
 1

Igor Ushakov

 OPTIMAL RESOURCES ALLOCATION

 2

AUTHOR’S PREFACE

In Memory of John D. Kettelle Jr.

my friend, colleague and informal teacher

This book is in memory of my friend and colleagues Dr. John D. Kettelle, a

former mariner who fought in WWII and later made a significant input in dynamic

programming. His name was known to me in late 1960-s when I was a young engineer in

the former Soviet Union. I had been working at one of the R&D institutes of the Soviet

military-industrial establishment; my duty was projecting spare stocks for large scale

military systems.

 I met Dr. J. Kettelle in person in early 1990-s when I came to the United States

as Distinguished Visiting Professor at The George Washington University. After two

years at the University, I was invited by John to work at Ketron, Inc., the company that

was established and led by him. We became friends.

I will remember John forever…

* * *

Optimal resource allocation is an extremely important part of many human

activities, including reliability engineering. One of the first problem arose in this

engineering area was optimal allocation of spare units. Then it came to optimization of

networks of various natures (communication, transportation, energy transmission, etc.)

and now it is an important part of counter-terrorism protection.

Actually, these questions always stood and stand: How to achieve maximum gain

with limited expenses? How to fulfill requirements with minimum expenses?

In this book, one finds an overview of different approaches of optimal resource

allocation, from classical LaGrange methods to modern heuristic algorithms.

This book is not a tutorial in a common sense of words. It is not a reliability

“cooking book”. It is sooner a bridge between reliability engineering and applied

mathematics in the field of optimal allocation of resources for systems’ reliability

increase. It supplies the reader with basic knowledge in optimization theory and presents

examples of application of the corresponding mathematical methods to the Real World

problems. The book objective is to inspire the reader visiting the wonderful area of

applied methods of optimization, rather than give them a mathematical course on

optimization.

 Examples with sometimes tedious and bulky numerical calculations should not

frighten the Reader. They are given with the only purpose: to demonstrate “a kitchen” of

calculations. All these calculations have to be performed by a computer. Optimization

programs themselves are enough simple. (For instance all numerical examples were

performed with the help a simple program in MS Office Excel.)

 In the very end of the book there is a complete enough list of monographs on the

topic.

 3

* * *

Who are potential readers of the book? First of all, engineers who design complex

systems and mathematicians who are involved in “mathematical support” of engineering

projects. Another wide category is college and university students, especially, before they

take classes on optimization theory. At last, university professors could use the material

in the book taking numerical examples and case studies for illustration of the methods

they are teaching.

* * *

In conclusion, I would like to say a few words about references at the end of

chapters. Actually, each of them is not a list of reference, but rather a bibliography

presented in a chronological order. The author’s belief is that such list will allow the

reader to trace the"evolution" of the considered topic. The lists, of course, are not full, for

which the author in advance brings his apology. However, as Kozma Prutkov (a

pseudonym for the group of pokemon satirists the end of the 19th century) said: "Nobody

can embrace the unembraceable".

Igor Ushakov

San Diego, USA, 2012

* * *

 4

Table of Contents
1. BASIC MATHEMATICAL REDUNDANCY MODELS 7
1.1. Types of Models 7

1.2. Non-repairable redundant group with active redundant

units ... 8
1.3. Non-repairable redundant group with standby redundant

units .. 11

1.4. Repairable redundant group with active redundant

units .. 13

1.5.Repairable redundant group with standby redundant

units .. 16
1.6.Multi-level systems and system performance

estimation. .. 17

1.7. Brief review of other types of redundancy 18
1.8. Time redundancy 24

1.9.Some additional optimization problems 26
Chronological Bibliography of Main Monographs 27

2. FORMULATION OF THE OPTIMAL REDUNDANCY PROBLEMS 30

2.1. Problems description 30
2.2. Formulation of the optimal redundancy problem with a

single restriction. 31

2.3.FORMULATION OF OPTIMAL REDUNDANCY PROBLEM WITH

MULTIPLE CONSTRAINS 34

2.4. Formulation of multi-criteria optimal redundancy

problems. .. 36
Bibliography to Chapter 2 38

3.METHOD OF LAGRANGE MULTIPLIERS 41

Bibliography to Chapter 3 45
4.STEEPEST DESCENT METHOD 47

4.1.The main idea of SDM 47

4.2.Description of the algorithm 48
4.3.The stopping rule 49

4.5.Approximate solution 53

Bibliography to Chapter 4 55
5.DYNAMIC PROGRAMMING 56

5.1. Bellman’s Algorithm 56

5.2.Kettelle's Algorithm 59
Bibliography to Chapter 5. 65

6.UNIVERSAL GENERATING FUNCTIONS 66
6.1. Generating function 66

6.2. Universal GF (U-function) 67

Bibliography to Chapter 6 73
7.GENETIC ALGORITHMS 74

7.1. Introductory 74

 5

7.2. Structure of Steady-state Genetic Algorithms 76

7.3. Related techniques 77
Bibliography to Chapter 7 78

8.MONTE CARLO SIMULATION 80

8.1. Introductory remarks 80
8.2. Formulation of optimal redundancy problems in

statistical terms 81

8.3.Algorithm for Trajectory Generation 81
8.4.Description of the Idea of the Solution 83

8.5.Inverse Optimization Problem 85

8.6. Direct Optimization Problem 94
Bibliography to Chapter 8 97

9.COMMENTS ON CALCULATION METHODS 97
9.1. Comparison of methods 97

9.2.Sensitivity analysis of optimal redundancy solutions

 .. 100
10.OPTIMAL REDUNDANCY WITH SEVERAL LIMITING FACTORS 105

10.1. Method of “weighing costs” 105

10.2. Method of Generalized Generating Functions 108
Bibliography to Chapter 10 109

11.Optimal Redundancy in Multistate Systems 110

Bibliography to Chapter 11 122
12.CASE STUDIES Error! Bookmark not defined.

A. Spare supply system for worldwide telecommunication

system Globalstar Error! Bookmark not defined.

B. Optimal capacity distribution of telecommunication

backbone network resources ... Error! Bookmark not defined.

C. Optimal Spare Allocation for Mobile Repair Station

 Error! Bookmark not defined.

Bibliography to Chapter 12. .. Error! Bookmark not defined.

13. Counter-terrorism: Protection Resources AllocationError!

Bookmark not defined.

13.1. Introduction Error! Bookmark not defined.
13.2. Verbal description of the problem Error! Bookmark not

defined.

13.3. Evaluation of expected loss Error! Bookmark not

defined.

13.4. Algorithm of resources allocation .. Error! Bookmark

not defined.
13.5. Branching System Protection Error! Bookmark not

defined.

13.6. Fictional “Case Study”. Error! Bookmark not defined.

13.7.Antiterrorism resources allocation under fuzzy

subjective estimates Error! Bookmark not defined.

The problem of optimal resources allocation for

antiterrorism preventive measures is naturally based on

subjective estimates made by experts in this field.

 6

Relying on expert estimates is inevitable in this case:

there is no other possibility to get input data for the

system survivability analysis. There is no such

phenomenon like “collecting real data”, moreover, there

is no “homogenous samples” for consistent statistical

analysis of observations, since any case is unique and

non-reproducible. Nevertheless, quantitative analysis of

necessary level of protection has to be performed. Error!

Bookmark not defined.

What are the subjects of such expertise? It seems to us

that they are: Error! Bookmark not defined.
Bibliography to Chapter 13 ... Error! Bookmark not defined.

About the author Error! Bookmark not defined.

 7

1. BASIC MATHEMATICAL REDUNDANCY MODELS

A series system of independent subsystems is usually considered as a starting point

for optimal redundancy problems. The most common case is when one considers a group of

redundant units as a subsystem. The reliability objective function of a series system is

usually expressed as a product of probabilities of successful operation of its subsystems. The

cost objective function is usually assumed a linear function of the number of system’s units.

There are also more complex models (multi-purpose systems and multi-constrain

problems) or more complex objective functions like average performance or the mean time

to failure. However, we don’t limit ourselves with pure reliability models. The reader will

find a number of examples with various networks as well as examples of resource allocation

in counter-terrorism protection.

 In the book we consider main practical cases, describe various methods of

solutions of optimal redundancy problems, and demonstrate solving of the problems with

numerical examples. Finally, several case studies are presented that reflect the author’s

personal experience and can demonstrate practical applications of presented applied

methodology.

1.1. Types of Models

 A number of various mathematical models of systems with redundancy have been

developed during about half a century of developing modern reliability theory. Some of

these models are rather specific and some of them are even “extravagant”. We limit

ourselves in this discussion to the main types of redundancy and demonstrate on them

how methods of optimal redundancy can be applied to solutions of the optimal resource

allocation.

Redundancy in general is a wide concept, however, we mainly will consider the

use of a redundant unit to provide (or increase) system reliability.

Let us call a set of operating and redundant units of the same type a redundant

group. Redundant units within a redundant group can be in one of the two states: active

(in the same regime as operating units, i.e. so-called “hot redundancy”) and standby (idle

redundant units waiting to replace failed units, i.e. so-called “cold redundancy”).

In both cases there are two possible situations: failed units could be repaired and

returned to the redundant group or unit failures lead to exhaustion of the redundancy.

