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AUTHOR’S PREFACE 
 

In Memory of John D. Kettelle Jr. 

my friend, colleague and informal teacher 

 

This book is in memory of my friend and colleagues Dr. John D. Kettelle, a 

former mariner who fought in WWII and later made a significant input in dynamic 

programming. His name was known to me in late 1960-s when I was a young engineer in 

the former Soviet Union. I had been working at one of the R&D institutes of the Soviet 

military-industrial establishment; my duty was projecting spare stocks for large scale 

military systems. 

  I met Dr. J. Kettelle in person in early 1990-s when I came to the United States 

as Distinguished Visiting Professor at The George Washington University. After two 

years at the University, I was invited by John to work at Ketron, Inc., the company that 

was established and led by him. We became friends.  

I will remember John  forever… 

* * * 

Optimal resource allocation is an extremely important part of many human 

activities, including reliability engineering. One of the first problem arose in this 

engineering area was optimal allocation of spare units.  Then it came to optimization of 

networks of various natures (communication, transportation, energy transmission, etc.) 

and now it is an important part of counter-terrorism protection.  

Actually, these questions always stood and stand: How to achieve maximum gain 

with limited expenses? How to fulfill requirements with minimum expenses? 

In this book, one finds an overview of different approaches of optimal resource 

allocation, from classical LaGrange methods to modern heuristic algorithms. 

This book is not a tutorial in a common sense of words. It is not a reliability 

“cooking book”. It is sooner a bridge between reliability engineering and applied 

mathematics in the field of optimal allocation of resources for systems’ reliability 

increase. It supplies the reader with basic knowledge in optimization theory and presents 

examples of application of the corresponding mathematical methods to the Real World 

problems. The book objective is to inspire the reader visiting the wonderful area of 

applied methods of optimization, rather than give them a mathematical course on 

optimization.  

 Examples with sometimes tedious and bulky numerical calculations should not 

frighten the Reader. They are given with the only purpose: to demonstrate “a kitchen” of 

calculations. All these calculations have to be performed by a computer. Optimization 

programs themselves are enough simple. (For instance all numerical examples were 

performed with the help a simple program in MS Office Excel.) 

 In the very end of the book there is a complete enough list of monographs on the 

topic. 
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* * * 

Who are potential readers of the book? First of all, engineers who design complex 

systems and mathematicians who are involved in “mathematical support” of engineering 

projects. Another wide category is college and university students, especially, before they 

take classes on optimization theory. At last, university professors could use the material 

in the book taking numerical examples and case studies for illustration of the methods 

they are teaching. 

* * * 

In conclusion, I would like to say a few words about references at the end of 

chapters. Actually, each of them is not a list of reference, but rather a bibliography 

presented in a chronological order. The author’s belief is that such list will allow the 

reader to trace the"evolution" of the considered topic. The lists, of course, are not full, for 

which the author in advance brings his apology. However, as Kozma Prutkov (a 

pseudonym for the group of pokemon satirists the end of the 19th century) said: "Nobody 

can embrace the unembraceable". 

Igor Ushakov 

San Diego, USA, 2012 

* * * 
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1.  BASIC MATHEMATICAL REDUNDANCY MODELS 

 

A series system of independent subsystems is usually considered as a starting point 

for optimal redundancy problems. The most common case is when one considers a group of 

redundant units as a subsystem. The reliability objective function of a series system is 

usually expressed as a product of probabilities of successful operation of its subsystems. The 

cost objective function is usually assumed a linear function of the number of system’s  units.  

There are also more complex models (multi-purpose systems and multi-constrain 

problems) or more complex objective functions like average performance or the mean time 

to failure. However, we don’t limit ourselves with pure reliability models. The reader will 

find a number of examples with various networks as well as examples of resource allocation 

in counter-terrorism protection. 

 In the book we consider main practical cases, describe various methods of 

solutions of optimal redundancy problems, and demonstrate solving of the problems with 

numerical examples.  Finally, several case studies are presented that reflect the author’s 

personal experience and can demonstrate practical applications of presented applied 

methodology.  

 

1.1.  Types of Models 

 
 A number of various mathematical models of systems with redundancy have been 

developed during about half a century of developing modern reliability theory. Some of 

these models are rather specific and some of them are even “extravagant”. We limit 

ourselves in this discussion to the main types of redundancy and demonstrate on them 

how methods of optimal redundancy can be applied to solutions of the optimal resource 

allocation. 

Redundancy in general is a wide concept, however, we mainly will consider the 

use of a redundant unit to provide (or increase) system reliability.  

Let us call a set of operating and redundant units of the same type a redundant 

group.  Redundant units within a redundant group can be in one of the two states: active 

(in the same regime as operating units, i.e. so-called “hot redundancy”) and standby (idle 

redundant units waiting to replace failed units, i.e. so-called “cold redundancy”).  

In both cases there are two possible situations: failed units could be repaired and 

returned to the redundant group or unit failures lead to exhaustion of the redundancy.  

 In accordance with such very rough classifications of redundancy methods, this 

chapter structure will be arranged in the following way: 

 

Table 1.1. Types of redundancy 

 Redundant units regime 

Active Standby 

Type of 

maintenance 

Non-repairable Section 1.1 Section 1.2 

Repairable Section 1.3 Section 1.4 

 

 We consider two main reliability indices:  probability of failure-free operation 
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during some required fixed time t0, R(t0), and mean time to failure, T. 

In practice, we often deal with a system consisting of a serial connection of 

redundant groups: 

 
Figure 1.1.  General block diagram of series connection of redundant groups. 

 

Usually, such kind of structures is found in systems with spare stocks with 

periodical replenishment.   

 

 

 

1.2. Non-repairable redundant group with active redundant units 

 

 Let us begin with a simplest redundant group of two units (duplication). 

 

 
Figure 1.2. Block diagram of a duplicated system. 

 

Such system operates successfully if at least one unit is operating.  If one denotes 

random time to failure of unit k by ξk , then the system time to failure, ξ, could be written 

as 

ξ =max {ξ1 ,ξ2}                                                      (1.1) 

 

The following time diagram explains equation (1.1): 

 

 
Figure 1.3. Time diagram for a non-repairable duplicated system with both units active 

 

 The probability of failure-free operation (PFFO) during time t for this system is 

equal to 
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R(t) = 1– [1-r(t)]
2
                                                    (1.2) 

 

where r(t) is PFFO of a single active unit.  

 

We will assume an exponential distribution of time to failure for an active unit: 

 

F(t) = exp(-λt).                                                        (1.3) 

 

In this case the mean time to failure (MTTF), T , is equal to: 

 

 



1

5.01)]exp(1[1)()},{max(}{
0

2

0

21  


dttdttREET            (1.4) 

 

Now consider a group of n redundant units that survives if at least one unit is 

operating. 

 

 
Figure 1.4. Block diagram of redundant group of n active units. 

 

We omit further detailed explanations that could be found in any textbook on 

reliability (Bibliography to Chapter 1).  

For this case PFFO is equal: 

 

R(t) =  1– [1-r(t)]
n
                                                 (1.5) 

 

and the mean time to failure (under assumption of the exponential failure distribution) is 

 

 .
1

1





nk k

T                                                  (1.6 ) 

 

The most practical system of interest is the so-called “k out of n” structure. In this 

case, the system consists of n active units in total. The system is deemed to be operating 

successfully if k or more units have not failed. (Sometimes this type of redundancy is 

called “floating”). The simplest system frequently found in engineering practice is a “2 

out of 3” structure. 
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Figure 1.5. Block diagram of a “2 out of 3” structure with active redundant unit. 

  

A block diagram for general case can be presented in the following conditional 

way. It is assumed that any redundant unit can immediately operate instead of any of k 

“main” units in case a failure. 

  

 

 
Figure 1.6. Block diagram of a “k out of n” structure with active redundant units. 

 

Redundancy of this type can be found in multi-channel systems, for instance, in 

base stations of various telecommunication networks: transmitter or receiver modules 

form a redundant group that includes operating units as well as a pool of active redundant 

units.   

Such system is operating until at least k of its units are operating (i.e. less than  

n – k + 1 failures have occurred). Thus, PFFO in this case is 

 

    jnj

njk

tptp
j

n
tR




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


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
  )(1)()(                              (1.7) 

and  





njk n

j
T



1
.                                               (1.8) 

 

If a system is highly reliable, sometimes it is more reasonable to use (1.7) in 

supplementary form (especially, for approximate calculations when p(t) is close to 1). 
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j

n
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1.3. Non-repairable redundant group with standby redundant units 

 
Again begin with a duplicated system presented on the following figure. 

 

 
Figure 1.7. A non-repairable duplicated system with a standby redundant unit. (Here grey color denotes a 

standby unit.) 

 

For this type of systems, the random time to failure is equal to: 

 

ξ= ξ1+ξ2    .                                                                                    (1.10)  

 

The following time diagram explains equation (1): 

 

 
Figure 1.8. Time diagram for a non-repairable duplicated system with a standby redundant unit. 

 

The PFFO of a considered duplicate system can be written in the form:  

)()()( 10 tptptR                                              (1.11) 

where )(0 tp is the probability of no failures at time interval [0, t], and )(1 tp  is the 

probability of exactly one failure in the same time interval.  Under assumption of 

exponentiality of the time-to-failure distribution, one can write: 

 

)exp(0 tp                                                   (1.12) 

and  

)exp(1 ttp   ,                                              (1.13) 

so finally 

)1()exp()( tttR   .                                        (1.14) 

 

Mean time to failure is defined as 




2
}{ 21  ET ,                                      (1.15) 

 

since λ=1/T.   

For a multiple standby redundancy a block diagram can be presented in the 

following form: 
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 Figure 1.9. Block diagram of redundant group of one active and n – 1 standby units. (Here grey 

boxes indicate standby units.) 

 

For this redundant group, one can easily write (using the arguments given above): 





11 !

)(
)exp()(

nj

j

j

t
ttR


                                       (1.16) 

and 



n
T                                                           (1.17) 

 

 A block diagram for a general case of standby redundancy of k out of n type can 

be presented in the following way.  

 
Figure 1.10. Block diagram of a “k out of n” structure with standby redundant units. (Here grey 

color is used to show standby redundant units). 

 

It is assumed that any failed operational unit can be instantaneously replaced by a 

spare unit. Of course, no replacement can be done instantaneously: speaking so we keep 

in mind a five seconds rule
1
 . 

This type of redundant group can be found in spare inventory with periodical 

restocking. Such replenishment is typical, for instance, for terrestrially distributed base 

stations of global satellite telecommunication systems.  One observes a Poisson process 

of operating units failures with parameter kλ, and the group operates until the number of 

failures exceeds n – k. The system PFFO during time t is equal to: 

 

                     
1 Russian joke: If fallen object is picked up in 5 seconds , it is assumed as non-fallen at all. 
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



knj

j

j

tk
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)exp()(


                               (1.18) 

and the system MTTF is 

k

kn
T

11 



                                           (1.19) 

 

Remark. Of course, there are more complex structures that involve active and standby 

redundant units within the same redundant group. For instance, structure “k out of n” with 

active units could have additional “cold” redundancy that allows performing “painless” 

replacements of failed units.  

 

 

1.4.  Repairable redundant group with active redundant units 

 

Consider a group of two active redundant units, i.e. two units in parallel. Each 

unit operates independently: after failure it is repaired during some time and then returns 

to its position. Behavior of each unit can be described as alternating stochastic process: a 

unit change its states:  one of proper working that during time ξ, followed by a failure 

state induced repair interval, η. The cycle of working/repairing repeats. This process is 

illustrated in Figure 11. 

 

 
Figure 1.11. Time diagram for a repairable system with standby redundancy. White parts of a strip denote 

operating state of a unit and black parts do its failure state. Here
)(i

j denotes j-th operating interval of unit i, 

and 
)(i

j does j-th interval of repair of this unit. 

 

From Figure 1.11, one can see that the system failure occurs when failure 

intervals of both units overlapped.   

Notice that for repairable systems, one of the most significant reliability indices is 

the so-called availability coefficient, r~ . This reliability index is defined as the probability 

that the system is in a working state at some arbitrary moment of time.  (This moment of 

time is assumed to be “far enough” from the moment of the process start.) It is clear that 

this probability for a single unit is equal to a portion of total time when a unit is in a 

working state, i.e. 
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}{~





EE

E
r


                                                  (1.20) 

 

If there are no restrictions, i.e. each unit can be repaired independently, the system 

availability coefficient, R
~

, can be written easily 

 
2)1(1

~
rR                                             (1.21) 

 

For general types of distributions, reliability analysis is not simple. However, if 

one assumes exponential distributions for both ξ and η, reliability analysis can be 

performed with the help of Markov models. 

If redundant group consists of two units, there are two possible regimes of repair, 

depending on the number of repair facilities. If there is a single repair facility, units 

become dependent through the repair process: the failed unit can find the facility busy 

with the repair of a previously failed unit. Otherwise, units operate independently. Below 

is Markov transition graphs for both cases are presented.   

 

 

      
 

Figure 1.12. Transition graphs for repairable duplicated system with active redundancy for two 

cases:  restricted repair (only one failed unit can be repaired at a time) and unrestricted repair (each failed 

unit can be repaired independently). The digit in the circle denotes the number of failed units. 

 

With the help of these transition graphs, one can easily write down a system of 

linear differential equations that can be used for obtaining various reliability indices. 

Take any two of the three equations: 
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and take into account chosen initial conditions. 

 

The availability coefficient for these two cases can be calculated using the 

following formulas (where γ=λ/μ): 

 

Table 1.2. Availability coefficient for two repair regimes. 

 Formula for availability coefficient, R
~

 

Restricted repair Unrestricted repair 

Strict formula 
2)1(

21








 

22)1(

21








 

Approximation  

for γ<<1 

1 – γ
2
 1 – 2γ

2
 

 

However, our intent is to present methods of optimal redundancy rather than to 

give detailed analysis of redundant systems. (Such analysis can be found almost in any 

book listed in Bibliography to Chapter 1.) Thus we will consider only simplest models of 

redundant systems, i.e. systems with unrestricted repair.   

We avoid strict formulas because they are extremely clumsy; instead we present 

only approximate ones that mostly are used in practical engineering calculations. 

 

Table 1.3.  Approximate formulas for availability coefficient 

Type of the  

redundant group 
Approximate formula for availability coefficient, R

~
 

Restricted repair  Unrestricted repair 

Group of n units 1 – (n!)·γ
n
 1 – γ

n
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Group of type 

“k out of n” 
1

1
])!1[(1 
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1.5.Repairable redundant group with standby redundant units 

 

Consider now a repairable group of two units:  one active and one standby. 

Behavior of such redundant group can be described with the help of a renewal process: 

after a failure of the operating unit a standby unit becomes the newly operating one, while 

the failed unit after repair becomes a standby one, and so on.  System failure occurs when 

a unit undergoing repair is not ready to replace a now not operating unit that has just 

failed. The process of functioning of this type of duplicated system is illustrated in Figure 

13. 

 

 
Figure 1.13. Time diagram for a repairable duplicated system with standby redundancy. White parts of a 

strip denote the operating state of a unit, and grey parts show the standby state, and black parts show the 

failure state. Here
)(i

j denotes j-th operating interval of unit i, and 
)(i

j does j-th interval of repair of this 

unit. 

  

 In this case, finding PFFO of the duplicated system is also possible with the use of 

Markov models under assumption of exponentiality of both distributions (of repair time 

and time to failure), 

Transition graphs for restricted and unrestricted repair are shown in the next 

figure. 

  

        
 
Figure 1.14. Transition graphs for repairable duplicated systems with standby redundancy for two cases:  

restricted repair (only one failed unit can be repaired at a time) and unrestricted repair (each failed unit can 

be repaired independently). 
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Again we present only approximate formulas.  

 

Table 1.4.  Approximate formulas for availability coefficient. 

Type of the  

redundant group 
Approximate formula for availability coefficient, R

~
 

Restricted repair  Unrestricted repair 

Group of n units 11  kn  

)!1(
1

1






kn

kn
 

Group of type 

“k out of n” 

1)(1  knk  

)!1(

)(
1

1






kn

k kn
 

 

 

  

1.6.Multi-level  systems and system performance estimation.  

 

Operation of a complex multi-level system cannot be satisfactory described in 

traditional reliability terms. In this case, one has to talk about performance level of such 

systems rather than simple binary type “up & down” operating.  

 Let a system consist of n independent units characterized by their reliability 

indices p1, p2, .., pn.  Assume that with unit failure a level of system performance 

degrades.  Denote by i  a quantitative measure of the system performance under 

condition that unit i failed, by ij the same measure if units i and j are failed, and in 

general, if some set of units, α is failed then the system performance is characterized by 

value   . In this case the system performance can be characterized by the mean value: 

 







HSystem                                               (1.23) 

 

where A is a set of all possible states of  units 1, 2, …, n, i.e. power of this set is 2
n
 and   

 









\

)1(
Ai

i

i

i ppH .                                          (1.24) 

 

where notation A\ α means the total set of unit subscripts with exclusion of subset α. 

The measure of system performance could be various: it could be conditional 

probability of successful fulfillment of operation, productivity, or other operational 

parameter. 

 Several years after [Kozlov & Ushakov, 1966] had been published, there was a 

relative silence with quite rear appearance of works on the topic. Since average measure 

is not always a good characterization, soon there was a suggestion to evaluate the 

probability that a multi-state system performance is exceeding some required level.  In a 

sense, it was nothing more than introducing a failure criterion for a multi-state system.  In 

this case, new formulation of the system reliability has the form 
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

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quired

HR quiredSystem

Re:

Re }Pr{

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 In 1985, in [Ushakov, ed., 1985] Kurt Reinschke introduced a system that itself 

consists of multi-state units.  However, this work also did not find an appropriate 

response among reliability specialists at the time.  

Nevertheless, reliability analysis of multi-state systems has started for all three 

possible classes: 

(1) Multi-state systems consisting of binary units  

(2) Binary systems consisting of multi-state units  

(3) Multi-state systems consisting of multi-state units 

In late 1990s, one observes a real avalanche of papers and since then this topic 

keeps its steady flow. This subject is considered in more details in Chapter 11. 

Naturally, after multi-system analysis, attention to the problems of optimal 

redundancy in such systems arose. Now the problem of optimal redundancy in multi-state 

systems is a subject of an intensive research.   

 

 

1.7. Brief review of other types of redundancy  

 
In reliability theory, redundancy is understood as using additional units for 

replacement/substitution of failed units. Actually, there are many various types of 

redundancy. Below we briefly consider structural redundancy, functional redundancy, a 

system with spare time for operation performance, and so on.  

 

1.7.1.Two-pole structures. One of the typical types of structural redundancy is presented 

by networks. The simplest network structure is the so-called bridge structure.  Assume 

that connection between points A and D is needed.  

 

 
Figure 1.15.  Bridge structure.  
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 A failure of any unit does not lead to failure of the system because of the 

redundant structure. There are the following paths from A to D:  ABD, ACD, ACBD and 

ABCD. If at least one of those paths exists, the system performs its task. Of course, one 

can consider all cuts that lead to the system failure:  AB&AC, BD&CD, AB&BC&CD and 

AC&BC&BD.  However, in this case we cannot use simple formulas of series and parallel 

systems, since paths are interdependent, as well cuts. Because of this, one can only write 

the upper and lower bounds for PFFO of such systems: 

 

).1()1()1()1(1

)1()1()1()1(

BDBCACCDBCABCDACBDAB

BridgeBDBCACCDBCABCDBDACAB

PPPPPPPPPP

RQQQQQQQQQQ




       (1.26) 

 

 For this simple case, one can find a strict solution using a straightforward 

enumeration of all possible system states: 

 

 )].1)(1(1[)1()1( CDACBDABBCCDBDACABBCBridge PPPPQQQQQRR            (1.27) 

 

More complex systems of this type are presented by the two-pole networks:  in 

such systems a “signal” has to be delivered from a terminal A to terminal B. Reliability 

analysis of such systems usually is performed with the use of Monte Carlo simulation.   

 

 
Figure 1.16. An example of two-pole network. 

 

 For networks with general structure, the exact value of the reliability index can be 

found actually only with the help of a direct enumeration. For evaluation of this index 

one can use the upper and lower bounds of two types: Esary-Proschan boundaries 

[Barlow & Proscha, 1965] or Litvak-Ushakov boundaries [Ushakov, ed. 1985]. 

Unfortunately, boundaries cannot be effectively used for solving optimal redundancy 

problems. 

 

1.7.2. Multi-pole networks.  This kind of networks is very common in modern life: one 

can remember telecommunication networks, transportation and energy grids, etc.  The 

most important specific of such systems is their structural redundancy and redundant 

capacity of its components. We demonstrate specific of such systems on a simple 
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illustrative example.  Consider a bridge structure that was described above, but assume 

that each node is either a “sender’ or a “receiver” of “flows” to each other. Of course, 

flows can be different as well as capacities of particular links.  Assume that traffic is 

symmetrical, i.e. traffic from X to Y is equal to traffic from Y to X. This assumption 

allows us to consider only one-way flow between any points. 

 Let the traffic in the considered network be described as it shown in Table 1.5 

 

Table 1.5. Traffic in the network (in conditional units) 

 A B C D 

A - 1 1 1 

B 1 - 2 1 

C 1 2 - 1 

D 1 1 1 - 

 

For normal operating, it is enough to have the following capacities of the links: 

 

 

 
Figure 1.17. Traffic distribution 

 

(We assume that traffic within the network is distributed as uniformly as possible.)  

 However, links (as well as nodes) are subjected to failure. For protection of the 

system against link failures, let us consider possible scenarios of link failure and 

measures of system protection by means of links capacities increase. 

What should we do if link AB has failed?  The flow from A to B and from A to D 

should be redirected.  Thus, successful operation of the network requires an increase of 

the links’ capacities (see the figure below) 
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Figure 1.18. Traffic distribution in the case of link AB failure. 

 

Since all four outside links are similar, failure of any link AC, BD or CD leads to 

a similar situation.  Thus, to protect the system against failure of any outside link, one 

should increase capacities of each outside link from 2 to 3 units. 

 What happens if link BC fails? This link originally was used only for connecting 

nodes B and C.  This traffic should be redistributed: half flow is directed through links 

BA-AC, and another – through links BD-DC. To protect the system against link BC 

failure, the capacity of each outside link has to be increased by one unit. 

 

 

 
 

Figure 1.19. Traffic distribution in the case of link BC failure. 

 

 To protect the system against any single link failure, one has to make link 
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capacities corresponding to maximum at each considered scenarios; 

 

 
Figure  1.20. Final values of link capacities for a network protected against any possible single failure. 

 

1.7.3. Branching structures.  Another rather specific type of redundant systems is 

presented by systems with a branching structure.  In such systems, actual operational 

units are units on the lowest level, which, however, successfully operate only under the 

condition that their controlling units at the upper levels are successfully operating. Such 

structures are very common in various control systems, in particular, in military systems.  

 

 
Figure 1.21. System with branching structure. 

  

 Assume that the presented branching system performs satisfactory until four or 

more units of the lower level failed or lost control by upper level units. Types of possible 

system failures are given in Figure 1.22.  

 

 
Figure 1.22. Types of situations when the branching system has 4 lower level units that have failed to 

perform needed operations. (Failed units are in black and units without control are in grey.) 

