviously, 

T02 - ~ + Tu (7.13) 
Aft 

because the process inevitably moves from state 0 to state 1, After this, based 
on the Markov property, the process can be considered to be starting from 
state 1. 
The process stays in state 1 for an average time 1/(A2 + ft,) and then 
moves either to state 2 or to state 0, It moves to state 0 with probability 
/i)(A2 + ^j) and then starts traveling again from state 0. Hence, we can write 

T\Z = V ( A Z  +  +  O I 7 O 2 > / ( A 2  +  P I )  

Substituting (7.14) into (7.13) yields

 
MTTF - T02 =

 
A,  +  M - i  

= — + 1 + /i| 
A 0  A ! Ag A,  

From (7.13) it also immediately follows that 

1 P i  
MTBF = ri2 = — + 

Now, on a very understandable and almost verbal level, we can explain the 
difference between the MTBF (or the MTTF) for repaired duplicated sys- 
tems of identical units which have a different regime for the redundant unit. 
For active redundancy Au = 2A and for standby redundancy A0 = A. In other 
words, in the first case, the system stays in state 0, on average, one-half the 
time that it stays in the second case. This fact can be seen more clearly from

(7.14)

 
1 1 
+ 

A 0  +  A ,  +  ft t
Mi A 0  A,+ / i , A 0 A,
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the approximate expressions for a highly reliable 
system when y  = A//x <K 1: 

MTTFactive = 7 + ™ + ^ (7-15) 

and 

MTTF—.' I+ X + 7 -  £ (7J6) 

Incidentally, (7.15) and (7.16) could be explained on the basis of the Renyi 
theorem. Consider an alternative renewal process describing the operation of 
a repaired duplicated system. 
For a highly reliable system, this process can be approximately represented 
as a simple renewal process if one neglects small intervals of being at state 1. 
The system's successful operation period consists of the sum of a random 
number of intervals of the length 1/A0 until the process has jumped to state 
2. This random number has a geometrical distribution with parameter p  =  
Mi/(At + Mi) ~ 1 ~ T- Thus, the sum also has an exponential distribution 
with parameter A()y. This means that approximately 

/,0('«)=/,°(^)-EXP(-A0Y/0) (7.17) 

We should now remember that for active redundancy Ay = 2A and for 
standby redundancy A0 = A. 
We wrote all of these solutions in such a detailed form because the LST 
technique is very important in engineering applications. A certain amount of 
practice is needed to apply this to practical problem solutions. We believe 
that the best way to master these approaches is to work out simple exercises. 

7.2 DUPLICATION WITH AN ARBITRARY REPAIR TIME 

For repairable duplicated systems, models more complicated than the 
Markovian type can be analyzed. We first consider a model described in the 
following way:  

                                            
10 Both units are independent and identical. 
* The operating unit has an exponential distribution of time to failure F(r) 

with parameter A, and the redundant unit has a similar distribution 
F,(r), also exponential with parameter A,, 0 < A( < A. (This condition 
means that the redundant unit might be, in general, in an underloaded 
regime.) 

I 1 i x  1 
A + 2A 4 10" 2yA 
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* The repair time of a failed unit has an arbitrary distribution G i t ) .  
' The repair of a failed unit begins immediately after a failure has 

occurred. 
* After repair, the unit becomes completely new. 
* The repaired unit is immediately installed into the system. 

It is clear that after an operational unit has failed, the redundant unit 
replaces it and becomes operational. A system failure occurs if and only if 
the operating unit fails during the repair of the other unit, that is, when both 
of the system's units have failed. 

Let us find the distribution of the system's time to failure Rsit). A 
failure-free operation of the duplicated system during a time period t  can be 
represented as the union of the following mutually disjoint events: 

1. The first failure in the system occurs after moment what happens 
with the redundant unit does not play any role. The probability of this 
event is exp[( —A -I- A,)/]. 

2. The first failure of either of the two units occurs at some moment 
z  <  t ,  the failed unit is not repaired during the interval (t  - z ) ,  but the 
unit in the operating position has not failed up to t .  The pro- 
bability of this event is 

T(A + A,)e-(A+A')z[l - G ( t  -  z ) ] e ~ * ' ~ z ) d z  
Jn  

3. The last event is the most complicated. In this case, as some moment 
x  <  t ,  the duplicated system comes to the initial state, that is, state 0, 
where both system's units are operational. This occurs if one of the 
units has failed during the interval [ z , z  +  d z ], the repair has taken 
time x  -  z, and the operating unit has not failed during repair. After 
the completion of the repair, the system operates successfully during 
the remaining period of time (t - x) with probability Rit — x) => 1 — 
Fsit - x ) .  The probability of this event is 

f ° ° R ( t  - x ) dx [ \ \  +  -  z ) d z  J n  J n  

where g i t )  is the density function of the distribution G i t ) .   
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Now it is easy to write the final equation for the probability of a system's 
failure-free operation: 

R(t) = «-<*+*■>' + e ~ A ' ( \  +  A,) f'e~x»x[ 1 - G( t  -  * ) ]  d x  

+ f'R(t - x)e~*'(\ + Aj) dx f X e ~ x < * g ( x  -  z )  d z  (7.18) J o  J o  

Thus, we have an integral equation with a kernel of the type 

R ( t )  —  A ( t )  + f ' R ( t  - x ) B (x ) d x  (7.19) 
A) 

where, in the above case, 

A ( t )  = +  +  A,) jVA'*[ 1 - G { t  -  * ) ]  d x  

° (7.20) 
B ( t )  = <rA'(A + A,) ['e-Azg(t - z) dz 

The recurrent equation (7.18) can be solved by the method of sequential 
iterations. Hut we prefer to obtain the solution in the form of the LST as it 
allows us to investigate the asymptotical behavior of R ( t ) .  
If we denote 

a { s )  =  r e ~ s ' A ( t )  d t  J o  

b ( s) = f% - "B ( t )  d t  J o  

<P(j) = re~*'dG(t) J o  

< p ( s )  =  f e - "R ( t ) d t  
o 

then the solution can be represented in the form 

= + <p(s)fc(5) (7.21) 

and, finally, the LST of interest is 

a ( s )   
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The functions a(s) and b ( s ) can easily be found from (7.20) 

5 + A + (A + A,)[l - i p ( s  +  A)] 
(s  +  A + A.){i + A) 

(7.23) 

b ( s )  =  - - - - - - - - - - - - - - - - - -   
v ' A + A[ + s 

Thus, after substituting (7.23) into (7.22), we obtain 

5 + A + (A + A,)[l - ^(J + A)] 
=  ( i  +  A ) [ i  +  ( A  +  A , ) ( l - ^ ( A + f ) ) ]  ( 7 ' 2 4 )  

Therefore, the general case has been investigated. It is clear that for active 
redundancy, when A, = A, 

5 + A + 2A[I - ¥(A + J)] 
= (A + s ) [ s  +  2A(1 - ¥(A +j))] 

For standby redundancy, when At = 0, 

s + A + A[l — ^(A +5)] 

^ = (A + s ) [ s  + A(1-¥(A +j))] 

Since (7.24) is the LST of R ( t )  =  1 -  F s ( t ) ,  the MTTF can be derived from 
this expression directly with the substitution 5 = 0: 

r -/ M A + (A +A,)[1 -^(A)] 1 1 
T s = ¥>(5)1,,o = -7T , rrr;—„„ = - + 

A(A +A,)[1 -*(A)] A (A+ ^[1 "*(*)] 
(7.25) 

In deriving the latter expression, we use the memoryless property of the 
exponential distribution: if an object with an exponentially distributed ran- 
dom TTF has not failed until some moment t ,  then the conditional probabil- 
ity of the random residual TTF of the object is the same exponential 
distribution as the original one. Thus, the process of an operation of a 
duplicated system has the so-called renewal moments, that is, such Markov 
moments at which all of the prehistory of the process has no influence on the 
future development of the process starting from this moment.  
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The MTTF of the duplicated system without repair, as it was obtained 
above, equals 

1 1 
T  -   - - - - - -   +  -  

A + A, A 

From (7.25) it follows that the effectiveness of redundancy with renewal 
increases very quickly as i/r(A) -> 1. Notice that 0(A) is not more than the 
probability that the random TTF of a unit exceeds the duration of its repair. 
It means that 

a  =  1  - < K \ )  =  Pr U < V )  -  f [ l  ~ e ~ k , ] d G { t )  
J f \  

is the probability of an unsuccessful repair, denoted by a. Here £ is a 
random 
TTF and 77 is a random repair time. Notice that for the exponential 
distribution this probability equals A/(A + p.) = y/(l + y) where y = A/^t. 
Let us make a final remark concerning the system MTTF. It is possible to 
write a clear and understandable recurrent equation to express T .  The period 
of a system's successful operation can be represented by a sequence of cycles 
of the type "time to failure of any of the system's units + time of successful 
repair" which terminates with a system's failure (the cycle with an unsuccess- 
ful repair). Arguing similarly as in Section 7.1, the recurrent relationship can 
be written as 

+  a ~  +  ( l - a ) T s  

Finally, for T t ,  one obtains 

1 1 
T  -   . . . . .   . . . . . . . +  -  
J (A + A,)a A 

It is clear that the MTTF of the duplicated repairable system depends on 
the distribution G i t ) .  Let us investigate this relationship in more detail. 
From (7.26) we can derive

 
1 - L

 
=  A /  t d G ( t )  ~  —  I  t 2 d G ( t )  +  —  [  t 3  d G ( t )  

J o  2  J o  6 •'o 

(7.26) 

1 
T =  -----------  
1 A + A, 

 
( " AO  

d G ( t )J f t  
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= A E{T?} - |E{T,?) + ™E{TJ3} + ■ • ■
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Such a representation is very useful if the system is highly reliable, that is, 
when AT ■« 1. Then the following approximation is true: 

A2 A2 
A « A E{TJ} - YE{772} = AT - — [R2 + Var{r,}] 

where r = Ef?)}. Thus, between several distributions G ( t )  with the same 
mean, the probability a is smaller if the variance of the repair time is larger. 
From this statement it follows that the best repair is characterized by a 
(practically) constant duration. 
Let us give several simple examples. 

Example 7.1 Find a when the repair time is constant, 77 = T. By direct 
calculations 

a = Pr{£ £ T} - 1 - e-Ar 

and, for the highly reliable system when AT = y  •«  1, 
a = AT  - £(AT)2  

Example 7.2 Find a when the repair time distribution is exponential. By 
direct calculations 

A M 1 
a = Pr{£ < r} =  ------------  « 1 ------------- = 1 -  ----  -------  1 ' A + FT A + M 1 + AT 

approximately, 

A « AT  - (AT)2  

Example 7.3 Find a when the repair time distribution is normal with mean 
equal to r and variance equal to cr2 .  Find the LST for this distribution, using 
essentially the same technique that we applied in Section 1.3.3 for obtaining 
the m.g.f. 

£ ( 5 )  

We remind the reader that the LST and the m.g.f. differ only by the sign of 
the argument s .  Thus, 

a  =  1  -<p( A)  =  1  

An approximation has the form 

A ~ AT +  ±\2A2 
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From these examples we see that with AT  -»  0  the repair (renewal) 
effectiveness becomes higher and tends to be invariable with respect to the 
type of G i t ) .  This is true for most reasonable practical applications. For 
example, to replace a failed bulb may take some 10 seconds, but its lifetime 
may equal hundreds of hours; to change or even to repair a car's tire takes a 
dozen minutes which is incomparably less than its average lifetime. This fact 
leads to new methods of investigation, namely, to asymptotic methods. 

Assume that the parameters A  and A (  of the model are fixed and then 
consider a sequence of repair time distributions G1,G2,...,Gr,,.., which 
changes in such a way that 

 

(7 .27) 

This means that the probability that the operational unit fails during repair 
goes to 0, 

Under this condition the appearance of some limit distribution of a 
system's failure-free operation is expected. Of course, if aM 0 the system's 
MTTF goes to <». To avoid this, we must consider a normalized random TTF, 
namely, a£. It is clear that this new r.v. has a constant mean equal to 1 
independent of the value of a. The distribution of this r.v. is 

 

The LST of this function is from (7.24) 

 
a s  +  A +  ( A +  A t ) [ l  -  ^(a s  +  A) ]  

( « i  +  A) [a s  +  ( A +  Aj ) ( l  -  ^(a s  +  A) ) ]

 
Now under the assumption 
that a„ -» 0, we can write 

* (A)  -  ^(a s  +  A)  =  /V A ' ( I  
o

 
a s

 

Pr { « £  >  t }  =  
R  

 

 

(7.28) = a 

 

e ~ A f ( l  -  e ~ a s ' ) d G ( t )

 a s  
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that is,
 

2 

a £ s  
Y (A)  -  +  A)  =  — 0  

A  

where 0 < 9 < 1. Therefore, if «„ 0 uniformly on any finite interval of the 
domain of s ,  

2 
a s  

as  + A + (A + A,) | a + — 0

 
a2s 

a s  +  (A +  A, )  |  a  +  — 0

 
Because the LST (7,29) corresponds to an exponential d.f., we get the 
following asymptotic result: 

lim Pr{a£ >  t }  =  e-****'* 
or— 

For practical problems, this means that for a small value of a the following 
approximate expression can be used: 

R ( t )  W e-<***d*
 (7.30
) 

R ( t )  = »  e~'/T (7.31) 

where T  has been defined in (7.25). Incidentally, (7.31) is more accurate than 
(7.30): it has an error of order a in comparison with a 2  associated with the 
latter. 

This can be explained in the following "half-verbal" terms. The random 
time to failure of a duplicated system consists of a random number of cycles 
of the type "totally operational system — successful repair" and a final cycle 
of the type "totally operational system - unsuccessful repair." Stochastically, 
all cycles of the first type are identical and, by the assumption of the 
exponentiality of the distribution, are mutually independent (the latter as- 
sumption is based on the memoryless property). The only cycle differing from 
these is the last one. But if to suggest that the number of cycles of the first 

 

 
a$ (as )  =  a- (7.29)

S  +  A +  A .  
(a s  +  A)
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type is large, on average, the distribution of the system time to failure can be 
approximated by the exponential distribution. 

The use of the approximations (7.30) and (7.31) requires the value of a .  
This value can be obtained easily in this case. Moreover, if we know that  
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Git) has a restricted variance, then in limit a «  AT . (Of course, the condition 
tr -» 0 is necessary.) In turn, this means that the following can be obtained: 

R it )  <*  

If the conditions for the variance of Git) do not hold, the latter expres- 
sion, of course, is wrong. The reader can verify this with an example of a 
sequence of two-mass discrete distributions G ^ t ) ,  G 2 i t ) , G n i t ) ,  each with 
two nonzero values of probability: at 0 and at some positive point. Let all of 
the distributions have the same mean but, with increasing n, the probability 
at the positive point becomes smaller with moving of the point to the right 
along the axis. The variance in this case is infinitely increasing with 
increasing n .  