 In accordance with such very rough classifications of redundancy methods, this

chapter structure will be arranged in the following way:

Table 1.1. Types of redundancy

 Redundant units regime

Active Standby

Type of

maintenance

Non-repairable Section 1.1 Section 1.2

Repairable Section 1.3 Section 1.4

 We consider two main reliability indices: probability of failure-free operation

 8

during some required fixed time t0, R(t0), and mean time to failure, T.

In practice, we often deal with a system consisting of a serial connection of

redundant groups:

Figure 1.1. General block diagram of series connection of redundant groups.

Usually, such kind of structures is found in systems with spare stocks with

periodical replenishment.

1.2. Non-repairable redundant group with active redundant units

 Let us begin with a simplest redundant group of two units (duplication).

Figure 1.2. Block diagram of a duplicated system.

Such system operates successfully if at least one unit is operating. If one denotes

random time to failure of unit k by ξk , then the system time to failure, ξ, could be written

as

ξ =max {ξ1 ,ξ2} (1.1)

The following time diagram explains equation (1.1):

Figure 1.3. Time diagram for a non-repairable duplicated system with both units active

 The probability of failure-free operation (PFFO) during time t for this system is

equal to

 9

R(t) = 1– [1-r(t)]
2
 (1.2)

where r(t) is PFFO of a single active unit.

We will assume an exponential distribution of time to failure for an active unit:

F(t) = exp(-λt). (1.3)

In this case the mean time to failure (MTTF), T , is equal to:

 



1

5.01)]exp(1[1)()},{max(}{
0

2

0

21  


dttdttREET (1.4)

Now consider a group of n redundant units that survives if at least one unit is

operating.

Figure 1.4. Block diagram of redundant group of n active units.

We omit further detailed explanations that could be found in any textbook on

reliability (Bibliography to Chapter 1).

For this case PFFO is equal:

R(t) = 1– [1-r(t)]
n
 (1.5)

and the mean time to failure (under assumption of the exponential failure distribution) is

 .
1

1





nk k

T (1.6)

The most practical system of interest is the so-called “k out of n” structure. In this

case, the system consists of n active units in total. The system is deemed to be operating

successfully if k or more units have not failed. (Sometimes this type of redundancy is

called “floating”). The simplest system frequently found in engineering practice is a “2

out of 3” structure.

 10

Figure 1.5. Block diagram of a “2 out of 3” structure with active redundant unit.

A block diagram for general case can be presented in the following conditional

way. It is assumed that any redundant unit can immediately operate instead of any of k

“main” units in case a failure.

Figure 1.6. Block diagram of a “k out of n” structure with active redundant units.

Redundancy of this type can be found in multi-channel systems, for instance, in

base stations of various telecommunication networks: transmitter or receiver modules

form a redundant group that includes operating units as well as a pool of active redundant

units.

Such system is operating until at least k of its units are operating (i.e. less than

n – k + 1 failures have occurred). Thus, PFFO in this case is

    jnj

njk

tptp
j

n
tR













 )(1)()((1.7)

and





njk n

j
T



1
. (1.8)

If a system is highly reliable, sometimes it is more reasonable to use (1.7) in

supplementary form (especially, for approximate calculations when p(t) is close to 1).

      1

1

)(1
1

1)()(11)(























 

knjnj

njkn

tp
kn

n
tptp

j

n
tR (1.9)

 11

1.3. Non-repairable redundant group with standby redundant units

Again begin with a duplicated system presented on the following figure.

Figure 1.7. A non-repairable duplicated system with a standby redundant unit. (Here grey color denotes a

standby unit.)

For this type of systems, the random time to failure is equal to:

ξ= ξ1+ξ2 . (1.10)

The following time diagram explains equation (1):

Figure 1.8. Time diagram for a non-repairable duplicated system with a standby redundant unit.

The PFFO of a considered duplicate system can be written in the form:

)()()(10 tptptR  (1.11)

where)(0 tp is the probability of no failures at time interval [0, t], and)(1 tp is the

probability of exactly one failure in the same time interval. Under assumption of

exponentiality of the time-to-failure distribution, one can write:

)exp(0 tp  (1.12)

and

)exp(1 ttp   , (1.13)

so finally

)1()exp()(tttR   . (1.14)

Mean time to failure is defined as




2
}{ 21  ET , (1.15)

since λ=1/T.

For a multiple standby redundancy a block diagram can be presented in the

following form:

 12

 Figure 1.9. Block diagram of redundant group of one active and n – 1 standby units. (Here grey

boxes indicate standby units.)

For this redundant group, one can easily write (using the arguments given above):





11 !

)(
)exp()(

nj

j

j

t
ttR


 (1.16)

and



n
T  (1.17)

 A block diagram for a general case of standby redundancy of k out of n type can

be presented in the following way.

Figure 1.10. Block diagram of a “k out of n” structure with standby redundant units. (Here grey

color is used to show standby redundant units).

It is assumed that any failed operational unit can be instantaneously replaced by a

spare unit. Of course, no replacement can be done instantaneously: speaking so we keep

in mind a five seconds rule
1
 .

This type of redundant group can be found in spare inventory with periodical

restocking. Such replenishment is typical, for instance, for terrestrially distributed base

stations of global satellite telecommunication systems. One observes a Poisson process

of operating units failures with parameter kλ, and the group operates until the number of

failures exceeds n – k. The system PFFO during time t is equal to:

1 Russian joke: If fallen object is picked up in 5 seconds , it is assumed as non-fallen at all.

 13





knj

j

j

tk
tktR

0 !

)(
)exp()(


 (1.18)

and the system MTTF is

k

kn
T

11 



 (1.19)

Remark. Of course, there are more complex structures that involve active and standby

redundant units within the same redundant group. For instance, structure “k out of n” with

active units could have additional “cold” redundancy that allows performing “painless”

replacements of failed units.

1.4. Repairable redundant group with active redundant units

Consider a group of two active redundant units, i.e. two units in parallel. Each

unit operates independently: after failure it is repaired during some time and then returns

to its position. Behavior of each unit can be described as alternating stochastic process: a

unit change its states: one of proper working that during time ξ, followed by a failure

state induced repair interval, η. The cycle of working/repairing repeats. This process is

illustrated in Figure 11.

Figure 1.11. Time diagram for a repairable system with standby redundancy. White parts of a strip denote

operating state of a unit and black parts do its failure state. Here
)(i

j denotes j-th operating interval of unit i,

and
)(i

j does j-th interval of repair of this unit.

From Figure 1.11, one can see that the system failure occurs when failure

intervals of both units overlapped.

Notice that for repairable systems, one of the most significant reliability indices is

the so-called availability coefficient, r~ . This reliability index is defined as the probability

that the system is in a working state at some arbitrary moment of time. (This moment of

time is assumed to be “far enough” from the moment of the process start.) It is clear that

this probability for a single unit is equal to a portion of total time when a unit is in a

working state, i.e.

 14

}.{}{

}{~





EE

E
r


 (1.20)

If there are no restrictions, i.e. each unit can be repaired independently, the system

availability coefficient, R
~

, can be written easily

2)1(1

~
rR  (1.21)

For general types of distributions, reliability analysis is not simple. However, if

one assumes exponential distributions for both ξ and η, reliability analysis can be

performed with the help of Markov models.

If redundant group consists of two units, there are two possible regimes of repair,

depending on the number of repair facilities. If there is a single repair facility, units

become dependent through the repair process: the failed unit can find the facility busy

with the repair of a previously failed unit. Otherwise, units operate independently. Below

is Markov transition graphs for both cases are presented.

Figure 1.12. Transition graphs for repairable duplicated system with active redundancy for two

cases: restricted repair (only one failed unit can be repaired at a time) and unrestricted repair (each failed

unit can be repaired independently). The digit in the circle denotes the number of failed units.

With the help of these transition graphs, one can easily write down a system of

linear differential equations that can be used for obtaining various reliability indices.

Take any two of the three equations:

 15







































repairrestrictedfor

or

repairrestrictedfor

)(2)()(

)()()(

)()()()(2)(

)()(2)(

212

212

2101

100

tPtPtP
dt

d

tPtPtP
dt

d

tPtPtPtP
dt

d

tPtPtP
dt

d









 (1.22)

and take into account chosen initial conditions.

The availability coefficient for these two cases can be calculated using the

following formulas (where γ=λ/μ):

Table 1.2. Availability coefficient for two repair regimes.

 Formula for availability coefficient, R
~

Restricted repair Unrestricted repair

Strict formula
2)1(

21









22)1(

21









Approximation

for γ<<1

1 – γ
2
 1 – 2γ

2

However, our intent is to present methods of optimal redundancy rather than to

give detailed analysis of redundant systems. (Such analysis can be found almost in any

book listed in Bibliography to Chapter 1.) Thus we will consider only simplest models of

redundant systems, i.e. systems with unrestricted repair.

We avoid strict formulas because they are extremely clumsy; instead we present

only approximate ones that mostly are used in practical engineering calculations.

Table 1.3. Approximate formulas for availability coefficient

Type of the

redundant group
Approximate formula for availability coefficient, R

~

Restricted repair Unrestricted repair

Group of n units 1 – (n!)·γ
n
 1 – γ

n

 16

Group of type

“k out of n”
1

1
])!1[(1 











 n

kn

n
kn  1

1
1 











 n

kn

n


1.5.Repairable redundant group with standby redundant units

Consider now a repairable group of two units: one active and one standby.