 

 Of course, for complex systems the concept of “failure” is not adequate; instead, 

there is the notion of diminished performance. For instance, for the same branching 
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system considered above, it is possible to introduce several levels of performance.   

Assume that the system performance depending on the system state is described by Table 

1.6. 

 

Table 1.6. Levels of system performance for various system states. 
Qty of failed  

units of 

lower level 

Conditional level 

of performance 

 

0        100% 

1          99% 

2          95% 

3          80% 

4          60% 

5          50% 

6          10% 

7          2% 

8          0% 

 

Usually, for such systems with structural redundancy, one uses the average level 

of performance. However, it is possible to introduce a new failure criterion and talk about 

reliability of such system.  For instance, under assumption that admissible level of 

performance is 80% , one came to the situation considered above: the system is 

considered failed only when four (or more) its lower level units do not operate 

sufficiently (failed or lost control). 

 

1.7.4.Functional redundancy. Sometimes to increase a probability of successful 

performance of a system, designers envisage functional redundancy, i.e. make possible to 

use several different ways of completing a mission. As an example, one can consider 

procedure of docking a space shuttle with a space station.  

 

 
Figure 1.23. Phases of a space shuttle docking to a space station. 

 

This complex procedure can be fulfilled with the use of several various methods:  

by signals from the ground Mission Control Center (MCC), by on-board computer 

system and manually. In all these cases, video images sent from space objects are usually 

used. However, MCC can also use telemetry data. All methods can ensure success of the 

operation though with different performance. 
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1.8. Time redundancy 

 

  One very specific type of redundancy is the so-called time redundancy.  There are 

three main schemes of time redundancy: 

( a ) A system is operating during interval t0. There are instantaneous interruptions of 

the system operation (failures), after which the system starts its operation from the 

beginning. The system operation is considered successful if during interval t0 there is at 

least one interval with length larger than some required value τ. In other words, there is 

some extra time to restart the operation. 

 

 
Figure 1.24. Examples of possible implementation of the successful system operation. 

 

Denote the probability of success for such a system by R(t0 | τ). If there is a failure on 

interval [0, t0] at such moment x< τ that still t0 – x > τ, the needed operation can be restarted, 

otherwise R(t0 | τ) = 0. This verbal explanation leads us to the recurrent expression 

where F(x) is distribution function of the system time to failure.  

Such kind of recurrent equations are usually solved numerically.  

 

( b )  Independent of the number of sustained failures, system operation is considered 

successful if the cumulative time of the system operation is no less than the required 

amount θ.  

 

 
Figure 1.25. Examples of possible implementation of the successful system operation. 
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Denote the distribution of repair time, η, by G(t). If the first failure has occurred at moment 

x such that x > θ, it means that the system fulfilled its operation. If failure happens at 

moment ξ, the system can continue its operation after repair that takes time η, only if t0 – η > 

θ. It is clear that the probability that the total operating time during interval [0, t0] is no less 

than θ is equal to the probability that the total repair time during the same interval is no 

larger than  t0 – θ.   

 

For this probability, one considers two events that lead to success: 

 - system works without failures during time θ from the beginning; 

 - system has failed at the moment  x< t0 – θ, and was repaired during time y, and 

during the remaining interval of t0 –x –y accumulates θ – x units of time of successful 

operation. This verbal description permits us to write the following recurrent expression: 

where R(t0 | z) = 0 if z < θ. 

 

 

( c )  A system “does not feel” failures of duration less than χ. (In a sense, the system 

possesses a kind of “inertia” much alike a famous “five second rule”.) 

 
Figure 1.26. Time diagram for a system accumulating operation time. 

 

 A system is considered to be successfully operating if during period [0, t0] there is 

no down time larger than ψ. This case, in some sense, is a "mirror" of what was considered 

at the beginning. We will skip explanation details and immediately write the recurrent 

expression: 

We will not consider this type of redundancy in details; instead we refer the reader to 

special literature on the subject [Cherkesov, 1974], [Kredentser, 1978] . 
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1.9.Some additional optimization problems 

  

1.9.1.  Dynamic Redundancy 

 

 "Dynamic redundancy" models occupy an intermediate place between optimal 

redundancy and inventory control models. 

 The essence of a dynamic redundancy problem is contained in the following. 

Consider a system with n redundant units. Some redundant units are operating and represent 

an active redundancy. These units can be instantly switched into a working position without 

delay and, consequently, do not interrupt the normal operation of the system.  These units 

have the same reliability parameters (for example, for exponential distribution, and the same 

failure rate).  The remaining units are on standby and cannot fail while waiting. But at the 

same time, these units can be switched in an active redundant regime only at some pre-

determined moments of time. The total number of such switching moments is usually 

restricted because of different technical and/or economical reasons. 

 A system failure occurs when at some moment there are no active redundant units to 

replace the main ones which have failed. At the same time, there may be many standby units 

which cannot be used because they cannot be instantly switched after a system failure. 

 Such situations in practice can arise in different space vehicles which are 

participating in long journeys through the Solar System. A similar situation occurs when one 

considers using uncontrolled remote technical objects whose monitoring and service can be 

performed only rarely. 

 It is clear that if all redundant units are  switched to an active working position at an 

initial moment t=0, the expenditure of these units is highest. Indeed, many units might fail 

in vain during the initial period. At the same time, the probability of the unit's failure during 

this interval will be small. On the other hand, if there are few active redundant units 

operating in the interval between two neighboring switching points, the probability of the 

system's failure decreases. In other words, from a general viewpoint, there should exist an 

optimal rule (program) of switching standby units into an active regime and allocating these 

units over all these periods. 

 Before we begin to formulate the mathematical problem, we discuss some important 

features of this problem in general. 

 

Goal Function 
 Two main reliability indices are usually analyzed: the probability of failure-free 

system operation during some specified interval of time, and the mean time to system 

failure. 

 

System Structure 

 Usually, for this type of the problem, a parallel system is under an analytical 

consideration. Even a simple series system requires a very complex analysis. 

 

Using Active Redundant Units 

 One possibility is that actively redundant units might be used only during one period 

after being switched into the system. Afterwards, they are not used further, even if they have 

not failed. In other words, all units are divided in advance into several independent groups, 
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and each group is working during its own specified period of time. After this period has 

ended, another group is switched into the active regime. In some sense, this  regime is 

similar to the preventive maintenance regime. 

 Another possibility is to keep operationally redundant units in use for next stages of 

operation. This is more effective but may entail some technical difficulties. 

 

Controlled Parameters  
 As we mentioned above, there are two main  parameters under our control: the 

moments of switching (i.e., the periods of work) and the number of units switched at each 

switching moment. Three particular problems arise: we need to choose the switching 

moments if the numbers of switched units are fixed in each stage; we need to choose the 

numbers of units switched in each stage if the switching moments are specified in advance; 

and, in general, we need to choose both the switching moments  and the numbers of units 

switched at each stage. 

 

Classes of Control 

 Consider two main classes of switching control. The first one is the so-called prior 

rule (program switching) where all decisions are made in advance at time t=0. The second 

class is the dynamic rule where a decision about switching is made on the basis of  current 

information about a system's state (number of forthcoming stages, number of standby units, 

number of operationally active units at the moment, etc.). 

 

 We note that analytical solutions are possible only for  exponentially distributed 

TTF's. The only possible method of analysis for an arbitrary distribution is via a Monte 

Carlo simulation.  

* * * 
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2. FORMULATION OF THE OPTIMAL REDUNDANCY PROBLEMS 

  

2.1. Problems description 

 

 One of the most frequently used methods of reliability increase is the use of 

additional (redundant) units, circuits and blocks. This method is especially convenient when 

the principal solution of the system design has already been found: the use of redundant 

units usually does not cause a change in the overall structure of the system. But the use of 

extra units entails additional expense. Naturally, a system designer always tries to find the 

least expensive way to improve reliability.  Thus, a designer faces two problems: 

 

Direct problem of optimal redundancy: find such allocation of redundant units among 

different subsystems that warrants required level of reliability index with spending 

minimum possible resources; 

Inverse problem of optimal redundancy: find such allocation of redundant units among 

different subsystems that maximizes the level of chosen reliability index under some 

specified constrains on the total cost of the system. 

 The choice of a type of constrains depends on the specific engineering problem. Of 

course, the cost of a set of redundant units is not a unique objective function.  For instance, 

for submarines the most serious constrain is the total volume (or weight) of spare units.  

 Consider a series system composed of n independent redundant groups (or 

subsystems). A redundant group is not necessarily a separate part of a system. In this 

context, this may be a group of units of the same type which uses the same redundant units.  

For instance, in spare parts allocation problems a redundant group might be a set of identical 

units located throughout the entire system in quite different places. 

 

 
Figure 2.1.  Modular system and “informal” redundant groups for this system. 
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2.2. Formulation of the optimal redundancy problem with a single 
restriction. 

 The simplest (and practically the most often encountered) optimal redundancy 

problem is optimization of an objective function under a single constrain.  Usually, the 

following two objective functions are considered: the cost of the total set of redundant units, 

C(X), and the probability of a failure-free system operation, R(X), where as above X=(x1, 

x2… xn) and xi is the number of units within redundant group i. 

 The direct problem of optimal redundancy can be written as: 

]X)(X)([ 0

X
min  R  R | C                                                         (2.1) 

 and the inverse problem that can be written as: 

 

]X)(X)([ 0

X
max C  C | R                                                             (2.2)   

 

where R0 and C0 are given constrains for the specific problems. 

           Cost of redundant group as a whole is usually assumed a linear function of number of 

redundant units and expressed as 
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 In most cases, we deal with a system that can be presented as a series connection of 

independent redundant groups.  For such systems, the probability of a successful operation 

during time t, R(t|X), and availability coefficient, R
~

(X), can be presented as a product of 

corresponding indices of redundant groups. Because both these objective functions are 

similar by their probabilistic nature, let us use a common notation R(X) for both cases. Then 

we can write: 
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                                                     (2.4) 

 

where X= (x1,x2, ... , xn) is the set of the system redundant units xi's of the ith type, ni 1 , 

and the Ri(xi) are the reliability indices of the ith redundant group. 

 

 Sometimes it is more convenient to present (3) in an additive form 
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                                                      (2.5) 

 

where L(X) = ln R(X) and Li(xi) = ln Li(xi). 

 If a system is highly reliable, i.e. 

 Qi(xi) = 1 - Ri(xi) <<
n

1
                                                           (2.6) 

or, equivalently, 
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 Q(X) = Q(x1,...,xn) <<1  ,                                                         (2.7) 

 

one can use the approximation  

 

)()(X)( 1 xQ  x ,... ,xQ = Q ii

ni1
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                                                       (2.8) 

  

Of course, similar problems can be formulated for other objective functions, for instance, for 

mean time to failure (or mean time between failures), Т.  Unfortunately, the calculation of 

T(X) is usually rather difficult. 

 

Example 2.1  

Consider a simplest series system consisting of two units. Unit parameters are given in 

Table 2.1. 

 

Table 2.1 

 PFFO Cost 

Unit-1 0.7 1.2 

Unit-2 0.6 2.7 

 

 We need to find: 

(a) A number of units of both types, optX = ( optx1 , optx2 ) that satisfy the required level of 

system reliability index equal to  0.8 and deliver minimum possible system cost. 

(b) A number of units of both types, optx1  and optx2  that maximize system reliability 

index under constrain that the total system cost is not higher than 7 units. 

 

   It is assumed that “hot” redundancy is used for reliability improvement, i.e. 
ix

iii qxR 1)( . 

 Since we don’t assume any a priori knowledge of optimization methods, let us use a 

trivial enumerating. For the further convenience, let us introduce triplets that contain the 

following information: Δi(xi) = {xi, Ri(xi), Ci(xi)}. Compile two tables with the system cost 

and PFO, putting in Table 2.2 cost of different variants. 

 

 Table 2.2. Values of system cost for various X. 
 x2 

1 2 3 

2.7 5.4 8.1 

x1 

1 1.2 3.9 6.6 9.3 

2 2.4 5.1 7.8 10.5 

3 3.6 6.3 9.0 11.7 

4 4.8 7.5 10.2 12.9 

5 6.0 8.7 11.4 14.1 

 

Table 2.3. Values of system PFFO for various X. 
 x2 

1 2 3 
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0.600 0.840 0.936 
x1 1 0.700 0.420 0.588 0.655 

2 0.910 0.546 0.764 0.852 
3 0.973 0.584 0.817 0.911 
4 0.992 0.595 0.833 0.928 
5 0.998 0.599 0.838 0.934 

 

 On the basis of these two tables, one can easily compile a new table with triplets 

ordered by cost. 

 

Table 2.4. List of triplets ordered by the system cost. 

C(X) R(X) X
(j) 

x1 x2  
2.7 0.420 (1) 1 1  

3.9 0.546 (2) 2 1  

5.1 0.584 (3) 3 1  

6.3 0.595 (4) 4 1  

6.6 0.588 (5) 1 2 * 

7.5 0.599 (6) 5 1  

7.8 0.764 (7) 2 2  

9.0 0.817 (8) 3 2  

9.3 0.655 (9) 1 3 * 

10.2 0.833 (10) 4 2  

10.5 0.852 (11) 2 3  

11.4 0.838 (12) 5 2 * 

11.7 0.911 (13) 3 3  

12.9 0.928 (14) 4 3  

14.1 0.934 (15) 5 3  

 

 One can see that there are such triplets X
(k) 

and X
(k+1) 

 that  C(X
(k+1)

) >  C(X
(k)

) but 

R(X
(k+1)

) <  R(X
(k)

). In this case, it is said that triplet Δ
(k)

 (X
(k)

) = { X
(k)

, R(X
(k)

), C(X
(k)

)} 

dominates over triplet Δ
(k+1)

 (X
(k+1)

) = { X
(k+1)

, R(X
(k+1)

), C(X
(k+1)

)}.  Such triplets are 

excluded in further analysis. (In Table 2.4 these vectors are X
(5)

, X
(9)

 X
(12)

.)  All remaining  

vectors X
(k)

 are called dominating. 
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Figure 2.2. Dominating sequence and dominated vectors for the numerical example. 

 

Basing on Table 2.4, one can easily find desired solutions:  

(a) for the direct optimal redundancy problem, one finds the largest value of cost that 

is still admissible; 

(b) for the inverse optimal redundancy problem, one finds the smallest value of 

reliability index that exceeds required value. 

              For considered numerical example the direct problem solution is vector X
(8)

 

(reliability index = 0.817 and system cost = 9) and for the inverse problem solution is vector 

X
(4)  

(system cost = 6.3 and reliability index = 0.595). 

 

 

2.3.FORMULATION OF OPTIMAL REDUNDANCY PROBLEM WITH 
MULTIPLE CONSTRAINS 

 

2.3.1 Direct optimal redundancy problem.  

 

Sometimes the optimal redundancy problem is formulated for multiple constrains, for 

instance, maximization of a reliability index under condition that other factors (cost, volume, 

weight, etc.) are limited by some fixed conditions. This problem can be written as: 

 

             CXCCXCCXCXR mM
X

00

22

0

11 )(,...,)(,)()(max                                (2.9) 

where ,,...,2,1,0 MjC j   are given constrains on the corresponding type of expenditures 

for the system as a whole. 

            In this case, further detailed considerations as in the section above are possible 

though we omit them for the sake of brevity. 

 

2.3.2. Inverse optimal redundancy problem. 

 Very rarely one can find the following problem: a system is designated for multiple 

tasks and performing each task requires different parts of the system. Set of such system 

parts may be called subsystems. Some parts of the system are used for all tasks and some 

only for performance specific tasks. Tasks of these subsystems may have different reliability 

requirements (for instance, some subsystems may perform extraordinary responsible tasks).    

 For such systems, one can formulate the following problem  

 

  RXRRXRRXRXC mM
X

00

22

0

11 )(,...,)(,)()(min                        (2.10 ) 

 

 To make the problem clearer, consider a simple illustrative example where a system 

of four units is conditionally depicted as three interdependent subsystems. 
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Figure 2.3. Conditional dividing a system by subsystems. 

 

 For this system as a whole the inverse problem of optimal redundancy can be written 

as: 

  RxrxrxrRxrxrxrRxrxrxrxC
X

0

3443311

0

2442211

0

1332211 )()()(,)()()(,)()()()(min  .  

(2.11 ) 

 

Example 2.2.  Consider the same system as in Example 2.1. Introduce one more unit 

parameter, say, weight, W. Unit parameters are given in Table 2.5. 

 

Table 2.5. 

 PFFO Cost Weight 

Unit-1 0.7 1.2 2.3 

Unit-2 0.6 2.7 1.5 

 

 We need to find a number of units of both types, optX = ( optx1 , optx2 ) that maximize 

system reliability index under constrains on both limiting factors:  C(X) 7 units of cost and 

W(X)   10 units of weight., that is we consider the inverse optimization problem 

 For solution, use Tables 2.6 and 2.7 and add to them a new one for total system 

weight. 

 

Table 2.6. Values of system weight for various X. 
 x2 

1 2 3 

1.5 3 4.5 
x1 1 2.3 5 7.7 10.4 

2 4.6 7.3 10 12.7 

3 6.9 9.6 12.3 15 

4 9.2 11.9 14.6 17.3 

5 11.5 14.2 16.9 19.6 

 

 

   On the basis of this and previous Table, let us compile a new table (now with 

quadruples, since we have four parameters)   with triplets ordered by increase of cost. 

 

Table 2.7. List of triplets ordered by the system cost. 

C(X) W(X) R(X) X
(j) 

x1 x2  
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2.7 5.0 0.420 (1) 1 1  

3.9 7.3 0.546 (2) 2 1  

5.1 9.6 0.584 (3) 3 1  

6.3 11.9 0.595 (4) 4 1  

6.6 7.7 0.588 (5) 1 2 optimum 

7.5 14.2 0.599 (6) 5 1  

7.8 10.0 0.764 (7) 2 2  

9.0 12.3 0.817 (8) 3 2  

9.3 10.4 0.655 (9) 1 3 * 

10.2 14.6 0.833 (10) 4 2  

10.5 12.7 0.852 (11) 2 3  

11.4 16.9 0.838 (12) 5 2 * 

11.7 12.3 0.911 (13) 3 3  

12.9 17.3 0.928 (14) 4 3  

14.1 16.9 0.934 (15) 5 3  

 

 In this table all cells with inadmissible cost or weight are shadowed. Thus, the 

maximum reachable level of reliability index under the given constrains is 0.588; and it is 

reached by vector  X
(5) 

.  It is interesting to notice that in the previous example this vector 

was dominated and could not be a solution. 

 In case of multi-constrain situation, dominating sequence also exists.  For instance, 

vector X
(12)

 is dominated by vector X
(11)

: for larger values C(X)=11.4 and W(X) = 16.9 the 

reliability index, R(X) = 0.838 that is smaller than 0.852.  Another such pair of vectors is X
(9)

 

and X
(7)

: both parameters “cost-weight” for  X
(9)

 (9.3; 10.4) are correspondingly larger than 

analogous parameters for X
(7) 

, though the latter vector is characterized by larger reliability 

index.  (All dominated vectors are marked with “*”.)  

 We don’t supply a numerical example for direct problem solution due to its 

clumsiness. 

 

 

2.4. Formulation of multi-criteria optimal redundancy problems. 

   

 2.4.1. Direct multi-criteria optimal redundancy problem. 

 Assume that a designer has to reach the required level of reliability having several limiting 

factors like cost, weight, volume, etc. Usually all these factors are somehow dependent: a 

miniature units can be more expensive, weight and volume of a unit are naturally dependent, 

etc. What does it mean to say "the best solution" in this case? Solutions satisfying the same 

reliability requirements can be incomparable: one variant have smaller total weight, etc.  

 Actually, the problem of choosing a preferable solution lies outside the scope of 

mathematics: it is up to a decision maker. However, there are some useful procedures for 

finding the so-called non-improvable solutions. It means that none of the selected variants 

(solutions) is strictly better than another but it is chosen in accordance to some subjective 

measures of preference. 

 A set of the multi-criteria problem solutions is called the Pareto set. In mathematical 

terms one can write the problem in the form: 
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 0

21 )()(,...),(),(MIN RXRXCXCXC M
X

                                           (2.12 ) 

 

where the symbol MIN in capital letters denotes Pareto “minimization” of 

vector )(,...),(),( 21 XCXCXC M .  

 

 
Figure 2.4. Explanation of the Pareto solutions for direct multi-criteria problem. 

  

 All Pareto solutions for condition R(X)  R
0
 are dominating in a vector sense:  

for each Pareto-optimal vector X
(k)

 , there is no vector X’< X
(k)  

that R(X’)   R(X
(k)

). 

 

 

2.4.2. Inverse multi-criteria optimal redundancy problem. 

 The inverse problem for multi-criteria case can be written as: 

 0

21 )()(,...),(),(MAX CXCXRXRXR M
X

                                      (2.13) 

where the symbol MAX in capital letters denotes Pareto “maximization” of 

vector )(,...),(),( 21 XRXRXR M .   

 For instance, for system depicted in Figure 2.3 one can write: 

 

  CXCXRXRXR
X

0

321 )()(),(),(MAX                                       (2.14) 

 

 Decision about what variant of the system configuration should be chosen has to be 

done by a decision maker. Expert opinion cannot be formalized: this is why experts still 

survive in modern computer age!  
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3.METHOD OF LAGRANGE MULTIPLIERS 

 

 One of the first attempts to solve the optimal redundancy problem was based on the 

classical Lagrange Multipliers Method. This method has been invented and developed by 

great French mathematician Lagrange. 

 

Joseph-Louis Lagrange 

(1736 – 1813) 

 

 

 

 

 This method allows to get extremum value of the function under some specified 

constrain on another involved function in the form of equality. The Lagrange Multiplier 

method is applicable if both functions (optimizing and constraining) are monotone and 

differentiable.  

 Strictly speaking, this method is not appropriate for optimal redundancy problems 

solving because the system reliability and cost are described by functions of discrete 

arguments xi (numbers of redundant units), and the restrictions on accessible resources (or 

on required values of reliability) are fixed in the form of inequalities.  

 Nevertheless, this method is interesting in general and also gives us some useful 

hints for appropriate solution of some practical problems of discrete nature. 

 

 Let us begin with the direct optimal redundancy problem.  For solving this problem, 

we construct the Lagrange Function, L(X): 

 

X)(X)(X)( R + C = L  ,                                                    (3.1) 

where C(X) and R(X) are the cost of the system redundant units and the system reliability, 

respectively, if there are X redundant units of all types, ),...,,( 21 nxxxX  . 

 The goal is to minimize C(X) taking into account constrain in the form R(X
opt

)=R
0
. 

Thus, the system of equations to be solved is 

Lagrange made outstanding contributions to all fields of 

analysis, to number theory, and to classical and celestial mechanics.  

Lagrange was one of the creators of the calculus of 

variations. He introduced the method of Lagrange multipliers where 

possible constraints were taken into account.  Lagrange invented the 

method of solving differential equations known as variation of 

parameters and applied differential calculus to the theory of 
probabilities.  

He studied the three-body problem for the Earth, Sun, and 

Moon and the movement of Jupiter’s satellites.  