7.3 STANDBY REDUNDANCY WITH ARBITRARY DISTRIBUTIONS 

For standby redundancy the results can be obtained for the most general 
case, namely, when both distributions—of a random TTF and of a random 
repair time—are arbitrary. Let us use the same notation for the distributions: 
Fi t )  and G i t ) .  The duplicated system's operation can be graphically repre- 
sented in Figure 7.3. 

The system's operation consists of the following random intervals. The first 
one endures until the main unit fails; its random length is The second 
interval and all of the remaining intervals, k  =  2,3,..., are successful if 
and only if each time a random failure-free time of the operating unit (k is 
longer than the corresponding random repair time of the failed unit rjk. The 
last interval when a system failure has occurred has a random duration 
different from all of the previous ones: this is the distribution of the random 
TTF under the condition that £ < T J .  All of these explanations become 
transparent if one considers a constant repair time: the first failure-free 
interval has unconditional distribution of the r.v. all of the remaining 
intervals (except the last one) have a conditional distribution under the 
condition that £ > 17; and the last one has a conditional distribution under 
the condition that £ < 17. In other words, the first of these distributions is 
positively biased and another is truncated from the right. 

  

(7.32)

 

Figure 7.3. Time diagram for duplicated system operation with a standby redundant
unit. 

C
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Let £* denote a random value representing the system's time to failure 
starting from the moment +  + • •  •  + g k .  Here k  is the num- 
ber of the last cycle when a system failure has occurred. For the distribution 
of the r.v. the following recurrent equation can be easily written: 

1 -  F* ( t )  =  1 -  F( t )  -  /"'[I -  F* ( t  -  x)]G(*) d F( x )  (7.33) 

The first term of the sum reflects the fact that during time ( no failure 
occurs. The expression under the integral means that the first failure occurs 
in the interval x + dx], but the repair of the failed unit has been 
completed up to this moment, and from this moment on the system is in the 
same state as in the previous moment at moment £0. Thus, this is the 
regeneration moment for the renewal process under consideration. 
The final goal is to find the distribution of the random value £0 + g* and 
to express the probability of the system's successful operation P ( t ) :  

 

(7.34) 

The numerical solution of (7.33) and (7.34) can be obtained by sequential 
iteration. But again we will use the LST which is useful for future asymptotic 
analysis. 
Introduce the following notation: 

  

 

< p ( s )  =  f  d F* ( t )  J o  

< p ( s )  =  C e - d Q i t )  
J n  

Then the LST of (7.33) can be written as 

< p ( s )  =  <D( i)  +  « A(s ) [ l  -< p( s ) ]  

and, finally,

 
1  - 0 ( 5 )

 

o 

 

o 

 
(7.35)< p ( s )  =
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Combining (7.35) with (7.34), we get

 
< p ( s )  =  &( s ) $ ( s )  -  
® ( J)

 
From this LST, the system's MTTF can be found by setting 5 = 0. But in this 
case we prefer a more direct way: 

=  E { I 0)  +  E (  £  ^  \  -  R  +  —  

where v  is the random number of cycles which has a geometric distribution 
with parameter a: 

a -  Al - G < r ) l < < F< 0  J o  

which is small in practical cases. 
Let us investigate the asymptotic behavior of p i t ) .  Suppose that F i t )  is 
fixed and the distribution of the repair time changes by some sequence in 
such a way that 

«„= A l - 3 , ( 0 1  d F( t ) ^ 0  
J n  

Let us introduce the corresponding distributions and LSTs: Q„(t), <pn(s), 
il>„(s\ and, additionally, x„(s): 

Xn(s) = <J»n(*) - </<„(*) - /V'[ 1 - G„(0j d F( t )  
J o  

Now we evaluate the difference 

-  x „( a n s )  = jf( 1 - - G„(t)} d F( t )  

< a n s f t [ \ ~ G n ( t ) ] d Fi t )  
o 

C n f [ l - G n ( t ) } d F( t )  +  f t d F( t )  Jo Jc„ 
£ a„s 

If in this inequality we let  

 
$ ( 0  -  
H f )  
i -*(.) 

(7.36)

 

C„ =
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then both terms in the last set of square brackets go to 0. This leads to the 
statement: 

hm  ----------- = 1 
(i— a„ 

and the limit is uniformly exceeded on any finite area of domain of s .  
Now the normalized random variable anr is considered. The d.f. of this r.v, 
i s  

Pr{A„T  < r} = Q n  

The LST of this d.f. is 

For an -* 0, from (7.36) it follows that 

< p n { a n s )  =  4>(anO 
1 - <!>(«„$) 

X „(<x„s) 
a  

1 - <j>(a„Q + i + sT 

and the limit is uniformly exceeded on any finite area of domain of s. 
Consequently, 

lim Pr{dnr </} = !- e~"T (7.37) 
n  —>oo 

From (7.37) it follows that for a small value of a the approximation 

nO = Pr{£syst > r} 

is true. 

7.4 METHOD OF INTRODUCING FICTITIOUS STATES 

As we considered in Chapter 1, some combinations of exponential distribu- 
tions can produce distributions with both increasing and decreasing intensity  
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functions, or failure rates. This fact leads to the idea of an approximation of 
some arbitrary distributions. We will show that such an approximation can 
allow us to reduce semi-Markov processes to Markov processes. 

A mixture of exponential distributions with different parameters leads to a 
distribution which has the decreasing intensity function 

F ( t )  =  Z  =  1 "  E  P t e ~ »  
lS i S n  1Siin 

A,  #  A y V( U)  (7 -3 8 ) 

Pi >  0  v / , £ p f =  l  

A convolution of n  identical exponential distributions e ( t )  = exp(-Ar) leads 
to an Erlang distribution of the «th order which can be expressed in the 
following recurrent way: 

( A f ) " " '  
NNR?(0 (7.39) 

If there are exponential functions with different parameters e k { t )  =  
exp(-Ak t ) ,  then the generalized Erlang d.f. holds 

^ ( 0  = e { * e 2 *  ■ ■ ■  * e n { t )  =  f ' e l * e 2 *  ■ ■ ■  * e n _ t ( t  -  x )  d e „ ( x )  
J o  

(7.40) 

Both the Erlang and the generalized Erlang distributions belong to the IFR 
class. Notice that the generalized Erlang d.f. can naturally approximate a 
wider subclass of distributions belonging to the IFR class. 

It is reasonable to remember that the Erlang distribution represents an 
appropriate mathematical model for standby redundancy. Indeed, the pro- 
cess of a standby redundant group's operation can be described as a se- 
quence of a constant number of periods of a unit's successful operation. 

Thus, (7.38) can be used as a possible approximation of the IFR distribu- 
tions, and (7.39) with (7.40) can be used for the DFR distributions. Of course, 
such an approximation leads to an increase in the number of states in the 
stochastic process under consideration. (Nothing can be obtained free, even
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in mathematics!) But we should mention that the process itself becomes 
much simpler: it becomes purely Markov. At the same time, such an approxi- 
mation is good only for systems of a very restricted size. 

For simplicity of further illustrations, we will consider only cases where the 
initial distributions are approximated with the help of combinations of two 
exponential distributions. We should mention that the problem of determin- 
ing an appropriate approximation of a distribution with monotone failure 
rates by the means of (7.38) to (7.40) is a special problem lying outside of the 
scope of this book. 

Now we illustrate the main idea by means of simple examples. 

IFR Repair Time and Exponential Time to Failure For some applied 
problems it is natural to use the exponential distribution for a random TTF. 
At the same time, to assume an exponential distribution for the repair time 
might seem strange: why should the residual time of repair not depend on 
the time already spent? If a repair involves a routine procedure, a more 
realistic assumption involves the IFR distribution of this r.v. To make this 
statement clearer, we consider a repair process as a sequence of several 
steps: if one step is over, the residual time of repair is smaller because now it 
consists of a smaller number of remaining steps. 

In this case two failure states might be introduced for a unit: state 1 and 
state 1*, both with an exponentiatly distributed time remaining in each of 
them. These sequential states represent the series sequence of two stages of 
repair (see Figure 7.4a). The total random time of staying in a failed state 
subset is the sum of two exponentially distributed random variables and, 
consequently, will have an IFR distribution. Incidentally, in this case (7.40) 
has the following expression: 

— -
 ( 7 ,
4 1 )  

A, — A2 

 

Figure 7.4. Transition graphs for a multistate 
model of renewable units: («) with an 
IFR distributed repair time and an exponentially distributed failure-free time; 
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(ft) with an IFR distributed failure-free time and an exponentially distributed repair 
time.  
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Suppose that for some reason a unit should be considered as having an 
IFR distribution for its TTF and an exponential distribution of repair time. 
Then a "dual" transition graph is considered with two operational states: 
state 0 and state 0* (see Figure l A b ) .  

DFR Repair Time and Exponential Time to Failure Sometimes a DFR 
repair time might be reasonably assumed. For example, a system may consist 
of two units: one of them takes more time for repair than another although 
both of them have exponentially distributed random repair times with differ- 
ent parameters. Thus, the system's repair time depends on which of the two 
units fails. In this case a "weighed" distribution could be a good mathemati- 
cal model, and one more realistically assumes the DFR distribution of 
random time. 

In this case two failure states are introduced: state 1 and state 1*, both 
with an exponential distribution but with different parameters. Both states 
are separate and located on the same layer of the transition graph (see 
Figure 7.5a). Therefore, the process goes from operational state 0 to state 1 
with probability 

Pi  A 

px  A + (1 ~Pl)\ 

and to state 1* with probability 

(1 ~/MA 

Pl A + (1 -/MA 

The total time of staying in a failed state subset has 
a DFR distribution. 

 

Figure 7.5. Transition graphs for a multistate model of renewable units: (a) with a 
DFR distributed repair time and an exponentially distributed failure-free time; 
(b) with a DFR distributed failure-free time and an exponentially distributed repair 
time.  
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Apparently, for a unit with a DFR distribution of TTF and an exponential 
distribution of repair time, the transition graph with two operational states 
and one failure state should be considered (see Figure 7. 5 b ) .  

Non-Markov Cases Of course, a much more complicated case arises if 
one considers a unit with two nonexponential distributions. In this case a 
general, non-Markov process might be analyzed. The Markov approximation 
seems more reasonable, but, at the same time, even a simple model becomes 
clumsy. We present four cases without special explanation that can be easily 
analyzed by the reader. These cases are: 

• Both distributions are IFR (Figure 7.6a). 
■ An IFR distribution of TTF and a DFR distribution of repair time 

(Figure 7.6B) .  

 

 

 

Figure 7.6. Transition graphs for a multisiate mode) of renewable units: (a) with an 
IFR distributed repair time and an IFR distributed failure-free time; (ft) with a DFR 
distributed repair time and an IFR distributed failure-free time; (c) with an IFR 
distributed repair lime and a DFR distributed failure-free time; (d) with a DFR 
distributed repair time and an DFR distributed failure-free time.  
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• A DFR distribution of TTF and an IFR distribution of repair time 
(Figure 7.6c). 

• Both distributions are DFR (Figure 1.6d). 

It should be mentioned that this mathematical scheme allows one to create 
models for even more complex situations. For example, let us consider the 
following case. Both distributions are DFR, and the transition graph is close 
to that presented in Figure 1.6d, but with some differences. Let state 0 
correspond to a long average operational time (a small value of intensity A0) 
and let state 0 11  correspond to a short average operational time (a large value 
of intensity A0.). Thus, Aa, > A0. States 1 and 1* have the same meanings: 
the first state is characterized by a repair intensity Mi the second by ^-i* 
where p.r > Mv L61 us assumc that a "short" system repair time follows after 
a "long" time of a successful operation, and, on the contrary, after a "short" 
up time a repair time is usually "long." This can be explained on a physical 
level in the following way. A failure after a "normally long" failure-free 
operation is expected to be "normal" itself; that is, it requires, on average, a 
smaller time of repair. In the transition graph, it means that p Q  >  q Q  =  1 —  
pQ. On the other hand, "short" periods of failure-free operation are sup- 

                                            

11o(0 = ~ X 0 K Q ( t )  +  p 2 K 2 ( t )  

K [ ( t )  =  \ 0 K 0 ( t )  -  f i ^ t )  
(7.42) 

l = K { } ( t ) + K ] ( t ) + K 2 ( t )  

K0( 0) = 1 

'we put "long" and "short" in quotation marks because we consider r.v.'s with corresponding 
large and small means, but this does not mean that an r.v. with a larger mean cannot be less than 
an r.v, with a small mean, and vice versa. For simplicity, we use these terms for r.v.'s. 

s ( s  - 5 i ) ( s  -  s2 )  

Equations (7.44) and (7.45) lead to the following system of equations: 

A + B  + C = 1 
Mi + M2 = —A ( s , + s2) — BS 2  —  C$j 

As i s2  = M 1 M 2  

or, taking into account that s, = s2  — b, A  can be immediately expressed as 

M1M2 m \ M a  M1M2 
A = 

AO(MI  +  M2) + M1M2 
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posed to be connected with some kind of "serious" failure, which leads to a 
"long" repair time. In the transition graph, this means that pQ. > q(). = 1 - 
/v-1 

Of course, the inverse situation might be considered. Explanations also 
seem very reasonable: a "long" repair might follow a "long" period of 
successful operation. Indeed, we expect more failures of redundant units may 
appear during the longer period of time. As usual, a narrative of the system, 
which is taken to be a basis for the mathematical model, depends on the 
concrete actual nature of the system under investigation. For systems consist- 
ing of several units such an approximation may lead to difficulties in the 
construction of the corresponding transition graph. 

Let us consider the simple case represented in Figure 7.4a in more detail. 
Incidentally, this case shows the special behavior of the availability coeffi- 
cient. The system of differential equations is constructed in the usual way:  
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The LST of (7.42) gives the following system of algebraic equations: 

(A0 + 5)^0(5-) - p2(p2 = 1 

- A0*0(i) + ( f l y  +5)<Pi(5) = 0

 (7.4

3) 

s<p 0 (s)  + + = 1 

and the solution for <p(s)  is 

< p  ( 5 )  =  s 2  +  +  f i 2 ) s  +  ^ ^  
0 5[j2 + (A0 + IX , + ix2 )s +  A0ju, + k 0 f i 2  +  M1M2] 

Denote the eigenvalues (roots) of the denominator by sk :  

a  a 2  
^ = " 2 ±  V T  

53 = 0 

where 

a  =  A0 + ju, + jt2 

b  = A0(/ti, + Mi) + M1M2 

Note that the discriminant of the denominator is negative for any A0, and 
H2, which leads to the complex roots jj and s2 .  
A representation of <p0(s) is found in the form 

A B C 
<Po( s )  -  T  +   - - - -   7  +  7  7  

s s — s,  s — s2  
( A  +  B  +  C ) s 2  -  +  5 2 )  +  Bs2  + C S ] ] s  + A s t s 2   

-  b  

(7.45) 
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The following system is obtained as a result: 

B +  c = i ---------- Ld 
b 

B S 2  +  C S J  =  A —   - - - -  M I  "  
b 

Because of the complex conjugate roots J , and s 2 ,  one can write 

~  C i ] j b  -  ~  =0 

Thus, for the real parts of these roots, 

Now we can find K 0 ( t ) in the form 

For the complex root s  =  a + ip ,  

e s ,  =  c « < ( c o s  p t  +  , s i n  p t }  

Taking into account that the complex roots 
5, and s 2  are conjugate, we may 

Figure 7,7, Time dependence of the 
availability coefficient for a unit with an 
IFR distributed repair time. Here K =  
V-1V2/P and 
1 I  < * 2 

Bi
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The final result is
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In this particular case the nonstationary availability coefficient is periodically 
oscillating with a decreasing amplitude (see Figure 7.7). 