Behavior of such redundant group can be described with the help of a renewal process:

after a failure of the operating unit a standby unit becomes the newly operating one, while

the failed unit after repair becomes a standby one, and so on. System failure occurs when

a unit undergoing repair is not ready to replace a now not operating unit that has just

failed. The process of functioning of this type of duplicated system is illustrated in Figure

13.

Figure 1.13. Time diagram for a repairable duplicated system with standby redundancy. White parts of a

strip denote the operating state of a unit, and grey parts show the standby state, and black parts show the

failure state. Here
)(i

j denotes j-th operating interval of unit i, and
)(i

j does j-th interval of repair of this

unit.

 In this case, finding PFFO of the duplicated system is also possible with the use of

Markov models under assumption of exponentiality of both distributions (of repair time

and time to failure),

Transition graphs for restricted and unrestricted repair are shown in the next

figure.

Figure 1.14. Transition graphs for repairable duplicated systems with standby redundancy for two cases:

restricted repair (only one failed unit can be repaired at a time) and unrestricted repair (each failed unit can

be repaired independently).

 17

Again we present only approximate formulas.

Table 1.4. Approximate formulas for availability coefficient.

Type of the

redundant group
Approximate formula for availability coefficient, R

~

Restricted repair Unrestricted repair

Group of n units 11  kn

)!1(
1

1






kn

kn

Group of type

“k out of n”

1)(1  knk

)!1(

)(
1

1






kn

k kn

1.6.Multi-level systems and system performance estimation.

Operation of a complex multi-level system cannot be satisfactory described in

traditional reliability terms. In this case, one has to talk about performance level of such

systems rather than simple binary type “up & down” operating.

 Let a system consist of n independent units characterized by their reliability

indices p1, p2, .., pn. Assume that with unit failure a level of system performance

degrades. Denote by i a quantitative measure of the system performance under

condition that unit i failed, by ij the same measure if units i and j are failed, and in

general, if some set of units, α is failed then the system performance is characterized by

value  . In this case the system performance can be characterized by the mean value:







HSystem (1.23)

where A is a set of all possible states of units 1, 2, …, n, i.e. power of this set is 2
n
 and









\

)1(
Ai

i

i

i ppH . (1.24)

where notation A\ α means the total set of unit subscripts with exclusion of subset α.

The measure of system performance could be various: it could be conditional

probability of successful fulfillment of operation, productivity, or other operational

parameter.

 Several years after [Kozlov & Ushakov, 1966] had been published, there was a

relative silence with quite rear appearance of works on the topic. Since average measure

is not always a good characterization, soon there was a suggestion to evaluate the

probability that a multi-state system performance is exceeding some required level. In a

sense, it was nothing more than introducing a failure criterion for a multi-state system. In

this case, new formulation of the system reliability has the form

 18





quired

HR quiredSystem

Re:

Re }Pr{


 . (1.25)

 In 1985, in [Ushakov, ed., 1985] Kurt Reinschke introduced a system that itself

consists of multi-state units. However, this work also did not find an appropriate

response among reliability specialists at the time.

Nevertheless, reliability analysis of multi-state systems has started for all three

possible classes:

(1) Multi-state systems consisting of binary units

(2) Binary systems consisting of multi-state units

(3) Multi-state systems consisting of multi-state units

In late 1990s, one observes a real avalanche of papers and since then this topic

keeps its steady flow. This subject is considered in more details in Chapter 11.

Naturally, after multi-system analysis, attention to the problems of optimal

redundancy in such systems arose. Now the problem of optimal redundancy in multi-state

systems is a subject of an intensive research.

1.7. Brief review of other types of redundancy

In reliability theory, redundancy is understood as using additional units for

replacement/substitution of failed units. Actually, there are many various types of

redundancy. Below we briefly consider structural redundancy, functional redundancy, a

system with spare time for operation performance, and so on.

1.7.1.Two-pole structures. One of the typical types of structural redundancy is presented

by networks. The simplest network structure is the so-called bridge structure. Assume

that connection between points A and D is needed.

Figure 1.15. Bridge structure.

 19

 A failure of any unit does not lead to failure of the system because of the

redundant structure. There are the following paths from A to D: ABD, ACD, ACBD and

ABCD. If at least one of those paths exists, the system performs its task. Of course, one

can consider all cuts that lead to the system failure: AB&AC, BD&CD, AB&BC&CD and

AC&BC&BD. However, in this case we cannot use simple formulas of series and parallel

systems, since paths are interdependent, as well cuts. Because of this, one can only write

the upper and lower bounds for PFFO of such systems:

).1()1()1()1(1

)1()1()1()1(

BDBCACCDBCABCDACBDAB

BridgeBDBCACCDBCABCDBDACAB

PPPPPPPPPP

RQQQQQQQQQQ




 (1.26)

 For this simple case, one can find a strict solution using a straightforward

enumeration of all possible system states:

)].1)(1(1[)1()1(CDACBDABBCCDBDACABBCBridge PPPPQQQQQRR  (1.27)

More complex systems of this type are presented by the two-pole networks: in

such systems a “signal” has to be delivered from a terminal A to terminal B. Reliability

analysis of such systems usually is performed with the use of Monte Carlo simulation.

Figure 1.16. An example of two-pole network.

 For networks with general structure, the exact value of the reliability index can be

found actually only with the help of a direct enumeration. For evaluation of this index

one can use the upper and lower bounds of two types: Esary-Proschan boundaries

[Barlow & Proscha, 1965] or Litvak-Ushakov boundaries [Ushakov, ed. 1985].

Unfortunately, boundaries cannot be effectively used for solving optimal redundancy

problems.

1.7.2. Multi-pole networks. This kind of networks is very common in modern life: one

can remember telecommunication networks, transportation and energy grids, etc. The

most important specific of such systems is their structural redundancy and redundant

capacity of its components. We demonstrate specific of such systems on a simple

 20

illustrative example. Consider a bridge structure that was described above, but assume

that each node is either a “sender’ or a “receiver” of “flows” to each other. Of course,

flows can be different as well as capacities of particular links. Assume that traffic is

symmetrical, i.e. traffic from X to Y is equal to traffic from Y to X. This assumption

allows us to consider only one-way flow between any points.

 Let the traffic in the considered network be described as it shown in Table 1.5

Table 1.5. Traffic in the network (in conditional units)

 A B C D

A - 1 1 1

B 1 - 2 1

C 1 2 - 1

D 1 1 1 -

For normal operating, it is enough to have the following capacities of the links:

Figure 1.17. Traffic distribution

(We assume that traffic within the network is distributed as uniformly as possible.)

 However, links (as well as nodes) are subjected to failure. For protection of the

system against link failures, let us consider possible scenarios of link failure and

measures of system protection by means of links capacities increase.

What should we do if link AB has failed? The flow from A to B and from A to D

should be redirected. Thus, successful operation of the network requires an increase of

the links’ capacities (see the figure below)

 21

Figure 1.18. Traffic distribution in the case of link AB failure.

Since all four outside links are similar, failure of any link AC, BD or CD leads to

a similar situation. Thus, to protect the system against failure of any outside link, one

should increase capacities of each outside link from 2 to 3 units.

 What happens if link BC fails? This link originally was used only for connecting

nodes B and C. This traffic should be redistributed: half flow is directed through links

BA-AC, and another – through links BD-DC. To protect the system against link BC

failure, the capacity of each outside link has to be increased by one unit.

Figure 1.19. Traffic distribution in the case of link BC failure.

 To protect the system against any single link failure, one has to make link

 22

capacities corresponding to maximum at each considered scenarios;

Figure 1.20. Final values of link capacities for a network protected against any possible single failure.

1.7.3. Branching structures. Another rather specific type of redundant systems is

presented by systems with a branching structure. In such systems, actual operational

units are units on the lowest level, which, however, successfully operate only under the

condition that their controlling units at the upper levels are successfully operating. Such

structures are very common in various control systems, in particular, in military systems.

Figure 1.21. System with branching structure.

 Assume that the presented branching system performs satisfactory until four or

more units of the lower level failed or lost control by upper level units. Types of possible

system failures are given in Figure 1.22.

Figure 1.22. Types of situations when the branching system has 4 lower level units that have failed to

perform needed operations. (Failed units are in black and units without control are in grey.)

 Of course, for complex systems the concept of “failure” is not adequate; instead,

there is the notion of diminished performance. For instance, for the same branching

 23

system considered above, it is possible to introduce several levels of performance.

Assume that the system performance depending on the system state is described by Table

1.6.

Table 1.6. Levels of system performance for various system states.
Qty of failed

units of

lower level

Conditional level

of performance

0 100%

1 99%

2 95%

3 80%

4 60%

5 50%

6 10%

7 2%

8 0%

Usually, for such systems with structural redundancy, one uses the average level

of performance. However, it is possible to introduce a new failure criterion and talk about

reliability of such system. For instance, under assumption that admissible level of

performance is 80% , one came to the situation considered above: the system is

considered failed only when four (or more) its lower level units do not operate

sufficiently (failed or lost control).

1.7.4.Functional redundancy. Sometimes to increase a probability of successful

performance of a system, designers envisage functional redundancy, i.e. make possible to

use several different ways of completing a mission. As an example, one can consider

procedure of docking a space shuttle with a space station.

Figure 1.23. Phases of a space shuttle docking to a space station.

This complex procedure can be fulfilled with the use of several various methods:

by signals from the ground Mission Control Center (MCC), by on-board computer

system and manually. In all these cases, video images sent from space objects are usually

used. However, MCC can also use telemetry data. All methods can ensure success of the

operation though with different performance.