Above all he impressed on mechanics, having transformed 

Newtonian mechanics into a branch of analysis, Lagrangian 

mechanics. 
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 The values to be found are: the opt
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 If both function C(X) and R(X) are separable
2
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 On a physical level, (3.3) means that for separable functions  L(X) and  C(X), the 

optimal solution corresponds to equality of relative increments of reliability of each 

redundant group for an equal and infinitesimally small resources investment. 
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In the general case, (3.3) yields no closed form solution but it is possible to suggest an 

algorithm for numerical calculation: 

1) At some arbitrary point x1
(1)

 calculate the derivative for some fixed redundant group, 

say, the first one: 

. = 
xdxc

xdR )1(

)1(

111

11 )(
                                                            (3.5) 

 

Remark. Of course, one would like to choose a value of x1
(1)

 close to an expected optimal 

solution opt

ix . For example, if you consider spare parts for equipment to operate failure-free 

during time t and know that the unit MTTF is T, this value should be a little larger than  t/T. 

In other words, this choice should be done based on engineering experience and intuition. 

 

2) For the remaining redundant groups, calculate derivatives until the following 

condition is satisfied: 

. = 
xdxc

xdR

ii i

ii )1(
)1(

)(
                                                        (3.6) 

                     
2 Taking logarithm of multiplicative function R(X), one get an additive function of logarithms of 

multipliers.  
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3) Calculate value 
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xR =XR 
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                                                         (3.7) 

4) Compare R
(1)

 with R
0
. If R

(1) 
> R

0
 choose xi

(2)
<xi

(1)
; if R

(1)
 < R

0
 choose  xi

(2)
>xi

(1)
. After 

choosing a new value of xi
(2)

, return to step 1 of the algorithm. 

 The stopping rule: X
(N)

  is accepted as the solution if the following condition holds 

  RXR N  0)( )(                                                               (3.8) 

where   is some specified admissible discrepancy in the final value of the objective 

function R(X). 

 

 
Figure 3.1. Procedure of solving the Direct Problem of Optimal Redundancy. 

 

 

 Solution of the inverse optimal redundancy problem is analogous. Lagrange 

function is 

X)(*X)(X)(* C + R = L                                                         (3.9) 

and the equations are: 
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 The optimal solution has to be got in respect to goal function C(X). The stopping 

rule in this case:  

*)( 0)(   CXC N                                                   (3.11) 

where  * is some specified admissible discrepancy in the final value of the goal function 
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C(X). 

 

 
Figure 3.2. Procedure of solving the Inverse Problem of Optimal Redundancy. 

 

 

 Unfortunately, there is only one case where the direct optimal redundancy problem 

can be solved in a closed form. This is the case of a highly reliable system with active 

redundancy where 
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i.e. instead of maximizing R(X), one can minimize Q(X) and gets the needed optimal 

solution. 

 Taking into account that both objective functions are separable, (3.10) can be 

written as 
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 From equation  

i
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we can finally write 
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Now returning to the last equation in (3.10), we have 
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and, consequently, the Lagrange multiplier has the form  
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 From (3.16), one has  
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Finally, after substitution of (3.17) into (3.19), one gets 
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 Hardly anybody would be happy to deal with such a clumsy formula! 

 

 The solutions obtained by the Lagrange Multiplier Method are usually continue due 

to requirements to the objective functions.  Immediate questions arise: Is it possible to use 

an integer extrapolation for each non-integer xi?  If this extrapolation is possible, is the 

obtained solution optimal?  

Unfortunately, even if one tries to “correct” non-integer solutions by substitution 

lower and upper integer limits jjj xxx  , this very rarely leads to optimal solution! 

Moreover, enumerating all 2
n
 possible “corrections” can itself be a problem.  We 

demonstrate this statement on a simple example. 

* * * 
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4.STEEPEST DESCENT METHOD 

 

4.1.The main idea of SDM 

 The Steepest Descent Method (SDM) is based on the very natural idea: moving from 

an arbitrary point in the direction of the maximal gradient of the goal function, it is possible 

to reach the maximum of a multi-dimensional unimodal function. The origin of the 

method’s name lies in the fact that a water drop runs down on non-flat surface choosing the 

direction of instantaneous maximum descending. 

 Probably the next simple example explains the algorithm more graphically. Suppose 

that a traveler comes to a hill that is hidden in a thick mist. His target is to reach the hill top 

with no knowledge about the mountain shape except the fact that the hill is smooth enough 

(has no ravines or local hills). The traveler sees only a very restricted area around the 

starting point. The question is: What is the shortest path from the initial point to the 

mountain’s top?  Intuition hints that the traveler has to move in the direction of the maximal 

possible ascent at each point on his path to the mountain’s top. This direction coincides with 

the gradient of the function at each point. 

 

 
Figure 4.1. A path of a traveler up to the hill top. 

 

 However, optimal redundancy problem has an integer nature: redundant units can be 

added to the system one by one. The previous analogy is useful in case of continuous 

functions of continuous arguments. But in the case of optimal redundancy, all arguments are 

discrete. If continue the analogy with a traveler, one sees that there are restrictions on the 

traveler’s movement: he can move only in the North-South or East-West directions and can 

change the direction only at the vertices of a discrete grid with specified steps. This means 

that at each vertex one should use the direction of the largest partial derivative. Because of 

this, one sometimes speaks of the Method of Coordinate Steepest Descent. 
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Figure 4.2. A Traveler path when only N-S and E-W directions are allowed. 

 

 

 This idea of finding the maximum of a unimodal function may be applied to the 

optimal redundancy problem. 

 

4.2.Description of the algorithm 

 
 Consider a system that is a series connection of independent redundant groups.

 Let us use the both goal functions in the additive form 

)(lnX)(lnX)(
1

xR  = R  = L ii

ni




                                     (4.1) 

and  

.X)(
1

xc = C ii

ni




                                                (4.2) 

It is clear that maximization of function R(X) corresponds to minimization of function L(X), 

i.e. optimum solution X
opt

 for goal function L(X) delivers as well optimum for function R(X). 

 Introduce vector ),...,( )()(

1

)( N

n

NN xxX  , where )( N

ix is the number of redundant units 

of the ith redundant group at the Nth step of the SDM process. Denote by )( )(N

ii xR  

reliability index and by )( )(N

ii xC  the cost of the ith redundant group after the Nth step of the 

SDM process. For convenience of further exposition let us introduce also the following 

additional notation: )()(

1

)(

1

)(

1

)( ...,,,0,...,,( N

n

N

i

N

i

NN

i xxxxX  , i.e. vector )( N

iX is vector X without 

component xi. Obviously, )()()( N

i

N

i

N xXX  . 

 At the Nth step of the process, one adds a redundant unit of such type k, for which 

relative increase of reliability index is maximum, i.e. 
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N
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ni
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i
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1

)()( 
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
                                     (4.3) 

A unit of this type is added to the set of system’s redundant units.  The process continues in 

the same manner until the optimal solution is obtained. 

Now let us describe the optimization algorithm step by step from the very beginning. 

1) Before the beginning of the process, there is no redundant units at all, i.e. 



 49 

)0()0(

1 ... nxx  or, in other words, 0)0(


X . 

2) For all i, i=1, 2, …, n, one calculates values )( )0()0(

ii x ; 

3) One finds such index k that delivers maximum 

)(max)( )0()0(

1

)0()0(

ii
ni

kk xx 


  

4) One calculates a new value 

1)0()1(  kk xx  

5) All other  )0(

ix , ki  , change their superscripts: )1()0(

ii xx  ; 

6) One gets a new vector of the system’s redundant units: 

)( )1()0()1(

kk xXX   

7) One calculates the value of L(X
 (1)

) and determines the corresponding R(X
 (1)

); 

8) One calculates the value of L(X
 (1)

); 

9) One calculates by the same rule a new value );( )1()1(

kk x  

10) All other values )( )0()0(

ii x , ki  , are conserved but one changes their superscripts: 

)()( )1()1()0()0(

iiii xx   ; 

11) GOTO (3). 

 

4.3.The stopping rule 

 The solution of the direct problem of optimal redundancy is reached at such step N, 

for which the following condition is valid 

 

)()( )1(0)(  NN XCCXC .                                               (4.4) 

 

 The value of R(X
(N)

) is the maximum possible for the given constrain on the system 

cost. 

Remark. Sometimes the SDM procedure requires to add at the last step a very expensive 

unit but adding this unit exceed the given constrain on the total cost of the system’s 

redundant units.  At the same time, if one does not add this unit, there are some extra 

financial resources to add other, less expensive units. In this case one may bypass the 

expensive unit and continue the procedure. 

 

 The inverse optimal redundancy problem reaches its optimal solution at such step N 

that the following condition is valid: 

 

)()( )(0)1( NN XRRXR  .                                               (4.5) 

 

 The value of C(X
(N)

) is the minimum possible for the given constrain on the required 

system reliability index. 

 American mathematician Frank Proschan [Barlow&Proschan, 1965, 1981] has  

proven that the SDM procedure delivers members of dominating sequence if each function 

Ri(xi) is concave. 
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Example 4.1. A series system consists of six different units whose parameters are given in 

Table 4.1. (Distributions of time to failure are assumed exponential.) 

 

Table 4.1. Units’ parameters. 

Unit type Number of 

units, nk 

Unit failure rate, 

k 

(10
-5 

1/hr) 

Unit cost,сk 

1 5 1 1 

2 10 1 1 

3 5 1 8 

4 10 1 8 

5 5 8 1 

6 10 8 1 

 

 One needs to find the optimum number of standby units for successful system 

operation during t0=1000 hrs for two cases: 

(1) Required PFFO is 0.9995; 

(2) Admissible expenses on all spare units are 40 cost units. 

 

First of all, using Table 4.1, let us find parameters of Poisson distributions for each group by 

the formula 0tna iii  : 

 

Table 4.2. Values of parameters of Poisson distribution 

Parameter  Value 

a1 1·10 
-5

·5·1000=0.05 

a2 1·10 
-5

·10·1000=0.1 

a3 1·10 
-5

·5·1000=0.05 

a4 1·10 
-5

·10·1000=0.1 

Frank Proschan 

(1921-1993) 

 

   Frank Proschan is an American mathematician. He 

earned his Ph.D. in statistics from Stanford University in 1959. He 

had held positions with the Federal Government at the National 

Bureau of Standards (1941-1952), with Sylvania Electric Products 

(1952-1960) and with Boeing Scientific Labs (1960-1970). Since 

1970 he had been Professor of Statistics at Florida State University.  

He had many honors including the Von Neumann Prize 
award presented by TIMS-ORSA.  He was a Fellow of Institute of 

the American Statistical Association and a member of International 

Statistical Institute. 
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a5 8·10 
-5

·5·1000=0.4 

a6 1·10 
-5

·10·1000=0.8 

 

The probability of appearance of exactly k failures during given time t0 is calculated by the 

formula: 

)exp(
!

)(
)( 0

0 tn
k

tn
kq ii

k

ii
i 


 .                                              (4.6) 

 

By the way, if condition )1()(  iiii xQxQ holds, then calculation of values γ can be 

simplified up to 

i

ii
ii

c

xq
x

)(
)(  .                                                               (4.7) 

 

 Calculated values of  qi(xi) are presented in Table 4.3. 

 

Table 4.3. Values of unreliability indices for various xi. 

 

xi )( 11 xq  )( 22 xq  )( 33 xq  )( 44 xq  )( 55 xq  )( 66 xq  

0 0.0476 0.0905 0.0476 0.0905 0.268 0.359 

1 0.00119 0.00452 0.00119 0.00452 0.0536 0.144 

2 1.98E-05 0.000151 1.98E-05 0.000151 0.00715 0.0383 

3 2.48E-07 3.77E-06 2.48E-07 3.77E-06 0.000715 0.00767 

4 2.48E-09 7.54E-08 2.48E-09 7.54E-08 5.72E-05 0.00123 

5 2.06E-11 1.26E-09 2.06E-11 1.26E-09 3.81E-06 0.000164 

6 1.47E-13 1.8E-11 1.47E-13 1.8E-11 2.18E-07 1.87E-05 

7 9.22E-16 2.24E-13 9.22E-16 2.24E-13 1.09E-08 1.87E-06 

8 5.12E-18 2.49E-15 5.12E-18 2.49E-15 4.84E-10 1.66E-07 

9 2.56E-20 2.49E-17 2.56E-20 2.49E-17 1.94E-11 1.33E-08 

 

 

 Now we can build the next table where values )( ii x  are presented. 

 

Table 4.4. Values )( ii x  for all redundant groups. 

 

xi )( 11 x  )( 22 x  )( 33 x  )( 44 x  )( 55 x  )( 66 x  

1 

2 

0.0464 
 

1 

0.086 
 

 8 

0.0058 
 

6 

0.0107 
 

4 

0.0268 
 

3 

0.027 
 

2 

11 
0.00117 

 

9 

0.00437 

 

16 

0.000146 

 

14 

0.000547 

 

7 

0.00581 

 

5 

0.0132 

 

3 

19 

1.96E-05 

 

15 

0.000147 

 

24 

2.45E-06 

 

20 

1.84E-05 

 

13 

0.000804 

 

10 

0.003834 

 

4 

28 

2.45E-07 

 

23 

3.69E-06 

 3.07E-08 

26 

4.62E-07 

 

18 

8.22E-05 

 

12 

0.000805 
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5 2.46E-09 7.41E-08 3.07E-10 9.27E-09 

22 

6.67E-06 

 

 17 

0.000133 

 

6 2.05E-11 1.24E-09 2.56E-12 1.55E-10 

27 

4.49E-07 

 

21 

1.81E-05 

 

7 1.47E-13 1.77E-11 1.83E-14 2.22E-12 2.59E-08 

25 

2.10E-06 

 

8 9.16E-16 2.22E-13 1.15E-16 2.77E-14 1.30E-09 

29 
2.13E-07 

 

9 5.09E-18 2.47E-15 6.37E-19 3.09E-16 5.81E-11 1.91E-08 

 .  .  . .  .  . .  .  . .  .  . .  .  . .  .  . 

 

 

 

 In this table, the numbers in the upper right corner of cells are numbers 

corresponding to steps of the SDM procedure. 

  

 On the basis of Table 4.4, let us build the final table, from which one can get 

needed optimal solutions. 

 

Table 4.5. Step-by-step results of SDM procedure 
 C(X) Q(X) x1 x2 x3 x4 x5 x6 

… … … … … … … … … 

10 24 0.021871 1 2 1 1 2 3 

11 25 2.07E-02 2 2 1 1 2 3 

12 26 1.43E-02 2 2 1 1 2 4 

13 27 7.83E-03 2 2 1 1 3 4 

14 35 3.46E-03 2 2 1 2 3 4 

15 36 3.31E-03 2 3 1 2 3 4 

16 44 2.14E-03 2 3 2 2 3 4 

17 45 1.07E-03 2 3 2 2 3 5 

18 46 4.16E-04 2 3 2 2 4 5 

19 47 3.96E-04 3 3 2 2 4 5 

20 55 2.49E-04 3 3 2 3 4 5 

21 56 1.03E-04 3 3 2 3 4 6 

22 57 5.01E-05 3 3 2 3 5 6 

23 58 4.64E-05 3 4 2 3 5 6 

24 66 2.69E-05 3 4 3 3 5 6 

25 67 1.00E-05 3 4 3 3 5 7 

26 75 6.33E-06 3 4 3 4 5 7 

… … … … … … … … … 

 

 The last table allows finding optimal solutions for both optimal problems: direct as 

well as inverse. 

 By conditions of the illustrative problem, R
0
=0.9995. From Table 4.5, we find that 
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the solution is reached at Step 18: unreliability in this case is 4.16E-04, i.e. R(X
opt

) = 

0.999584 that satisfies the requirements. (Corresponding cost is 46 cost units.)   

 At the same time for the inverse problem the solution is reached at Step 15 with the 

total cost of 36 units. (Corresponding PFFO=0.99669.) In this case we keep extra 4 cost 

units. Of course, they could be spent for 4 additional inexpensive units of types 1, 2, 5 and 6, 

i.e. instead of  obtained solution )4,3,2,1,3,2( 111111  xxxxxx  take solution 

with all resources spent: )5,4,2,1,4,3( 111111  xxxxxx . In this case, the 

system PFFO is equal to 0.99844. This solution is admissible in sense of the total cost of 

redundant units. 

 By the way, to get such a solution we could slightly change the SDM algorithm: If 

on a current step of the SDM procedure we “jump” over the admissible cost, we can take 

another unit or units with admissible cost.  

 Analogous corrections could be performed if the obtained current solution for the 

direct problem of optimal redundancy overexceeds the required value R
0
. 

 

4.5.Approximate solution 

 

 For practical purposes, an engineer sometimes needs to know an approximate 

solution which would be close to an optimal one a priori. Such a solution can be used as the 

starting point for the SDM calculation procedure. (Moreover, sometimes the approximate 

solution is a good pragmatic solution if input statistical data are too unconfident. Indeed, 

attempts to use strong methods with unreliable input data might be considered as a total 

absence of common sense!  Remember: the “garbage-in-garbage-out” rule is valid for 

precise mathematical models as well!).  

 The proposed approximate solution [Ushakov, 1965] is satisfactory for highly 

reliable systems. This means that in the direct optimal redundancy problem the value of Q
0
 

is very small. In a sense, such a condition is not a serious practical restriction. Indeed, if the 

investigated system is too unreliable, one should question if it is reasonable to improve its 

reliability at all. Maybe it is easier to find another solution, for instance, to use another 

system? 

 For a highly reliable system one can write 

  

)( )(

1

)(0
)X( xQ  Q  Q N

ii

ni

N 


                                             (4.8) 

 

at the stopping moment (the Nth step) of the optimization process when the value of the 

reliability index should be high enough. 

From Table 4.4, one can see that there is some “strip” that divided all values of  

γi(xi). For instance, consider cells corresponding to steps 19-24 (shadowed on the table).  

The largest value laying above this “strip” (step 18) has value γ = 8.22E-05 that is larger 

than any value of γ belonging to the “strip”. At the same time, the largest value laying 

below the “strip” (step 25) has value γ = 2·10
-6

 that is smaller than any corresponding 

value on the “strip”. It means that there is some value Λ, 2·10
-6

 < Λ < 8.22·10
-5

  that 

divides all set of γ in two specific subsets: this Λ in a sense play the role of Lagrange 
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multiplier. Indeed, approximate equality of γ for each “argument” xi completely 

corresponds to the equilibrium in the Lagrange solution. 

           Let us make a reasonable assumption that at the stopping moment 

 

 )()(

2

)(

1 ... N

n

NN                                                (4.9) 

 

At the same time, 


i

N

iiN

i
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)(                                                    (4.10) 

Now using (4.8) 
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and finally 
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 Now we can substitute (4.12) into (4.10) and obtain: 

 

c

Qc
  xQ

i

ni1

i
N

ii






0

)( )(                                                           (4.13) 

 

 For solving the inverse optimal redundancy problem, one has to use a very simple 

iterative procedure.  

(1) Find approximate starting values of the xi's  

c

C
 = x= ... = x = x

i

ni

n2


1

0
)1()1()1(

1                                           (4.14) 

 

(2) Use these xi's to calculate Q
(1)

 as 
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1

)1(

i
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ni
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                                             (4.15) 

 

(3) Calculate g
(1)

 as 

 

c

Q
 = 

i

ni


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(4) For  
)1(

 determine xi
(2)

 for all i from the equations 

 

Qi(xi
(2)

) = ci  
)1(

.                                                    (4.17) 

 

(4) For all obtained xi
(2)

, one calculates the total cost of the system's redundant units as: 

 

.xc = C ii

ni

)2(

1

)2( 


                                                    (4.18) 

 

5) If C
(1)

 > C
0
  one sets a new  

)1()2(
 , if C

(1)
 < C

0
 one sets a new  

)1()2(
 .  

 After this, the procedure continues from the 3
rd

 step. Such iterative procedure 

continues until the appropriate value of the total cost of redundant units is achieved. 

* * * 
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5.DYNAMIC PROGRAMMING 

 

 As mentioned above, the problem has an essentially discrete nature, so the SDM 

cannot guarantee the accuracy of the solution. Thus, if an exact solution of the optimal 

redundancy problem is needed, one generally needs to use the Dynamic Programming 

Method (DPM). 

  

 

5.1. Bellman’s  Algorithm 

  

 Main ideas of the DPM were formulated by an American mathematician Richard 

Bellman [Bellman, 1957], who has formulated the so-called optimality principle. 

 

 

  
 

 

 

 

 

 The DPM provides an exact solution of discrete optimization problems. In fact, it is 

a well organized method of direct enumeration. For the accuracy of the solutions one has to 

pay with a high calculation time and a huge computer memory if the problem is highly 

dimensional. 

 To solve the direct optimal redundancy problem, let us construct a sequence of Bellman's 

function, Bk(r). This function reflects the optimal value of the goal function for a system of k 

redundant groups and a specified restriction r. As usual, start in the beginning : 

 

 .RrrxRxc =rB
x

0)1()1(

1111

)1(

1 0;)(min)(
1

                                  (5.1) 

     

Richard Ernest Bellman 

(1920 – 1984) 
American applied mathematician, who 

is famous for his invention of dynamic 

programming in 1953. He also made many 

important contributions in other fields of 

mathematics. 

Over the course of his career he 

published 619 papers and 39 books. During the 

last 11 years of his life he published over 100 
papers despite suffering from crippling 

complications of a brain surgery.  

Bellman's fundamental contributions 

to science and engineering had won him many 

honors: First Norbert Wiener Prize in Applied 

Mathematics (1970). 
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 It is clear that in such a way we determine the number of units that is necessary for the 

redundant group to have reliability index equal to r
(1)

 that is laying within interval [0, R
0
]. 

 
Figure 5.1. Illustration of the solution for  Equation (5.1). 

 

Now compose the next function 

 .RxRrrBxc =rB
x

0

22

)1()1(

122

)2(

2 )()(min)(
2

                           (5.2) 

  

Figure 5.2. Illustration of the solution for  Equation (5.2). 

 

           In a sense, we have a “convolution” of the first and second redundant groups and for 

each level of current redundancy the best variant of such convolution is kept for the next 

stage of the procedure. In analogous way the recurrent procedure continues until the last 

Bellman’s equation is compiled: 
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 .RxRrrBxc =rB nn

nn

nnn
x

n

n
n

0)1()1(

1
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                           (5.3) 

 

 Actually, Equation (5.3) gives us only a solution for xn  : other xi's are “hidden in 

previous stages of compiling Bellman’s equation. Indeed, Equation (5.3) contains 

)( )1(

1





n

n rB , which allows us to determine xn-1, and so on. The last found will be x1. In a 

sense, the process of finding optimal xi’s  is going backwards relating to the process of  

Bellman’s function compiling. 

 Solution of the inverse problem of optimal redundancy is similar. The only 

difference is that the system reliability becomes an objective function and the total system 

cost becomes the constraint.. The procedure does not need additional explanations. 

 At the first stage of the recurrent procedure, one compiles the Bellman’s equation of 

the form:  
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 Then consequently other equations: 
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                                  (6.6) 

Optimal solution is found by the same backward returning to the beginning of the recurrent procedure. 

 For illustration of the calculated procedure of dynamic programming, let us consider 

a simple illustrative example. 

 

Example 5.1.  