7.5 DUPLICATION WITH SWITCH AND MONITORING 

Because of their relative simplicity, the mathematical models of a duplicated 
system with renewal allow one to consider some sophisticated cases close to 
real situations. Indeed, most "classical" mathematical models of redundant 
systems with repair are based on the assumption that the redundant group of 
units has an ideal switch which performs its functions reliably, without errors 
and delays. Moreover, the units are supposed to be totally and continuously 
monitored; that is, the occurrence of an operating or redundant unit failure 
becomes known immediately. It is clear that such assumptions are far from 
real. Sometimes, of course, these factors may be neglected. (But only some- 
times!) 

When a duplicated system is described by a Markov model, it is possible to 
provide an analysis of reliability by accounting for some additional factors. 
Obviously, it does not lead to especially clear and understandable models. At 
any rate, the solution can be derived. 

Below we consider several examples which illustrate how one may con- 
struct appropriate mathematical models. We will not present the final results 
because they are inevitably bulky. A computer must be used for the numeri- 
cal calculations. But, as is well known, no computer can substitute for the 
human mind, at least during the first stage of any research: one needs to be 
able to construct an appropriate mathematical model and only after this may 
one resort to computer calculation. 

7.5.1 Periodic Partial Control of the Main Unit 

 
e~*i' + e-*2< = 2 cos  

 

 

M
1
M
2 
b  
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We start with a simple example. A duplicated system consists of two indepen- 
dent identical units. One of them is in an operating position (the main unit) 
and the other is in a redundant position. The unit's failure rate depends on 
the current occupied position: operating or waiting. Let us assume that only
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part of the main unit can be monitored continuously. The state of the 
remaining nonmonitored part of the main unit can be checked only periodi- 
cally. In other words, if a failure has occurred in the nonmonitored part of 
the main unit, no switching to replace this failed unit is performed. A 
periodic test discovers that the main unit has failed and only then the 
switching might be performed. Thus, before this test, the duplicated system 
remains in a state of "hidden failure." The switching is assumed to be 
instantaneous. The redundant unit is continuously monitored, so a repair of 
the failed redundant unit begins instantly after a failure has occurred. Of 
course, the same thing happens if a failure occurs in the monitored part of 
the main unit. 

During a repair of the main unit, all of its failures—both in the monitored 
and nonmonitored parts—are deleted. In other words, the repaired unit 
becomes as good as new. As soon as the failure of the main unit is detected 
(by any means—continuous or periodical monitoring), the redundant unit is 
switched into the main position. After repair, the unit becomes the redun- 
dant one. If one finds both units have failed, the total system repair is 
performed. After repair, the system, as a whole, becomes as good as new. 

For the use of a Markov model, let us assume that monitoring is provided 
at randomly chosen moments of time. Moreover, assume that the distribution 
of the length of the periods between the tests is exponential. We mention 
that such an assumption is sometimes close to reality: in a computer, tests 
can be applied between runs of the main programs, and not by a previously 
set strict schedule. 

The transition graph for this case is presented in Figure 7.8. The following 
notation is used in this example: 

•  M is the operational state of the main unit. 
•  M *  is the "hidden failure" of the main unit. 
•  M is the failure state of the main unit. 
•  R  is the operational state of the redundant unit. 
•  R  is the failure state of the redundant unit. 
•  A, is the failure rate of the nonmonitored part of the main unit. 
•  A, is the failure rate of the monitored part of the main unit. 
•  A is the failure rate of the redundant unit. 
•  /x is the intensity of repair of a single unit. 
•  M* is the intensity of repair of the duplicated system as a whole. 
•  v  is the intensity of periodical tests. 

The transition graph presented in Figure 7.8a is almost self-explanatory. 
Notice that for this case there arc two states of system failure: [M* /i] and 
[ M  R] ,  These failure states are denoted by bold frames in the figure.  
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We will not describe the routine procedure of finding the reliability 
indexes. Our main goal is to build a mathematical model from the verbal 
description and to clarify all of the needed assumptions. 

7.5.2 Periodic Partial Monitoring of Both Units 
The duplicated system consists of two identical independent units. One of 
them is in an operating position (the main unit) and the other is in a  

 

Figure 7.8. Transition graphs for a duplicated system with a partially monitored main 
unit: (a) graph including instantaneous "jumps" (intensity equal to (b)  equivalent 

graph excluding the state in which the system spends no time. 
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redundant position. The unit's failure rate depends on the occupied position: 
operating or waiting. Let us assume that only a part of each unit can be 
monitored continuously. (The monitored parts are identical in both units.) 
The state of the remaining nonmonitored parts of each of these units can be 
checked only periodically. Tests of the main and redundant units have 
different periods (intensity). 
The switching system is analogous to that described in the previous 
example. If one knows that both units have failed, the repair is performed 
until complete renewal of the system. Let us consider two possible means of 
repair: (a) there are independent repair facilities for each unit, and (b) there 
is only one repair facility. After repair, the unit becomes as good as new. 
The transition graph for this case is presented in Figure 7.9. The following 
notation is used in this example: 

*  M is the operational state of the main unit. 
*  M *  is the "hidden failure" of the main unit. 
- M is the failure state of the main unit. 
*  R is the operational state of the redundant unit, 
*  R *  is the "hidden failure" of the redundant unit. 
- R  is the failure state of the redundant unit, 
*  A, is the failure rate of the nonmonitored part of the main unit. 
*  Aj is the failure rate of the monitored part of the main unit. 
*  A is the failure rate of the nonmonitored part of the redundant unit. 
*  A is the failure rate of the monitored part of the redundant unit. 
*  fi is the intensity of repair of a single unit. 
- n* is the intensity of repair of the duplicated system when there are two 

failed units, 
*  y, is the intensity of periodic tests of the main unit, 
*  v  is the intensity of periodic tests of the redundant unit. 

The transition graph presented in Figure 7.9 is almost self-explanatory. We 
only discuss the following two transitions: 

1. [M  R*] to [M  R ] :  This transition occurs if (a) an extra failure appears 
in the continuously monitoring part of the redundant unit or (b) the 
periodic test has found a "hidden failure." 

2. [Af /?*] to [ M *  J?]: This transition occurs if a failure appears in the 
continuously monitoring part of the main unit. Then the main unit is 
directed to repair and is substituted by the redundant one with a 
"hidden failure." 

These failure states are again denoted by bold frames in the figure.  
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We will again write no equations. This is obviously a routine procedure. 
As an exercise, consider the system when, after the failure of both units, 
We will again write no equations. This is obviously a routine procedure. 
As an exercise, consider the system when, after the failure of both units, 

the system is subjected to a total renewal: the system is repaired as a whole 
until both units are as good as new (the transition from the system failure 
state to the failure-free state). 

7.5.3 Unreliable Switch 
Consider a duplicated system with an unreliable switching device. A switch- 
ing failure becomes known immediately and its repair begins at once. There 
is only one repair facility. Repair is performed in accordance with a FIFO 
(first-in, first-out) rule. If both units have failed, the total repair is performed. 
The failure of the main unit, occurring during the repair of the switch, leads 
to a system failure even if the redundant unit is operational. But a switching 
failure itself does not interrupt the main unit's successful operation. The 
monitoring of both units is supposed to be continuous and ideal. Repairs of 
both units and the switch are supposed to be independent.  
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The transition graph for this case is presented in Figure 7.10. The follow- 
ing notation is used in this example:  
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As in the previous examples, the transition graph presented in Figure 7.10 
is almost self-explanatory. We only discuss the following transitions: 

1. [ M  R  5] to [ M  R  5]: This transition occurs if the switch has been 
repaired: at the moment of the termination of repair, the redundant 
unit is instantly directed to the position of the failed main unit, and the 
latter begins to be considered as a redundant unit directed to repair. 

2. [ M  R  5] to [ M  R  5] and [ M  R  5] to [ M R  5]: These two transitions 
depend on which unit is repaired first: if the switching device is in 
repair, it is impossible to put the repaired redundant unit into the 
position of the main unit. 

These failure states are again denoted by bold frames in the figure. 

7.5.4 Unreliable Switch and Monitoring of Main Unit 
A duplicated system consists of two identical independent units: main and 
redundant. The unit failure rate depends on the occupied position. Let us 
assume that only a part of the main unit can be monitored continuously. The 
state of the remaining nonmonitored part of the unit can be checked only 
periodically. The switching device works as described above. Repairs of both 
the units and the switch are independent. After repair, a unit (or a switch) 
becomes as good as new. 

The transition graph for this case is presented in Figure 7.10. The follow- 
ing notation is used in this example: 



 

 

CONCLUSION 332

Note that the switching device may be one of the two following main types: 
(a) as we considered before, a switching failure does not interrupt the 
system's operation, or (b) a switching failure interrupts the system operation. 
In the latter case, the switch is a necessary part of the system. This may 
occur, for example, if the switch plays the role of an interface between the 
duplicated system's output and the input of another system or subsystem. 

Of course, there are many other concrete examples of this type. We can 
only repeat that our main goal is to explain the methodology of modeling and 
not to give a list of the results or to make the reader exhausted with boring 
solutions of bulky equations. 

The mathematical techniques used in this section are simple enough. But 
the results obtained are not always very clear or "transparent" for further 
analysis: What will happen if one changes some parameters? What will 
happen if the switching or monitoring methods are changed? Of course, in 
practical situations an engineer would like to have correct and simple 
formulas to perform a quick and understandable analysis of the designed 
system. Fortunately, for highly reliable systems (we emphasize again that this 
is the most important practical case!), it is possible to develop such simple 
and sufficiently accurate methods. The reader can find such methods in 
Chapter 13 dedicated to heuristic methods in reliability. 

CONCLUSION 

It seems that the first paper on the analysis of a duplicated system with repair 
(renewal) was published by Epstein and Hosford (1960). They solved the 
problem foT a purely Markov model when the distributions—both TTF and 
repair time—were exponential. They solved the problem with the help of 
birth and death processes. Their model is also described in Gnedenko and 
Kovalenko (1987). Here the solution of the same problem for the duplicated 
system was found for both active and underloaded redundancy. 

A systematic investigation of renewal systems, in particular, the duplicated 
system, may be found in Ushakov (1985, 1994). Belyaev (1962) developed an 
elegant method of so-called "striping Markov processes" which has allowed 
one to solve the problem with no assumption of exponentiality on the repair 
time. Independently, Gaver (1963) obtained practically the same results with 
the help of traditional methods. 

Gnedenko (1964a, 1964b) obtained solutions for the general case when 
both distributions are arbitrary. Theorems concerning the asymptotic behav- 
ior of renewal duplicated systems have been obtained by D. Gnedenko and 
Solovyev (1974, 1975). and, practically simultaneously, by Gnedenko, Belyaev, 
and Solovyev (1969). The method of fictitious states (stages) for "Markoviza- 
tion" of non-Markov models as applied to queuing systems takes its origin 
from Erlang's work. A comprehensive exposition of existent mathematical 
results related to the problem can be found in Ushakov (1985, 1994), where
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results conccrmng the various models of duplicated renewal systems are 
presented. A detailed review of asymptotic methods is given by Gertsbakh 
(1984).  
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EXERCISES 

7.1 There are two transition graphs (see Figures E7.1« and b). State 2 is a 
failed state in both cases. 
(a) Give a verbal description of the two systems to which these graphs 

correspond. 
(b) Which system has a larger MTTF?  
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(c) Which system has a larger MTBF? 
(d) What is the difference between the MTTF and MTBF of the first 

system? 
(e) Which system has a larger mean repair time?
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Figure E7.1. 

7.2 Depict a transition graph for a unit with an exponentially 
distributed 
time to failure and a repair time having an Erlang distribution of the 
third order. 

7.3 Depict a transition graph for a renewable unit with an exponentially 
distributed time to failure. P ( t ) = e ~ X l ,  and with a repair time dis- 
tributed as 

G ( / )  =  Pi <?"Ml' + p 2  +  p 3  

7.4 Given an interpretation of the transition graph depicted in Figure E7.4. 
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Failure Figure E7.4.

0 
Failure 
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SOLUTIONS 

7.1 (a) The first system is a duplicate system with a loaded redundant unit 
where after the system has failed it is renewed as a whole. The 
second system is an ordinary duplicate system of two independent 
identical units operating in a loaded regime. 

(b) Both systems have the same MTTF. 
(c) The first system has a larger MTBF than the second one because 

after each failure this system starts from state 0. After a system 
failure the second system starts from state 1 where there is a 
possibility of entering a failed state immediately. 

(d) There is no difference at all. 
(e) The first system has twice as large a repair time. 

7.2 The solution is dcpicted in Figure E7.2. 

 

Figure E7.2. 

7.3 The transition graph is depicted in Figure E7.3. 

 

Figure E7.3. 
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7.4 The system is a series connection of an unrepairable unit with an 
exponentially distributed time to failure with parameter A, and a 
repairable duplicated group with failure rate A and intensity of repair /x. 
The redundant group consists of units in a loaded regime; there are two 
repair facilities. The structure of the system is depicted in Figure E7.5. 
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Figure E7.5.

 

 



 

 

CHAPTER 8 

ANALYSIS OF PERFORMANCE 
EFFECTIVENESS 

8.1 CLASSIFICATION OF SYSTEMS 

8.1.1 General Explanation of Effectiveness Concepts 
Modern large-scale systems are distinguished by their structural complexity 
and their requirements for sophisticated algorithms to facilitate the function- 
ing and interacting of their subsystems. On the one hand, this allows them to 
fulfill many different operations and functions, while, on the other hand, it 
leads to stable operations with a sufficient level of effectiveness even with 
some failed units and subsystems and/or under extreme influences of the 
external environment. 

The adaptation of a complex system to external influences and to internal 
perturbations is possible only because of the redundancy of the system's 
structure and its ability to readjust its functions under various circumstances. 
In other words, the feature of modern technical systems is not only an 
extreme increase in the number of interacting units but also the appearance 
of entirely new qualitative properties. One of these properties is the stability 
of operation mentioned above. 

It is also very important that modern large systems, such as information 
systems (computer and communications networks, control systems, etc.), 
energy systems (electric power networks, oil and gas pipelines, etc.), and 
transportation systems (railroads, highways, airlines, etc.) are multifunctional. 
Such systems, as a result of external and internal influences, can perform 
some functions perfectly and, at the same time, completely interrupt the 
performance of other functions. This means that, according to one criterion, 
a system as a whole could be considered successful and, by another criterion, 
298
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it could be considered failed. A researcher encounters the usual difficulties 
associated with multicriteria analysis. 