 24

1.8. Time redundancy

 One very specific type of redundancy is the so-called time redundancy. There are

three main schemes of time redundancy:

(a) A system is operating during interval t0. There are instantaneous interruptions of

the system operation (failures), after which the system starts its operation from the

beginning. The system operation is considered successful if during interval t0 there is at

least one interval with length larger than some required value τ. In other words, there is

some extra time to restart the operation.

Figure 1.24. Examples of possible implementation of the successful system operation.

Denote the probability of success for such a system by R(t0 | τ). If there is a failure on

interval [0, t0] at such moment x< τ that still t0 – x > τ, the needed operation can be restarted,

otherwise R(t0 | τ) = 0. This verbal explanation leads us to the recurrent expression

where F(x) is distribution function of the system time to failure.

Such kind of recurrent equations are usually solved numerically.

(b) Independent of the number of sustained failures, system operation is considered

successful if the cumulative time of the system operation is no less than the required

amount θ.

Figure 1.25. Examples of possible implementation of the successful system operation.

),()()()(0

0

0 xdFxtxR + R tR  


 (1.28)

 25

Denote the distribution of repair time, η, by G(t). If the first failure has occurred at moment

x such that x > θ, it means that the system fulfilled its operation. If failure happens at

moment ξ, the system can continue its operation after repair that takes time η, only if t0 – η >

θ. It is clear that the probability that the total operating time during interval [0, t0] is no less

than θ is equal to the probability that the total repair time during the same interval is no

larger than t0 – θ.

For this probability, one considers two events that lead to success:

 - system works without failures during time θ from the beginning;

 - system has failed at the moment x< t0 – θ, and was repaired during time y, and

during the remaining interval of t0 –x –y accumulates θ – x units of time of successful

operation. This verbal description permits us to write the following recurrent expression:

where R(t0 | z) = 0 if z < θ.

(c) A system “does not feel” failures of duration less than χ. (In a sense, the system

possesses a kind of “inertia” much alike a famous “five second rule”.)

Figure 1.26. Time diagram for a system accumulating operation time.

 A system is considered to be successfully operating if during period [0, t0] there is

no down time larger than ψ. This case, in some sense, is a "mirror" of what was considered

at the beginning. We will skip explanation details and immediately write the recurrent

expression:

We will not consider this type of redundancy in details; instead we refer the reader to

special literature on the subject [Cherkesov, 1974], [Kredentser, 1978] .

)()()()(1)(0

00

00

0

xdFydGyxtR + tF = tR

x-tt0












   (1.29)

 .xdFydG|y-x-tR + tF = tR

t

)()()()(1)(0

00

00

0









  



 (1.30)

 26

1.9.Some additional optimization problems

1.9.1. Dynamic Redundancy

 "Dynamic redundancy" models occupy an intermediate place between optimal

redundancy and inventory control models.

 The essence of a dynamic redundancy problem is contained in the following.

Consider a system with n redundant units. Some redundant units are operating and represent

an active redundancy. These units can be instantly switched into a working position without

delay and, consequently, do not interrupt the normal operation of the system. These units

have the same reliability parameters (for example, for exponential distribution, and the same

failure rate). The remaining units are on standby and cannot fail while waiting. But at the

same time, these units can be switched in an active redundant regime only at some pre-

determined moments of time. The total number of such switching moments is usually

restricted because of different technical and/or economical reasons.

 A system failure occurs when at some moment there are no active redundant units to

replace the main ones which have failed. At the same time, there may be many standby units

which cannot be used because they cannot be instantly switched after a system failure.

 Such situations in practice can arise in different space vehicles which are

participating in long journeys through the Solar System. A similar situation occurs when one

considers using uncontrolled remote technical objects whose monitoring and service can be

performed only rarely.

 It is clear that if all redundant units are switched to an active working position at an

initial moment t=0, the expenditure of these units is highest. Indeed, many units might fail

in vain during the initial period. At the same time, the probability of the unit's failure during

this interval will be small. On the other hand, if there are few active redundant units

operating in the interval between two neighboring switching points, the probability of the

system's failure decreases. In other words, from a general viewpoint, there should exist an

optimal rule (program) of switching standby units into an active regime and allocating these

units over all these periods.

 Before we begin to formulate the mathematical problem, we discuss some important

features of this problem in general.

Goal Function
 Two main reliability indices are usually analyzed: the probability of failure-free

system operation during some specified interval of time, and the mean time to system

failure.

System Structure

 Usually, for this type of the problem, a parallel system is under an analytical

consideration. Even a simple series system requires a very complex analysis.

Using Active Redundant Units

 One possibility is that actively redundant units might be used only during one period

after being switched into the system. Afterwards, they are not used further, even if they have

not failed. In other words, all units are divided in advance into several independent groups,

 27

and each group is working during its own specified period of time. After this period has

ended, another group is switched into the active regime. In some sense, this regime is

similar to the preventive maintenance regime.

 Another possibility is to keep operationally redundant units in use for next stages of

operation. This is more effective but may entail some technical difficulties.

Controlled Parameters
 As we mentioned above, there are two main parameters under our control: the

moments of switching (i.e., the periods of work) and the number of units switched at each

switching moment. Three particular problems arise: we need to choose the switching

moments if the numbers of switched units are fixed in each stage; we need to choose the

numbers of units switched in each stage if the switching moments are specified in advance;

and, in general, we need to choose both the switching moments and the numbers of units

switched at each stage.

Classes of Control

 Consider two main classes of switching control. The first one is the so-called prior

rule (program switching) where all decisions are made in advance at time t=0. The second

class is the dynamic rule where a decision about switching is made on the basis of current

information about a system's state (number of forthcoming stages, number of standby units,

number of operationally active units at the moment, etc.).

 We note that analytical solutions are possible only for exponentially distributed

TTF's. The only possible method of analysis for an arbitrary distribution is via a Monte

Carlo simulation.

* * *

Chronological Bibliography of Main Monographs

on Reliability Theory (with topics on Optimization).

1962. Lloyd, D.K., and Lipov, M. Reliaility Management, Methods and

Mathematics. Prentice Hall.

1965. Barlow, R.E., and F. Proschan. Mathematical Theory of Reliability. John Wiley

& Sons.

1966. Kozlov, B.A., and Ushakov, I.A. Brief Handbook on Reliability of Electronic

Devices. Sovetskoe radio, 1966.

1967. Raikin, A.L. Elements of Reliability Theory for Engineering Design. Sovetskoe

Radio, Moscow,

1968. Polovko, A. M. Fundamentals of Reliability Theory. Academic Press.

1969. Gnedenko, B.V., Belyaev, Yu.K., and Solovyev, A.D. Mathematical Methods

in Reliability Theory. Academic Press.

 28

1969. Ushakov, I.A. Method of Solving Optimal Redundancy Problems under

Constraints (in Russian). Sovetskoe Radio, Moscow.

1970. Kozlov, B.A., and Ushakov, I.A. Reliability Handbook. Holt, Rinehart and

Winston.

1974. Cherkesov, G.N. Reliability of Technical Systems with Time Redundancy (in

Russian). Sovetskoe Radio, Moscow.

1975. Barlow, R.E., and F. Proschan. Statistical Theory of Reliability and Life Testing,

Holt, Rinehart & Winston.

1975. Gadasin, V.A., Ushakov, I.A. Reliability of Complex Information and Control

Systems (Russian). Sovetskoe Radio, Moscow.

1975. Kozlov, B.A., and Ushakov, I.A. Handbook of Reliability Calculations for

Electronic and Automatic Equipment (in Russian). Sovetskoe Radio, Moscow.

1978. Kozlow, B.A., and Uschakow, I.A. Handbuch zur Berehnung der

Zuverlassigkeit in Elektronik und Automatechnik (in German). Academie-Verlag.

1978. Kredentser, B.P. Forcasting Reliability for Time Redundamcy (in Russian).

Naukova Dumka. Kiev.

1978. Raikin, A. L. Reliability Theory of Complex Systems (in Russian). Sovietskoe

Radio, Moscow.

1979. Kozlow, B.A., and Uschakow, I.A. Handbuch zur Berehnung der

Zuverlassigkeit in Elektronik und Automatechnik (in German). Springer-Verlag.

1980. Tillman, F.A., C.L. Hwang, and Kuo, W. Optimization of System Reliability,

Marcel Dekker,

1981. Barlow, R.E., and Proschan, F. Statistical Theory of Reliability and Life Testing,

2nd ed. Silver Spring, MD: To Begin With.

1983. Gnedenko, B.V. (Ed.) Aspects of Mathematical Theory of Reliability (in

Russian). Radio i Svyaz.

1983. Ushakov, I.A. Textbook on Reliability Engineering (in Bulgarian). VMEI.

1985. Ushakov, I.A., Ed. Handbook on Reliability (in Russian). Radio i Svyaz,

Moscow.

1986. Rudenko, Yu.N., and Ushakov, I.A. Reliability of Power Systems (in Russian).

Nauka, Moscow.

1987. Reinschke, K., Ushakov, I. Application of Graph Theory for Reliability Analysis

(German). Verlag Technik, Berlin.

1988. Reinschke, K., and Ushakov, I. Application of Graph Theory for Reliability

Analysis (Russian). Radio i Svyaz, Moscow.