 Let us consider a very simple series system consisting of three units with the 

characteristics: p1 = 0.7, p2 = 0.8, p3 = 0.9, and  c1 = c2 = c3 = 1.  For reliability increase, a 

“hot” redundancy is used.  

 The problem is to find the optimal vector of redundant units for the system under 

constrain: C(X) 6 cost units. 

 The table with all possible convolutions of redundant groups 1 and 2 is presented 

below.  Dominating vectors within each are marked with symbols y. 

 

Table 5.1. Convolution of redundant groups 1 and 2. 

Cost x1 x2 R(x1, x2)  Chosen 

0 0 0 0.56 y0 

1 1 0 0.728 y1 

 0 1 0.672  

2 2 0 0.7784  

 1 1 0.8736 y2 
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 0 2 0.6944  

3 3 0 0.79352  

 2 1 0.93408 y3 

 1 2 0.90272  

 0 3 0.69888  

4 4 0 0.798056  

 3 1 0.952224  

 2 2 0.965216 y4 

 1 3 0.908544  

 0 4 0.699776  

5 5 0 0.799417  

 4 1 0.957667  

 3 2 0.983965 y5 

 2 3 0.971443  

 1 4 0.909709  

 0 5 0.699955  

6 6 0 0.799825  

 5 1 0.9593  

 4 2 0.989589  

 3 3 0.990313 y6 

 2 4 0.972689  

 1 5 0.909942  

 0 6 0.699991  

. . . . . . . . . . . .  . . .  

  

Now compile a table with only dominating sequence for convolution of redundant 

groups 1 and 2, denoting each pair as y1, y2, etc. 

Table 5.2. 

yk R(yk) x3 R3(x3) Rsyst Chosen 

y0 0.56 6  1 0.56  

y1 0.728 5 0.999999 0.727999  

y2 0.8736 4 0.99999 0.873591  

y3 0.93408 3 0.9999 0.933987  

y4 0.965216 2 0.999 0.964251  

y5 0.983965 1 0.99 0.974125 X 

y6 0.990313 0 0.9 0.891282  

 

 Thus, the solution is (x3, y5). Now return to Table 5.1 and find there that y5 

corresponds to x1 = 3 and x2 = 2.  This is the final step of the solving procedure. 

 The solution of the direct problem of optimal redundancy is more complicated for 

manual calculations, however it can be easily programmed for a computer. 

 

 

 

5.2.Kettelle's Algorithm 

 

 Actually, DPM is a well organized enumeration using convolutions of a set of 
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possible solutions. It has some “psychological” deficiency: a researcher gets the final results 

without “submerging” into the solving process. If a researcher is not satisfied by a particular 

solution for some specified restrictions and decides to change them, it may lead to a 

complete re-solving of the problem. 

  

John D. Kettelle, Jr. 

(1925-2012) 

 
 John Kettelle was an American mathematician 

who fought for 3 years in WWII in US Navy and then served 2 years 

on a submarine  during  Korean war.  

 Next 5 years he had been working in Operations Research 

group at Arthur D. Little Co. with the founder of Operations Research 

George Kimbell. Later he started a series of consulting corporations.  
 He was the author of a well known paper on modified 

Dynamic Programming method. He edited 11 books published by 

ORSA. 

 Recently he has developed a method of  negotiations with 

computer as the third party. 
 

 

 

 

 

For most practical engineering problems, using the Kettelle's Algorithm [Kettelle, 1962] is 

actually a modification of the DPM. It differs from DPM by a simple and intuitively clear 

organization of calculating process.  This algorithm is very effective for the exact solution of 

engineering problems due to its clarity and flexibility of calculations. 

 Of course, the Kettelle's Algorithm, as well as DPM, requires more computer time 

and memory than the SDM, but it gives strict solutions. At the same time, this algorithm 

allows to construct entire dominating sequence (as SDM), that gives a possibility to switch 

from solving the direct optimal redundancy problem to the inverse one using the previously 

calculated sequence. 

 

5.2.1. General description of the method.  

 

We shall describe the Kettelle's Algorithm step by step. 

(1) For each ith redundant group, one constructs a table of values of Ri(xi), accompanied by 

corresponding cost Ci(xi). 

 

Table 5.3. Initial dominating sequences for redundant groups 

Group  

number 

Number of redundant units in the group 

0 1 2 … n … 

1 R1(0), C1(0), R1(1), C1(1), R1(2), C1(2), … R1(0), C1(0), … 

2 R2(0), C2(0) R2(1), C2(1) R2(2), C2(2) … R2(0), C2(0) … 

… … … … … … … 

N RN(0), CN(0) RN(1), CN(1) RN(2), CN(2) … RN(0), CN(0) … 

 

 
John D. Kettelle, Jr 

(1925-2012) 

 
 John Kettelle was an 

American mathematician 

who fought for 3 years in WWII 

in US Navy and then served 2 

years on a submarine  during  

Korean war.  

 Next 5 years he had been 

working in Operations Research 

group at Arthur D. Little Co. with 

the founder of Operations 

Research George Kimbell. Later 

he started a series of consulting 
corporations.  

 He is the author of a well 

known paper on modified 

Dynamic Programming method. 

 He edited 11 books 

published by ORSA. 

 Recently he has 

developed a method of 

negotiations with computer as the 

third party. 
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 The sequence of these pairs for each group forms a dominating sequence, i.e. for any 

j and k: R(k) < R(k+1) and C(k) < C(k+1). 

 

(2) Take any two redundant groups from Table 5.3, say, 1 and 2, and construct compositions 

of pairs located in the corresponding cells by the rule: R12(x1, x2) = R1(x1)×R2(x2) and   

C12(x1, x2) = C1(x1) + C2(x2). 

 

Table 5.4. Dominating sequence for the composition of groups1 and 2. 

 Number of redundant units of the 1
st
 redundant group 

  0 1 2 … n … 

Number 

of 

redundant 

units of 

the 1
st
 

redundant 

group 

0 R12(0,0), 

C12(0,0) 

R12(1,0), 

C12(1,0) 

R12(2,0), 

C12(2,0) 

… R12(n,0), 

C12(n,0) 

… 

1 R12(0,1), 

C12(0,1) 

R12(1,1), 

C12(1,1) 

R12(2,1), 

C12(2,1) 

… R12(n,1), 

C12(n,1) 

… 

2 R12(0,2), 

C12(0,2) 

R12(1,2), 

C12(1,2) 

R12(2,2), 

C12(2,2) 

… R12(n,2), 

C12(n,2) 

… 

… … … … … … … 

m R12(0,n), 

C12(0,n) 

R12(1,m), 

C12(1,m) 

R12(2,m), 

C12(2,m) 

… R12(n, 

m), 

C12(n, m) 

… 

… … … … … … … 

 

           The size of the table (i.e. values m and n) is not fixed a priori. It could be increased if 

a sequence of dominating pairs {R12(x1, x2), C12(x1, x2)} does not include a desired solution.  

          As the result, now we have a system with n – 1 redundant groups: groups from 3 to N 

and one new group formed by the described composing of groups 1 and 2.  

The procedure continues until one obtains a single composed group that is used in both 

cases: for solving direct as well as inverse problem of optimal redundancy. 

 

5.2. Numerical example.. For demonstration of the Kettelle’s Algorithm, let us consider a 

simple numerical example with a system of three redundant groups of active units. 

 

 
Figure 5.3. Block diagram of the system for the numerical example. 

 

  Let jx

jjj qxR 1)(  and jjjj xcxC )(  where 31  j . Assume that q1 =  0.3,  

q2 = 0.5, q3 = 0.5,  and c1=1, c2=3, c3 = 1. 

 For the sake of calculating convenience, let us prepare in advance dominated 

sequences for each redundant group, presented in Table 3. (Notice that for a single group, 

sequence of pairs “reliability-cost” is always dominating, since each added unit increases 

simultaneously both the cost and reliability index.) 
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Table 5.5. Initial dominating sequences for redundant groups 1, 2 and 3. 

Group  

number 

Number of redundant units in the group 

0 1 2 3 4 5 … 

1 R 0.7000 0.9100 0.9730 0.9919 0.9976 0.9992 … 

C 0 1 2 3 4 5 … 

2 R 0.5000 0.7500 0.8750 0.9375 0.9688 0.9844 … 

C 0 3 6 8 12 15 … 

3 R 0.5000 0.7500 0.8750 0.9375 0.9688 0.9844 … 

C 0 1 2 3 4 5 … 

 

 It is easy to see that each function R(C) is concave. 

 
Figure 5.4. Concave shapes of R(C) functions for initial redundant groups. 

 

 Next step is construction of the table with various combinations of possible 

configurations of groups 1 and 2 by the rules )1()1(),( 21

2121

xx
qqxxR   and 

221121 ),( xcxcxxC  . 

 

Table 5.6. Dominating sequence for the composition of groups1 and 2. 

 x2 

  0 1 2 3 4 5 

 

 

 

 

 

x1 

0 0.350;  

0 

1 

0.525;  

3 

4 

0.613;  

6 

0.656;  

9 

0.678;  

12 

0.695; 1 

5 

1 0.454; 

1 

2 

0.683; 

4 

5 

0.796; 

7 

8 

0.853; 

10 

0.882; 

13 

0.896; 

16 

2 0.487; 

2 

3 

0.730; 

5 

6 

0.851; 

8 

9 

0.912 

1 

12 

0.942; 

14 

15 

0.958; 

17 

3 0.496; 

3 

 

0.744; 

6 

7 

0.868; 

9 

10 

0.930; 

12 

13 

0.961; 

15 

16 

0.976; 

18 

19 

4 0.499; 

4 

0.748; 

7 

0.873; 

10 

0.935; 

13 

0.966; 

16 

0.981; 

19 
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11 14 17 20 

5 0.500; 

5 

0.749; 

8 

0.874; 

11 

0.937; 

14 

0.968; 

17 

18 

0.984; 

20 

21 

 … … … … … …  

 

Numbers in bold Italic denote the members of dominating pairs by ascending ordering by 

weights. 

 

 
Figure 5.5.  Graphical presentation of the data in the upper left corner of Table 5.6. 

 

 From Figure 5.5, one can see that the dominating sequence is not strictly concave, 

though there is some kind of concave envelope that, by the way, very often coincides with 

solutions obtained by the SDM. 

  

 (3) On the basis of Table 5.6, one constructs Table 5.7 containing only dominating 

reliability-cost pairs. For the illustrative example such a table has the form: 

 

Table 5.7. Beginning of the dominating sequence in Table 6.6. 

Number 1 2 3 4 5 6 7 8 9 10 11 … 

Domin.pair 0.350; 

0 

0.454; 

1 

0.487; 

2 

0.525; 

3 

0.683; 

4 

0.730; 

5 

0.744; 

6 

0.796; 

7 

0.851; 

8 

0.868; 

9 

0.873; 

10 

… 

(x1, x2) (0, 0) (0, 1) (0, 2) (0, 3) (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (2, 4) … 

 

Let us enumerate corresponding pairs of this dominating sequence with the number x
(1) 

. 

 

(4) Now we have a system consisting of two redundant groups: group 3 (data are on the 

lower lines of Table 5.5) and the newly composed group (data are in Table 5.7).  On the 

basis of these data let us combine the final group for the considering system. 

 

Table 5.8. Final data for solving the optimal redundancy problems for the illustrative 

example.  
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 Number of dominating variantof pairs { x
(1)

= (x1, x2)} 

1 2 3 4 5 6 7 8 9 . . . 

 

 

 

 

 

 

 

 

x3 

0 0.175; 0 

1 

0.227;  

1 

 

0.243;  

2 

0.262;  

3 

0.341;  

4 

0.365;  

5 

0.372; 

6 

0.398; 

7 

0.425; 

8 
. . . 

1 0.263; 

1 

2 

0.341; 

2 

3 

0.365; 

3 

 

0.393; 

4 

0.512; 

5 

6 

0.546; 

6 

0.556; 

7 

0.596; 

8 

0.638; 

9 

 

. . . 

2 0.306; 

2 

 

0.398; 

3 

4 

0.425; 

4 

 

0.458; 

5 

 

0.597; 

6 

7 

0.639; 

7 

0.650; 

8 

0.696; 

9 

0.745; 

10 
. . . 

3 0.330; 

3 

 

0.427; 

4 

5 

0.456; 

5 

 

0.492; 

6 

 

0.640; 

7 

8 

0.685; 

8 

9 

0.705; 

9 

0.746; 

10 

11 

0.798; 

11 

12 

. . . 

4 0.340; 
4 

0.441; 
5 

0.472; 
6 

 

0.510; 
7 

 

0.661; 
8 

 

0.707; 
9 

10 

0.720; 
10 

0.772; 
11 

0.825; 
12 

13 

. . . 

5 0.343; 

5 

0.7448; 

6 

0.479; 

7 

0.516; 

8 

0.672; 

9 

 

0.719; 

10 

 

0.732 

11 

0.784; 

12 

0.837; 

13 

 

. . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Table 5.9. Final dominating sequence for the system 

R 0.175 0.263 0.341 0.398 0.427 0.512 0.597 0.640 0.685 0.707 0.746 0.798 0.825 … 

C 0 1 2 3 4 5 6 7 8 9 10 11 12 … 

 

 
Figure 5.6. Final dominating sequence for the system. 

 

5.2.3. Solving the direct and inverse problems of optimal redundancy.   
 Using Table 5.7, it is easy to get solutions for the both – direct as well as inverse – 

problem of optimal redundancy.   For instance, if one needs to find the best redundant units 

allocation to satisfy the requirement R   0.8, then from Table7 we find that the solution for 

corresponding value (R=0.825) is in cell (x
(1)

 =9, x3 = 4).  The cost of redundant units in this 

case is 12 In turn, for x
(1)

 =9 one finds that this corresponds to x2=1 and x2=2. 

 Thus, the solution of inverse problem is (x1=2, x2=2, x3=3). 

 If there is a limitation on the redundant units total cost equal to 10,  then from the 
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Table 5.7 one finds that corresponding maximum value of PFFO is 0.746. This solution 

corresponds to a cell (x
(1)

 =8, x3 = 3).  In turn, for x
(1)

 =8 one finds that this corresponds to 

x1=1 and x2=2. 

 Thus, the solution of inverse problem is (x1=1, x2=2, x3=3). 

 

Remark. There are two ways of choosing redundant groups for composing a dominating 

sequence (see Figure 5.7). 

 

 
Figure 5.7. Two types of choosing redundant group for composing a dominating sequence 

 

For computer solution, both types are equivalent. However if one needs to make calculations 

by hand, then the dichotomous way gives a substantial decrease in calculations.  
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6.UNIVERSAL GENERATING FUNCTIONS 

 

 

 The Method of Universal Generating Functions (U-functions), introduced in 

[Ushakov, 1986], actually represents a generalization of the Kettelle’s Algorithm. This 

method suggests a transparent and convenient method of computerized solutions of various 

enumeration problems, in particular, the optimal redundancy problem. 

         

 

6.1. Generating function 

 

 First, let us refresh our memory concerning generating functions. This is a very 

convenient tool widely used in the probability theory for finding joint distributions of 

several discrete random variables. Generating function is defined as 

 





kGk

k

k zpz)(                                                        (6.1) 

 

where pk  is the probability that discrete random variable X takes value k and Gk is the 

distribution function domain. In the optimal redundancy problems, in principle, Gk = [0,  ), 

though any practical task has its own limitations on the largest value of k. 

 Consider two non-negative discrete random values 1X  and 2X  with distributions  


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
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





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)2(
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)2(
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 correspondingly, where n1 and n2 are numbers of discrete values of each type. 

For finding probability of random variable 
)2()1( XXX  , one should enumerate all 

possible pairs of 
)1(X  and 

)2(X   that give in sum value k and add corresponding 

probabilities: 

 
)1(X = 0, 

)2(X = k, with probability 
)2()1(

0 kpp   
)1(X = 1, 

)2(X = k – 1, with probability )2(

1

)1(

1  kpp  
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)1(X = 2, )2(X = k – 2, with probability )2(

2

)1(

2  kpp  

… 
)1(X = k, )2(X = 0, with probability )2(

0

)1( ppk  . 

 

 

 Thus the probability of interest is equal to 

 
)2(

0

)1(

0

)2()1(}{ j

kj

jk

kj

jkj ppppkXP  






                                      (6.2) 

 

One can see that there is a comvolution transform. It is clear that the same result will be 

obtained if one takes a polynomial 

 

)()()( )2()1( zzz                                                         (6.3) 

 

and, after combining alike terms of expansions, finds the coefficient at z
k
. 

 

6.2. Universal GF (U-function) 

 

One sees that algebraic argument “z” was introduced only for convenience: everybody 

knows that polynomials multiplication means product of coefficients and sum of powers. 

Such presentation helps one to obtain a distribution of the convolution of discrete r.v.’s. 

However, if random variables should be expose transformation different from convolution? 

For instance, if these random variables are arguments of some function? 

 Let us use habitual form of presentation, using symbol “ ” instead of “ ” just 

to underline that this is not an ordinary product of two GFs but special transform:   
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(6.4)

  

 Subscript “f” in 
f

means that some specific operation f will be undertaken over 

values X. It is clear that in case of “pure” GF function is operation of summation. 

 

 In general case, using polynomial form of GF is inconvenient and even impossible. 

For moving further, let us introduce some terms. We used to say that a system consists of 

units which are physical objects characterized by its parameters: reliability, cost, weight, etc. 

So, we can consider each unit as a multiplet of its parameter. Relaibility of each unit can be 

improved by using redundancy or by replacing with  more effective unit. In other words, on 

a design stage engineer feals with a “string” of possible multiplets characterizing various 

variants of a considered unit. 

 Consider a series system of two units.  Let unit-1 and unit-2 are characterized by 
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strings 

},...,,{ )1()1(

2

)1(

11 1nMMMS 

 
and

 

  

},...,,{ )2()2(

2

)2(

12 2nMMMS   

 

  Each multiplet is a set of parameters  },...,,{ )()(

2

)(

1

)( k

N

k

j

k

j

k

jM   where N is the 

number of parameters in each multiplet.   

 “Interaction” of these two strings is an analogue of the Cartezian product whose 

memberts fill the cells of the following table: 

 

Table 6.1. 

 )1(

1M  
)1(

2M  … 
)1(

1nM  

)2(

1M  
)1(
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)2(

2M  )1(

1M 
)2(

2M  )1(
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… … … … … 
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2nM  
)1(

1M 
)2(

2nM  
)1(

2M 
)2(

2nM  … 
)1(

1nM 
)2(

2nM  

 

 Interaction of multiplets consists of iteraction of their similar parameters, for 

instance, 
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h

Ni
f

k

Nj

h

i
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k

j

h

i

k

j
N
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                     (6.5)

 

 

Operator   , as well as each operator
sf
  , in most natural practical  cases 

possesses the commutativity property, i.e. 

 

f
  ( a , b )= 

f
  (b , a ) ,                                                   (6.6) 

 

and the associativity property, i.e.  

 

f
  (a, b, c) = 

f
  (a 

f
  ( b , c) )= 

f
  ((a 

f
 b ), c ).                    (6.7)  

   

 

Of course, operator 
sf
 depends on the physical nature of parameter s and the type of 

structure, i.e. series or parallel.  
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Table 6. 2. 

Type of parameter Type of structure Result of interaction 

A) α is unit’s  

PFFO

 series 
)()()()( h

Ai

k

Aj

h

Ai
f

k

Aj    

parallel )1()1(1 )()()()( h

Ai

k

Aj

h

Ai
f

k

Aj    

B) α is number of 

units in parallel

 series

 
);( )()()()( h

Ri

k

Bj

h

Bi
f

k

Bj B   

parallel );( )()()()( h

Ri

k

Bj

h

Bi
f

k

Bj B   

C) α is unit’s cost 
(weight) 

series )()()()( h

Ai

k

Aj

h

Ai
f

k

Aj    

parallel )()()()( h

Ai

k

Aj

h

Ai
f

k

Aj    

D) α is unit’s  

ohmic resistance

 series )()()()( h

Ai

k

Aj

h

Ai
f

k

Aj    

parallel   11)(1)()()( )()(
  h

Ai

k

Aj

h

Ai
f

k

Aj   

E) α is unit’s  

capacitance

 series   11)(1)()()( )()(
  h

Ai

k

Aj

h

Ai
f

k

Aj   

parallel )()()()( h

Ai

k

Aj

h

Ai
f

k

Aj    

F) α is pipeline 

unit’s capacitance 

series  )()()()( ,min h

Ai

k

Aj

h

Ai
f

k

Aj    

parallel )()()()( h

Ai

k

Aj

h

Ai
f

k

Aj    

G) α is unit’s  

random time to 

failure 

series  )()()()( ,min h

Ai

k

Aj

h

Ai
f

k

Aj    

parallel  )()()()( ,max h

Ai

k

Aj

h

Ai
f

k

Aj    

 

 

In the problem of optimal redundancy, one deals with triplet of type “Probability-

Cost-Number of units” for each redundant group: },,{ 321 jjjjM  . If there is a system 

of n series subsystems (single elements or redundant groups) , one has to use a procedure 

almost completely coincided with the procedure of compiling the dominating sequences  at 

the Kettelle’s algorithm. In other words, the problem reduces to the constructing a single 

“equivalent unit” which possesses the entire system’s properties. There are two possible 

ways of “convolving” the system into a single “equivalent unit”: dichotomous and 

sequential. We will demonstrate these two possible procedures on an exmple of  a series 

system of four subsystems. 
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Figure 6. 1    Dichotomous scheme of compiling the equivalent unit. 

 

 
Figure 6.2.     Dichotomous scheme of compiling the equivalent unit. 

 
 

Numerical example. Consider a series system of four units with parameters given in the 

table below. Assume that “hot” redundancy of each unit  is used for the system reliability 

improvement. 

 

Table 6.3. System unit parameters 
 Unit-1 Unit-2 Unit-3 Unit-4 

PFFO 0.6 0.6 0.7 0.7 

Cost 3 1.5 2 1.2 

 

Let us solve two problems of optimal redundancy: 

(a) Find the optimal allocation of redundant units to reach required PFFO 

level of 0.95; 

(b) Find the optimal allocation of redundant units to reach maximum 

possible PFO level under condition that the total cost of the system 

does not exceed 30 cost units.  
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In this case, each unit is characterized by the following strings of triplets (Cost, 

PFFO, Number): 

 
S1 = [{3; 0.6; 1}, ... , {12; 0.9744; 4},  {15; 0.9898; 5}, {18; 0.9959; 6}, {21; 0.9984; 7}, {24; 0.9993; 8}, 

{27; 0.9997; 9}, ...] 

 
S2 = [{1.5; 0.6; 1}, ... , {6; 0.9744; 4},  {7.5; 0.9898; 5}, {9; 0.9959; 6}, {10.5; 0.9984; 7}, {12; 0.9993; 8}, 

{13.5; 0.9997; 9}, ...] 

 

S3 = [{2; 0.7; 1}, ... , {6; 0.9730; 3},  {8; 0.9919; 4}, {10; 0.9976; 5}, {12; 0.9993; 6}, {14; 0.9998; 7}, 
{16; 0.9999; 8}, ...] 