But even for a complex system predestinated for one type of operation, 
there is generally no strict definition of failure. Often in such systems even a 
significant set of failed units could lead only to a decrease in performance 
and not to a complete system failure. This happens because of a partial 
"overlapping" of different subsystem (unit) functions, the presence of differ- 
ent feedbacks, the means of error correction, and so forth. 

We consider several simple examples. In a regional power system, a failure 
of some subsystem (e.g., the failure of the fuel transportation system of an 
electric power plant) can be compensated for by using fuel from storage. In 
another case a deficiency of energy can be compensated for by a partial 
increase in the power of neighboring plants. Sometimes clients might use 
another type of energy supply. Under conditions of a severe energy deficit, 
clients with lower levels of priority might be temporarily "turned off" from 
an energy system in order to decrease the total damage. 

Sometimes a completely operational system might be unable to perform 
some of its functions because of a harmful coincidence of external circum- 
stances. For example, consider a communications network. All equipment in 
the system could be in a perfect operating state, but weather may spoil the 
opportunity to use certain radio channels. The same effect may be observed if 
there is some neighboring influence of other radio transmission systems. 
Even network users may create excessively heavy communication traffic 
which can lead to system performance failures. 

Of course, from a client's viewpoint, he or she is quite indifferent to the 
reason for a breakdown in communication: either it happens because of a 
system failure or because of an overloading of the communications network. 

For all such systems it is natural to speak about performance effectiveness. 
In each concrete case the index (or indexes) of performance effectiveness 
should be chosen with respect to the type of system under consideration, its 
destination, conditions of operation, and so forth. The physical characteris- 
tics of the performance effectiveness index (PEI) are usually completely 
defined by the nature of the system's outcome and can be evaluated by the 
same measures. In most practical cases we can measure a system's effective- 
ness in relative units. We might take into account the nominal (specified) 
value of a system's outcome as the normalizing factor. In other words, the 
PEI is a measure of the quality and/or volume of the system's performed 
functions or operations; that is, it is a measure of the system's expediency. 

Of course, a system's efficiency is not an absolute measure. It depends on 
the type of functions and tasks being performed and the operating environ- 
ment. A system which is very efficient under some circumstances and for 
some operations might be quite useless and ineffective under another set of 
circumstances and/or operations. 

In general, a PEI is dimensional. The dimension of the PEI depends on 
the system's outcomes, as we mentioned above. When it is possible in the
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system outcome to its maximal outcome. In this case the PEI is nondimen- 
sional. Of course, we always assume a larger outcome is a better outcome. 
The use of a nondimensional PEI is very convenient in many practical 
evaluations. 

Sometimes we encounter "pessimistic" measures which characterize a 
system's performance. For example, consider the acceptable error of a 
technological process or the permissible volume of pollution of a plant. Such 
indexes measure "ineffectiveness" rather than effectiveness. Usually, in such 
cases one can reformulate the desired outcome in "positive" terms. 

If a system's outcome has an upper bound, the PEI can be expressed in a 
normalized form; that is, it may be considered as having a positive value lying 
between 0 and 1. Then we have PEI = 0 if the system has completely failed 
and PEI = I when it is completely operational. For intermediate states, 
0 < PEI < 1. 

When considering a system's effectiveness, one should remember the 
property of monotonicity introduced earlier. In this context, an increase in 
the reliability of any unit leads to a simultaneous increase in the system's 
effectiveness. Also, a failure of any unit can only decrease (not increase) a 
system's effectiveness. 

It is convenient for system design to determine a PEI in relative units, 
because in this case one docs not need to measure an absolute value of a 
system's outcomc for different states. The absolute values of a PEI are very 
convenient if we must compare several different competitive variants of a 
system. They allow us to compare variants of a system with different reliabil- 
ity and different efficiencies of performance. It is clear that reliability alone 
does not completely solve the problem of engineering design. 

8.1.2 Classes of Systems 
Consider a system consisting of n units. As before, we suppose that any 
system unit has two states: an operating state and a failed state. Let xt be the 
indicator of the ith unit's state: xt = 1 when the unit is up and Xj = 0 when 
the unit is down. The system then has 2" different states as determined by 
the states of its units. Denote a system state by X = (xlt x 2 , . . . ,  x n ) .  

If we consider the process of a system's evolution in state space, then for 
each unit we should consider the process *,-(*), and for the system as a 
whole, the process X ( t ) .  The transformation of system states X(r) character- 
izes the system's behavior. On the basis of knowledge about this process, we 
can analyze a system's effectiveness. 

Taking into account the length of a system's performance, it is reasonable, 
for effectiveness analysis, to distinguish two main classes of systems: instant 
and enduring. 

Some systems are characterized by their instant outcomc at a moment of 
time. The current effectiveness of an instant system is completely determined
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by its state at the moment of performance. It is clear that no instant system 
exists in reality because any task has some duration. Strictly speaking, we 
consider a system whose duration of performance is negligibly short in 
comparison with time intervals between changing system states X(f). This 
means that 

P{ X ( t )  =  X ( t  +  t 0 ) }  =  1  - e  ( 8 . 1 )  

where f0 is the system's task duration and e is a practically negligible value. 
(The size of e depends on the required accuracy of analysis.) 

From (8.1) it follows that the current effectiveness of a system is completely 
determined by the current system state X = X(r). For this state the effec- 
tiveness coefficient equals Wx, and the system's PEI can be determined as 
the expected value of Ifx. 

Examples of practical instant systems are missiles, production lines (during 
production of a single item), and a communications network during an 
individual call. 

For an enduring system condition (8.1) is not valid. The effectiveness of an 
enduring system depends on a trajectory of the system's transition from one 
state to another. In this case the fact that some particular units have failed is 
very important, but the moments and the order of their failures are also 
equally important. In other words, for these systems the effectiveness is 
determined by a trajectory of states changing during the system's perfor- 
mance of a task. 

Examples of enduring systems are different technological and chemical 
processes, information and computer systems, aircraft, and so on. 

8.2 INSTANT SYSTEMS 

Let h X / ( t )  denote the probability that an instant system at moment t  is in 
state Xfc(/). We assume that the current effectiveness of the system being in 
any state can be evaluated. Let us denote this value for state X as lfx. It is 
natural to determine W  as the expected value of W x ,  that is, 

= E h X k ( t ) W X k

 (8.2
) 

1  S t s N  

where N = 2" is the total number of different system states. 
It is clear that an absolutely accurate calculation of a system's effectiveness 

when n 1 is a difficult, if not unsolvable, computational problem. First of 
all, it is connected with the necessity of determining a large number of 
coefficients Wk. Fortunately, it is sometimes not too difficult to split all of the 
system's states into a relatively small number of classes with close values Wk.  



 

INSTANT SYSTEMS 343 If so, we need only to group appropriate states and calculate the correspond- 
ing probabilities. W^, can then be calculated as 

KysM = E W, E M < )  (8-3> 

where M  is the number of different levels of the values of W x  and G j  is the 
set of system states for which IVX belongs to the j'th level. 
Later we shall consider special methods for the evaluation of the effec- 
tiveness of higher-dimensional systems. 
Let us evaluate a system's effectiveness for a general case. For notational 
simplicity, we omit the time t  in the expressions below. Let h 0  denote 
the probability that all units of the system are successfully operating at 
moment 

K - n P i  (8-4) 
1 sisn 

Let h ,  denote the probability that only the ;'th unit of the system is in a down 
state at moment / (repairable systems can be considered as well as unre- 
pairable). Then 

hi - qt II Pi = ~ho = SiK (8.5) 
1 <,)<,n Pi 
j+i 

where, for brevity, we introduce gt = ql/p< and h t j  denotes the probability 
that only the ith and jth units of the system are in down states at moment t :  

h i j ^ l . l i  El Pk = ^Lh0 = 8 , S j h 0  (8.6) 
1 <.!<.n P,Pj 
k * U J )  

and so on. 
We can write the general form of this probability as 

- n P i n *  - n * (8-7> 
/ ^ C j  i e C ,  i e C ,  

where G x  is the set of subscripts of the units which are considered opera- 
tional in state X and Gx is the complementary set. Sometimes it is reason- 
able to write (8.7) for any X as 

*x= n p M
1

~
x

» (8-8) 
1 sisn 

It is clear that (8.7) and (8.8) arc equivalent. Using (8.4) to (8.8), we can
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rewrite (8.3)

 
1+ E wigi + E wlj8igj + 

l i i ^ n  lsic/sn

 
where W0 is the system effectiveness for state X0 and Wt, W t j , . .. are 
normalized effectiveness coefficients for states X,, \tj ................... In other words, 
W, = W(/W0, Wu = WSJ/1V0,... . 

For a system consisting of highly reliable units, that is, 

1 
max q* « — 
I s i s n  r t  

expression (8.9) can be approximated as 

Wsys. - - E  E  W i q \ ~ W Q ( \ -  E <?>,) (8.11) 
V  1  zi<,n l s i s n  '  V li/'i/i ' 

Here w, = 1 - W i  has the meaning of a "unit's significance." 
REMARK. It is necessary to note that, strictly speaking, it is wrong to speak of a "unit's 
significance." The significance of a unit depends on the specific system state. For example, in a 
simple redundant system of two units, the significance of any unit equals 0 if both units are 
successfully operating, but if a single unit is operating at the time, then its significance equals 1. 
Other examples are considered below. 

Consider some particular cases of (8.11). If p,(/) = exp(-A;/) is close to 1 
and, consequently, <7,(r) = A,f, then (8.11) can be approximated by

 
" W o f l "  E 9,(<k) exp

 
We can see that "the significance of unit" is reflected, in this case, in the 
factual failure rate. (See the previous remark.) 

If pt is a stationary availability coefficient, that is, p, = 7]/(7] + r,) where 
Ti is the MTBF of the z'th unit and r, is its idle time and » r,, then it is 
possible to write the approximation

 
^syst ~ W0

 

 
(8.9)^sysl _

 

(8.10)

 
■ t  E  A , . ( l - ^ )  

1 <.i<.n 
WK (8.12)sysi

 

 
i- E 

(8.13)T
1S i S n  
' i  
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Again, we can consider "the significance of a unit" in a new form keeping in 
mind the same precautions as above.
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We should once more emphasize that all approximate expressions (8.9) to 
(8.13) arc valid only for highly reliable systems. 

Example 8.1 To demonstrate the main ideas, we first use a simple system 
consisting of two redundant units. Let the system's units have corresponding 
probabilities of successful operation equal to px and p2. The problem is to 
find the probability of the system's successful operation. 

Solution. By the definition of a duplicate system, H,, = IV, = W2 — 1 and 
W n  = 0. Thus, for this particular case 

^syst - 1 P1P2 + 1 ■ hPi + 1 P\1t = 1 ~ 
which completely coincides with the corresponding expression for the proba- 
bility of failure-free operation of a duplicate system. 

It is to be understood that W  is a generalization of a common reliability 
index. Everything depends on the chosen coefficients Wx. 

Now we consider more interesting cases which cannot be put into the 
framework of a standard reliability scheme. 

Example 8.2 An airport traffic control system consists of two stationary 
radars each with an effective zone of 180° (see the schematic plot of the 
system in Figure 8.1). For this example let us assume that the effectiveness of 
the system in a zone with active radar coverage equals 0.7. The availability 
coefficient for each radar is equal to 0.9, (Of course, nobody would use such 
an ineffective system in practice!) We will assume that if only one radar is 
operating, it means that the system PEI = 0.5. It is necessary to evaluate the 
PEI for the system. 

Solution. 

= (0-7)/>rp2 + (l/2)(0.7)^j p 2  + (1/2)(0.7)j> i42 

- (l/2)(0.7)Pl + (l/2)(0.7 )p 2  = (0.7)(0.9) - 0.63 

 

Figure 8.1. Schcmatic representation of an 
airport radar system.  

 

180° 
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Example 8.3 Consider the same airport traffic control system as in Example 
8.2. To increase the effectiveness of the system, the operating zones of the 
radars overlap. In addition, we assume that within the overlapped zone, the 
effectiveness of service is higher. Let us say that the coefficient of effective- 
ness in an overlapping zone is practically equal to 1, while the same 
coefficient of effectiveness in an ordinary zone is 0.7. 

The system's effectiveness is determined as the average probability of 
success weighted by the size of the zones with their corresponding effective- 
ness coefficients. There are two possibilities to design a system with overlap- 
ping zones. These two cases are depicted in Figure 8.2. The availability 
coefficient of each radar again equals 0.9. The problem is to compare the 
effectiveness of both variants and to choose the best one. 

Solution. Consider the first variant, A, with two radars in the north zone 
and two radars in the south zone (see Figure 8.2a). It is clear that we can 
consider two independent subsystems, each delivering its own outcomc to the 
control system as a whole. The outcome of one subsystem is equal to one-half 
of the system's total outcome. Denote the effectiveness indexes of these two 
subsystems and of the whole system by W u  W 2 ,  and Wiystt respectively. 
Because of the identity Wx = W2, W^ = 2Wx = 1W2. 

Each subsystem can be in one of two useful states: 

• Both radars are operating, and the probability of this is (0.9X0.9) — 0.81; 
the coefficient of effectiveness in the zone is equal to J. 

• Only one radar is operating, and the probability of this is (0.9X0.1) = 
0.09; the coefficient of effectiveness in the zone is equal to 0.7. 

(Recall that each subsystem covers only one-half of the zone of the operating 
system.) 

Wsyst = 2[(0.81)(1)(0.5) + (0.09) (0.7)0.5)] = 0.873 

  

180s- 180° 

(a) (b) 

Figure 8.2. Two possible ways of using redundant radars for an airport radar system. 
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Now let us consider the second variant, B (see Figure 8.2b). In this case we 
have to analyze 23 — 1 = 7 different states. The results of this analysis are 
presented in Table 8.1. Here we denote the corresponding radars by N, S, E, 
and W and use the symbols N', S', E', and W' to denote their idle states. The 
final result can be found by summing all values in the last column of 
Table 8.1: 

W  = 0.99314 
Thus, variant B is the preferable one. 

Example 8.4 As Russian nonmilitary authors, we never had access to 
information about former Soviet military systems, even the out-of-date sys- 
tems. So for illustration we are forced to use an illustrative narrative from the 
proceedings of one of the early IEEE Reliability Conferences. 

Just after World War II there were antiaircraft missile systems of the 
following simple type. There was a radar searching for a target with informa- 
tion displayed on a screen. After locating the target, a conveying radar was 
switched in and information about the target was processed by a computer 
and displayed by the same monitor. If the searching radar failed, the 
conveying radar was used for searching (with a lower efficiency). The last step 

  

TABLE 8.1 Analysis of Variant B of Example 8.3 
Type of   Effectiveness  

State Number Probability Coefficient Product 

NSEW 1 0.94 1 0.6561 
N'SEW 4 4(0.9)3(0.t) (1/2X1 + 0.7) 0.3060 
N'S'EW 2 2(0.9)2(0.1)2 0.7 0.01134 
N'SE'W 4 4(0.9)2(0.1)2 (1/4)1 + (1/2X0.7) 0.01944 
N'S'E'W 4 4(0.9X0.1)* (1/2X0.7) 0.00126 

 

Figure 8.3. Simplified block diagram of an aircraft radar system. 1 = searching radar; 
2 = optical device; 3 = conveying radar; 4 « display; 5 = computer; 6 = control 

equipment. 
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connected with the destruction of the target was fulfilled by means of control 
equipment and a controlled missile. In case of a failure of the electronic 
equipment (which was so unreliable at that time!), a pilot could use an 
optical system for pursuing the target (see Figure 8.3). 