 29

1988. Reinschke, K., and Ushakov, I. Application of Graph Theory for Reliability

Analysis, with K. Reinschke (German). Springer, Munchen-Vien.

1989. Rudenko, Yu.N., and Ushakov, I.A. Reliability of Power Systems, 2
nd

 edition (in

Russian). Nauka, Moscow.

1991. Kececioglu, D. Reliability Engineering Handbook. Prentice-Hall.

1992. Volkovich, V.L., Voloshin, A.F., Ushakov, I.A., and Zaslavsky, V.A. Models

and Methods of Optimization of Complex Systems Reliability (in Russian).

Naukova Dumka, Kiev.

1994. Ushakov, I.A. Handbook of Reliability Engineering. John Wiley & Sons.

1995. Gnedenko, B.V., and Ushakov, I.A. Probabilistic Reliability Engineering.

John Wiley & Sons.

1997. Kapur, K.C., and Lamberson, L.R. Reliability in Engineering Design. John

Wiley & Sons.

1999. Gnedenko, B.V., Pavlov, I.V., and Ushakov, I.A. Statistical Reliability

Engineering. John Wiley & Sons.

2003. Kuo, W., and Zuo, M.J. Optimal Reliability Modeling: Principles and

Applications, John Wiley & Sons.

2003. Pham, H. Handbook of Reliability Engineering. Springer.

2006. Kuo, W., Prasad, V. R., Tillman, F.A., and Hwang, C.-L. Optimal Reliability

Design: Fundamentals and Applications. Cambridge University Press.

2006. Levitin, G., (Ed.). Computational Intelligence in Reliability Engineering.

Evolutionary Techniques in Reliability Analysis and Optimization (Series: Studies

in Computational Intelligence), Vol. 39, Springer-Verlag.

2007. Ushakov, I. A. Course on Reliability Theory (in Russian). Drofa, Moscow.

2010. Gertsbakh, I., and Shpungin, Y. Models of Network Reliability. CRC Press

http://www.springer.com/west/home/business/business+information+systems?SGWID=4-170-22-173672426-0
http://www.springer.com/west/home/business/business+information+systems?SGWID=4-170-22-173672426-0

 30

2. FORMULATION OF THE OPTIMAL REDUNDANCY PROBLEMS

2.1. Problems description

 One of the most frequently used methods of reliability increase is the use of

additional (redundant) units, circuits and blocks. This method is especially convenient when

the principal solution of the system design has already been found: the use of redundant

units usually does not cause a change in the overall structure of the system. But the use of

extra units entails additional expense. Naturally, a system designer always tries to find the

least expensive way to improve reliability. Thus, a designer faces two problems:

Direct problem of optimal redundancy: find such allocation of redundant units among

different subsystems that warrants required level of reliability index with spending

minimum possible resources;

Inverse problem of optimal redundancy: find such allocation of redundant units among

different subsystems that maximizes the level of chosen reliability index under some

specified constrains on the total cost of the system.

 The choice of a type of constrains depends on the specific engineering problem. Of

course, the cost of a set of redundant units is not a unique objective function. For instance,

for submarines the most serious constrain is the total volume (or weight) of spare units.

 Consider a series system composed of n independent redundant groups (or

subsystems). A redundant group is not necessarily a separate part of a system. In this

context, this may be a group of units of the same type which uses the same redundant units.

For instance, in spare parts allocation problems a redundant group might be a set of identical

units located throughout the entire system in quite different places.

Figure 2.1. Modular system and “informal” redundant groups for this system.

 31

2.2. Formulation of the optimal redundancy problem with a single
restriction.

 The simplest (and practically the most often encountered) optimal redundancy

problem is optimization of an objective function under a single constrain. Usually, the

following two objective functions are considered: the cost of the total set of redundant units,

C(X), and the probability of a failure-free system operation, R(X), where as above X=(x1,

x2… xn) and xi is the number of units within redundant group i.

 The direct problem of optimal redundancy can be written as:

]X)(X)([0

X
min R R | C  (2.1)

 and the inverse problem that can be written as:

]X)(X)([0

X
max C C | R  (2.2)

where R0 and C0 are given constrains for the specific problems.

 Cost of redundant group as a whole is usually assumed a linear function of number of

redundant units and expressed as

)(
1

21),...,,()(xC = xxxC = XC ii

ni

n 


 (2.3)

 In most cases, we deal with a system that can be presented as a series connection of

independent redundant groups. For such systems, the probability of a successful operation

during time t, R(t|X), and availability coefficient, R
~

(X), can be presented as a product of

corresponding indices of redundant groups. Because both these objective functions are

similar by their probabilistic nature, let us use a common notation R(X) for both cases. Then

we can write:

)(
1

1 2
),(X)(xR = x ,... ,xxR = R ii

ni

n 


 (2.4)

where X= (x1,x2, ... , xn) is the set of the system redundant units xi's of the ith type, ni 1 ,

and the Ri(xi) are the reliability indices of the ith redundant group.

 Sometimes it is more convenient to present (3) in an additive form

)(X)(
1

1 иi

ni

n хL =)x ,... ,xL(= L 


 (2.5)

where L(X) = ln R(X) and Li(xi) = ln Li(xi).

 If a system is highly reliable, i.e.

 Qi(xi) = 1 - Ri(xi) <<
n

1
 (2.6)

or, equivalently,

 32

 Q(X) = Q(x1,...,xn) <<1 , (2.7)

one can use the approximation

)()(X)(1 xQ x ,... ,xQ = Q ii

ni1

n 


 (2.8)

Of course, similar problems can be formulated for other objective functions, for instance, for

mean time to failure (or mean time between failures), Т. Unfortunately, the calculation of

T(X) is usually rather difficult.

Example 2.1

Consider a simplest series system consisting of two units. Unit parameters are given in

Table 2.1.

Table 2.1

 PFFO Cost

Unit-1 0.7 1.2

Unit-2 0.6 2.7

 We need to find:

(a) A number of units of both types, optX = (optx1 , optx2) that satisfy the required level of

system reliability index equal to 0.8 and deliver minimum possible system cost.

(b) A number of units of both types, optx1 and optx2 that maximize system reliability

index under constrain that the total system cost is not higher than 7 units.

 It is assumed that “hot” redundancy is used for reliability improvement, i.e.
ix

iii qxR 1)(.

 Since we don’t assume any a priori knowledge of optimization methods, let us use a

trivial enumerating. For the further convenience, let us introduce triplets that contain the

following information: Δi(xi) = {xi, Ri(xi), Ci(xi)}. Compile two tables with the system cost

and PFO, putting in Table 2.2 cost of different variants.

 Table 2.2. Values of system cost for various X.
 x2

1 2 3

2.7 5.4 8.1

x1

1 1.2 3.9 6.6 9.3

2 2.4 5.1 7.8 10.5

3 3.6 6.3 9.0 11.7

4 4.8 7.5 10.2 12.9

5 6.0 8.7 11.4 14.1

Table 2.3. Values of system PFFO for various X.
 x2

1 2 3

 33

0.600 0.840 0.936
x1 1 0.700 0.420 0.588 0.655

2 0.910 0.546 0.764 0.852
3 0.973 0.584 0.817 0.911
4 0.992 0.595 0.833 0.928
5 0.998 0.599 0.838 0.934

 On the basis of these two tables, one can easily compile a new table with triplets

ordered by cost.

Table 2.4. List of triplets ordered by the system cost.

C(X) R(X) X
(j)

x1 x2
2.7 0.420 (1) 1 1

3.9 0.546 (2) 2 1

5.1 0.584 (3) 3 1

6.3 0.595 (4) 4 1

6.6 0.588 (5) 1 2 *

7.5 0.599 (6) 5 1

7.8 0.764 (7) 2 2

9.0 0.817 (8) 3 2

9.3 0.655 (9) 1 3 *

10.2 0.833 (10) 4 2

10.5 0.852 (11) 2 3

11.4 0.838 (12) 5 2 *

11.7 0.911 (13) 3 3

12.9 0.928 (14) 4 3

14.1 0.934 (15) 5 3

 One can see that there are such triplets X
(k)

and X
(k+1)

 that C(X
(k+1)

) > C(X
(k)

) but

R(X
(k+1)

) < R(X
(k)

). In this case, it is said that triplet Δ
(k)

 (X
(k)

) = { X
(k)

, R(X
(k)

), C(X
(k)

)}

dominates over triplet Δ
(k+1)

 (X
(k+1)

) = { X
(k+1)

, R(X
(k+1)

), C(X
(k+1)

)}. Such triplets are

excluded in further analysis. (In Table 2.4 these vectors are X
(5)

, X
(9)

 X
(12)

.) All remaining

vectors X
(k)

 are called dominating.

 34

Figure 2.2. Dominating sequence and dominated vectors for the numerical example.

Basing on Table 2.4, one can easily find desired solutions:

(a) for the direct optimal redundancy problem, one finds the largest value of cost that

is still admissible;

(b) for the inverse optimal redundancy problem, one finds the smallest value of

reliability index that exceeds required value.

 For considered numerical example the direct problem solution is vector X
(8)

(reliability index = 0.817 and system cost = 9) and for the inverse problem solution is vector

X
(4)

(system cost = 6.3 and reliability index = 0.595).