 

 

S4 = [{1.2; 0.7; 1}, ... , {3.6; 0.9730; 3},  {4.8; 0.9919; 4}, {6; 0.9976; 5}, {7.2; 0.9993; 6},  

{8.4; 0.9998; 7}, {9.6; 0.9999; 8}, ...]. 

 

Let us apply dichotomous scheme of compikling equivalent unit, and, first, 

consider the subsystem consisting of Unit-1 and Unit -2. We omit all intermediate 

calculations performed with help of a simple Excel program.  

 

Table 6.4. Triplets belonging to 
*

1S .  

Cost PFFO X=(x1,x2) 

… … … 

18 0.9495 (4,4) 

19.5 0.9644 (4,5) 

21 0.9704 (4,6) 

21 0.9644 (5,4) 

22.5 0.9796 (5,5) 

22.5 0.9728 (4,7) 

24 0.9857 (5,6) 

24 0.9704 (6,4) 

24 0.9738 (4,8) 

25.5 0.9881 (5,7) 

25.5 0.9857 (6,5) 

25.5 0.9741 (4,9) 

27 0.9728 (7,4) 

27 0.9918 (6,6) 

27 0.9891 (5,8) 

28.5 0.9881 (7,5) 

28.5 0.9943 (6,7) 

28.5 0.9895 (5,9) 

30 0.9738 (8,4) 

30 0.9943 (7,6) 

30 0.9953 (6,8) 

… … … 

 

In this table, as well as in next tables below, shadowed are those triplets which are 

dominated by dominating ones. 
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In the same manner construct *

2S . 

 

Table 6.5. Triplets belonging to 
*

2S .  

Cost PFFO X=(x3,x4) 

… … … 

9.6 0.9467 (3,3) 

10.8 0.9651 (3,4) 

11.6 0.9651 (4,3) 

12 0.9706 (3,5) 

12.8 0.9839 (4,4) 

13.2 0.9723 (3,6) 

13.6 0.9706 (5,3) 

14 0.9895 (4,5) 

14.4 0.9728 (3,7) 

14.8 0.9895 (5,4) 

15.2 0.9912 (4,6) 

15.6 0.9723 (6,3) 

15.6 0.9729 (3,8) 

16 0.9951 (5,5) 

… … … 

 

 Now on the basis of 
*

1S and 
*

2S , one constructs the final string for the equivalent 

unit.  The result is given in the table below. 

 

Table 6.6. Resulting string of triplets for the equivalent unit. 

Cost PFFO X=(x3,x4,x3,x4) 

… … … 

27.6 0.8989 (4,4,2,3) 

28.8 0.9164 (4,4,4,3) 

29.1 0.9164 (4,5,2,3) 

30.0 0.9216 (4,4,5,3) 

30.3 0.9307 (4,5,4,3) 

30.6 0.9187 (3,6,2,3) 

30.8 0.9342 (4,4,4,8) 

31.5 0.9360 (4,5,5,3) 

31.8 0.9365 (3,6,4,3) 

32.0 0.9395 (4,4,5,4) 

32.1 0.9274 (5,5,2,3) 

32.3 0.9489 (4,5,4,8) 

33.0 0.9419 (3,6,5,3) 

33.2 0.9411 (4,4,6,4) 

33.3 0.9454 (5,5,4,3) 

33.5 0.9543 (4,5,5,4) 

33.6 0.9389 (5,6,2,3) 

33.8 0.9548 (3,6,4,8) 
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… … … 

 

One can notice that the final string in this particular case completely coincides 

with the final dominating sequence obtained by the Kettelle’s Algorithm: the only 

difference is that we kept “the track of solving process” and have the resulting solution 

immediately from the table.  (Frankly speaking, the Kettele’s Algorithm could be easily 

modified to get the same property of the final solution.) 

Solutions of the problems above can be easily found from the last table. First time 

PFFO exceed level of 0.95 when X=(4,5,5,4) and the corresponding system cost is 33.5 

cost units. The second task has solution X=(4,4,5,3) with the cost equal exactly 30 cost 

units.  FFO for this case is equal to 0.9216. 

In the conclusion of this chapter, let us notice that the U-function method is very 

constructive not only for solving optimal redundancy problem, but also for a number of 

other problems, particularly associated with multi-state systems analysis. 
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7.GENETIC ALGORITHMS 

 

7.1. Introductory 

 

Computer simulations of evolution started in the mid-1950s. A Norwegian-Italian 

mathematician Nils Aall Barricelli (1912-1993), who had been working at the Institute 

for Advanced Study in Princeton, published his first paper on the subject. Then a series of 

works have been published in 1960-70s.  

Genetic algorithms in particular became popular through the work of John Holland in 

the early 1970s., and particularly his book “Adaptation in Natural and Artificial Systems” 

(1975).  

 

 

 

Holland wrote: "A Genetic Algorithm is a method of problem analysis based on 

Darwin's theory of natural selection. It starts with an initial population of individual 

nodes, each with randomly generated characteristics. Each is evaluated by some method 

to see which ones are more successful. These successful ones are then merged into one 

"child" that has a combination of traits of the parents’ characteristics." 

In recent years, many studies on reliability optimization use a universal optimization 

approach based on metaheuristics. Genetic algorithms are considered as a particular class 

of evolutionary algorithms that use techniques inspired by Darwin’s evolution theory in 

biology that includes such components as inheritance, mutation, selection, and crossover 

(recombination). 

These metaheuristics hardly depend on the specific nature of the problem that is being 

solved and, therefore, can be easily applied to solve a wide range of optimization 

problems. The metaheuristics are based on artificial reasoning rather than on classical 

mathematical programming. An important advantage of these methods is that they do not 

require any prior information and are based on collection of current data obtained during 

the randomized search process. These data are substantially used for directing the search.  

John Henry 'Dutchy' Holland 

(born in 1929) 
 

American scientist and Professor of Psychology and 

Professor of Electrical Engineering and Computer Science at 
the University of Michigan, Ann Arbor. He is a pioneer in 

complex system and nonlinear science. He is known as the 

father of Genetic Algorithms. In 1975 he wrote his book on 

genetic algorithms, "Adaptation in Natural and Artificial 

Systems".  
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Genetic algorithms are implemented as a computer simulation in which a population 

of abstract items (called “chromosomes” or “the genotype of the genome”) represent 

“candidate solutions” (called individuals, creatures, or phenotypes) systematically lead 

toward better solutions.  

The GAs have the following advantages in comparison with traditional methods:  

-  they can be easily implemented and adapted;  

-  they usually converge rapidly on solutions of good quality; 

-  they can easily handle constrained optimization problems. 

  

A genetic algorithm requires strong definition of two things: 

a genetic representation of the solution domain,  

a fitness function to evaluate the solution domain.  

The fitness function is defined over the genetic representation and measures the 

quality of the presented solution. The fitness function always depends on the problem 

nature. In some problems, it is impossible to define the fitness expression, so one needs to 

use interactive procedures based on expert’s opinion. 

As soon as we have the genetic representation and the properly defined fitness 

function, GA proceeds to initialize a population of solutions randomly.  

Genetic algorithm includes the following main phases. 

 

Initialization 

A number of individual solutions is generated at random to form an initial population. 

The population size depends on the nature of the problem, but typically contains 

hundreds or thousands of possible solutions. The population is generated to be able to 

cover the entire range of possible solutions (the search space). Occasionally, some 

solutions may be "seeded" in areas where actual optimal solution is located. 

This initial population of solutions is undertaken to improve the procedure through 

repetitive application of selection, reproduction, mutation, and crossover operators. 

 

Selection 

Obtained individual solutions are selected through a special process using a fitness 

function that allows ordering the solutions by specified quality measure. These selection 

methods rate the fitness of each solution and preferentially select the best solutions.  

 

Reproduction 

The next step is generating the next generation of solutions from those selected 

through genetic operators: crossover (recombination), and mutation. 

Each new solution is produced by a pair of "parent" solutions that selected for 

“breeding”. By producing a "child" solution using the above methods of crossover and 

mutation, a new solution is created which typically shares many of the characteristics of 

its "parents". New parents are selected for each child, and the process continues until a 

new population of solutions of appropriate size is generated. 

 

Termination 

This process described above is repeated until a termination condition has been 

reached. Common terminating conditions are: 
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the predetermined number of produced generations has been reached,  

or a satisfactory fitness level has been reached for the population.  

 

 

7.2. Structure of Steady-state Genetic Algorithms
3
  

 

The steady-state GA (see Figure 7.1) proceeds as follows: an initial population of 

solutions is generated randomly or heuristically. Within this population, new solutions 

are obtained during the genetic cycle by using the crossover operator. This operator 

produces an offspring from a randomly selected pair of parent solutions that are selected 

with a probability proportional to their relative fitness. The newly obtained offspring 

undergoes mutation with the probability pmut. 

 
 

Figure 7.2. Structure of a steady-state GA 

 

Each new solution is decoded and its fitness function value is estimated. These 

values are used for a selection procedure that determines what is better: the newly 

obtained solution or the worst solution in the population. The better solution joins the 

population, while the current one is discarded. If the solution population contains a pair 

of equivalent items, then either of them is eliminated and the population size decreases. 

The stopping rule is when the number of new solutions reaches some level Nrep, or when 

the number of remained solutions in the population after excluding reaches a specified 

level. After this, the new genetic cycle begins: a new population of randomly constructed 

solutions is generated and the process continues. The whole optimization process 

terminates when its specified termination condition is satisfied. This condition can be 

specified in the same way as in a generational GA.  

The steady-state GA can be presented in the following pseudo-code format. 
 
begin STEADY STATE GA 

 Initialize population   

 Evaluate population   {compute fitness values}  
 while GA termination criterion is not satisfied do 

{GENETIC CYCLE}  
while genetic cycle termination criterion is not satisfied do  

  Select at random Parent Solutions S1, S2 from   

                     
3 Material for this section is presented by G. Levitin. 
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      Crossover: (S1, S2)  SO {offspring}  

      Mutate offspring SO  S*O with probability pmut 
      Evaluate S*O 

Replace SW {the worst solution in   with S*O } if S*O is  
better than SW 

  Eliminate identical solutions in   
  end while 

  Replenish   with new randomly generated solutions  
 end while 
end GA 

 

 

7.3. Related techniques4  

Below is given a list (in alphabetic order) of a umber of techniques “genetically” 

close to Genetic Algorithm: 

Ant colony optimization (ACO) uses many ants (or agents) to traverse the solution 

space and find locally productive areas.  

Bacteriologic Algorithms (BA) inspired by evolutionary ecology and, more 

particularly, bacteriologic adaptation.  

Cross-entropy method (CE) generates candidates solutions via a parameterized 

probability distribution.  

Evolution strategies (ES) evolve individuals by means of mutation and intermediate 

and discrete recombination.  

Evolutionary programming (EP) involves populations of solutions with primarily 

mutation and selection and arbitrary representations.  

Extremal optimization (EO) evolves a single solution and makes local modifications 

to the worst components.  

Genetic programming (GP) is a technique, in which computer programs, rather than 

function parameters, are optimized.  

Deluge algorithm (GD) is a generic algorithm similar in many ways to the hill-

climbing and simulated annealing algorithms. 

Grouping Genetic Algorithm (GGA) is an evolution of the GA where the focus is 

shifted from individual items, like in classical GAs, to groups or subset of items. 

Harmony search (HS) is an algorithm mimicking musician’s behaviors in 

improvisation process. 

Immune optimization algorithm (IOA) is based on both the concept of Pareto 

optimality and simple interactive metaphors between antibody population and multiple 

antigens. 

Interactive evolutionary algorithms (IEA) are evolutionary algorithms that use human 

evaluation when it is hard to design a computational fitness function.  

Mimetic algorithm (MA) is a relatively new evolutionary method where local search 

                     
4 This section is based partly on http://en.wikipedia.org/wiki/Genetic_algorithm. 
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is applied during the evolutionary cycle.  

Particle swarm optimization (PSO) is an algorithm to find a solution to an 

optimization problem in a search space, or model and predict social behavior in the 

presence of objectives. 

Simulated annealing (SA) is a related global optimization technique that traverses the 

search space by testing random mutations on an individual solution.  

Taboo search (TS) is similar to Simulated Annealing in that both traverse the solution 

space by testing mutations of an individual solution.  
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8.MONTE CARLO SIMULATION  

 

8.1. Introductory remarks 

 

Very often a reliability goal function cannot be expressed in convenient analytical form 

that makes even calculation of reliability decrements practically impossible. For instance, 

such situations arise when system units are mutually dependent or their reliability 

simultaneously depends on some common to all environmental factors (temperature, 

mechanical impacts, etc.). In these cases, the Monte Carlo simulation is usually used for 

reliability indices calculation. However, the problem arises: How to use the Monte Carlo 

simulation for optimization?   

 Roughly speaking, the idea is in observing the process of the spare unit expenditure 

(replacement of failed units) until specified restrictions allow one to do so.  This may be a 

simulation process or an observation of the real deployment of the system.  After the 

stopping moment, we start another realization of simulation process or observation of the 

real data.  When the appropriate statistical data are collected, the process of finding optimal 

solution starts. 
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 Avoiding a formal description of the algorithm, let us demonstrate it on numerical 

examples which will make the idea of the method and its specific technique clearer.   

 

8.2. Formulation of optimal redundancy problems in statistical terms 

 

 Standard methods do not give a solution if the goal function is the mean time to 

failure 

 

T  =  R t x dt
i n

i i|( ) ( )x
0 1



 
                                                      (8.1) 

 

 

or if units are dependent, for instance, via a vector of some external factors g (temperature, 

humidity, vibration, etc.):  

 

R  =  R x ,x ,...x | dF
g G

n( ) ( ) (x g g)


 1 2                                      (8.2) 

 

where F(g) is the d.f. of some external parameter g and G is its domain. 

 

8.3.Algorithm for Trajectory Generation 

 

 For solution of the formulated problems, we need to have data obtained from real 

experiment (or system deployment) or from Monte Carlo simulation of the system model.  

Though this procedure is routine, we will briefly describe it for the presentation closeness.  

The procedure is as follows. 

 Consider a series system of n units. (For simplicity of explanation of the algorithm, 

we will assume that the units are independent.  However, everything described below can be 

easily extended to the general case: it will effect only a mechanism of random sequences 

generation.)   

 Let us consider the process of spare units expenditure as the process of changing the 

system states and the total cost of spare units at sequential replacement moments.  After 

failure each unit is immediately replaced with a spare one.  Let tk
(j)

 be the moment of the kth 

replacement during the jth Monte Carlo experiment.  The number of spare units of type i 

spent at moment )( j

kt  is denoted )( j

ikx . 

 An initial state at )(

0

jt =0 is: 

 

 )(

0

j

ix for all i, 1, 2, …4, and j, j=1, 2, …, N.  

 

 The total cost of spare units at the initial moment is C0 = 0.  (Sometimes it might be 

reasonable to consider the initial cost of the system with no spare units as C0, that is, 
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C0= 
 ni

iick
1

  where ki is the number of units of type i within equipment before reliability 

improvement.) 

 Consider the step by step procedure of generating trajectories )(s , s=1, 2, ... .  We 

begin with )1( but the corresponding subscript, (1), will be omitted for the sake of 

convenience. 

Step 1.  Generate random time to failure (TTF) for each unit, and define bi1=ξi, that is bi1 is 

the moment of the earliest failure (and instantaneous replacement) of the ith unit.  The 

current moment (for every unit i) at the beginning of any trajectory )(s is bi0=0. 

Step 2.  Determine the moment of the occurrence of the first event (first replacement) within 

the first realization )1( as 1

1

1t = b
i n

i .
 

min 5 

Step 3.  Assign to the corresponding unit (for which the moment of failure is the earliest 

one) a specific number i=i1. 

Step 4.  Put into the spare units counter a new value 
1 1i ix = x + .1 0 1 6 

Step 5.  Rename remaining xi0 as follows: xi0=xi1 for all i i1. 

Step 6.  Calculate a new value of the system cost C1=C0+ ci1
7  

Step 7.  Generate the next random TTF for unit i1, .
i


1

8 

Step 8.  Calculate the next event occurring due to unit i1: .+t=b i2i 
11 1 9 

Step 9.  Rename the remaining values bi1=bi2 for all i i1. 

 His completes the first cycle. GOTO Step 2, i.e. find 2

1

2t =  b
i n

i

 
min 10, and so on 

until stopping the first realization. 

  The type of problem to be solved determines the stopping rule of each realization.   

 

 Stopping rule for the Inverse Problem of optimal redundancy:   The process is 

stopped at the moment tN when the total cost of spare units exceeds the permitted C
0
. 

  

 Stopping rule for the Direct Problem of optimal redundancy:   The simulation 

process for each realization stops at the moment MM ttt  *1  where t
*
 equals the required 

operational time t0 (if the reliability index is the probability of failure free operation) or t
*
 is 

the required system's MTTF.  

 After the termination of generating the first trajectory, )1( , we start to generate 

)2(  by the same rules.  The number of needed realizations, N, is determined by the required 

accuracy of statistical estimates. 

 Thus, each trajectory j represents a set of the following data: 
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where )( j

sX is the set of spare units at moment )( j

st , i.e., }...,,,{ )()(

2
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1

)( j

ns

j
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j

s

j

s xxxX  . 

 After the description of the Monte Carlo simulating process, let us consider the 

optimization problems themselves.  We cn make an important remark: previously all 

problems were formulated in probabilistic terms, but dealing with statistical (empirical) 

functions has its specific.  Below these problems are reformulated in an appropriate way. 

 

8.4.Description of the Idea of the Solution 

 

 Assume that we need to supply some system with spare units for a specified period 

of time.  We have no prior knowledge on units reliability but we have an opportunity to 

observe a real process (or simulation) of failure occurrence. 

 Consider the direct problem of optimal redundancy.  What shall we do in this case?  

We observe the process of spare unit expenditure during time t*. This process can be 

described as a random travel – call it trajectory – in discrete n-dimensional space X. 

Illustration of such process –n two-dimensional case is presented bellow. 

 
Figure 8.1. Example of a two-dimensional trajectory. 

 

 Let us observe N such trajectories, j=1, 2, ... , N  in an n-dimensional space where n 

is the number of unit types.  Each realization is stopped when the total cost of spare units 

exceeds the permitted amount, that is, each trajectory reaches or even penetrates a hyper 

plane 

 

  })({ 0CXC              (8.3)  

determined by the restriction on the total system cost (example for two-dimensional case is 

given in the figure below).  
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Figure 8.2.  Example of two-dimensional trajectory inside hyper plane C(x1, x2)=C

0
. 

 

  After this, in the same n-dimensional space, we construct such hypercube r , r = 1, 

2, ... that each of their vertexes is lying under the hyper plane).  In Figure 8.2 there are two 

such hypercube though there could be many of them: actually in this case all pairs (x1, x2) 

that belong to hyper plane C(x1, x2)=C
0
 could be vertices of such hypercube.  

 Denote the maximum time that trajectory )( j is spending within the hypercube r  

by ),( )()(

r

jj

r   .  Introduce an indicator 

 

 

 Among all hypercubes above we choose such hypercube r  that maximizes the 

frequency of failure-free operation during required interval t0 under the cost restrictions:   

 

 

where C
0
 is the admissible redundant group cost. 

 Maximization of the system average time to failure is reached by the hypercube r'  

that corresponds to the solution of the following problem of the conditional optimization: 
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 Now consider the Direct Problem of optimal redundancy.  In this case, the required 

time of the system failure-free operation equals t0.  We observe the process of spare units 

expenditure N times until the system failure-free time exceeds t0 and record trajectories 
)( j , j = 1, 2, ... , N  in an n-dimensional space.  Afterwards we construct such hypercubes 

r , r = 1, 2, ...  in the same n-dimensional space that include (cover) R
0
 100% of all 

trajectories where R
0
 is the specified level of the reliability index.  Among all hypercubes 

described above, we choose the one that is characterized by the minimum total cost. In other 

words, the hypercube r

~  must satisfy the solution of the following problem: 

 Now let the specified requirement be given for the system average time to failure, 

T
*
.  The hypercube r

~  presenting the solution, must be chosen corresponding to the 

solution of the problem: 

.T  
N

1
  xc j

r
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                         (8.8)                             

 

 Of course, one should take into account that the operation with the frequency differs 

from the operation with the probability.  The proposed solution is asymptotically accurate.  

Thus all these arguments are satisfactory only for a large enough sample size. 

 

 

8.5.Inverse Optimization Problem 

 

8.5.1. System Successful Operation vs. System Cost 

 

 We need to find opt  that satisfies (8.5). The algorithm for solution is as follows. 

Step 1.  Choose a hypercube 1  whose diagonal vertex is lying on or under the hyperplane 

(8.3). 

Step 2.  Take the first realization, )1(  obtained with the help of the Stopping Rule 1.  Find 

moment  )1(

1  when this trajectory "punctures" the hypercube 1 .  This corresponds to the 
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moment )1(

kt  where 

 

where 1i  is a component of 1 . 

Step 3.  Assign to )1(

1  a value 1 or 0 by using the indicator function (8.4). 

Step 4.  Add )1(

1 to the value in the counter (initial value equals 0) of successful trajectories. 

 Repeat the procedure from Step 2 for the next realization, )2( . 

 After the analyzing of all trajectories, we calculate the frequency of successful 

trajectories, 1 0

1
1

1
 ( ) ( )
P t =

N
 

j N

j

 

  16 for the chosen hypercube 1 . Then we find such 

hypercube K  that is characterized by the maximum value of KP t . ( )0   For this purpose, we 

can use a random search, steepest descent, or other numerical optimization procedure in the 

discrete space of the trajectories of the spare units expenditure. 

 

Numerical example.   
 Consider a series system of n=3 units.  For the sake of simplicity of illustrative 

calculations and possibility to compare an obtained solution with analytical solution, assume 

that the system units are independent and ci = c for all i, 31  i .  Let the unit TTF be 

distributed exponentially with parameters 1 = 1, 2 = 0.5, and  3 = 0.25, respectively. The 

specified time of failure-free operation is t0=1.  Admissible total cost of a spare unit is equal 

to 4. 

 In the left three columns of Table 8.1, there are random exponentially distributed 

time-to-failure, i , for all three units. In the next three columns there are corresponding 

sequences of replacement times )(ki :  ikiiki   ...21)( are also there in the same 

table.  In other words, )(ki  is a random survival time of the ith redundant group consisting 

of one main and k-1 spare units. 