Thus, the system could be in different states because of the failures of the 
equipment. Different modes of the system under consideration are presented 
in Table 8.2. The probabilities of a successful operation at some given 
moment of time are 

For the searching radar, P] = 0.80. 
For the optical equipment, p 2  =  0.99. 
For the watching radar, p 3  = 0.80. 
For the display, p 4  =  0.95. 
For the computer, p 5  = 0.90. 
For the control system, p b  —  0.95. 

Solution. Let the probability of the A:th mode be denoted by h k .  Then 

hi = PiPiPiPsPt = 0.52 
= 41P3P4P5P6 = °"13 

h3 = q3PiP4PsPt = 0.13 
K  "  P l Ps Pb i d t Px Pl ,  +  P3  + «4<ft«3 + PtfiQi) = 

(in this case one should take into account the impossibility of performing the 
operation by means of previous modes) 

TABLE 8.2 Effectiveness of Different Modes of the System in Example 8.4 

P^utje Stage of Operation 

Number Searching Finding Guiding Wx 
1 Searching radar Display Watching radar 

and computer 
1.0 

2 Watching radar Display Watching radar 
and computer 

0.6
0 

3 Searching radar Display Optical 
equipment 

and computer 

0.3
0 

4 Optical equipment Optical equipment Optical 
equipment 

and computer 

0.1
5 

5 Optical equipment Optical equipment Optical 
equipment 

0.1
0 
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a5 = p2QsPi(i4 + p*Q 1^3)11 °-12The final result is 

that the probability of success is equal to 

Wsyst = (0.51) ■ 1 + (0.13)(0.6) 4- (0.13)(0.3) 

+ (0.08)(0.15) + (0.01)(0.1) - 0.66 

                                            
12 

max <7,(r,r + f0) « - (8.15) 
l s i i n  n  
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8.3 ENDURING SYSTEMS 

If the period of time it takes to perform a system task is sufficiently long, that 
is, during this period a number of different state changes can occur, then one 
needs to investigate an enduring system. In this case a probabilistic measure 
is distributed over a continuous space of trajectories of the changing system 
states. Let Z ( t ,  t  + f0) denote some fixed trajectory. In the continuous 
trajectory space we can determine a density f z  for each such trajectory. At 
the same time, if a system moves from one state to another in correspon- 
dence to such a trajectory, one can characterize it by some predetermined 
outcome (effectiveness), say Wz. 

Now we can write an expression similar to (8.2) 

=  /  W z d F( Z )  
JGz 

where G z  is the space of all possible system state trajectories in the interval 
( / ,  t + t0). The simplicity of (8.14) is deceptive. In general, it is very difficult 
to compute the densities of trajectories and to find analytical expressions for 
the outcomes of a system for each particular case. (We will return to this 
topic later.) To illustrate this statement, consider a simple duplicated system 
consisting of two unrepairable units. Initially, both units are in an operating 
state. The expression for this case is 

1 rl+t 
!  +  —  T ' l V ^ d F^ )  +  - f " ' "W 2 ( t 2 ) d F( t 2 )  

P1 J'u p 2 Jt0 

+ — <2) d F( t l )  d F( t 2 )  
P\ Pi J t  J t  

Here W again is a normalized effectiveness coefficient relative to the nominal 
trajectory with no failures. 

Thus, even for a very simple enduring system, the expression for the 
evaluation of effectiveness is quite complex. But the complexity of the 
expression is not all that makes this problem difficult. One also needs very 
detailed information about the reliability of the system's units as well as some 
knowledge about the effectiveness coefficients for different trajectories. In 
this case one is interested in finding an approximate solution. 

Let us denote #,(f) = 1 — p,(r). If the following condition is valid:  

(8 .14) 
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it is possible to write an 

approximate formula for 

unrepairable systems: 

1 _ 
^syst ~ "0 
1 

For repairable systems such an analysis becomes extremely difficult and 
boring. For numerical calculations one can introduce a discrete lattice to 
describe the system's trajectory in the space of system states. But in this case 
one encounters a complex factorial problem. Of course, the largest practical 
difficulties arise in the determination of the effectiveness coefficients for 
different state trajectories in both cases: continuous and discrete. 

For enduring systems B^, is also a generalized index in comparison with 
the standard reliability indexes. As usual, a generalized (or more or less 
universal) method permits one to obtain any different particular solutions but 
with more effort. So, for simple reliability problems, one need not use this 
general approach. At the same time we should mention (hat, in general, a 
system performance effectiveness analysis cannot be done via common relia- 
bility methods. 

We first consider two simple examples which can be solved by the use of 
standard reliability methods. 

Example 8.5 Consider a unit operating in the time interval [0, Z ] .  An 
outcome of the unit is proportional to the operating time; that is, if a random 
TTF is more than Z, then the outcome of the unit is proportional to Z, Let 
p i t )  be the probability of a failure-free operation during time t  and let 
q i t )  —  1 —  pit). Find an effectiveness index H<,yst. 

Solution. Simply reformulating the verbal description gives the result 

W ^  =  Z p i Z )  +  j Z t d q i t )  

and, after integrating by parts, 

-  Z p ( Z )  +  Z q i Z )  -  f Z q ( t )  d t  - Z - ( Z q ( t )  d t  = f Z p ( t )  d t  

As one can see (and as would be expected), the result coincides with the 
conditional MTTF inside the interval [0, Z]. 

E L ( t , t  +  t Q ) ~ r " ' W l ( x t ) d F i  ( x , )  
<i<n  V '
 J  
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Example 8.6 Consider a system consisting of n  identical and independent 
units. The system's behavior can be described with the help of the birth and 
death process (BDP). The effectiveness of the system during the time interval 
[(,/ + fD] is completely determined by the lowest state which the system 
attains. If the system's lowest state is k, denote the effectiveness coefficient 
by W k  (see Figure 8.4), The problem is to determine B'  



 

 

354 ANALYSIS OF PERFORMANCE EFFECTIVENESS

V1 
(a) 

k + 1 

(b) 

UL 

i > 
i . j  

(c)  
Figure 8.4. Sample of a stochastic track: (a) an observed track without absorbing 
states; ( b )  a track absorbed at state k  +  1; (c) a track absorbed at state k .  

Solution. To solve the problem, one should write the BDP equations (see 
Chapter 1). At moment t  = 0, assume all system units are operating; that is, 
the system is in state 0. Let a k  be the transition intensity from state k  to 
state k + 1 and let fik be the transition intensity from state k to state k — 1. 
If we consider a process without an absorbing state, then the system of linear

k + 111
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differential equations is 

( a k  +  P k ) R k ( t )  +  0 + J8 k  +  i R k  +  l ( t )  

for 0 < k  <  n ,  a n + ]  = = 0 (8.16) 

and the initial condition is /?0(0) = 1. 
To solve the problem, we should solve (8.16) n times for different absorb- 
ing states. Namely, we should solve n  subproblems of type (8.16) for absorb- 
ing states n , n  - 1,..., 1. Let /?*(f) denote the probability that the process 
is in the absorbing state when the process is "cut" up to the absorbing state k  
(see Figure 8.4). From (8.16) it is clear that R*U) differs from R k ( t ) .  
Moreover, the sum of the /?*(0's over all k  does not equal 1. 
We can use the methods described in Chapter 1. But our purpose is not to 
actually find the above-mentioned probabilities. For further consideration of 
this particular example, let us assume that we know the probabilities R % ( t )  
which are the probabilities of reaching an absorbing state k  in the corre- 
sponding subproblem (8.16). 
It is clear that if state k  is absorbing, R * ( t )  is the probability that in the 
original state space the process would also reach states with larger subscripts. 
This means that 

R W) =  L  s k ( t )  
k z j z n  

where S k ( t ) is the probability that the worst state that the initial process 
reached in [0, t ]  is k .  Hence, S k ( t )  =  /?£(/) - /?*+,('). The final result is the 
following: 

£ w k s k { t )  
0 sksn 

Example 8.7 Consider a system that involves the collection and transmission 
of information. The system consists of two identical and independent com- 
munication channels. If a channel fails, the system capacity decreases to 0.3 
times a nominal value. For simplicity, assume that each channel is character- 
ized by an exponentially distributed TTF with parameter A. Let the duration 
of a given information collection equal (0.1)/A. The volume of the collected 

d t  
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information is proportional to the operating time, that is, 

W 0  =  t  

W } ( x )  =  W 2 { x )  = * + (0.3)(f ~ x )  =  (0.3)f + (0.7)or 

W ] 2 (  x l t  x 2 ) = min(x l t  J C 2) + 0.3[max( J C , , x 2 ) - min( x i ,  J C 2 ) ]  

= 0.3 max(jci? jc2) + (0.7) min( , x 2 )  
The task is to calculate expressed via the absolute amount of collected 
information. 

Solution. In this case (8.14) can be written in the form 

W m t C O  -  P2* + 2 p  f ' ( 0 . 3 ) t  +  (Q.7)x\e-*X dx 
o 

 

where we have denoted p  =  p i t )  =  e  A', After substituting the input data 
p  = 0.905 and t  = 1/A, one obtains the final result 

Wsyst = (0.819 + 0.109 + 0.002)(1/A) m 0.94(1/A) 

This value is the amount of information collected by the system as a whole 
during a time equal to the MTTF of a single channel. 

8.4 PARTICULAR CASES 

Below we consider several particular cases for which one can obtain simple 
results. Such kinds of structures are often encountered in practice. 

8.4.1 Additive Type of a System Unit's Outcome 
We first consider an instantaneous system containing n  independent units. 
Each of them performs its own task, which implements a determined portion 
Wi of the total system outcome. Therefore, the system's outcome H-'syst can be 
represented as the sum of the W -  s. Each unit i  can be in one of two states: 
successfully operating or failure, with probabilities Pi and q,, respectively. 
For such a system W , ' can be written as 

= E WIPI 
t <.i<,n 

Expression (8.17) can also be written for dependent units. This follows from

 

(8.17)
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the fact that the expected value of a sum of random values equals the sum of 
its expected values, regardless of their dependence. 

For concreteness, let us consider a system with two types of units. Let us 
call a unit an executive unit if it produces a portion of the system's outcome. 
All of the remaining units will be called administrative units. The system's 
outcome again consists of the sum of the individual outcomes of its executive 
units. The coefficient of effectiveness of the /th executive unit, i = 1N ,  
depends on X, the state of both the structural and executive units of the 
system, that is, W^(X), 1 <  i  £  n ,  N  <  n .  

In this case a unit's outcome depends on two factors: the operating state of 
the unit itself and the state of the system. Finally, we can write 

E P, E{^(X)} (8.18) 
i Zi<.n 

where EfHK^X)} is the unit's average coefficient of effectiveness. (In other 
words, it is a W t  of the separate i t h  unit.) 

E{^(X)}= E Pr{X}f*;(X) (8.19) 
all X 

A clear practical example of such a system can be represented by the 
so-called nonsymmetrical branching system with a simple treelike hierarchi- 
cal structure. This system consists of N  executive units controlled by "struct- 
ural" units at higher hierarchy levels (see Figure 8.5). The total number of 
hierarchy levels is M. Each executive unit of the system can produce its 
outcome if it is operating itself, and if all of its controlling units are also 
operating. Each executive unit i  has its own outcome W t  being a portion of 

  
 



 

 

358 ANALYSIS OF PERFORMANCE EFFECTIVENESS

the total system outcome, that is, 

E E{W,} 
isfsw 

Denote the probability of a successful operation of the highest unit in the 
system hierarchy by p}; the corresponding probability of the units of the 
second level controlling the ith executive unit by p2i; the same for the third 
level, p3i; and so on. Thus, the successful operation of the ith executive unit 
can occur with probability 

n P , J  (8-20) 
\<.}<.M-\ 

Now it is easy to calculate the system's effectiveness 

E (8.21) 
1 

Again, we use the fact that the mean for the sum of dependent random 
variables equals the sum of their means. 

Example 8.8 Consider a power supply system whose structure is presented 
in Figure 8.6. Units 0, 1, and 2 are structural and units 3 to 10 are executive. 
The outcome of each of them equals the power distributed to consumers (in 
conditional units). All absolute outcomes of the system units and their 
availability coefficients are presented in Table 8.3. Find W^ with the 
condition of independence of the system's units. 

0 

  

 

Figure 8.6. Structure of the system in Example 8.8. 
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Solution. Any executive unit performs its function if it is successfully operat- 
ing itself, along with the common units and the corresponding units of the 
second level. Thus, using (8.21), one obtains 

E  PM  +  P i  L  PW )  

= (0.99) [(0.98) (41.75) + (0.97)(28.55)] = 67.92 

For an enduring system operating in a time interval [ t , t  + /0], the coeffi- 
cient of effectiveness for the /th unit will depend 

on the moment of its 
failure: W((x\ t < x < t + /0. In this case an expression for W can also be 
written in a very simple form

 
WU'.' + >o) = £ 

I 
P,(M + toWiit + *o) + //+Vf(jc) d F^ x )  

* t

 
where F i x )  is the distribution of a random time to failure of the /th unit. 

Example 8.9 Let us consider a spy satellite designed for the collection and 
transmission of information. This system is unrepairable and can be consid- 
ered as enduring. The system consists of three communication channels. 
Their capacities and failure rates correspondingly are: Vy — 100 Mbps, Kj = 

200 Mbps, V 3  = 250 Mbps, and A, = 0.0001 1/hr, A2 = 0,0003 1/hr, and 

TABLE 8.3 Parameters of the System's Units for Example 8.8 
Unit Pi  w ,  P

W  
0 0.99 —  

1 0.98 —  

2 0.97 —  

3 0.9 5 4.5 
4 0.95 10 9.5 
5 0.9 10 9.0 
6 0.9 5 4.5 
7 0.95 15 14.

25 
8 0.98 10 9.8 
9 0.9 5 4.5 
10 0.95 15 14.