2.3.FORMULATION OF OPTIMAL REDUNDANCY PROBLEM WITH
MULTIPLE CONSTRAINS

2.3.1 Direct optimal redundancy problem.

Sometimes the optimal redundancy problem is formulated for multiple constrains, for

instance, maximization of a reliability index under condition that other factors (cost, volume,

weight, etc.) are limited by some fixed conditions. This problem can be written as:

   CXCCXCCXCXR mM
X

00

22

0

11)(,...,)(,)()(max  (2.9)

where ,,...,2,1,0 MjC j  are given constrains on the corresponding type of expenditures

for the system as a whole.

 In this case, further detailed considerations as in the section above are possible

though we omit them for the sake of brevity.

2.3.2. Inverse optimal redundancy problem.

 Very rarely one can find the following problem: a system is designated for multiple

tasks and performing each task requires different parts of the system. Set of such system

parts may be called subsystems. Some parts of the system are used for all tasks and some

only for performance specific tasks. Tasks of these subsystems may have different reliability

requirements (for instance, some subsystems may perform extraordinary responsible tasks).

 For such systems, one can formulate the following problem

  RXRRXRRXRXC mM
X

00

22

0

11)(,...,)(,)()(min  (2.10)

 To make the problem clearer, consider a simple illustrative example where a system

of four units is conditionally depicted as three interdependent subsystems.

 35

Figure 2.3. Conditional dividing a system by subsystems.

 For this system as a whole the inverse problem of optimal redundancy can be written

as:

  RxrxrxrRxrxrxrRxrxrxrxC
X

0

3443311

0

2442211

0

1332211)()()(,)()()(,)()()()(min  .

(2.11)

Example 2.2. Consider the same system as in Example 2.1. Introduce one more unit

parameter, say, weight, W. Unit parameters are given in Table 2.5.

Table 2.5.

 PFFO Cost Weight

Unit-1 0.7 1.2 2.3

Unit-2 0.6 2.7 1.5

 We need to find a number of units of both types, optX = (optx1 , optx2) that maximize

system reliability index under constrains on both limiting factors: C(X) 7 units of cost and

W(X)  10 units of weight., that is we consider the inverse optimization problem

 For solution, use Tables 2.6 and 2.7 and add to them a new one for total system

weight.

Table 2.6. Values of system weight for various X.
 x2

1 2 3

1.5 3 4.5
x1 1 2.3 5 7.7 10.4

2 4.6 7.3 10 12.7

3 6.9 9.6 12.3 15

4 9.2 11.9 14.6 17.3

5 11.5 14.2 16.9 19.6

 On the basis of this and previous Table, let us compile a new table (now with

quadruples, since we have four parameters) with triplets ordered by increase of cost.

Table 2.7. List of triplets ordered by the system cost.

C(X) W(X) R(X) X
(j)

x1 x2

 36

2.7 5.0 0.420 (1) 1 1

3.9 7.3 0.546 (2) 2 1

5.1 9.6 0.584 (3) 3 1

6.3 11.9 0.595 (4) 4 1

6.6 7.7 0.588 (5) 1 2 optimum

7.5 14.2 0.599 (6) 5 1

7.8 10.0 0.764 (7) 2 2

9.0 12.3 0.817 (8) 3 2

9.3 10.4 0.655 (9) 1 3 *

10.2 14.6 0.833 (10) 4 2

10.5 12.7 0.852 (11) 2 3

11.4 16.9 0.838 (12) 5 2 *

11.7 12.3 0.911 (13) 3 3

12.9 17.3 0.928 (14) 4 3

14.1 16.9 0.934 (15) 5 3

 In this table all cells with inadmissible cost or weight are shadowed. Thus, the

maximum reachable level of reliability index under the given constrains is 0.588; and it is

reached by vector X
(5)

. It is interesting to notice that in the previous example this vector

was dominated and could not be a solution.

 In case of multi-constrain situation, dominating sequence also exists. For instance,

vector X
(12)

 is dominated by vector X
(11)

: for larger values C(X)=11.4 and W(X) = 16.9 the

reliability index, R(X) = 0.838 that is smaller than 0.852. Another such pair of vectors is X
(9)

and X
(7)

: both parameters “cost-weight” for X
(9)

 (9.3; 10.4) are correspondingly larger than

analogous parameters for X
(7)

, though the latter vector is characterized by larger reliability

index. (All dominated vectors are marked with “*”.)

 We don’t supply a numerical example for direct problem solution due to its

clumsiness.

2.4. Formulation of multi-criteria optimal redundancy problems.

 2.4.1. Direct multi-criteria optimal redundancy problem.

 Assume that a designer has to reach the required level of reliability having several limiting

factors like cost, weight, volume, etc. Usually all these factors are somehow dependent: a

miniature units can be more expensive, weight and volume of a unit are naturally dependent,

etc. What does it mean to say "the best solution" in this case? Solutions satisfying the same

reliability requirements can be incomparable: one variant have smaller total weight, etc.

 Actually, the problem of choosing a preferable solution lies outside the scope of

mathematics: it is up to a decision maker. However, there are some useful procedures for

finding the so-called non-improvable solutions. It means that none of the selected variants

(solutions) is strictly better than another but it is chosen in accordance to some subjective

measures of preference.

 A set of the multi-criteria problem solutions is called the Pareto set. In mathematical

terms one can write the problem in the form:

 37

 0

21)()(,...),(),(MIN RXRXCXCXC M
X

 (2.12)

where the symbol MIN in capital letters denotes Pareto “minimization” of

vector )(,...),(),(21 XCXCXC M .

Figure 2.4. Explanation of the Pareto solutions for direct multi-criteria problem.

 All Pareto solutions for condition R(X) R
0
 are dominating in a vector sense:

for each Pareto-optimal vector X
(k)

 , there is no vector X’< X
(k)

that R(X’)  R(X
(k)

).

2.4.2. Inverse multi-criteria optimal redundancy problem.

 The inverse problem for multi-criteria case can be written as:

 0

21)()(,...),(),(MAX CXCXRXRXR M
X

 (2.13)

where the symbol MAX in capital letters denotes Pareto “maximization” of

vector )(,...),(),(21 XRXRXR M .

 For instance, for system depicted in Figure 2.3 one can write:

  CXCXRXRXR
X

0

321)()(),(),(MAX  (2.14)

 Decision about what variant of the system configuration should be chosen has to be

done by a decision maker. Expert opinion cannot be formalized: this is why experts still

survive in modern computer age! 

 38

Bibliography to Chapter 2

(books are distinguished by bold fonts)

1956. Moskowitz, F., and Mclean, J. B. Some reliability aspects of system design. IRE

Transactions on Reliability and Quality Control, No.3.

1959. Black, G., and Proschan,F. On Optimal Redundancy. Operations Research, No. 5.

1959. Ghare, P. M., and Taylor, R. E. Optimal redundancy for reliability in series

systems. Operations Research, No. 5.

1960. Proschan, F. On optimal supply. Naval Research Logistics Quarterly, No.4.

1961. Morrison, D.F. The Optimum Allocation of Spare Components in Systems.

1963. Blitz, M. Optimum allocation of spare budget. Naval Research Logistics

Quarterly, No.2.

1966. Gertsbakh, I.B. Optimum use of reserve elements. Soviet Journal of Computer and

System Sciences, No. 5.

1966. Lawler, E. L., and Bell, M. D. A method for solving discrete optimization

problems. Operations Research, No. 14.

1967. Alekseev, O.G. On one problem of optimal redundancy. Engineering Cybernetics,

No. 1.

1967. Alekseev, O.G. Optimization of Complex Systems Reliability under Several

Constrains. Automatics and Telemechanics, No.12.

1967. Raikin, A.L., and Mandel, A.S. Construction of the Optimal Schedule of redundant

units switching. Automation and Remote Control, No.5.

1968. El-Neweihi, E., Proschan, F., and Sethuraman, J. Optimal allocation of

components in parallel-series and series-parallel systems. Journal on Applied

Probability, No. 3.

1968. Mizukami, K. Optimum Redundancy for Maximum System Reliability by the

Method of Convex and Integer Programming. Operations Research, No. 2.

1969. Ushakov, I.A. Method of Solving Optimal Redundancy Problems under

Constraints (in Russian). Sovetskoe Radio, Moscow.

1970. Jensen, P.A. Optimization of Series-Parallel-Series Networks. Operations

Research, No. 3.

1970. Messinger, M., and Shooman, M.L. Technique for optimal spare allocation. IEEE

Transactions on Reliability, No. 11.

1974. Shaw, L., and Sinkar , S.G. Redundant spares allocation to reduce reliability costs.

 39

Naval Research Logistics Quarterly, No.2.

1975. Agarwal, K. K., Gupta, J. S. and Misra, K. B. A new heuristic criterion for solving

a redundancy optimization problem. IEEE Transactions on Reliability,No. 24.

1976. Aggarval, K. V. Redundancy optimization in general systems. IEEE Transaction on

Reliability, No. 5.

1977. Nakagawa, Y., and Nakashima, K. A heuristic method for determining reliability

allocation. IEEE Transactions on Reliability, No. 26.

1977. Tillman,F.A., Hwang, C.L., and Kuo , W. Determining Component Reliability and

Redundancy for Optimum System Reliability. IEEE Transactions on Reliability, No. 26.

1978. Kuo, W., Hwang, C.L., and Tillman, F.A. A note on heuristic methods in optimal

system reliability". IEEE Transactions on Reliability, No.5.

1981. Nakagawa, Y., and Miyazaki, S. An experimental comparison of the heuristic

methods for solving reliability optimization problems, IEEE Transaction on Reliability,

No. 30.