 

Table 8.1.  Random TTF and replacement time for 10  Monte Carlo realizations   

TTF Replacement time 

unit 1 unit 2 unit 3 unit 1 unit 2 unit 3 

Realization 1 

0.07 0.75 0.24 0.07 0.75 0.24 

0.53 4.97 3.19 0.6 5.72 3.43 

0.06 0.45 1.41 0.66 6.17 4.84 

0.53 2.59 3.42 1.19 8.76 8.26 

1.44 5 1.59 2.63 13.76 9.85 

Realization 2 

0.42 0.13 4.92 0.42 0.13 4.92 

0.16 1.15 12.9 0.58 1.28 17.82 

     .   > x    x  :k  = k
iikiki, TRUE   IS
111                                 
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0.45 3.29 0.83 1.03 4.57 18.65 

0.28 0.35 2.35 1.31 4.91 21 

0.25 2.1 1.74 1.55 7.02 22.73 

Realization 3 

0.62 3.47 3.22 0.62 3.47 3.22 

3.66 2.72 3.92 4.28 6.2 7.14 

5.11 2.47 3.9 9.39 8.67 11.04 

0.31 1.69 1.21 9.7 10.36 12.25 

1.42 0.86 0.96 11.12 11.22 13.21 

Realization 4 

1.45 5.85 0.51 1.45 5.85 0.51 

1.13 1.26 8.64 2.58 7.11 9.15 

1.27 2.14 4.71 3.85 9.25 13.86 

0.45 0.67 1.16 4.29 9.92 15.01 

2.48 1.52 6.38 6.77 11.44 21.4 

Realization 5 

0.32 0.22 0.54 0.32 0.22 0.54 

0.75 0.15 1.53 1.08 0.37 2.06 

0.73 1.49 1.78 1.81 1.87 3.84 

0.01 0.68 0.89 1.82 2.55 4.73 

0.25 3.06 1.68 2.07 5.6 6.41 

Realization 6 

0.11 2.03 5.54 0.11 2.03 5.54 

1.03 0.48 10.57 1.13 2.52 16.11 

0.88 2.26 5.14 2.01 4.77 21.25 

0.39 5.19 0.92 2.41 9.96 22.17 

3.45 1.12 6.58 5.86 11.08 28.74 

Realization 7 

1.22 0.11 2.69 1.22 0.11 2.69 

1.87 0.91 0.1 3.09 1.02 2.79 

0.41 2.11 1.9 3.5 3.13 4.69 

3.95 0.36 3.72 7.45 3.49 8.41 

0.4 1.67 1.43 7.85 5.17 9.84 

Realization 8 

0.27 1.49 22.49 0.27 1.49 22.49 

0.44 0.53 1.24 0.71 2.02 23.73 

0.74 1.07 12.07 1.45 3.09 35.8 

0.76 1.13 2.86 2.2 4.22 38.65 

0.36 2.99 2.87 2.57 7.21 41.52 

Realization 9 

0.46 1.55 7.9 0.46 1.55 7.9 

1.06 4.8 7.59 1.52 6.35 15.49 

1.9 2.66 8.14 3.42 9.01 23.63 

0.17 0.37 1.26 3.59 9.38 24.89 

2.18 0.43 5.17 5.77 9.8 30.06 
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Realization 10 

0.83 1.08 0.58 0.83 1.08 0.58 

0.4 1.76 3.76 1.23 2.84 4.33 

1 0.94 8.73 2.23 3.79 13.07 

0.4 1.48 3.74 2.63 5.26 16.81 

0.47 2.91 3.73 3.1 8.18 20.54 

   

 

Remark: We will use the same random numbers for all of the examples below.  This 

leads to a dependence of the results obtained for different problems, but our main goal is to 

illustrate the algorithm of the solution with the use of a numerical example, rather than to 

execute an accurate statistical experiment. 

 

Numerical solution 

(1)  Consider  Realization 1 from Table 8.1.  First, take values i of the first row of the left 

block of columns: 11 = 0.07, 21 = 0.75 and 31 = 0.24.  Denote them )1(1 , )1(2  and )1(3 , 

respectively, and set them into the first row of the right block of columns ("Replacement 

time").  Find the minimum value:  min { )1(1 , )1(2  , )1(3 }= )1(1 =0.07. 

(2)  Next take the value 12 = 0.53 in the column "TTF; Unit 1".  Form a new value:  )2(1 = 

)1(1 + 12  = 0.07 + 0.53 = 0.6.  Rename )1(2 = )2(2  and )1(3 = )2(3 .  Set this value into the 

second place in the column "Replacement time; Unit 1". 

(3)  Find the minimum value:  min { )2(1 , )2(2  , )2(3 }= )2(3 = 0.24.  Repeat step (2) until 

the total cost of each system equals 7.  (For the case ci=c, it means that all 7 units are spent.)   

As the result, we spent three units of type 1, no units of type 2, and two units of type 3.  In 

this particular case, the system TTF does not reach the specified time t0=1.  

(4)  Repeat steps (1) to (3) with the remaining realizations from Table 8.1 and fill out  Table 

8.2. 

 

Table 8.2.  Initial  experiment with exclusion of "extra units"  (marked with "*") 

Unit-2 Unit-2 Unit-3 

Realization 1 

0.07 0.75 0.24 

0.6  3.43 

0.66   

1.19   

Realization 2 

0.42 0.13 4.92 

0.58 1.28  

1.03   

1.31*   

Realization 3 

0.62 3.47 3.22 

4.28 6.2* 7.14* 
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9.39*   

Realization 4 

1.45 5.85 0.51 

2.58* 9.15  

3.85*   

4.29*   

Realization 5 

0.32 0.22 0.54 

1.08 0.37 2.06 

 1.87  

Realization 6 

0.11 2.03 5.54 

1.13 2.52*  

2.01*   

2.41*   

Realization 7 

1.22 0.11 2.69 

3.09* 1.02 2.79* 

 3.13*  

Realization 8 

0.27 1.49 22.49 

0.71 2.02*  

1.45   

2.2*   

Realization 9 

0.46 1.55 7.9 

1.52 6.35*  

3.42*   

3.59*   

Realization 10 

0.83 1.08 0.58 

1.23 2.84* 4.33 

2.23*   

  

 

(5)  Notice that units marked with "*" in Table 8.2 are auxiliary, that is, in each particular 

case they are not necessary because t0 has been reached before all permitted resources were 

spent.   

(6)  In Table 3, list all vectors: ),,( )(

3

)(

2

)(

1

)( kkkk xxxX  , k=1,2, ... ,10, that are obtained from 

Table 8.2 after exclusion of the marked units (see Table 8.3).  

  

Table  8.3. Realization of units spent (corrected for t0    1) 

Realization 

Number 

x1 x2 x3 System's 

TTF 

#1 4* 1* 2* <1 
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#2 3 2 1 1.03 

#3 2 1 1 3.22 

#4 1 1 2 1.45 

#5 2 3 2 1.08 

#6 2 1 1 1.13 

#7 1 2 1 1.02 

#8 3 1 1 1.45 

#9 2 1 1 1.55 

#10 2 1 2 1.08 

Maximum 3 3 2  

     

 

Remark:  Realization #1 is not taken into account because its TTF<1. 

 

(7)  Order each component of these vectors separately (see Table 8.4).  In other words, 

Table 8.4 shows the frequency with which a corresponding number of spare units of each 

type has been met during 10 realizations of the Monte Carlo simulation.  We see that the use 

of the vector (3, 3, 2) of spare units for this realization will lead to 1 failure in 10 

experiments.  However, the total system cost equals 8 units.  So, the next step is to find the 

best way of reducing the total system cost. 

  

Table 8.4. Ordered numbers of the use of units of different types 

x1 x2 x3 

1 1 1 

2 1 1 

2 1 1 

2 1 1 

2 1 1 

2 (1) 2 

3 2 2 

3 2 2 

3 2 2 

 (4) 3 (2) 

 

Note:  Numbers in parenthesis correspond to the first realization which was not taken into 

account. 

 

(8)  Put the number of realizations for which TTF has not reached t0=1 into the failure 

counter.  In our case there is only one such realization with TTF  1. 

(9) Exclude from Table 8.2 all vectors which correspond to the realizations mentioned in 

step (7). 

(10)  Find which unit in Table 8.4 has the smallest number of the use of largest values of 

x
k

i

k

)(

101
max



.  In our example, three units of type 1 were used in three realizations, three units 

of type 1 were used once, and two units of type 3 were used four times.  (We exclude from 

consideration Realization #1 since it did not deliver TTF>1.) 
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 In this case we exclude one unit of type 2 because in this case we gain one unit of 

cost and "loss" only one realization. 

 

(11)  Add number of units excluded at the step (9) into the counter of system failures. 

(12)  Check if the system cost equal to or less than C
0
 =7.  If "No", correct Table 11.3 by 

exclusion of the vector 1 and continue the procedure from step (6).  If "Yes", stop the 

procedure and  

(13)  calculate the ratio of realization without failure (the total number of realization minus 

the number of failures from the counter) to the total number of performed realizations. 

 In the example considered the final solution is (3, 2, 2). 

As a direct calculation with the use of tables of Poisson distribution shows, this vector 

delivers the probability 0.804.  Of course, such a coincidence with the observed frequency 

equal to 0.8 in a particular statistical experiment is not a proof of the method.  However, 

multiple results obtained by the proposed method for different other examples show a proper 

closeness to the exact solution even for a relatively small sample size.   

 The asymptotical convergence of the solution to the optimal one was proved in 

[Gordienko & Ushakov, 1978]. 

 

8.5.2. System Average Time to Failure vs. System Cost 

 
 We need to find  opt'  that satisfies the solution of (8.6). In this case the algorithm 

almost completely coincides with the one described above.  The only difference is in the 

absence of Step 3.  At Step 4 we put directly )(

1

i  in a counter of the survival time.  After 

analyzing all of the trajectories, the estimate of the MTTF for the hypercube 1   is 

calculated as  

 

 After this we perform the analogous calculations for other hypercubes finding such 

of them that are characterized by the maximum estimate of MTTF.  The search for the 

maximum can be performed in the same way as was done previously. 

 

Example 8.5.   We will consider the same data as in the example above.  The system is 

again allowed to have at most 7 units in total.    

Numerical solution 

 Repeat steps from 1 to 4 of that described in Section 3. In other words, we assume 

that Table 8.2 is constructed.  For solution of this problem, we will use all data of Table 8.2.  

The continuation of the algorithm for this case is as follows. 

 

(5)  Consider vectors of Table 8.2.  In this case, the components marked with "*" are 

included.  Those vectors are obtained in the imitation process until 7 units of price are spent.  

Now extract corresponding values from the right side of Table 8.1  (see Table 8.5).  

  

 .  
N

 = T
Ni


)1(

1

1

1

1



                                         (8.9) 
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Table 8.5.  Random time to failure for each realization until expenditure of seven units. 

unit 1 unit 2 unit 3 

Realization 1 

0.07 0.75 0.24 

0.53  3.19 

0.06   

0.53   

Realization 2 

0.42 0.13 4.92 

0.16 1.15  

0.45   

0.28   

Realization 3 

0.62  3.47 3.22 

3.66 2.72 3.92 

5.11   

3.9   

Realization 4 

1.45 5.85 0.51 

1.13  8.64 

1.27   

0.45   

Realization 5 

0.32 0.22 0.54 

0.75 0.15 1.53 

 1.49  

Realization 6 

0.11 2.03 5.54 

1.03 0.48  

0.88   

0.39   

Realization 7 

1.22 0.11 2.69 

1.87 0.91 0.1 

 2.11  

Realization 8 

0.27 1.49 22.49 

0.44 0.53  

0.74   

0.76   

Realization 9 

0.46 1.55 7.9 

1.06 4.8  

1.9   

0.17   
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Realization 10 

0.83 1.08 0.58 

0.4 1.76 3.76 

1   

 

           

In this table we can see for how long each unit was operating. 

(6)  On the basis of this table, we compose Table 8.6.  In each position of this table we 

have the total sum of the time spent during all realizations.  First of all, for independent and 

identical units, these values depend on the number of realizations where this unit was 

observed.  (In general case, where units are different and could be dependent, the number of 

such realizations might not be a dominant parameter.)  These values from the bottom show 

how much we will loose by excluding a unit.  

  

Table 8.6.  Sum of the times spent by units on the specified positions 

unit 1 unit 2 unit 3 

5.77 16.68 48.63 

11.03 12.5 21.14 

11.41 3.6* 3.9* 

2.58*    

 

"*" denotes the units which are eliminated (x1 = 4, x2 = 3, and x3 = 3). 

 

 It is clear that the loss will be less if we leave x1 = 3, x2 = 2 and  x3 = 2.  By 

eliminating them we decrease the total system cost up to 7 units of price.   

 The time to failure for the system in each realization is calculated as the minimal 

value among those, which are restricted by vector (x1=3, x2=2,x3), that is, for the kth 

realization 

 These values can be found on the right side of Table 8.6.  The results are shown in 

Table 8.7.  These values allow calculating the mean time to failure of the investigated 

system. 

  

Table 8.7.  Time to failure for 10 realizations picked up for vector (3, 2, 2) 

Realization 

number 

TTF 

1 0.66 

2 1.03 

3 6.2 

4 3.85 

5 0.37 

6 2.01 

7 1.02 

 },,min{ )(

32

)(

22

)(

13

)( kkkk   Syst

(k) (k) (k) (k)
 =  , ,    min( )13 22 32                                  
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8 1.45 

9 3.42 

10 2.23 

 

 

8.6. Direct Optimization Problem 

 

8.6.1. System Cost vs. Successful Operation 

 

 We need to find r

~  which satisfies the solution of (8.5).  The algorithm of solution 

in this case is as follows. 

Step 1.  Construct a realization of the first trajectory of the spare unit expenditure until )1(

1t  

exceeds the specified value of operational time t0.  Memorize the number of spare units 

spent, )1(

ix , i = 1, 2, ..., n.  Continue this procedure until all of N required trajectories are 

constructed. 

Step 2.  Construct a hypercube 1 whose edges 1i are found as ,x = ij

Nj
i max

1
1



  that is, 

1i  is the maximum number of spare units of type i observed during all N realizations. (It 

means that for this particular sample of realizations, all of them will lay within such a 

hypercube that is with such a stock of spare units we would not observe any system failure.) 

Step 3.  Calculate the system cost for the hypercube )1(  for which all trajectories have the 

survival time no less than t0 

 

Step 4. Calculate for each i: 

where )1(

i  shows how many numbers equal to 1i  exist for a unit of type i and ci
)1(  is the 

value of the system cost decrease if we reject to use  ij
Nj

 max
1 

and will use the next value in 

the descending order. 

Step 5.  Find the type of units which correspond to the maximum value of  )1(

i  and name it 

as i1, that is, this number corresponds to the following condition: 

 .c = C ii

ni

 1

1

max 


                                                  

 

 
c

 = 
i

i

i )1(

)1(
)1(




                                                        

 



 95 

 

Step 6.  Exclude 
(1)
i1

 units of type i1 and form a new value 

 

Step 7.  Rename remaining numbers 

Step 8.  Calculate the system successful operation index after the exclusion of  i1
 units of 

type i1 

 

Step 9.  Calculate the system spare units cost after the exclusion of  i1
 units of type i1 

 After these steps we have a new hypercube  
2 : 

 

 Repeat the procedure from step 5 until the system spare units cost is equal to or 

smaller than the given restriction.  

 

Numerical example.    

Let us take 9.0)(ˆ XR .  In the previous example we found that the vector of spare units (4, 

3, 2) satisfies 100% of successful realizations.  So, if we take a vector (3, 3, 2) it will satisfy 

the condition .9.0ˆ
0
=R   Now we need to find the lower 90% confidence limit for the 

frequency 0.9 obtained in 10 experiments.  This limit can be found with the use of Clopper-

Pearson method.  

 .j

nj
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= :i  = i
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1

1 max                                                        

 

 .- = ii2i  )1(

1 111
                                                            

 

 11
allfor  

11
ii    = ji2i

                                           

 

 
N

=P
i

)1(
)2( 11ˆ                                                                 

 

 .c-C=C ii 
)1(

max
)2(

11
                                              

 

 2 12 22 2
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 In this particular case it is easier to make direct calculations. If we choose the 

estimate of the searched probability equal to 0.9 then the probability that we will observe no 

less than 8 successes is equal to 

 So, in the process of decreasing the number of used spare units, we must stop after 

the first exclusion, i.e., the solution in this case is (3, 3, 2). 

 Thus, the solutions of direct and inverse problems of optimal redundancy are 

different though they should coincide.  The difference lies in the difference of approaches: 

having the restriction on the system cost, we maximize the possible observed frequency;  in 

the latter case we consider minimization of the system cost under condition that the level of 

probability is guaranteed.  This difference will be smaller if the number of realizations is 

larger. 

 

Remark:  We could solve the problem above with an iteration procedure using the solution 

of the direct problem of optimal redundancy.  The use of the "fork method" is convenient in 

this case.  We find the solution, opt

1  for some cost restriction, say, C1
*
, and calculate the 

value R1=R( opt

1 ).  If R1 < R
*
 we chose C2

* 
> C1

*
 and continue the procedure; if R1 > R

*
 we 

chose C2
*
< C1

*
 and also continue the procedure.  For the next steps, we can use a simple 

linear approximation 

 

where subscript k stands for the current step, subscript k – 1 for the previous step, and 

subscript k + 1 for the next step. 

 

8.6.2.System Cost vs. Average Time to Failure 

 

 We need to find r

~  which satisfies the solution of (8.6).  We could not find a 

convenient procedure for solving this particular problem.  One might consider using an 

iteractive procedure using the sequential solution of the second direct problem considered 

above.  For instance, we can fix some restriction on the system cost, say, )1(

systC  and find the 

corresponding optimal solution for T syst
ˆ

)1(
. If this value is smaller than the required syst

*
T , it 

means that the system cost must be increased, say, up to some 
 )2(

systC  > )1(

systC .  If systT
( ) 1

> syst

*
T , 

one must choose 
)2(

systC < 
)1(

systC .  This procedure continues until a satisfactory solution is 

obtained.  At an intermediate step L for choosing T
L

syst
ˆ )(

, one can use some linear 

extrapolation method.  For example, assume that in first situation described above, the value  

systT
( ) 2

 is still less than syst

*
T .  Then the value of 

)3(

systC  can be chosen from the following 

 0.9298. = )(0.9)(0.1
2
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+)(0.1)(0.9
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equation 

 Obviously, one can also use the procedure similar to that in a solution of the direct 

problem. However one should somehow find an initial hypercube and construct all 

trajectories within it.  (There is no stopping rule in this case.)  Then one should construct a 

system of embedded hypercubes and again use the steepest descent. 

 While solving this problem one must remember that the condition syst
*

T T   can be 

considered only in a probabilistic sense.  
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9.COMMENTS ON CALCULATION METHODS 

 

9.1. Comparison of methods 

 Optimal redundancy is a very important practical problem.  The solution of the 

problem allows one to improve the reliability at a minimal expense. But here, as in many 

other practical problems, questions arise: What is the confidence of the obtained results? 

What is the real effect of the use of sophisticated mathematics? 

 These are not unreasonable questions! 

 We already have discussed what it means to design an "accurate" mathematical 
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model. It is always better to speak about a mathematical model which more or less correctly 

reflects a real object. But let us suppose that we “almost sure” that the model is perfect. 

What price are we willing to pay for obtaining numerical results? What method is best, and 

best in what sense? 

 The use of excessively accurate methods is, for practical purposes, usually not 

necessary because of the uncertainty of the statistical data. On the other hand, it is 

inexcusable to use approximate methods without reason. 

 We compare the different methods in the sense of their accuracy and computation 

complication. 

 The Lagrange Multiplier Method (LMM) demands the availability of continuous, 

differentiable functions. This requirement is met very rarely: one usually deals with 

essentially discrete nature of the resources. But LMM sometimes can be used for a rough 

estimation of the desired solution. 

 The Steepest Descent Method (SDM) is very convenient from a computational 

viewpoint. It is reasonable to use this method if the resources that one might spend on 

redundancy are large. Of course, this generally coincides with the requirement of high 

system reliability because this usually involves large expenditures of resources.   

But unfortunately, it happens very rarely in practice. At any rate, one can use this approach 

for solution of most practical problems without hesitation. 

            The absolute difference between costs of the two neighboring SDM solutions cannot 

exceed the cost of the most expensive unit value. Thus, it is clear that the larger the total cost 

of the system, the smaller the relative error of the solution. 

 The Dynamic Programming Method (DPM) and its modifications (Kettelle's 

Algorithm and the Method of Universal Generating Function) are exact but they demand 

more calculation time for and a larger computer memory. As with most discrete problems 

requiring an enumerating algorithm, these optimal redundancy problems are np-hard. 

 As we mentioned above, the SDM may provide even an absolutely exact solution, 

since a dominating sequence for SDM is a subset of dominating sequence of DPM.   

 In figures below, one finds two solutions obtained by SDM and DPM . 

 
 

     Figure 9.1. Comparison DPM nad SDN solutions. 
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The left figure contains dominating sequence obtained by DPM,  and the right one does o 

those obtained by SDM.  The dots of the left figure marked with black color corresponds to 

the dots of the right figure. 

 Of course, one of the questions of interest is the stability of the solutions. How does 

the solution depend on the accuracy of the input data? How does the solutions obtained by 

the use of different methods distinguished? How much the numerical results of the solutions 

differ from one method to another? 

 An illustration of the problem is given by numerical experiments.  

 

Numerical example. 

 Consider a series system consisting of three units. The input data are assumed to be 

uncertain: units' PFFO and cost are known with an accuracy of 10%. To demonstrate 

possible difference in solutions, let us take the following five systems: 

 

Table 9.1. 

 

System 

Unit-1 Unit-2 Unit-3 

q c q c q c 

A 0.2 1 0.2 1 0.2 1 

B 0.2 0.9 0.2 1 0.2 1.1 

C 0.18 0.9 0.2 1 0.22 1.1 

D 0.18 1.1 0.2 0.1 0.22 0.9 

E 0.18 1 0.2 1 0.22 1 

 

 The problem is to check the stability of the optimal solutions over the range of 

variability of the parameters. 

 

Solution 

 At first, we compare the solutions for all five cases if the specified total system cost 

is to be at most 30 units. For each case we give two results: one obtained by the SDM and 

the second (marked with *) obtained by the DPM. The results are as follows: 

 

Table 9.2.  

 

System 

Number of redundant units Probab. of  

syst. failure 

Factual 

syst. cost x1 x2 x3 

A 10 10 10 3.07·10
-7 30 

A* 10 10 10 3.07·10
-7 30 

B 10 10 10 3.07·10
-7 30 

B* 10 10 10 3.07·10
-7 30 

C 9 10 10 5.66·10
-7

 29.1 

C* 10 10 10 4.04·10
-7

 30 

D 9 10 11 3.59·10
-7 29.8 

D* 9 10 11 3.59·10
-7 29.8 

E 9 10 11 3.59·10
-7 29.8 

E* 9 10 11 3.59·10
-7 29.8 

 

 The table shows that the only differences between the approximate and exact 



 100 

solutions are observed for the cases C and C*. However, all solutions are very close. 

 With an increase in spent resources, the relative difference between the solutions 

obtained by the SDM and the DPM will be increasingly smaller.  

       

 We now analyze the solutions corresponding to a specified level of reliability. In the 

table below for the same systems respective results for Q0=1·10
-6

 are collected. 

 

Table 9.3.  

 

System 

Number of redundant units Probab. of  

syst. failure 

Factual 

syst. cost x1 x2 x3 

A 9 10 10 7.7·10
-7 30 

Equivalent solution are (10.9,10) and (10,10,9)   

A* 9 10 10 7.17·10
-7 30 

B 10 10 9 7.17·10
-7 30 

B* 10 10 9 7.17·10
-7 30 

C 9 9 10 9.76·10
-7 29.1 

C* 9 9 10 9.76·10
-7 30 

D 9 9 10 9.76·10
-7 29.8 

D* 9 9 10 9.76·10
-7 29.8 

E 9 9 10 9.76·10
-7 29.8 

E* 9 9 10 9.76·10
-7 29.8 

 

 Numerical computer experiments and practical experience in finally solution of the 

optimal redundancy problem could develop a keen engineering intuition in the approximate 

solving of such problems and their sensitivity analysis. 