25 
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A3 = 0.0004 1/hr. Find Wsyst (in absolute value) in two forms: (a) the mean 
capacity of the system as a whole at moment t  -  1000, and (b) the mean 
volume of transmitted information during 5000 hours.
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Solution, (a) For an arbitrary moment t one can write 

= E 
I S I S  3  

After the substitution of numerical input data 

1000) - 100e~°'! + 200e"03 + 250e"°-4 = 405.5 Mbps 

(b) If, during the period [0, f„] in this example, there was no failure, a 
channel has collected H b i t s  of information. If a failure has occurred at the 
moment t  <  t a ,  then a channel has collected Wtt bits of information. Taking 
this into account, one can write

 
W  

-  ™ [ l  -  
e~x>'o} 
A;

 
Note that, since the amount of transmitted information is proportional to t 0 ,  
the total operating time is 

Substituting the input data (in the same time dimension), one obtains 

Iflj, (0,5000)
 

100
 
200
 

250 
-0.39 + _______ 0.78 +_________0.86 
0.00003

 
8.4.2 Systems with a Symmetrical Branching Structure 
Now we consider a system whose structure presents a particular case of the 
system structure discussed in Example 8.8. The branching structure has a 
symmetry, which means that each controlling unit controls the same number 
of units in the lower level. Also, all units of the same hierarchical level have 
the same reliability characteristics; that is, the system is homogeneous. 

 

»U(0,/o)- E ' n

 

 
3600 = 5.2 • I0y Mbits0.00001 0.00004 
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Now we will consider a more complex measure of system effectiveness: one 
that depends in a nonlinear way on the number of executive units performing 
their functions successfully. 

The successful performance of a unit of any hierarchy level means that the 
unit is in an operating state and all of its controlling units are also in  
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operating states. It is clear that an executive unit will not operate successfully 
if at least one "structural" unit which controls it has failed. 
Note that the executive units of the system are dependent through their 
common controlling units. Indeed, a failure of any controlling unit leads to 
the failure of all controlled units at lower levels, including the corresponding 
executive units. Therefore, a failure of some "structural" unit leads to the 
stopping of successful operations of the corresponding branch as a whole; 
that is, the corresponding set of executive units does not produce its out- 
come. A failure of the highest-level controlling unit leads to an interruption 
of successful operations at all executive units. 
It is understandable that the problem of effectiveness evaluation for 
dependent executive units is not trivial. We introduce the following notation: 

p; is the probability of a successful operation of a unit in the j'th hierarchy 
level, 0 ^ j  < ,  n .  

a  j  is the "branching power" of the (;" — l)th-level unit which shows how 
many units of the ;'th level are controlled by this unit. 

xj is the random number of successfully performing units in the ;th 
hierarchy level. 

Nj is the total number of units in the jth level. 
PfixJ is the distribution of Xj. 
W ( x n )  is the coefficient of the system's effectiveness if x n  executive units 

are successfully performing. 

(See the explanations in Figure 8.7.) 

 

 

 

Figure 8.7. General scheme of a system with symmetrical 
branching structure.  
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REMARK. Here we use the two expressions: "successfully operating" and "successfully per- 
forming." Really these expressions have a very slight difference. In this text we will understand 
that "operating" means that a unit is in an up state itself, independent of the states of any other 
unit in the system, and "performing" means that the unit is operating itself and, at the same 
time, ail of its controlling units are successfully operating. (See the explanations in Figure 8.7.) 

For the system under consideration, 

W W  =  Z  Pn { x n ) W { x n )  =  E { W (x n ) }  (8.22) 

where J V„ is the total number of the executive units: 

K = 11 (8-23) 
t i i S r t  

In general, the function W ( x n )  can be arbitrary. For simplicity, let us 
suppose that W { x )  is a continuous differentiate function of x .  It is known 
that any such function can be represented in the form of a Taylor series. In 
the case under consideration, 

„  , d k W ( x n )  
n * n ) =  Z  <  d t x  (8.24) 

t i l  

For practical purposes, one can use an approximation taking (8.24) with 
relatively smalt k .  Using (8.24), we can easily write 

KY, - E{ Z - Z Bk E{xk„} = Z BkMk (8.25) 
Ui l  ' Aa l  A kl  

where M k  is the moment of the distribution of the number of successfully 
performing executive units. 
To find M k ,  we write the moment generating function. First, consider a 
group of executive units depending on a single unit in the (n — l)th level. We 
have Nn _, such groups. A random number of successfully operating execu- 
tive units in a group, x ,  has a binomial distribution B(an,pn). The moment 
generating function for the distribution of successfully operating executive 
units of the above-mentioned group is denoted by 

g(e*~) - [ p n e x »  +  qn}"" (8-26) 

Now consider all executive units which depend on Nn„x controlling units at 
the (n - l)th level. (At this stage of consideration we are not interested in all
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of the remaining units in the system.) The random number of successfully 
operating units at this level, x n ,  also has a binomial distribution 

pM_,X 
Note that if no units at the (n - l)th level are successfully operating, no 
units at the nth level are successfully performing, even though all executive 
units are operating. This event occurs with probability: 

^n-i(O) = In-V 

If only one unit at the (n - l)th level is operating successfully, then not 
more than a n  executive units can perform successfully. The random number 
of successfully performing executive units will have a binomial distribution 
with moment generating function (8.26). This event occurs with probability 

^ - . ( ^ - ( ^ - ' j p - i f l ^ T ' - 1  

If two units at the (n - l)th level are operating successfully then not more 
than 2"n executive units can perform successfully. The probability of this 
event equals P „  _ ,(2) where 

Arguing in the same manner, we obtain the moment generating function of 
the distribution of the random number of all successfully performing execu- 
tive units, x,„ taking into account the random number of successfully operat- 
ing units at the (n - l)th level as a whole: 

G n ( e x " )  = £ Pn - ^ . ^ g i e ^ "  (8.27) 

If we let 

e ( Y)  -  G ( t ' " )  -  [ p „e ' ' +  q„]a"

 (8-28

) 

then (8.27) can be rewritten as 

<*(«'•)- E Pn-\(xn-\)\eY\ " 1  ~  G „_ l ( e Y )  (8.29) 

From (8.28) it follows that 

(8.30)
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Y^ a n  ln( p„ex" + q n )   
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We can continue similar arguments for the units at the remaining upper 
levels of the system's hierarchy. 
Thus, we have the recurrent expression 

G„(e'") = G n _ t ( e Y )  = G„_,[(/»„£*• + qn)a"\ (8.31) 

Using the chain rule, we obtain recurrent expressions for the desired initial 
moments Mk. 
Indeed, the first moment can be found in the following way:

 
d\Gn.x(eY)] dY 

dY dx„

 
~ M n -  1

 
Finally,

 
= Mn-\aaPn 

Continuing this recurrent procedure, we obtain the result in closed form 

m,] = p0 n p&i

 
We mention that (8.34) could be obtained in a simpler way. Indeed, it directly 
follows from (8.21) that 

K ft Pi =Po T1 Pi<*i 
Os/sn 

The second moment of the distribution of the random value x n  can be found 
in a similar way.

 
The recurrent equation for M2 is 

M l  =  M 2 _ x a n  p n  +  M^xattp„q„

 
d [ G „( e * - ) }

M l  =  
d x , x„-0 x - 0  

 
(8.32)dx.. x - 0 

 
(8.33)

(8.34)
 

d 2 [ G n ^{ e Y ) \  d Y  
d Y 2  dx„ 

d G ( Y)  
d Y 2  

dY ~dxT 

d 2 \ G n { e x " ) \  
2 _ M  dxI x „ - 0  

 

(8.35)
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and the final result in closed form is

 
M„2=P U n atPi n <*tPi + n q, n «*/>* 
Closed-form expressions for higher-order moments are enormously 
compli- 
cated. One is advised to use the above-obtained recurrent expressions for 
computer calculations. 

Example 8.10 Consider different variants of a branching system (see 
Figure 8.8). Each system has six executive units. The problem of interest is to 
choose the best structure for two cases: (a) the system outcome is a given 
linear function of the number of operating executive units; and (b) the system 
outcome is a given quadratic function of the number of operating executive 
units. 

Solution. For the first case W ( x n )  =  Axn. Then 

^sys, = AMr\ = A p ^ p x a x ) { p 2 a 2 )  - M Po Px Pi )  

that is, according to the chosen effectiveness measure, all four variants are 
equivalent. 
If W ( x n )  =  B x the effectiveness of any state of the system is propor- 
tional to the square of the number of successfully performing executive units. 
Then 

^syst = E { 1 F( * „) }  =  JW„2 = 6 B p 0 p 1 p 2 ( 6 p l p 2  +  a 2 q x q 2 p 2 )  

In this case the value of the system effectiveness increases as a ,  increases. 
This means that the variant a  is best for the second type of system effective- 
ness. For example, such situations appear when one considers Lanchcster's 
models of the second order when the effectiveness of an army division is 
proportional to the square of the number of its combat personnel. 

 

Figure 8.8. Variants of a system struc- 
ture with six executive units. 

 
(8.36) 
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The system with the largest a z  is the most effective. Thus, the higher the 
level of centralized control from the center, the better is the result. 

8.4.3 Systems with Redundant Executive Units 
Many instant systems are used for fulfilling a given task. For example, an 
antiaircraft or antimissile defense system is designed to destruct a target. To 
improve the system's effectiveness, N  redundant executive units can be used. 
If the system is in state X ,  each executive unit fulfills its task with probability 
Wt(X). For example, the efficiency of an antiaircraft missile system depends 
on the state of its subsystems which are used for searching, controlling, and 
so on. There are two main cases: (1) when all executive units perform their 
common task simultaneously (2) when units perform the same task sequen- 
tially. 

Case 1 All units are dependent through the system state X. Then 

»w- Enxjfi  -  n ( i  -  ^(x))  
all X  I  l s i ^ N 

In particular, for the branching system considered in the previous section, the 
problem can be solved in the following elegant way. Let D  be the probability 
of success of a single executive unit (e.g., the kill probability of an enemy's 
aircraft). Then, if x n  executive units are acting simultaneously, the total 
probability of success is 

W ( x „)  =  1  -  ( 1  -  D) x "  (8.38) 

An interesting particular case arises if we consider a symmetrical branching 
system. As discussed above, the effectiveness of the branching system is 
completely determined by the number of successfully performing executive 
units, xn. Thus, using (8.2), we can write 

0^x„<N 

=  1- L  P( x n ) ( l  - D) x "=  1-G„(i - D)  (8.39) 
0<.x„<.N 

The second term in (8.39) is a moment generating function with the substitu- 
tion of 1 — D  as a variable. Thus, (8.39) can be rewritten as 

WW = 1 - G„(I - D )  - 1 - G„ _ , ( [ p„ ( l  —  £ > )  +  q n ] " " )  (8.40)  

(8.37)
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+ ■•• + <?,)"' +<7o) (8.41) 

Case 2 Assume that the system's executive units are operating sequentially. 
The system states are supposed to change between the use of two consequent 
executive units. If the time interval between the two system performances is 
large enough, the result of their operations might be independent. The same 
result will also be valid if one considers the simultaneous operation of several 
executive units controlled by identical and independent controlling systems. 
For example, one can consider the destruction of an enemy aircraft in the 
overlapping zone of action of several antiaircraft systems. In this case 

= 1 - n 1 - E P(X)^(X) 
all x 

8.5 SYSTEMS WITH INTERSECTING ZONES OF ACTION 

8.5.1 General Description 
Suppose that a system consists of n  executive units. Unit i  has its own zone 
Z, of action. Each unit is characterized by its own effectiveness of action Wt 
in the zone Z(. These zones can be overlapping (see Figure 8.9). 

The joint effectiveness of several executive units in such an overlapping 
zone depends on the types of systems and their tasks. Such systems appear in 
satellite intelligence systems, radio communication networks, power systems, 
and antiaircraft and antimissile systems (overlapping zones of destruction). 

In general, in the entire zone in which a system as a whole is operating, 2" 
different overlapping subzones may be created. Then the problem of comput- 
ing the system's effectiveness cannot be reduced and we need to use a 
general expression: 

^sys, = E HW 

where H i  is the probability that the system is in state i ,  W t  is the conditional 
effectiveness performance index for this system state, and n  is the total 
number of system units. Of course, the number 2" is huge if n > 10. 
Moreover, in a computational sense, for some hundreds of units the problem 
cannot be solved in general: there is not sufficient memory to store the data 
and there is not sufficient time to perform the computations!  

+ • 

(8.42)

Using a recurrent procedure, we finally obtain
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Fortunately, in practice, if one considers a territorial system, the number of 
overlapping zones is usually small enough. On the other hand, if there is a 
strong overlapping of different zones, the case can be significantly reduced: if 
all zones are totally overlapping, the system becomes a common redundant 
system, and its analysis involves no special analytic difficulties. 

If we consider a territorial system, the number of units acting in the same 
zone is not usually large. A zone of the whole system action can be 
represented as 

z= u Z| 
ISiSn 

For further purposes, let us introduce zones Za which are disjoint. Within 
each zone Za the same set of serving units is acting. The subscript 
represents the set of subscripts of the executive units acting in zone Za . 
Thus, / e cij means that the ith unit serves in zone Za . Let the number of 
different zones Z a  be M ,  that is, 1 < < M .  It is clear that zones Za are 
disjoint and we can write 

U z., 
\<.i<.M 

As wc mentioned above, M 2" in practice. 
Because of failures the actual set of units operating in zone Zu is random. 

In general, if includes my subscripts, zone Z0 can be characterized by 2'"' 
different possible levels of effectiveness. For each possible set of acting units,  
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say a]k , where kj ^ 2, we observe some specified coefficient of effectiveness 
Wa . As a result, for such a system we can write 
>ki 

ŜYST= E 2fl) Z PkWa i k .  (8.43) 

Another, more compact representation of (8.43) is 

ŜYST = E Z a E { W a j )  (8.44) 
\<.i<.M 

Such a simple and obvious modification of the general expression (8.2) 
sometimes allows us to obtain constructive results for some important and 
interesting practical cases. 

8.5.2 Additive Coefficient of Effectiveness 
In this case for any set of acting units in the zone we have 

- E (8.45) 
I Gay 

As an example, we can consider pollution in some region when each of 
several polluting companies makes its own "investment" in the total level of 
pollution. Pollution is assumed to be additive. (Of course, in this case it 
would be more reasonable to speak of loss rather than effectiveness.) It is 
clear that in this case for the system as a whole 

E Wa j= Z P.ZW (8.46) 

Let us illustrate this by a simple example. 

Example 8.11 Consider a system consisting of two units and three acting 
zones (see Figure 8.10). Let us denote 

Z \  = Z, 4- Z3 = the acting zone of the first unit. 
Z'2 = Z2 + Z3 = the acting zone of the second unit. 
Z3 = the acting zone of both units. 

The effectiveness coefficient of the first unit is W{, and the effectiveness 
coefficient of the second unit is W2. By assumption of the additive character 
of the joint effect of the units, W3 = Wx + W2 for zone Z3.  
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Figure 8.10. Two overlapped zones. 