1985. Bulfin, R.L., and Liu , C.Y. Optimal allocation of redundant components for large

systems. IEEE Transactions on Reliability, No. 3.

1985. Malashenko, Yu.E., Shura-Bura, A.E., and Ushakov, I.A. Optimal Redundancy. In

Handbook: Reliability of Technical Systems (Ed. I. Ushakov), Sovetskoe Radio,

Moscow.

1987. Dinghua, S. A new heuristic algorithm for constrained redundancy-optimization in

complex systems. IEEE Transaction on Reliability, No. 36.

1991. Boland, P.J., El-Neweihi, E., and Proschan, F. Redundancy importance and

allocation of spares in coherent systems. Journal of Statistical Planning and Inference,

No. 1-2.

1992. Yanagi, S., Aso, K., and Sasaki, M. Optimal spare allocation problem based on the

interval estimate of availability. International Journal of Production Economics, No. 3.

1993. El-Neweihi, E., and Sethuraman, J. Optimal Allocation under Partial Ordering of

Lifetimes of Components. Advances in Applied Probability, No. 4

1993. Kim, J. H., and Yum, B. J. A heuristic method for solving redundancy optimization

problems in complex systems. IEEE Transaction on Reliability, No. 42.

1996. Jianping, L. A bound heuristic algorithm for solving reliability redundancy

optimization., Microelectronics and Reliability, No.3.

1997. Levitin, G., Lisnianski, A., and Elmakis, D. (1997) Structure Optimization of

Power System with Different Redundant Elements. Electric Power Systems Research,

No. 43.

1997. Rubinstein, R.Y., Levitin, G., Lisnianski, A., and Ben Haim, H. Redundancy

optimization of static series-parallel reliability models under uncertainty. IEEE

Transactions on Reliability, No. 4.

 40

1998. Prasad V.R., and Raghavachari, M. Optimal allocation of interchangeable

components in a series-parallel system. IEEE Transactions on Reliability, No. 1.

1999. Lisnianski, A., Levitin, G., Ben Haim, H., and Elmakis, D. Power system

optimization subject to reliability constraints. Electric Power Systems Research, No.39.

1999. Mi, J. Optimal active redundancy allocation in k-out-of-n system. Journal on

Applied Probability, No.3.

2003. Kuo, W., and Zuo, M.J. Optimal Reliability Modeling: Principles and

Applications, John Wiley & Sons.

2006. Ha, C., and Kuo, W. Reliability redundancy allocation: An improved realization for

nonconvex nonlinear programming problems. European Journal of Operational Research,

No.1.

2006. Kim, H-G., Bae, C.-O., and Park, D.-J. Reliability-redundancy optimization using

simulated annealing algorithms. Journal of Quality in Maintenance Engineering, No. 4.

2006. Kuo, W., Prasad, V. R., Tillman, F.A., and Hwang, C.-L. Optimal Reliability

Design: Fundamentals and Applications. Cambridge University Press.

2007. Dai Y., and Levitin, G. Optimal Resource Allocation for Maximizing Performance

and Reliability in Tree-structured Grid Services. IEEE Transactions on Reliability, No.

3.

2007. Kuo, W., and Wan, R. Recent Advances in Optimal Reliability Allocation.

Computational Intelligence in Reliability Engineering, No. 1.

2007. Liang, Y.-C., Lo, M.-H., and Chen, Y.-C. Variable neighborhood search for

redundancy allocation problems. IMA Journal of Management Mathematics , No.2.

2007. Liang,Y.-C., and Chen, Y.-C. Redundancy allocation of series-parallel systems

using a variable neighborhood search algorithm. Reliability Engineering & System

Safety, No. 3.

2007. Tavakkoli-Moghaddam, R. A New Mathematical Model for a Redundancy

Allocation Problem with Mixing Components Redundant and Choice of Redundancy

Strategies. Applied Mathematical Sciences, No. 45.

 41

3.METHOD OF LAGRANGE MULTIPLIERS

 One of the first attempts to solve the optimal redundancy problem was based on the

classical Lagrange Multipliers Method. This method has been invented and developed by

great French mathematician Lagrange.

Joseph-Louis Lagrange

(1736 – 1813)

 This method allows to get extremum value of the function under some specified

constrain on another involved function in the form of equality. The Lagrange Multiplier

method is applicable if both functions (optimizing and constraining) are monotone and

differentiable.

 Strictly speaking, this method is not appropriate for optimal redundancy problems

solving because the system reliability and cost are described by functions of discrete

arguments xi (numbers of redundant units), and the restrictions on accessible resources (or

on required values of reliability) are fixed in the form of inequalities.

 Nevertheless, this method is interesting in general and also gives us some useful

hints for appropriate solution of some practical problems of discrete nature.

 Let us begin with the direct optimal redundancy problem. For solving this problem,

we construct the Lagrange Function, L(X):

X)(X)(X)(R + C = L  , (3.1)

where C(X) and R(X) are the cost of the system redundant units and the system reliability,

respectively, if there are X redundant units of all types,),...,,(21 nxxxX  .

 The goal is to minimize C(X) taking into account constrain in the form R(X
opt

)=R
0
.

Thus, the system of equations to be solved is

Lagrange made outstanding contributions to all fields of

analysis, to number theory, and to classical and celestial mechanics.

Lagrange was one of the creators of the calculus of

variations. He introduced the method of Lagrange multipliers where

possible constraints were taken into account. Lagrange invented the

method of solving differential equations known as variation of

parameters and applied differential calculus to the theory of
probabilities.

He studied the three-body problem for the Earth, Sun, and

Moon and the movement of Jupiter’s satellites.

Above all he impressed on mechanics, having transformed

Newtonian mechanics into a branch of analysis, Lagrangian

mechanics.

 42



























0)(X

and , , ... 2, 1, = allfor

0
X)(X)(X)(

R=R

ni

 =
x

R
+

x

C
=

x

opt

iii

L

 (3.2)

 The values to be found are: the opt

ix , i=1, 2,...,n, and Λ.

 If both function C(X) and R(X) are separable
2
 and differentiable, the first n equations

of (3.2) can be rewritten as




















0

1

11

1

11

1

11

)(X

0
)()()(

0
)()()(

R=R

 =
dx

xdR
+

dx

xdC
=

dx

xd

 =
dx

xdR
+

dx

xdC
=

dx

xd

opt

n

nn

n

nn

n

nnL

L

 (3.3)

 On a physical level, (3.3) means that for separable functions L(X) and C(X), the

optimal solution corresponds to equality of relative increments of reliability of each

redundant group for an equal and infinitesimally small resources investment.

.
)()(

...
)()()()(

11

2

22

2

22

1

1

11

1

11 





























n

nn

n

nn

dx

xdR

dx

xdC

dx

xdR

dx

xdC

dx

xdR

dx

xdC
 (3.4)

In the general case, (3.3) yields no closed form solution but it is possible to suggest an

algorithm for numerical calculation:

1) At some arbitrary point x1
(1)

 calculate the derivative for some fixed redundant group,

say, the first one:

. =
xdxc

xdR)1(

)1(

111

11)(
 (3.5)

Remark. Of course, one would like to choose a value of x1
(1)

 close to an expected optimal

solution opt

ix . For example, if you consider spare parts for equipment to operate failure-free

during time t and know that the unit MTTF is T, this value should be a little larger than t/T.

In other words, this choice should be done based on engineering experience and intuition.

2) For the remaining redundant groups, calculate derivatives until the following

condition is satisfied:

. =
xdxc

xdR

ii i

ii)1(
)1(

)(
 (3.6)

2 Taking logarithm of multiplicative function R(X), one get an additive function of logarithms of

multipliers.

 43

3) Calculate value

.)()()1(

1

)1(
ii

ni

xR =XR 


 (3.7)

4) Compare R
(1)

 with R
0
. If R

(1)
> R

0
 choose xi

(2)
<xi

(1)
; if R

(1)
 < R

0
 choose xi

(2)
>xi

(1)
. After

choosing a new value of xi
(2)

, return to step 1 of the algorithm.

 The stopping rule: X
(N)

 is accepted as the solution if the following condition holds

 RXR N  0)()((3.8)

where  is some specified admissible discrepancy in the final value of the objective

function R(X).

Figure 3.1. Procedure of solving the Direct Problem of Optimal Redundancy.

 Solution of the inverse optimal redundancy problem is analogous. Lagrange

function is

X)(*X)(X)(* C + R = L  (3.9)

and the equations are:



























0)(X

and , , ... 2, 1, = allfor

0
X)(X)(X)(

C=C

ni

 =
x

C
+

x

R
=

x

opt

iii

L

 (3.10)

 The optimal solution has to be got in respect to goal function C(X). The stopping

rule in this case:

*)(0)( CXC N  (3.11)

where  * is some specified admissible discrepancy in the final value of the goal function

 44

C(X).

Figure 3.2. Procedure of solving the Inverse Problem of Optimal Redundancy.

 Unfortunately, there is only one case where the direct optimal redundancy problem

can be solved in a closed form. This is the case of a highly reliable system with active

redundancy where

  
 


ni ni

x

i

x

i
ii qqXR

1 1

11)((3.12)

or





ni

x

i
iqXQ

1

)(, (3.13)

i.e. instead of maximizing R(X), one can minimize Q(X) and gets the needed optimal

solution.