 

9.2.Sensitivity analysis  of optimal redundancy solutions 

Solving practical optimal redundancy problems, one can ponder: what is the sense 

of optimizing if input data are plucked from the air? Indeed, statistical data are so 

unreliable (especially, in reliability problems ) that such doubts have a very good 

ground.  

Not found any sources after searching the answer for this question, the author 

decided to make some investigation of optimal solutions sensitivity under influence of 

data scattering. 

A simple series system of six units has been considered (see Figure 1). For 

reliability increase, one uses a loaded redundancy, i.e. if a redundant group k has xk 

redundant units, its reliability is  
1

)1(1)(


 kx

kkk pxP  

where pk is a probability of failure free operation (PFFO) of a single unit k. The total cost 

of xk redundant units is equal to ck·xk, where ck is the cost of a single unit of type k.  

 
Figure 9.2. Series system underwent analysis. 
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Units’ parameters are presented in Table 9.4. 

 

Table 9.4. Input data. 

 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 

pk 0.8 0.8 0.8 0.9 0.9 0.9 

ck 5 5 5 1 1 1 

 

Assumed that units are mutually independent, i.e. system’s reliability is defined as 





61

)()61,(
k

kkkSystem xPkxP
 

And the total system cost is: 





61

)61,(
k

kkkSystem xckxC  

Below solutions of both problems of optimal redundancy are presented: direct: 

 *)61,()61,(min
1

PkxPkxC kk
xk




 

and inverse: 

 *)61,()61,(max
1

CkxCkxP kk

xk




 

For finding the optimal solutions, the Steepest Descent Method was applied.  For 

this “base” system the solutions for several sets of parameters are presented for Direct 

Problem in Table 9.5 and for Inverse Problem in Table 9.6. (Numbers are given with high 

accuracy only for demonstration purposes; in practice, one has to use only significant 

positions after a row of nines.) 

 

Table 9.5. Solution for Direct problem. 

P* x1 x2 x3 x4 x5 x6 Achieved P System C 

0.95 3 3 3 3 2 2 0.9559520 52 

0.99 4 4 3 3 3 3 0.991187 69 

0.995 5 4 4 4 3 3 0.995229 75 

0.999 6 5 5 4 4 4 0.999218 93 

 

Table 9.6. Solution for Inverse problem. 

C* x1 x2 x3 x4 x5 x6 Achieved C System P 

50 3 3 2 2 2 2 46 0.931676 

75 4 4 3 3 3 3 75 0.995229 

100 5 4 4 4 3 3 99.5 0.999602 

 

The questions of interest are: how optimal solution will change if input data are 

changed? Two types of experiments have been performed: in the first series of 

experiments, different unit’s costs with fixed probabilities were considered  (see Figure 

9.3) and in another one different unit’s probabilities with fixed costs were considered  

(see Figure 9.4). 
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Figure 9.3. Input data for the first series of experiments. 

 

 

 
Figure 9.4. Input data for the second series of experiments. 

 

The results of calculations are as follows: 

 

Table 9.7. Values of Probabilities of Failure-free operations. 

 0.999 0.995 0.99 0.95 

Initial 0.999218 0.99566 0.9922 0.955952 

Various 

C 

0.998996 0.99566 0.9922 0.955952 

Various 

P 

0.999218 0.99566 0.9922 0.955952 

 

In  addition,  a Monte Carlo simulation was performed where parameters of the 

PFFO and cost were changed simultaneously. In this case, parameters of  each unit were 

calculated (in Excel) as: 

pk=0.8pk+0.4pk*RAND() 

and 

ck= 0.8ck+0.4*RAND(), 

i.e. considered a random variation of the values within ±20% limits. 

The final results for this case are presented in Tables 9.8 – 9.11. 

 

Table 9.8. Results of Monte Carlo simulations for P*=0.999. 

 

No. 

P* = 0.999 

P C x1 x2 x3 x4 x5 x6 

1 0.999352 100 6 6 6 4 4 4 

2 0.999218 102 6 6 6 5 4 4 

3 0.999313 102 6 6 6 4 4 4 

4 0.999212 97 5 6 6 4 4 4 

5 0.999182 102 6 6 6 4 4 4 

6 0.999171 97 6 6 5 4 4 4 

7 0.999171 103 6 6 6 4 5 4 

8 0.999596 100 6 6 6 4 4 4 

9 0.999526 100 6 6 6 4 4 4 
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10 0.999399 100 6 6 6 4 4 4 

 

Table 9.9. Results of Monte Carlo simulations for P*=0.995. 

 

No. 

P* = 0.995 

P C x1 x2 x3 x4 x5 x6 

1 0.995478 84 5 5 5 3 3 3 

2 0.996755 85 5 4 4 4 3 3 

3 0.995026 85 5 4 5 4 3 3 

4 0.996777 79 4 5 5 3 3 3 

5 0.996777 84 5 5 5 3 3 3 

6 0.995525 79 5 5 4 3 3 3 

7 0.996732 85 5 5 5 3 4 3 

8 0.996732 85 5 5 5 3 4 3 

9 0.995645 84 5 5 5 3 3 3 

10 0.99567 84 5 5 5 3 3 3 

 

Table 9.10. Results of Monte Carlo simulations for P*=0.99. 

 

No. 

P* = 0.99 

P C x1 x2 x3 x4 x5 x6 

1 0.990147 69 4 4 4 3 3 3 

2 0.990965 70 4 4 4 4 3 3 

3 0.990229 70 4 4 4 4 3 3 

4 0.99185 69 4 4 4 3 3 3 

5 0.990389 71 4 4 4 4 4 3 

6 0.99107 69 4 4 4 3 3 3 

7 0.992185 74 5 4 4 3 3 3 

8 0.990422 71 4 4 4 3 4 3 

9 0.990893 71 5 4 4 3 3 3 

10 0.990466 69 4 4 4 3 3 3 

 

Table 9.11. Results of Monte Carlo simulations for P*=0.95. 

 

No. 

P* = 0.95 

P C x1 x2 x3 x4 x5 x6 

1 0.950045 52 3 3 3 3 2 2 

2 0.955842 52 3 3 3 3 2 2 

3 0.951936 52 3 3 3 3 2 2 

4 0.951711 54 3 3 3 2 2 2 

5 0.957883 50 3 3 3 3 3 2 

6 0.951908 51 3 3 3 2 2 2 

7 0.962227 51 3 3 3 2 2 2 

8 0.962227 51 3 3 3 3 3 2 

9 0.95261 50 3 3 3 3 2 3 

10 0.950393 52 3 3 3 3 2 2 

 

Analysis of data presented in Tables 9.8 - 9.11 shows relatively significant 
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difference in numerical results (see Figure 9.5). 

 
Figure 9.5. Deviation of maximum and minimum values of probability of failure-

free operation obtained by Monte Carlo simulation. 

 

However, the problem is not in coincidence of final values of PFFO or cost. The 

problem is: how the change of parameters influences the optimal values of x1, x2, … .  

However, one can observe that even with a system of six units (redundant groups) 

a visual analysis of sets (x1, x2, …, x6)  is extremely difficult and, at the same time, 

deductions based on some averages or deviations of various xk  are almost useless.  

The author was forced to invent some kind of a special presentation of sets of xk’s. 

Since there is no official name for such kind of graphical presentation, it is called 

“multiple polygons”. On such multiple polygon there are numbers of “rays” 

corresponding to the number of redundant of units (groups). Each ray has several levels 

corresponding to the number of calculated redundant units for considered case (see 

Figure 9.6). 

 
Figure 9.6. Multiple polygon axes with numbered levels. 

 

 The multiple polygons give a perfect visualization of “close-to-optimal” solutions 

and characterize observed deviation of particular solutions. Such multiple polygons for 
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considered example are given in Figure 9.7. (Here bold lines re used for connecting the 

values of xk obtained as optimal solution for units with parameters given in Table 9.4.) 

 

P* = 0.999 P* = 0.999 P* = 0.999 P* = 0.999 

    
Figure 9.7. Deviations of optimal solutions for randomly varied of parameters 

from  the optimal solution obtained for parameters given in Table 1. 

 

Thus, one can notice that input parameters variation may influence significantly 

enough the probability of failure-free operation and the total system cost from run to run  

of Monte Carlo simulation though the optimal solution remains more or less stable.  

 

 

10.OPTIMAL REDUNDANCY WITH SEVERAL LIMITING FACTORS 

 

10.1. Method of “weighing costs” 

 

 A number of cases arise when one has to take into account several restrictions in 

solving the optimal redundancy problem. For example, various objects such as aircraft, 

satellites, submarines, etc. have restrictions on cost and also on weight, volume, required 

electric power, etc. (Apparently, the cost for most of these technical objects is an important 

factor, but, perhaps, less important than other mentioned.) 

 

 In these cases, one has to solve the optimization problem under several restrictions: 

to maximize the system reliability index, under restrictions on all other factors. 

 Consider a system consisting of n redundant groups connected in series. For each 

additional redundant unit of the system, one has to spent some quantity of M various types 

of resources (for instance, cost, weight, volume, etc.), say, Cj(X). There are constrains on 

each type of resources: 0)( jj CXC  . The optimization problem is formulated as 

 

 00

22

0

11 )(,...,)(,)()(max MM
X

CXCCXCCXCXR                  (10.1)   

 

where ),...,,( 21 nxxxX   is the vector of the system redundant units.  

 Let us assume that each Cj(X) is a linear function of the form 
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xc = )(C iji

Mi

j 
1

X                                            (10.2) 

 

where cji  is the resource of type j associated with a unit of type i.  

 One of the most convenient ways to solve this problem is reducing it to a one-

dimensional problem. To this end, we introduce "weight" coefficients dj such that:  0 < dj < 

1, and 

 

. = d j

Mj

1
1




                                                               (10.3) 

 

 A set of dj satisfying (10.3) presents a diagonal hyperplane within n-dimensional 

unitary hypercube. Denote this hyperplane by D. An explanation is given for a 3-

dimensional case in the figure below. 

 
Figure 10.1.  Hyperplaine with all possible dj. 

 

 Use the Steepest Descent Method for the solution. The process of a solution is as 

follows. Choose a point D
k
 = (d1

k
, d2

k
, ... , dM

k
), .DDk   Produce for each unit j “weighed 

cost” k

jc corresponding to vector kD : 

 





Mk

k

jj

k

j dcc
1

                                                (10.4) 

 

 Solving one-dimensional problem simultaneously controlling all M constrains.  As 

soon as the optimization procedure has been stopped due to a possible violation of at least 

one of the constrains, the value of a reached level of R
k
 and realized vector X

k
 are 

memorized.  

 Then the next vector, say, D
j
, is chosen and new values R

j
 and X

j
 are found. 

Compare admissible solutions  and keep that with largest value of R.  

 The procedure of oriented choosing of D
k
 rather than direct enumerating can be 

organized: the procedure of the steepest descent could be used for this purpose.  

 Probably, even better procedure is as follows. At the stopping moment, pay attention 
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to the type of constrain that is closest to violation.  Sometimes it means that the process is 

“less optimal” relating to this type of resources.  Increase a corresponding weight multiplier 

and repeat the process.   

 As in most practical cases, to find the appropriate choice of the increment to change 

d is more of an art than a science. 

 Maximum found value R corresponds to the optimal solution X
opt

. 

 An illustrative example might be useful to demonstrate the method. 

 

Numerical example. 

 Consider a series system consisting of three units with the characteristics given in 

Table 10.1. 

 

Table 10.1 Data for example xxx. 

Unit 

(i) 

Reliability index 

Pi 

Cost 

Ci1 

Weight 

Ci1 

1 0.7 3 1 

2 0.8 5 1 

3 0.9 2 3 

 

 

 

         A “hot” redundancy is permitted to improve the system reliability. The problem is to 

find the optimal solutions for the following constrains on the redundant system units as a 

whole: 

(1) Cost: 0

1C = 15 conditional units; Weight: 0

2C  =15 conditional units; 

(2) Cost: 0

1C = 20 conditional units; Weight: 0

2C  =15 conditional units. 

 

Solution.  Choose the increment for each di equal to 0.25. Then the “weighed cost” can 

be calculated as: 

 
)1(1

icc  ,    )2()1(75.0 25.075.0 ii ccc  ,    )2()1(5.0 5.05.0 ii ccc  ,  
)2()1(25.0 75.025.0 ii ccc  ,   )2(0

icc  .                                                                             (10.5) 

 

Using (10.5), we get the following values: 

 

Then one gets the following values for the equivalent costs: 

  c1
2
=2.5, c2

2
=4.0, c3

2
=2.25; 

  c1
3
=2.0, c2

3
=3.0, c3

3
=2.5; 

  c1
4
=1.5, c2

4
=2.0, c3

4
=2.75; 

  c1
5
=1.0, c2

5
=1.0, c3

5
=3.0  . 

 Now we separately solve all five problems for different equivalent costs. For 

simplicity, let us use the Steepest Descent Method. We omit all intermediate calculations 

that are routine and present only step-by-step results of the solution process.  

 

Table 10.2. Solution process for various dj. 
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dk  1 2 3 4 5 6 7 8 9 10 

1 X 1,0,0 1,0,1 1,1,1 2,1,1 2,2,1 3,2,1 3,2,2 4,2,2 4,3,2 5,3,2 

C1 3 5 6 9 10 13 16 19 20 23 

C2 1 4 9 10 15 16 17 18 23 24 

0.75 X 0,1,0 1,1,0 1,2,0 2,2,0 3,2,0 3,3,0 4,3,0 4,3,1 5,3,1 6,3,1 

C1 1 4 5 8 11 12 15 17 20 23 

C2 5 6 11 12 13 18 19 22 23 24 

0.5 X 0,1,0 1,1,0 1,2,0 2,2,0 3,2,0 4,2,0 5,2,0 5,2,1 6,2,1 6,3,1 

C1 1 4 5 8 11 14 17 19 22 23 

C2 5 6 11 12 13 14 15 18 19 24 

0.25 X 1,0,0 1,1,0 2,1,0 2,2,0 3,2,0 4,2,0 5,2,0 5,3,0 6,3,0 7,3,0 

C1 3 4 7 8 11 14 17 18 21 24 

C2 1 6 7 12 13 14 15 20 21 22 

0 X 1,0,0 1,1,0 2,1,0 3,1,0 3,2,0 4,2,0 5,2,0 6,2,0 6,3,0 7,3,0 

C1 3 4 7 10 11 14 17 20 21 24 

C2 1 6 7 8 13 14 15 16 21 20 

 

Admissible solutions are (2,2,1) and (4,2,0). Solution (3,2,0) is not taken into account since 

it is dominated by (4,2,0). Let’s now compare solutions: 

 )1.01)(2.01)(3.01()1,2,2( 233R 0.9956 

9.0)2.01)(3.01()0,2,4( 35 R =0.8906. 

Thus the solution of the problem is vector (2,2,1), i.e. x1=2, x2=2, and x3=1. 

 

The inverse problem of optimal redundancy occurs in practice extremely rarely, so we omit 

its consideration. 

 

10.2. Method of Generalized Generating Functions 

 

 The problem treated above can be solved exactly with the use of the Method of 

Generalized Generating Functions. The legion for each ith redundant group is 

represented as the set of the cohorts 

 Li = { Ci1, Ci2,...,CiNi} 

where Ni is the number of cohorts in this legion. (In principle, the number of cohorts is 

unrestricted in this investigation.) Each cohort consists of M+2 maniples: 

 Cik = (Rik, cik
1
, ... ,cik

M
, xik) 

where M is the number of restrictions. All maniples are defined as in the one-dimension case 

that we considered above. A similar interaction is performed with the maniples: 

k
i l i l

k
ic

M
ij
k

lj
k

ij
k

l j
k

1 i n
c
M

i
k

1 i n

ij
k(c ,c ) =  c  +  c    and   c  =  c 

   


 

 

 
R
M

ij kl ij kl

1 i n
R
M

i j

1 i

ij( R , R ) =  R R    and    R  =  R
i i

; 
   


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x
M

ij lj ij lj

1 i n

x
M

ij 1 j 2 j nj J( x , x ) =  ( x , x )   and   x  =  ( x , x , ... , x ) =  
i l i l i 1 2 n

 
 

X
 

where J is the set of subscripts: J=(j1, ... ,jn). 

 The remaining formal procedures totally coincide with the one-dimensional case 

with one very important exception: instead of a scaler ordering, one must use the special 

ordering of the cohorts of the final legion. 

 It is difficult to demonstrate the procedure on a numerical example, so we give only 

a detailed verbal explanation.  

 Suppose we have the file of current cohorts ordered according to increasing R. If we 

have a specified set of restrictions: Cj(X)<C0j for all j: 1<j<M], then there is no cohort in 

this file which violates at least one of these restrictions.  When a new cohort, say, Ck, 

appears during the interaction procedure, it is put in the appropriate place in accordance with 

the value of its R-maniple. The computational problem is as follows. 

 1. Consider a part of the current file of cohorts for which the values of their R-

maniple are less than the analogous value for Ck. If, among the existent cohorts, there is a 

cohort, say, C
*
, for which all costs are larger than those of Ck, this cohort C

*
 is excluded 

from the file. 

 2. Consider a part of the current file of cohorts for which the values of the R-maniple 

are larger than the analogous value for Ck. If between the existent cohorts there is a cohort, 

say, C
**

, for which all costs are smaller than those of Ck,  the new cohort is not  included in 

the file. 

 3. If neither 1 nor 2 take place, the new cohort is simply added to the file on the 

appropriate place. 

 

 After a multi-dimensional undominated sequence is constructed, one easily finds the 

solution for the multiple restrictions: it is the cohort with the largest R-maniple value (in 

other words, a cohort on the right if the set is ordered by the values of R). 

 The stopping rule for this procedure is to find the size of each cohort which will 

produce a large enough number of cohorts in the resulting legion so as to contain the optimal 

solution. At the same time, if the numbers of cohorts in the initial legions are too large, the 

computational procedure will take too much time and will demand too large a memory 

space. 

 Of course the simplicity of this description should not be deceptive. The problem is 

very bulky in the sense that the  multi-dimensional restrictions and the large numbers of 

units in typical practical problems could require a huge memory and  computational time. 

(But who can find a non-trivial multi-dimensional problem which has a simple solution?) 
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11.Optimal Redundancy in Multistate Systems 

 

Solution of the problems of optimal redundancy allocation for multistate systems 

(MSS) consisting of multistate units is more laborious than solution of analogous  

problem for systems which have only two states: normal operation and failure. 

Today this problem is investigatedin details. In first turn, the works by Gregory 

Levitin and Anatoly Lisnjanskij have to be mentioned (a complete nough lisy of hei 

papers is presented in the bibliography to the chapter.) 

For more transparent explanation of the sense of the problem we begin with a 

simplest numerical example. Consider a series system of two different multistate units, 

each of which is characterized by several levels of performance.  Performance may be 

measured by various physical values. Effectiveness of such system operation depends on 

levels of performance of Unit-1 and Unit-2.  

 Let units are characterized by the following parameters: 

 

Table 11.1. Characterization of Unit-1 

Level of performance (W1) Probability p1 Cost of a single unit 

100% p11=Pr{ W1=100%}=0.9  

c1=1 
70% p12=Pr{ W1=100%}=0.05 

40% p13=Pr{ W1=100%}=0.04 

0% p14=Pr{ W1=100%}=0.01 

   

Table 11.2. Characterization of Unit-2 

Level of performance (W1) Probability p2 Cost of a single unit 

100% P21=Pr{ W2=100%}=0.8  
c2=2 

80% P22=Pr{ W2=80%}=0.18 

20% P23=Pr{ W2=20%}=0.01 

0% P24=Pr{ W2=0%}=0.01 

   

 Assume that performance effectiveness of each unit can be improved by using 

loaded redundancy. Let suppose that at each moment of time, performance effectiveness 

of a redundant group is equal to the level of performance of the best component of the 

redundant group. Thus, behavior of Unit-1, consisting of the main component and single 

redundant element, can be depicted as in Figure 11.1. 
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Figure 11.1. A realization of stochastic behavior of Unit-1, consisting of two elements, 

main and redundant. The shadowed area denotes the behavior of the Unit-1. 

 

For Unit-2 analogous process is presented in Figure 11.2. 

  
Figure 10.2. A realization of stochastic behavior of Unit-2, consisting of two elements, 

main and redundant. The shadowed area denotes the behavior of the Unit-2. 

 

  Further, assume that the entire system (series connection of Unit-1 and Unit-2) is 

characterized by the worst level of effectiveness of its units at each moment of time. In 

Figure 11.3, one can see the system behavior for the case when both units consist of a 

single main element. 
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Figure 11.3. A realization of stochastic behavior of the entire system when both its units 

consist of a single main element. The shadowed area denotes the behavior of the system. 

 

Let the problem is to find optimal redundant elements allocation described above series 

system: 

(1) Direct problem: Find such an allocation of redundant elements than delivers 

average level of the system performance not less than required level of 

performance with minimum possible cost of redundant elements; 

(2) Inverse problem: Find such an allocation of redundant elements than delivers 

maximum possible level of system performance under condition that the total 

expenses on redundant elements do not exceed the given total cost of redundant 

units.  

Now consider construction of dominating sequence during the optimization process. 

In principle, one has to construct a table of type that presented below and choose 

members of dominating sequence. 

 

Table 11.3. Construction of dominating sequence. 

 

Number of redundant elements for  Unit-1 

0 1 2 … 

Number of redundant  

elements for  Unit-2 

 

 

 

 

 

0 

X=(0, 0) 

P(0, 0) 

W(0,0) 

C(0, 0) 

X=(1, 0) 

P(1,  0) 

W(1, 0) 

C(1, 0) 

X=(2, 0) 

P(2, 0) 

W(2, 0) 

C(2, 0) 

… 

 

1 

X=(0, 1) 

P(0, 1) 

W(0,1) 

C(0, 1) 

X=(1, 1) 

P(1,  1) 

W(1, 1) 

C(1, 1) 

X=(2, 1) 

P(2, 1) 

W(2, 1) 

C(2,  1) 

… 

 

2 

X=(0, 2) 

P(0, 2) 

W(0, 2) 
C(0, 2) 

X=(1, 2) 

P(1, 2) 

W(1, 2) 
C(1, 2) 

X=(2, 2) 

P(2, 1) 

W(2, 2) 
C(2, 2) 

… 

… … … … … 
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 As one sees, in this case we deal with quadruplets of type: 

{[Vector of numbers of redundant units];  

  [Discrete distribution of performance levels];  

  [Performance levels];  

  [System cost]}. 

 

The problem complicates due to necessity of calculations because “Probabilities 

of performance levels” and “Performance levels” are not numbers but vectors that needed 

special type of calculations. This aspect will be demonstrated below. Here we would like 

to note that there is no necessity to calculate quadruplets for all cells of Table 1. 

Fortunately, we can use the property of Kettelle Algorithm:  members of dominating 

sequences are located around table’s diagonal and corresponding cells form simply 

connected area. It allows using “dichotomy tree” procedure, i.e. avoiding unnecessary 

calculations by cutting non-perspective branches (see Figure 11.4). Indeed, consider 

bordering cells around simple connected area (they marked with sign “x”.). There is no 

dominating cells in area located upper the right border, and there is no dominating cells in 

area located lower the left border. 