Because all zones Z,, Z2, and Z3 are independent, we can write for the 
whole system 

^  P \ Z \ W i  + p 2 z 2 w 2  +  z 3 [ p l p 2 ( i v 1  +  w2) +a1p2w2+pig2w1] 

=  + Z 3 )  + p 2 W 2 ( Z 2  +  Z 3 )  

= P}W]Z\ +P2W2Z'2 

8.5.3 Multiplicative Coefficient of Effectiveness 
In this case for any set of acting units in the zone we have 

Wsysl WJ 

It is more natural to consider a loss rather than a "positive" outcome. For 
example, 1 — Wj is the kill probability of a target in the acting zone of the ith 
unit of the system. Thus, if the ith unit does not act, this probability is 0. In 
other words, the probability of the enemy's survival (or, more accurately, the 
loss of the attacker) is IF, = 1. If a unit acts successfully, the enemy's damage 
is larger: the probability of the enemy's survival equals some Wi < 1. If in 
zone Z a  units i„ i 2 , . . . ,  i k .  act together successfully, then the probability of 
the enemy's survival is 

W „ =  W ,  W :  «  *  *  W ,  
" i  <! ' 2  ' t j  

Taking into account the probability of success of the units, we can write 

Wsyst= E !!(»">, + <?,) (8.47) 
1  
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If we take into account that piWi + q, - 1 - p,w„ (8.47) can be rewritten as 

E Za /nd -PVi) (8-48) 

The final results (8.47) and (8.48) are illustrated by a simple example. 

Example 8.12 The system under consideration is the same as in Example 
8. 1 1  (see Figure 8.10 for an explanation). We use the same notation. To 
facilitate understanding, keep in mind the case of a target's destruction in the 
zone of defense. Thus, is the probability of failure of the ith executive 
unit, Pi = 1 — q,, and Wt is the probability of a target's destruction by the ith 
executive unit. Assume that the probability of a target's appearance in a zone 
is proportional to its size. Then the probability of the target passing through 
the defense zone equals 

W ^  =  Z x ( W x p x q x )  +  Z 2 ( W 2 p 2  +  q 2 )  
+ Z3(plp2WlW2 + P xq2wx + p 2 q x W 2  + q x q 2 )  

=  Z x ( W x P x  + q x )  + Z 2 ( W 2 p 2  +  q 2 )  + Z i ( p x W x  +  q x ) (  p2W2 + q 2 )  

or, equivalently 

^vm " 2,(1 - w ] P l )  + Z2( 1 ~ w 2 p 2 )  +  Z 3 ( l  ~ p , w, ) ( l  ~ p 2 w 2 )  

8.5.4 Redundant Coefficient of Effectiveness 
Now we consider a "positive" outcome in a zone. This type of effectiveness 
cocfiicient is, in cffect, complementary to the one considered in the previous 
section. For any set of acting units in the zone, 

ww -1 - n "v 
where H>; = 1 — WT and WT has the previous meaning, that is, the probability 
of success. For this system we obtain

 ^Kyst E Zfl, 
1

 
If we again take into account that piwi + qi = I - ptWh (8.50) 
can be 
rewritten as

 
i - no -PM )

I Z j s M  

Again, let us illustrate the final result by a simple example.

(8.49)

 
i - n 
(piwi+<?,) 

(8.50)

 

 '̂syst E (8,51)
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Example 8.13 Consider again the system represented in Figure 8,10. Using 
the previous arguments, we have 

w^zxpxwi+z2p2w2 

+ Z3[p!p2( 1 - K> t w z )  +  plq2Wl + p2qxw2\ 

- Z^ - O - p . wO ]  + z 2 [ l - ( l - p 2 w 2 ) ]  

+ Z3[l - (/?,iv, + q x ) { p 2 w 2  +  q 2 ) ]  

8.5.5 Boolean Coefficient of Effectiveness 

This case is very close to ordinary redundancy applied to each zone. In other 
words, at least one executive unit must act in a zone to fulfill the operation 
within that zone. Thus, if a} is a set of units acting in the /th zone and unit i 
delivers the outcome W }  in this zone, then any subset—a *, a *  c a s  and 
a* ¥= 0—delivers the same effectiveness Wr For example, if we consider a 
communication with a zone, it is sufficient to have at least one path of 
connection with this zone. For the system as a whole, we have

 
i- ru 

i s a j

 
We assume that (8.52) does not demand any additional comments. 

8.5.6 Preferable Maximal Coefficient of Effectiveness 

If a set of units a* might act in the j"th zone, then for the actual operation 
the unit with the maximal possible effectiveness coefficient is chosen 

W *  = max W i  (8.53) 

Enumerate all of the system units in decreasing order of their effectiveness 
indexes IV,: W{ > W2 > • • • > Wn. Then in the /th zone the kth one uses 
the unit which is characterized by the effectiveness coefficient W k  (of course, 
k  e a f )  if and only if the ith unit itself is operational and there are no other 
operational units with i < k. This means that all units belonging to the set 
and having smaller numbers have failed at the moment of use. 
After this argument, it is simple to write the following expression: 

- E Z0/ E Wk Pk  ] I c h  (8.54) 
\<.j<M Area. \<k 

 (8.52)

l& jsM  
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*  i ^ a   
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This follows directly from the formulation of the problem. We again think 
that there is no special need to explain it in more detail. 

8.5.7 Preferable Minimal Coefficient of Effectiveness 
In this case, if a set of units a* might act in the jth zone, then for the actual 
operation the unit with the minimal possible effectiveness coefficient is 
chosen 

W a  =  min W t

 (8.55
) 
'  i e a f  

This kind of effectiveness coefficient can be chosen if one investigates 
damage rather than a "positive" outcome. 
Actually, this case is not distinguished from the previous one. One can 
even keep formula (8.54) with only one very essential difference: the enumer- 
ation of the system's executive units must be done in an increasing order of 
effectiveness indexes Wt: < IV2 < • • • < Wn. 

8.6 ASPECTS OF COMPLEX SYSTEMS DECOMPOSITION 

As mentioned above, the problem of effectiveness analysis arises in connec- 
tion with the analysis of complex systems. Thus, the more complex a system 
is, the more important and, at the same time, the more difficult is the 
evaluation of its effectiveness. Thus, the problem of simplifying the evalua- 
tion of effectiveness, in particular, the methods of decomposition, seems very 
important. 
Above we considered systems consisting of units with two states: an 
operating state and an idle state. But one sometimes deals with complex 
systems consisting of many such subsystems which themselves can be consid- 
ered as complex systems. This is equivalent to the consideration of a system 
consisting of units with more than two states. 
Let n  be the total number of system units. Suppose the system is divided 
into M subsystems by some rule (it can be a functional principle or a 
constructive one). Each jth subsystem includes units and, consequently, 
has 

nij = 2"' 
different states. Now the system consists of M  new units, each with t r i j  >  2  
states. Of course, such a system representation does not lead to a decrease in 
the total number of system states m\ that is, it does not follow that 
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m = Yi 2"' £ 2" 
1 sis M  

But such a new system representation may still help to generate new ideas.  
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First, it may be possible to characterize subsystems via some simpler 
description. For example, we can find one main characterization parameter 
for the entire system. In this case the dimension of the problem could be 
essentially decreased. 
Second, it may be possible to use a simpler description of the states of the 
subsystems in comparison with complete enumeration. In this case the 
number of subsystems M is usually not very large. The second case leads to 
the construction of upper and lower bounds on the system effectiveness index 
H^ysl. We will consider it in the next section. 

8.6.1 Simplest Cases of Decomposition 

It would be very constructive to represent a system's effectiveness index as a 
function of the W's of its subsystems. Is this ever possible? If so, when? The 
problem is to present the system's effectiveness as a function of the subsys- 
tem's effectiveness: 

Assume that for any system state a*, which is expressed as a composition of 
subsystem states a*, that is, a* = ( a * ,..., a*^), the condition 

E WA1 (8.57) 
ISJSW 

is true. Then, for such an additive system, (8.56) can be written as 

WSYST = E JVj (8 . 5 8)  
1 

The statement is clear if one remembers that the mean of a linear function 
equals the function of the mean values of its variables. Thus, if it is possible 
to choose subsystems in such a way that (8.58) holds, we can use the simple 
expression (8.57). 
The next results can be formulated for multiplicative systems. Note that for 
multiplicative systems (8.56) can be written as 

n ty (8.59) 
1 I Z j &M  

if and only if for any system state a *  which is expressed as a composition of 
subsystem states a*, that is, a* = ( a f , . . . ,  a*M), the following condition is 
valid: 

(8.60)
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n K* 
1 ZJ ZM   
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Expression (8.60) means that the W  of any subsystem does not depend on the 
states of other subsystems. 
Statement (8.59) becomes clear if one remembers that the mean of the 
product of independent random variables equals the product of the means of 
its variables. Thus, if subsystems are chosen in such a way that (8.60) holds, 
we can use the simple expression (8.59). 
Unfortunately, the number of practical examples where we may obtain 
such a fantastic bargain in the evaluation of performance effectiveness is 
exhausted by these two trivial cases. Also, unfortunately, such systems are 
quite rare in engineering practice. 
Fortunately, however, a similar approach can be used to obtain bounds of 
a system's effectiveness index in the case of regional systems. 

8.6.2 Bounds for Regional Systems 

1. Consider a regional system with a multiplicative effectiveness coefficient 
in a zone. Let us consider a zone with a set of executive units A .  
Assume that the system is divided into M  subsystems. In this case the 
units of the set A  can belong to several different subsystems. This 
means that the set A  can be divided into several nonintersecting 
subsets Aj, 1 <j<M. (Some of the Aj can be empty.) If the H^'s are 
normalized effectiveness coefficients, that is, if 0 < (W ^W q ) < 1, then, 
for any A ,  

n ( W i P i  +  qt) < Z n {W iPi + Q i )  (8.61) 
ifis l z j - z M  ' G A j  

From (8.61) it immediately follows that for these systems 

^syst< Z  Wi
 ( 8 - 6 2
)  

t &i<,M 

2. For systems with a redundancy type of effectiveness coefficient, we have 
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^ s y s t <  Z  W ,  (8.63) 

To confirm (8.63), we show that this is correct for a zone with two 
acting units belonging to different subsystems. Keeping in mind that 
0 < Wi; < 1, i = 1,2, we can easily write 

1  -  ( p x w x  +  q l ) ( p 2 w 2  +  q 2 )  < p x W y  + p 2 W 2  (8.64)  
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3. For systems with a Boolean type of effectiveness coefficient, one can 
obviously write 

K** E Wj
 (8-
65) 

i s j s M  

4. For systems in which one chooses for operation the unit with the 
maximal effectiveness coefficient in a zone, we have 

E PKWK n L E PKWK (8.66) 
k e a  Kk,i<=a k &d j  

Expression (8.66) is clear as any product of ^,'s is always less than 1. 
5. For systems in which one chooses for operation the unit with the 

minima! effectiveness coefficient in a zone, we have absolutely the same 
result (8.66). 

Unfortunately, we have obtained only one-sided bounds. From a practical 
point of view, a lower bound of any "positive" effectiveness index (the larger, 
the better) is reasonable: one has a guaranteed result. But all bounds 
considered here yield a restriction on the upper side. 

8.6.3 Hierarchical Decomposition and Bounds 
Using Subsystem W / s  Let the system be represented as a composition of 
M subsystems. For each subsystem one can calculate its own effectiveness Wt. 
Let the jth subsystem include rij units. This subsystem has, in general, 

m] = 2"> 

different states. Thus, we must analyze m ,  different states for each subsys- 
tem. 
If it is possible to express a system's effectiveness index Wiyit as a function 
of the W^s of the subsystems in the form 

W ^ - f i W ^ W . ( 8 . 6 7 )  

then it is enough to calculate Wjt as we did before, 
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V = E r{Xji}Wit

 (8.
68) 

1 ^ i ^ m j  

and, after this, use (8.67). 
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The total number of computations to obtain the desired result is propor- 
tional to 

£ 2m> « 2" (8.69) 
l -&j<,M 

Unfortunately, such a procedure cannot be used too frequently as functions 
such as (8.67) are seldom known. The two simplest examples were shown 
above. At any rate, this method allows one to obtain at least some rough 
estimates of the unknown value of W^,. 

Let us give several examples of the effectiveness of such a decomposition. 
For a system consisting of n  —  400 units, a strict evaluation of the system's 
effectiveness is practically impossible because the number of all possible 
system states exceeds the so-called googol (lO100). As the reader may know, 
the googol is sometimes jokingly called "the greatest number in the universe." 
Indeed, everything in the universe—its maximal diameter, its time of exis- 
tence since the Big Bang, its total number of smallest elementary 
particles—measured by the smallest physical units (length or time, respec- 
tively) is smaller than this definitely restricted number. Thus, any attempt just 
to enumerate all the states of the above-mentioned system is unrealistic. 

But if the system is divided into 20 subsystems, each consisting of 20 units, 
the number of calculations will still be large—20 ■ 2030 = 2 • 107—but at 
least it is a realistic number. If it is possible to divide the system into 40 
subsystems, the corresponding number equals 40 * 2"' ~ 4 * 104, which is 
unconditionally acceptable. 

REMARK. We mention that very complex systems are usually considered in engineering 
practice in a hierarchical way with more than two levels. This permits one to independently 
analyze first the system as a whole; then each subsystem as a part of the system, but performing 
its own functions; then some more-or-less autonomous parts of these subsystems; and so on. 
Such a  mode is very effective in the evaluation of a system's effectiveness. 

Let us again consider a system consisting of n  =  400 units. Suppose the 
system is divided into 5 subsystems, each subsystem is divided into 5 au- 
tonomous parts, where each part consists of 16 units. Thus, the total number 
of calculations can be evaluated as the total number of parts in the system, 
multiplied by the number of calculations for one such part: 5 ■ 5 ■ (216) = 
200,000. It is significantly less than in the initial case. 

It is interesting to note that, for a system consisting of n  = 1000 units, one 
can obtain an even smaller number of calculations if the system is repre- 
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sented by a three-level hierarchy: 5 subsystems, each of 5 parts, each of 5 
complex units, each of 8 units of the lowest level. The number of calculations 
required is equal to 5 • 5 • 5 • (2a) = 32,000.  
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Distributions of Subsystem Levels of W A more accurate method than 
the previous one is described next. From the viewpoint of a system's user, all 
subsystem states can be divided into a very restricted number of groups. The 
states of each such group are characterized by a value close to the value of 
the subsystem's effectiveness coefficient Wj. It is clear that the number of 
such groups could be very small, say 10. This number does not depend on the 
initial number of subsystem states. (One has also to take into account that 
there is no necessity to consider groups with levels of effectiveness which 
appear with an infinitesimally small probability and/or with levels of one 
essentially negligible effectiveness.) 

At any rate, the first step in the analysis of a system's effectiveness consists 
in a detailed analysis of each subsystem. For each subsystem j, we need to 
analyze all possible states X1 < i < 2m'. Also, for each such subsystem we 
need to choose a reasonable lattice of the effectiveness coefficient values. 
Assume this lattice has Kj different cells: 

• The first cell includes those states whose effectiveness coefficients Wt) 
satisfy the condition 1 = W^ < Wj < Bt, where B{ is the first threshold 
of the lattice; for all states belonging to this cell of the lattice, one 
computes the total probability R }  as the sum of the probabilities of all 
states whose effectiveness values are included in this ccll. 