 

 
Figure 11.4. Example of excluding non-perspective branches. Black arrows are members 

of dominating sequence; grey ones are trial test that led to non-perspective variants 

marked by “x”. All cells marked with dark grey cannot contain dominating quadruplets.  

 

Thus, in this case calculations occur to be sufficiently compact. However, as we 

mentioned above some special calculations for each redundant group have to be done. 

 In accordance with described above calculating procedure, one has to consider 

first variant (0, 0), i.e. just Unit-1 and Unit-2 with no redundancy at all, and find 

quadruple, In this case resulting  solution will be: 

{[0]; [(p11, W11), (p12, W12), (p13, W13), (p14, W14)]; [c]1} {[0]; [(p21, W21), (p22, W22), 

(p23, W23), (p24, W24)]; [c2]} =  

{0

  0; [(p11, W11), (p12, W12), (p13, W13), (p14, W14)]}

UGF
 {0; [(p21, W21), (p22, W22), (p23, 

W23), (p24, W24)]; c1

 c2 }.                                         (11.1) 

Here we use the following operators: 
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
   is an operator of forming a vector, i.e. ),( kjkj 


; 

UGF
  is an operator equivalent to the U-function, i.e. 































kj

WW

kj

Bk

W

k
UGF

Aj

W

j

kj
kj zppzpzp

,

min

, where, in turn,  Wj min
 Wk = min(Wj, Wk); 

c1

 c2 is operator of summation, i.e. c1


 c2 = c1+ c2. 

Of course, the same procedure can be presented in terms of U-functions. One can write 

two “polynomials” of type 

.
,

),(max)0,0(

,

00
0

2

0

1

2221

22
min2211












































kj

ccWW

kj

kj

ccWW

kj

Bk

cW

k
UGF

Aj

cW

j

kjkj

kjkjjjjj

zyxpp

zyxppzyxpzyxp

  (11.2) 

 

Of course, a power of argument x has a very conditional sense: any value in 

“power” of vector has no common sense. For avoiding such confuses, we will operate 

with sequences of triplets, quadruplets and other “multiplets”.  

Let us continue the numerical example because it helps us not explain relatively 

simple procedures on unnecessary formal level. Return to the series system, consisting of 

two units without redundancy.  Numerical results are presented in Table  11.4. 

 

Table 11.4. Initial state of the process of optimization. 
 

(0, 0) 

  Unit-2 

p21=0.8 
)0(

21W =100% 

p22=0.18 
)0(

22W =80%   

p23=0.01 
)0(

23W =20% 

p24=0.01 
)0(

24W =0% 

 

 

 

 

Unit-

1 

p11=0.9 
)0(

11W =100% 

p21· p11= 0.72 

),min( )0(

11

)0(

21 WW =100% 

p22· p11= 0.171 

),min( )0(

11

)0(

22 WW =80%   

p23· p14= 0.009 

),min( )0(

11

)0(

23 WW
 

=20% 

p24· p14= 0.009 

),min( )0(

11

)0(

21 WW
 

=0% 

p12=0.05 
)0(

12W =70% 

p21·p12= 0.04 

),min( )0(

12

)0(

21 WW
 

=70% 

p22·p12=0.0095 

),min( )0(

12

)0(

22 WW =70%   

p23· p14= 0.0005 

),min( )0(

12

)0(

23 WW
 

=20% 

p24· p14= 0.0005 

),min( )0(

11

)0(

21 WW
 

=0% 

     · · 

p13=0.04 
)0(

13W =40% 

p21· p13= 0.032 

),min( )0(

13

)0(

21 WW =40% 

p22·p13=0.0076 

),min( )0(

13

)0(

22 WW =40%   

p23· p14= 0.0004 

),min( )0(

13

)0(

23 WW
 

=20% 

p24· p14= 0.0004 

),min( )0(

11

)0(

21 WW
 

=0% 

       

p14=0.01 
)0(

14W =0% 

p21· p14= 0.008 

),min( )0(

14

)0(

21 WW
 

=0% 

p22· p14= 0.0019 

),min( )0(

14

)0(

22 WW
 

=0%   

p23· p14= 0.0001 

%0

),min( )0(

14

)0(

23



WW
 

p24· p14= 0.0001 

%0

),min( )0(

14

)0(

23



WW
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This leads to the following final result (see cells with the same background colors): 

P
(0.0)

(Wsyst=100%) =0.72; 

P
(0.0)

(Wsyst=80%) =0.171; 

P
(0.0)

(Wsyst=70%) =0.04+0.0095=0.0495; 

P
(0.0)

(Wsyst=40% =0.032+0.0076=0.0396; 

P
(0.0)

(Wsyst=20%) =0.009+0.0005+0.004=0.0099; 

P
(0.0)

(Wsyst=0%) =0.008+0.0019+0.0001+0.0001+0.0009+0.0005+0.0004= 0.0201. 

 

Cost of additional units in this case equals 0. As one can easily calculate, the 

average level of the system performance is equal to 

.9092.02.00095.05.00396.07.00497.08.0171.072.0)0,0( systW  

 

Now let’s make trial steps to the neighbor cells: check cells (1, 0) and (0, 1). Let 

us start with cell (1, 0) as it shown in Figure 11.4. First find the distribution of 

performance levels distribution for Unit-1 consisting of two elements, main and 

redundant.  

 

Table 11.5. Forehand calculation of performance levels distribution for Unit-1, consisting 

of two elements, main and redundant. 
 Element-1 

 

 

 

 

 

Element-

1 

 

p11=0.9 
)0(

11W =100% 

p12=0.05 
)0(

12W =70% 

p13=0.04 
)0(

13W )
=40% 

p14=0.01 
)0(

14W =0% 

p11=0.9 
)0(

11W =100% 

(p11)
2=0.81 

)0(

11W =100% 

p12 ·p11=0.045 

),max( )0(

11

)0(

12 WW =100% 

p13 ·p11=0.036 

max 

(
)0(

13W ,
)0(

11W ) 

=100% 

p14 ·p11=0.009 

max 

(
)0(

14W ,
)0(

11W ) 

=100% 

p12=0.05 
)0(

12W =70% 

p11·p12=0.045 

max 

(
)0(

11W ,
)0(

12W ) 

=100% 

(p12)
2=0.025 

max( ,)0(

12W ))0(

12W =70% 

p13· p12=0.002 

max 

(
)0(

13W , ))0(

12W  

=70% 

p14 ·p12=0.0005 

max 

(
)0(

14W , ))0(

12W ) 

=70% 

p13=0.04 
)0(

32W =40% 

p11·p13=0.036 

max 

(
)0(

11W ,
)0(

32W ) 

=100% 

p12·p13=0.002 

max (
)0(

12W ,
)0(

32W ) 

=70% 

(p13 )
2=0.0016 
)0(

32W =40% 

p14· p13=0.0004 

max 

(
)0(

14W ,
)0(

32W ) 

=40% 

p14=0.01 
)0(

14W =0% 

p11·p14=0.009 

max 

(
)0(

11W ,
)0(

14W ) 

=100% 

p12·p14=0.0005 

max (
)0(

12W ,
)0(

14W ) 

=70% 

p13 ·p14=0.0004 

max 

(
)0(

13W ,
)0(

14W ) 

=40% 

(p14)
2=0.0001 

)0(

14W =0% 

 

On the basis of this table, one gets for Unit-1 the following distribution 

%}100Pr{ )1(

1 W = (p11)
2
+2p11·( p12+ p13+ p14) =  

               = 0.81+2· (0.045+0.036+0.009)=0.99; 

 %}70Pr{ )1(

1W  =(p12)
2
+2 ·p12 · (p13+ p14)=0.025+ 

               + 2·0.025 (0.002+0.0005)=0.0075; 

 %}40{Pr )1(

1W   =(p13 )
2
+2p13· p14=0.0016+2·0.0016·0.0004≈0.0016: 
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 %}0{Pr )1(

1W =0.0001. 

 

Let us assume that the first step is made from (0, 0) to (1, 0) as it presented in 

Figure 11.5. 

 
Figure 11.5. Direction of Step 1 of the optimization process. 

 

Using the results, presented above, one can  compile Table 11.6 that gives 

performance levels distribution for the system characterized by vector of redundant 

elements X = (1, 0).  

  

 

 

Table 11.6. Step 1 of the optimization process. 
 

(1, 0) 

 Csystem= Unit-2 

p21=0.8 
)0(

21W )
=100% 

p22=0.19 
)0(

22W )
=80%   

p23=0.01 
)0(

23W )
=20% 

p24=0.01 
)0(

24W )
=0% 

 

 

 

 

Unit-

1 

=0.99 

)1(̀

11W =100% 

= 0.792 

min (
)0(

21W ,
)1(̀

11W ) 

=100% 

= 0.188 

min(
)0(

22W ,
)1(̀

11W ) 

=80%   

≈0.01 

min(
)0(

23W , 
)1(̀

11W ) 

=20% 

≈0.01 

min(
)0(

24W , 
)1(̀

11W )) 

=0% 

=0.0075 
)1(̀

12W =70% 

= 0.006 

min(
)0(

21W ,
)1(̀

12W ) 

=70% 

≈0.0014 

min(
)0(

22W ,
)1(̀

12W ) 

=70%   

≈0.0001 

min(
)0(

23W ,
)1(̀

12W ) 

=20% 

=0.0001 

min(
)0(

24W ,
)1(̀

12W ) 

=0% 

       

=0.0016 
)1(̀

13W =40% 

0.0013 

min(
)0(

21W ,
)1(̀

13W ) 

=40% 

≈0.0003 

min(
)0(

22W ,
)1(̀

13W ) 

=40%   

≈0 

min(
)0(

23W ,
)1(̀

13W ) 

=20% 

 

min(
)0(

24W ,
)1(̀

13W ) 

=0% 

       

=0.0001 
)1(̀

14W =0% 

≈0.0001 

min(
)0(

21W ,
)1(̀

14W ) 

=0% 

≈0 

min(
)0(

22W ,
)1(̀

14W ) 

=0%   

≈0 

min(
)0(

23W ,
)1(̀

14W ) 

=0% 

≈0 

min(
)0(

24W ,
)1(̀

14W ) 

=0% 

 

 

This leads to the following final result: 
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P
(1.0)

(Wsyst=100%) =0.792; 

P
(0.0)

(Wsyst=80%) =0.188; 

P
(0.0)

(Wsyst=70%) =0.006+0.0014=0.0074; 

P
(0.0)

(Wsyst=40% =0.0013+0.0003=0.0016; 

P
(0.0)

(Wsyst=20%) =0.01+0.0001=0.0101; 

P
(0.0)

(Wsyst=0%) =0.008+0.0019+0.0001+0.0001+0.0009+0.0005+0.0004= 0.0201. 

 

Cost of additional units in this case equals 1. Average system’s performance level equals 

.9502.02.00095.04.00396.07.00497.08.0188.0792.0)0,1( systW  

Then try another neighbor cell, namely (0, 1). Beforehand, one has to perform an 

additional calculation of performance levels distribution for Unit-2 consisting of two 

elements, main and redundant. 

  It is necessary note that for parallel connection of multistate elements ( that 

compiles a unit), more realistically to assume that the level of performance of the unit is 

equal to maximum among all currently operating elements. So, the table below represents 

results of calculation for Unit-2 that consists of two identical elements. 

 

Table 11.7. Forehand calculation of performance levels distribution for Unit-2, consisting 

of two elements, main and redundant. 
 Element-2 

 

 

 

 

 

Ele-

ment 

-2 

 

p21=0.8 
)0(

21W =100% 

p22=0.19 
)0(

22W =80% 

p23=0.01 
)0(

23W =20% 

p24=0.01 
)0(

24W =0% 

p21=0.8 
)0(

21W =100% 

(p21)
2=0.64 

)0(

21W =100% 

p22   p21=0.045 

max(
)0(

22W ,
)0(

21W ) 

=100% 

p23   p21=0.036 

max (
)0(

23W ,
)0(

21W ) 

=100% 

p24   p21=0.008 

max (
)0(

24W ,
)0(

21W ) 

=100% 

p22=0.19 
)0(

21W =80% 

p21   p22=0.152 

max (
)0(

21W ,
)0(

21W ) 

=100% 

(p22)
2=0.0361 

)0(

22W =80% 

p23   p22=0.0002 

max (
)0(

23W ,
)0(

21W ) 

=80% 

p24  p22=0.0002 

max (
)0(

24W ,
)0(

21W ) 

=80% 

p23=0.01 
)0(

23W =20% 

p21   p23=0.008 

max (
)0(

21W ,
)0(

23W ) 

=100% 

p22   p23=0.0002 

max (
)0(

22W ,
)0(

23W ) 

=80% 

(p23 )
2=0.0001 
)0(

23W =20% 

p24   p23=0.0001 

max (
)0(

24W , 
)0(

23W ) 

=20% 

p24=0.01 
)0(

24W =0% 

p21  p24=0.008 

max (
)0(

21W ,
)0(

24W ) 

=100% 

p222   p24=0.0002 

max (
)0(

22W ,
)0(

24W ) 

=70% 

p p23   p24=0.0001 

max (
)0(

23W ,
)0(

24W ) 

=20% 

(p24)
2
=0.0001 
)0(

24W =0% 

 

On the basis of this table, one gets for Unit-2, consisting of two elements, the 

following distribution 

%}100Pr{ )1(

2 W = (p21)
2
+2p21· (p22+ p23+ p34) = 0.64+2· 0.8· 

(0.045+0.036+0.008) ≈0.7709; 

 %}80Pr{ )1(

2W  =(p22)
2
+2 ·p22 · (p23+ p24)=0.0361+2·0.0361 (0.0002+0.0002) ≈ 

0.0361; 

 %}20{Pr )1(

2W   =(p13 )
2
+2p13· p14=0.0001+0.0001+0.0001=0,0003: 

 %}0{Pr )1(

2W =0.0001. 
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After  such preparations, one can make Step2 (see Figure 11.6) 

 
Figure 11.6. Direction of Step 2 of the optimization process. 

 

This step consists in construction of Table 11.8 and presents the system’s performance 

levels distribution for the system configuration characterized by vector of redundant 

elements X = (0, 1). 

 

 

Table 11.8. Step 2 of the process of optimization. 

 
 

(0, 1) 

 Csystem= 
Unit-2 

=0.7709 
)1(

21W =100% 

=0.0361 

)1(

22W =80%   

=0.0003 

)1(

23W =20% 

=0.0001 

)1(

24W =0% 

 

 

 

 

Unit-

1 

p11=0.9 
)0(

11W =100% 

 0.6038 

min (
)1(

21W ,
)0(̀

11W ) 

=100% 

≈ 0.0325 

min(
)0(

22W ,
)1(̀

11W ) 

=80%   

≈0.0003 

min(
)0(

23W , 
)1(̀

11W ) 

=20% 

≈0.0001 

min(
)0(

24W , 
)1(̀

11W )) 

=0% 

p12=0.05 
)0(

12W =70% 

0.0386 

min(
)0(

21W ,
)1(̀

12W ) 

=70% 

≈0.0018 

min(
)0(

22W ,
)1(̀

12W ) 

=70%   

≈0 

min(
)0(

23W ,
)1(̀

12W ) 

=20% 

≈ 0 

min(
)0(

24W ,
)1(̀

12W ) 

=0% 

       

p13=0.04 
)0(

32W =40% 

0.0308 

min(
)0(

21W ,
)1(̀

13W ) 

=40% 

≈0.0014 

min(
)0(

22W ,
)1(̀

13W ) 

=40%   

≈0 

min(
)0(

23W ,
)1(̀

13W ) 

=20% 

 

min(
)0(

24W ,
)1(̀

13W ) 

=0% 

       

p14=0.01 
)0(

14W =0% 

≈0.00771 

min(
)0(

21W ,
)1(̀

14W ) 

=0% 

≈0.0004 

min(
)0(

22W ,
)1(̀

14W ) 

=0%   

≈0 

min(
)0(

23W ,
)1(̀

14W ) 

=0% 

≈0 

min(
)0(

24W ,
)1(̀

14W ) 

=0% 

 

This leads to the following final result: 

P
(1.0)

(Wsyst=100%) =0.6038; 

P
(0.0)

(Wsyst=80%) =0.0325; 

P
(0.0)

(Wsyst=70%) =0.0386+0.0018=0.0404; 
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P
(0.0)

(Wsyst=40% =0.0308+0.0014=0.0322; 

P
(0.0)

(Wsyst=20%) ≈0.0003; 

P
(0.0)

(Wsyst=0%) =0.0077+0.0004+0.0001≈0.0082. 

 

Cost of additional units in this case equals 2 units of cost. Average system’s performance 

level equals 

.671.02.00003.04.00322.07.00404.08.00325.0.06038.0)1,0( systW  

 

Thus, for vector (1, 0) one has additional cost equal 1 and 9502.0)0,1( systW
 and for vector 

(0, 1) corresponding values equal to 2 and 0.671, so system configuration (1, 0) is 

dominating over configuration (0, 1), since higher average performance level delivers with 

less expenses. It means that all vectors of type (0, k) are excluded from further analysis. 

 

The next cells, for which current trials have to be done, are cells (1, 1) and (2, 0). 

 
 
Avoiding simple, however cumbersome calculations, let us present only final results (see 

Table 11.9). 

 

 

Table 11.9. Costs and levels of performance  for different vectors of redundant 

elements.  
 Unit-1:  Number of redundant elements 

0 1 2 3 4 5 6 

 

 

 

 

Unit-2: 

 

Number 

of 
redundant 

elements 

0 C=0 

W= 

90.16 

C=1 

W= 

94.26 

 

C=2 

W= 

94.57 

 

   … 

1 C=2 

W= 

94.68 

 

C=3 

W= 

99.16 

 

C=4 

W= 

99.50 

 

 

C=5 

W= 

99.53 

 

  … 

2 C=4 
W= 

95.03 

 

C=5 
W= 

99.54 

 

C=6 
W= 

99.89 

 

C=7 
W= 

99.92 

 

 

? 

 …
 

3  C=7 

W= 

99.61 

 

C=8 

W= 

99.95 

 

 

? 

  … 

.
 

4   ?    … 

.
 

… … … 

.
 …

 
…

 
…

 
…

 
…

 

Legend: light grey color – dominated cells, dark grey color – non-prospective variants. 

 

The table above is constructed as it shown in Figure 11.7. 

\ 
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Figure 117. The process of step-by-step development of the optimization process. 

Probably, the last table needs some explanations..  Vector (2, 0) is dominated by 

vector (0, 1), since vector (0, 1) is characterized by higher performance level for the same 

total cost of redundant units. So, all vectors of type (3, 0),(4, 0), …, (k, 0), … are excluded 

from the further consideration. The same type of domination one observes for the following 

pairs: (3, 1) is dominated by (1, 2), vector (0, 2) is dominated by (1, 1), vector (1, 3) is 

dominated by (2, 2) and so on. 

Such trials and selection of dominating vectors continued until appearance of first 

vector with the average level of performance higher than required value of W
o
  for the direct 

problem of optimal redundancy, or until total expense of all redundant elements are not 

exceed given value  C
o 
for the inverse problem. These comments become absolutely 

transparent if one takes a look on Figure 118. 

 
Figure 11.. Depiction of the process of compiling the dominating sequence. 

 

From Table 11.9, one can see that optimal solution for requirement  that the average 

level of  system performance is not less than W
o
 =0.999 is delivered by vector (3, 2), and the 

total expenses of redundant elements is 7  cost units. For the total expenses on redundant 

elements limited by C
o
 ≤5 cost units, one gets maximum possible solution as vector (1, 2) 

that characterizes by W=99.54%. 

It is interesting what happens with the optimal solution if one changes costs of 

elements> Let us assume that for the same system cost of a single redundant element of the 

1
st
 type is c1=2 and the cost am element of the 2

nd
 type c2=1.  
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Table 11.10. Costs and levels of performance  for different vectors of redundant 

elements for new element’s costs. 
 Unit-1:  Number of redundant elements 

0 1 2 3 4 5 6 

 

 

 

 

Unit-2: 

 

Number 
of 

redundant 

elements 

0 C=0 

W=90.156 

C=2 

W= 

94.26456 

 

    … 

1 C=1 

W= 

94.68072 

 

C=3 

W= 

99.16318 

 

C=5 

W= 

99.50462 

 
 

   … 

2 C=2 

W= 

95.02683 

 

C=4 

W= 

99.54058 

 

C=6 

W= 

99.88507 

 

C=8 

W= 

99.9156 

 

 

 

 …
 

3 C=3 

W= 

95.08558 

 

C=5 

W= 

99.60514 

 

C=7 

W= 

99.9502 

 

 

? 

  … 

.
 

4  C=6 

W= 

99.61784 

 

 

? 

   … 

.
 

… … … 

.
 …

 
…

 
…

 
…

 
…

 

Legend: light grey color – dominated cells, dark grey color – non-prospective variants. 

 

In this case optimal solutions found from Table 11.10 are: For the direct problem 

vector (2, 3), for which W=99.95% and total expenses on redundant elements are equal to 7 

cost units, and for inverse problem the solution is (1, 3), for which W=99.54% and total 

expenses C=5.  

 

Solution of optimal redundancy problems for system consisting of several multilevel 

units seems a bit cumbersome. However, let us note that all enumerative methods like 

dynamic programming practically unsolvable without computerizing calculations. 

Numerical example above was solved with the help of a simple programs using Microsoft 

Excel. 

For complex systems consisting of n multiple multistate units, one can compile a 

simple program for a mainframe computer. The algorithm should include the following 

steps. 

 

1. Take an n-dimensional vector of redundant elements 

)0...,,0,0( )0()0(

2

)0(

1

)0(  nxxxX
. 

2. 
Perform calculations to get initial pair of values 

),( )0()0(

systsyst CW
 (see Table 11.2).

 

3. 
Put calculated pair 

),( )0()0(

systsyst CW
into list of dominating  solutions,
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4. Generate vectors
 

)1(

iX such that each of them distinguishes from
 

)0(X  by changing 

number of elements of Unit-i on one, i.e. 
 

)0...,,1...,,0,0( )0()0()0(

2

)0(

1

)1(  nii xxxxX
.
 

5. For each ,,1,)1( niX i 
calculate new values of 

,  for all ki where ki is the 

number of performance levels of Unit-I. 

6. 
Perform calculations to get n pairs

 ),,(,....),,(),,( )1()1()1(

2

)1(

2

)1(

1

)1(

1 nn CWCWCW
for all 

vectors.
 

 

Such solution appears a bit clumsy and laborious. However, computer calculating 

program is relatively simple and solution can be obtained easy enough; final results are 

presented in the form of dominating sequence (in Kettelle’s terminology),so solution for 

direct and/or inverse problem optimal redundancy can be easily found.. 

 

Conclusion.We restrict ourselves by consideration this simple and ore or less transparent 

illustrative example. Last years this problematic generates a number of interesting and 

theoretically deep publications, as the reader can see from bibliography below,  However, 

we think that more detailed consideration of this problem could lead us too far from the 

“highway” of main practical optimal redundancy tasks. 
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