• The second cell includes those states whose effectiveness coefficients Wtj 
satisfy the condition B x  <  W j  <  B 2 ,  where B 2  is the second threshold of 
the lattice; the corresponding probability computed is R2. 

• The Kjth cell includes those states whose effectiveness coefficients W{J 
satisfy the condition B { K }  —  1) <  W j  < 0, where B K  is the last thresh- 
old of the lattice; the corresponding probability computed is R K f ,  

We may now analyze the system as a whole. In each cell of the lattice, we 
choose a "middle" state which corresponds to the average value of Wj. For 
future analysis, this state now becomes a "representative" of all of the 
remaining states related to this cell. Thus, we choose K ;  representatives for 
each subsystem. We should choose an appropriate number of representa- 
tives, say X * .  Each of them appears with probability R j r  The number of 
representatives is determined with respect to the required accuracy of the 
analysis and the available computer capacity. 

After these preliminary steps we consider 

K-  N  (8 .70) 

different system states and, for each of them, evaluate the effectiveness 
coefficient. We then consider all K  system states 
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X = (Jf*; 1 < j  <  M )  =  ( X * r  X * r . . . ,  X * J   



 

 

PRACTICAL RECOMMENDATION 389

and write the expression for Wsyst with the use of (8.62) 

PK1= E W(Xth ............ Xt,J n il^l-**)0"  ̂(8.71) 
alt X 

This expression is not too pleasant in visual form because of the notation 
used. Neither is it easy to compute. But its nature is simple and completely 
coincides with (8.61). 

Of course, if we decide to distinguish several levels of a system's hierarchy, 
the methodology would be the same but the corresponding description, in a 
general form, would be even longer than (8.71). We would like to emphasize 
that a hierarchical model needs less computation. 

This method of representative selection can be successfully used for 
obtaining lower and upper bounds, 

1. Let us choose from among the states of the latticc cell a state with a 
minimal effectiveness coefficient and consider this state as a representa- 
tive of this cell. Denote this aggregate state by Xp™. If we substitute 
Ay1"" instead of X *  in (8.71), we will obtain a lower bound for the 
system index, 

2. If a state XJ"ax with a maximal effectiveness coefficient is chosen as the 
representative of the cells, then the same procedure gives us an upper 
bound for W^,3*. 

Thus, we obtain two-sided bounds for W^,: 

W™ < £ W™ (8.72) 

In genera], for practical purposes, it is enough to have an approximate 
expression (8.71). We should emphasize that reliability (and also effectiveness 
performance) computations are usually provided not for a precise evaluation 
of different indexes, but usually for a comparison of competitive variants at 
some design stage. For such purposes, we may use an approximate solution 
as a direction for design. 

8.7 PRACTICAL RECOMMENDATION 

An analysis of the performance effectiveness of a system must be carried out 
by a researcher who deeply comprehends the system as a whole, knows its 
operation, and understands all demands on the system. It is a necessary 
condition of successful analysis. Of course, the systems analyst should also be 
acquainted with operations research methods. As with any operations re- 
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search problem, the task is concrete and its solution is more of an art than a 
science.  
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For simplicity of discussion, we demonstrate the effectiveness analysis 
methodology referring to an instant system. The procedure of a system's 
effectiveness evaluation, roughly speaking, consists of the following tasks: 

• A formulation of an understandable and clear goal of the system. 
• A determination of all possible system's tasks (operations, functions). 
• A choice of the most appropriate measure of system effectiveness. 
• A division of a complex system into subsystems. 
* A compilation of a structural-functional scheme of the system which 
reflects the interaction of the system's subsystems. 
■ A collection of reliability data. 
* A computation of the probabilities of the different states in the system 
and its subsystems. 
* An estimation of the effectiveness coefficients of different states. 
* A performance of the final computations of the system's effectiveness. 

Of course, the effectiveness analysis methodology of enduring systems is 
quite similar, with the exception of some terms. 

We need to remark that the most difficult part of an effectiveness analysis 
is the evaluation of the coefficients of effectiveness for different system states, 
in only extremely rare cases is it possible to find these coefficients by means 
of analytical approaches. At any rate, in the initial stages of a system's design 
there is no other way. The most common method is to simulate the system 
with the help of a computerized model or a physical analogue of the system. 
In the latter case, the analyst introduces different failures at appropriate 
moments into the system and analyzes the consequences. The last and the 
most reliable method is to perform experiments with the real system or, at 
least, with a prototype of the system. 

Of course, one has to realize that usually all of these experiments set up to 
evaluate effectiveness coefficients are very difficult and they demand much 
time, money, and other resources. Consequently, one has to consider how to 
perform only really necessary experiments. This means that a prior evalua- 
tion of different state probabilities is essential: there is no need to analyze 
extremely rare events. 

One can see that the analysis of a system's effectiveness performance is not 
routine. Designing a mathematical model of a complex system is, in some 
sense, a problem similar to the problem of designing a system itself. Of 
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course, there are no technological difficulties—no time or expense for 
engineering design and production. 



 

 

REFERENCES 393CONCLUSION

It seems that the first paper devoted to the problem discussed in this chapter 
was the paper by Kolmogorov (1945). This work focused on an effectiveness 
measure of antiaircraft fire. The total kill probability of an enemy's aircraft 
was investigated. The random nature of the destruction of different parts of 
an aircraft and the importance of these parts was assumed. It is clear that 
from a methodological viewpoint the problem of system effectiveness analysis 
is quite similar: one has only to change slightly the terminology. 

The first papers concerning a system's effectiveness evaluation appeared in 
the early 1960s [see, e.g., Ushakov (1960, 1966, 1967)]. Some special cases of 
system effectiveness evaluation were considered in Ushakov (1985, 1994) and 
Netes (1980, 1984). 

One can find an analysis of the effectiveness of symmetrical branching 
systems in Ushakov (1985, 1994) and Ushakov and'Konyonkov (1964). Terri- 
torial (regional) systems with intersecting zones of action were studied in 
Ushakov (1985, 1994). Here one can also find an analysis of decomposition 
methods. The general methodology and methods of system effectiveness 
analysis are described in Ushakov (1985, 1994). 
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EXERCISES 

8.1 A conveyor system consists of two lines, each producing N  items per 
hour. Each of the lines has an availability coefficient K  = 0.8. When 
one of the lines has failed, the other decreases its productivity to Q.7N 
because of some technological demands. There is a suggestion to 
replace this system with a new one consisting of one line with a 
productivity of I . I N  items per hour and an availability coefficient 
Kt = 0,9. Is this replacement reasonable from an effective productivity 
viewpoint or not? 

8.2 A branching system has one main unit and three executive ones. There 
are two possibilities: (1) to use a main unit with PFFO p 0  = 0.9 and an 
executive unit with PFFO = 0.8 or (2) to use a main unit with PFFO 
p 0  = 0.8 and an executive unit with PFFO p, = 0.9. Is there is a 
difference between these two variants if the system's effectiveness 
depends on (a) the average number of successfully operating executive 
units, (b) a successful operation at least one executive unit, and (c) a 
successful operation of all executive units? 

SOLUTIONS 

8.1 The old system of two lines has the following states: 

- Both lines operate successfully. In this case the effective productivity 
of the system is 2 N.  This state occurs with probability P  = (0.8X0.8) 
- 0.64. 
• One line has failed and the other is operating. This state occurs with 
probability P  = 2(0.8X0.2) = 0.32. During these periods the system 
productivity equals 0.7N. 
* Both lines have failed. This state occurs with probability P  =  (0.2X0.2) 
= 0.04. The system productivity obviously equals O.Thus, the total 
average productivity of the old system can be evaluated as 

WM = (0.64)(2.0) + (0.32)(0.7) = 1.5 

The new system has an average effective productivity equal to 

H^w - (1.7) (0.9) - 1.53 
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Thus, the average productivity of both systems is very close. The 
increase in productivity is about 1.5%. One has to solve this problem  
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taking into account expenses for installation of the new system, on the 
one hand, and the potential decrease in the cost of repair, on the 
other hand (the new system will fail less often). 
(a) The average number of successfully operating executive units de- 

pends only on the product pnp,, so both systems are equivalent. 
(b) For (1) one has Wsyst = (0.9X1 - 0.8)3 « 0.898 and for (2) ^sys, = 

(0.8X1 - 0.9)3 = 0.799. Thus, the first variant is more effective. 
(c) For (1) one has = (0.9X0.8)3 * 0.460 and for (2) Wsyst = 

(O.SXO^)3 » 0.584. In this case the second variant is more effective.



 

 

CHAPTER 9 

TWO-POLE NETWORKS 

Above we considered systems with a so-called "reducible structure." These 
are series, parallel, and various kinds of mixtures of series and parallel 
connections. As mentioned, they are two-pole structures which can be 
reduced, with the help of a simple routine, into a single equivalent unit. 
However, not all systems can be described in such a simple way. 
We would like to emphasize that most existing networks, for example, 
communication and computer networks, transportation systems, gas and oil 
pipelines, electric power systems, and others, have a structure which cannot 
be described in terms of reducible structures, even if they are considered as 
two-pole networks. 
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Figure 9.1. Bridge structure. 



 

398 TWO-POLE NETWORKS The simplest example of a system with a nonreducible structure is the 
so-called bridge structure (see Figure 9.1). This particular structure is proba- 
bly not of great practical importance, but it is reasonable to consider it in 
order to demonstrate the main methods of analysis of such kinds of struc- 
tures. 

9.1 RIGID COMPUTATIONAL METHODS 

9.1.1 Method of Direct Enumeration 
The bridge structure cannot be represented as a connection of parallel-series 
or series-parallel subsystems of independent units (links). For this system the 
structure function t p ( X ) ,  where X  =  ( * , ,  x 2 ,  x3, x 4 ,  J C 5), can be written in 
tabular form (see Table 9.1) where all possible system states and correspond- 
ing structure function values are presented. 

Because each Boolean variable has two possible different values, 0 or 1, 
the system can be characterized by 2s = 32 different states. In Table 9.1 we 
enumerate all possible values of the variables x v  x 2 , . . . , x 5  and denote them 
as X v  X 2 , . . . ,  X32. Some A^'s are states of successful operation of the 
bridge system (the set G) and some of them are not (the set G). In this 
notation the structure function of the bridge system can be written as 

< p ( x i , . . . , x 5 ) =< p ( X l ) U < p ( X 2 ) U< - - U < p( X 3 2 )  =  U <P(**) (9.1) 

The probability of a system's successful operation is 

PT {< P ( X I , . . . , X 3 ) -1}-E{ U ?(**)}- L EM**)} (9.2) 
^  X K E G  '  X K M G  

Each vector X k  can be expressed through its component x's and x's. For 
example (see Table 9.1), 

~  ( * 1 »  X 2 >  x s )  
From Table 9.1 it follows that the vector X s  belongs to G, and so it will be 
taken into account in (9.2). Then 

< P( * S)  = x x x 2 x 3 x A x 5  
and 

E{<K*s)} = E { X i X 2 x 3 x 4 x 5 )  
= E{*,} E { X 2 )  E{X3} E{jc5} = Q T P 2 q 3 p A p s  

We do not write the detailed expression for < p ( X )  here. This can be easily 
obtained from Table 9.1 by taking into account that the corresponding term  
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1. Both the redundant group and the SD have not failed during a 
specified interval of time t. 

2. The first unit chosen at random fails at some moment x  <  f, the SD 
performs a successful switch to one of the operating units of the 
remaining redundant group of m  -  1 units, and the new system per- 
forms successfully up to time /. 

1. The first unit operates successfully. 
2. After its failure there is a group of randomly chosen redundant units 

with operating SDs; this new system operates successfully during the 
remaining time. 

2. After its failure at some moment x, there is a group of redundant units. 
The size of this group is random because some of them might have 
failed before the moment Let the number of operating redundant 
units at the moment x equal j, In some order we try to switch each of 

TABLE 9.1 Description of the Structure Function of the Bridge Structure 
  States of units   Vector Value 

x
\   *4 *5 ** fW 

1 1 1 1 1  1 

0 1 1 1 1  1 
1 0 1 1 1  1 
1 1 0 1 1  1 
1 1 1 0 1  1 
1 1 1 1 0  1 
0 0 t 1 1  0 
0 1 0 1 1  1 
0 1 1 0 1  1 
0 1 1 1 0  1 
1 0 0 1 1  1 
1 0 1 0 1 X12 1 
1 0 1 I 0  1 
1 1 0 0 1  1 
1 1 0 1 0  1 
1 1 1 0 0  0 
0 0 0 1 1  0 
0 0 1 0 1  0 
0 0 1 1 0 X19 0 
0 1 0 0 1 ^20 1 
0 1 0 1 0  0 
0 1 1 0 0 X22 0 

1 0 0 0 1 "^23 0 
1 0 0 1 0 ^24 1 
1 0 1 0 0 *25 0 
1 1 0 0 0  0 
0 0 0 0 1 X21 0 
0 0 0 1 0 ^28 0 
0 0 1 0 0 X29 0 

0 1 0 0 0 X30 0 

1 0 0 0 0  0 
0 0 0 0 0 x32 0 



 

400 TWO-POLE NETWORKS these j operating units to the main position until a first successful 
switching occurs. The number of attempts before a success is dis- 
tributed geometrically with parameter R. After k SDs have failed 
during switching, a successful attempt occurs ik is random). This means 

I  ---  I  
A0M2 + M1M2 + A o A i  

•  M  is the operational state of the main unit. 
• M  is the failure state of the main unit. 
• R  is the operational state of the redundant unit. 
-  R  is the failure state of the redundant unit. 
■ S is the operational state of the switch. 
• S  is the failure state of the switch. 
• A, is the failure rate of the main unit. 
• At is the failure rate of the switch. 
■ A is the failure rate of the redundant unit. 
• fi is the intensity of repair of a single unit. 
• fis is the intensity of repair of the switch. 
• ft* is the intensity of repair of the system as a whole. 
•  M  is the operational state of the main unit. 
•  M* is the "hidden failure" state of the main unit. 
•  M  is the failure state of the main unit. 
•  R  is the operational state of the redundant unit. 
•  R  is the failure state of the redundant unit, 
•  A, is the failure rate of the nonmonitored part of the main unit. 
•  A, is the failure rate of the monitored part of the main unit. 
•  A is the failure rate of the redundant unit. 
•  \s is the failure rate of the switch. 
•  /u, is the intensity of repair of a single unit. 
•  ns is the intensity of repair of the switch. 
•  /x* >s the intensity of repair of the system as a whole. 
•  v  is the intensity of periodical tests of the main unit. 

of type E{<p(J^A)} has Pi for x t  = 1 and <?, for i, = 1. Based on Table 9.1, the 
following equation can be written: 

£{?>(*)} = E{V>(*1)} + E{<p(*2)} + ... +E{?(*32)} 

Omitting intermediate results, we give the final formula for the connectivity 
probability (in the case of identical units) in two equivalent forms 

E{<p(*)} = p 5  - 5p4 + 2 p 3  +  2p 2  (9.3) 
E{<p(A')} = 1 - 2q 2  -  2 q 3  +  5 q 4  -  2 q 5  (9.4) 