 Taking into account that both objective functions are separable, (3.10) can be

written as

















0)(X

and , , ... 2, 1, = allfor

0

Q=Q

ni

 = c+
dx

dq

opt

i

i

x

i
i

 (3.14)

 From equation

i

i

x

ii

i

x

i qq
dx

dq
 ln , (3.15)

we can finally write

)ln(j

jx

j
q

c
q j


 (3.16)

 45

Now returning to the last equation in (3.10), we have





)ln(

10

j

j

q

c
Q (3.17)

and, consequently, the Lagrange multiplier has the form





)ln(

1
0

j

j

q

c

Q
 (3.18)

 From (3.16), one has
















)ln(
ln

ln

1

j

j

i

j
q

c

q
x (3.19)

Finally, after substitution of (3.17) into (3.19), one gets

1

0)ln(

1

)ln(
ln

ln

1
































 

j

j

j

j

i

j
q

c

Qq

c

q
x (3.20)

 Hardly anybody would be happy to deal with such a clumsy formula!

 The solutions obtained by the Lagrange Multiplier Method are usually continue due

to requirements to the objective functions. Immediate questions arise: Is it possible to use

an integer extrapolation for each non-integer xi? If this extrapolation is possible, is the

obtained solution optimal?

Unfortunately, even if one tries to “correct” non-integer solutions by substitution

lower and upper integer limits jjj xxx  , this very rarely leads to optimal solution!

Moreover, enumerating all 2
n
 possible “corrections” can itself be a problem. We

demonstrate this statement on a simple example.

* * *

Bibliography to Chapter 3

1963. Everett, H. Generalized Lagrange multiplier method for solving problems of

optimum allocation of resources. Operations Research, No. 3.

1970. Greenberg, H.J. An Application of a Lagrangian Penalty Function to Obtain

Optimal Redundancy . Technometrics, No. 3 .

1978. Kuo, W., Lin, H.H., Xu, Z., and Zhang, W. (1987) Reliability optimization with

the Lagrange-multiplier and branch-and-bound technique. IEEE Transactions on

Reliability, No.5.

1979. Hwang, C. L., Tillman, F. A., and Kuo, W. Reliability Optimization by

 46

Generalized Lagrangian-Function and Reduced-Gradient Methods, IEEE Transactions on

Reliability, No.28.

 47

4.STEEPEST DESCENT METHOD

4.1.The main idea of SDM

 The Steepest Descent Method (SDM) is based on the very natural idea: moving from

an arbitrary point in the direction of the maximal gradient of the goal function, it is possible

to reach the maximum of a multi-dimensional unimodal function. The origin of the

method’s name lies in the fact that a water drop runs down on non-flat surface choosing the

direction of instantaneous maximum descending.

 Probably the next simple example explains the algorithm more graphically. Suppose

that a traveler comes to a hill that is hidden in a thick mist. His target is to reach the hill top

with no knowledge about the mountain shape except the fact that the hill is smooth enough

(has no ravines or local hills). The traveler sees only a very restricted area around the

starting point. The question is: What is the shortest path from the initial point to the

mountain’s top? Intuition hints that the traveler has to move in the direction of the maximal

possible ascent at each point on his path to the mountain’s top. This direction coincides with

the gradient of the function at each point.

Figure 4.1. A path of a traveler up to the hill top.

 However, optimal redundancy problem has an integer nature: redundant units can be

added to the system one by one. The previous analogy is useful in case of continuous

functions of continuous arguments. But in the case of optimal redundancy, all arguments are

discrete. If continue the analogy with a traveler, one sees that there are restrictions on the

traveler’s movement: he can move only in the North-South or East-West directions and can

change the direction only at the vertices of a discrete grid with specified steps. This means

that at each vertex one should use the direction of the largest partial derivative. Because of

this, one sometimes speaks of the Method of Coordinate Steepest Descent.

 48

Figure 4.2. A Traveler path when only N-S and E-W directions are allowed.

 This idea of finding the maximum of a unimodal function may be applied to the

optimal redundancy problem.

4.2.Description of the algorithm

 Consider a system that is a series connection of independent redundant groups.

 Let us use the both goal functions in the additive form

)(lnX)(lnX)(
1

xR = R = L ii

ni




 (4.1)

and

.X)(
1

xc = C ii

ni




 (4.2)

It is clear that maximization of function R(X) corresponds to minimization of function L(X),

i.e. optimum solution X
opt

 for goal function L(X) delivers as well optimum for function R(X).

 Introduce vector),...,()()(

1

)(N

n

NN xxX  , where)(N

ix is the number of redundant units

of the ith redundant group at the Nth step of the SDM process. Denote by)()(N

ii xR

reliability index and by)()(N

ii xC the cost of the ith redundant group after the Nth step of the

SDM process. For convenience of further exposition let us introduce also the following

additional notation:)()(

1

)(

1

)(

1

)(...,,,0,...,,(N

n

N

i

N

i

NN

i xxxxX  , i.e. vector)(N

iX is vector X without

component xi. Obviously,)()()(N

i

N

i

N xXX  .

 At the Nth step of the process, one adds a redundant unit of such type k, for which

relative increase of reliability index is maximum, i.e.

i

N

i

N

i

ni

N

i

N

k
c

xRxR
x

)1(ln)(ln
max)(

)()(

1

)()(



 (4.3)

A unit of this type is added to the set of system’s redundant units. The process continues in

the same manner until the optimal solution is obtained.

Now let us describe the optimization algorithm step by step from the very beginning.

1) Before the beginning of the process, there is no redundant units at all, i.e.

 49

)0()0(

1 ... nxx  or, in other words, 0)0(


X .

2) For all i, i=1, 2, …, n, one calculates values)()0()0(

ii x ;

3) One finds such index k that delivers maximum

)(max)()0()0(

1

)0()0(

ii
ni

kk xx 




4) One calculates a new value

1)0()1( kk xx

5) All other)0(

ix , ki  , change their superscripts:)1()0(

ii xx  ;

6) One gets a new vector of the system’s redundant units:

)()1()0()1(

kk xXX 

7) One calculates the value of L(X
 (1)

) and determines the corresponding R(X
 (1)

);

8) One calculates the value of L(X
 (1)

);

9) One calculates by the same rule a new value);()1()1(

kk x

10) All other values)()0()0(

ii x , ki  , are conserved but one changes their superscripts:

)()()1()1()0()0(

iiii xx   ;

11) GOTO (3).

4.3.The stopping rule

 The solution of the direct problem of optimal redundancy is reached at such step N,

for which the following condition is valid

)()()1(0)( NN XCCXC . (4.4)

 The value of R(X
(N)

) is the maximum possible for the given constrain on the system

cost.

Remark. Sometimes the SDM procedure requires to add at the last step a very expensive

unit but adding this unit exceed the given constrain on the total cost of the system’s

redundant units. At the same time, if one does not add this unit, there are some extra

financial resources to add other, less expensive units. In this case one may bypass the

expensive unit and continue the procedure.

 The inverse optimal redundancy problem reaches its optimal solution at such step N

that the following condition is valid:

)()()(0)1(NN XRRXR  . (4.5)

 The value of C(X
(N)

) is the minimum possible for the given constrain on the required

system reliability index.

 American mathematician Frank Proschan [Barlow&Proschan, 1965, 1981] has

proven that the SDM procedure delivers members of dominating sequence if each function

Ri(xi) is concave.

 50

Example 4.1. A series system consists of six different units whose parameters are given in

Table 4.1. (Distributions of time to failure are assumed exponential.)

Table 4.1. Units’ parameters.

Unit type Number of

units, nk

Unit failure rate,

k

(10
-5

1/hr)

Unit cost,сk

1 5 1 1

2 10 1 1

3 5 1 8

4 10 1 8

5 5 8 1

6 10 8 1

 One needs to find the optimum number of standby units for successful system

operation during t0=1000 hrs for two cases:

(1) Required PFFO is 0.9995;

(2) Admissible expenses on all spare units are 40 cost units.

First of all, using Table 4.1, let us find parameters of Poisson distributions for each group by

the formula 0tna iii  :

Table 4.2. Values of parameters of Poisson distribution

Parameter Value

a1 1·10
-5

·5·1000=0.05

a2 1·10
-5

·10·1000=0.1

a3 1·10
-5

·5·1000=0.05

a4 1·10
-5

·10·1000=0.1

Frank Proschan

(1921-1993)

 Frank Proschan is an American mathematician. He

earned his Ph.D. in statistics from Stanford University in 1959. He

had held positions with the Federal Government at the National

Bureau of Standards (1941-1952), with Sylvania Electric Products

(1952-1960) and with Boeing Scientific Labs (1960-1970). Since

1970 he had been Professor of Statistics at Florida State University.

He had many honors including the Von Neumann Prize
award presented by TIMS-ORSA. He was a Fellow of Institute of

the American Statistical Association and a member of International

Statistical Institute.

 51

a5 8·10
-5

·5·1000=0.4

a6 1·10
-5

·10·1000=0.8

The probability of appearance of exactly k failures during given time t0 is calculated by the

formula:

)exp(
!

)(
)(0

0 tn
k

tn
kq ii

k

ii
i 


 . (4.6)

By the way, if condition)1()( iiii xQxQ holds, then calculation of values γ can be

simplified up to

i

ii
ii

c

xq
x

)(
)( . (4.7)

 Calculated values of qi(xi) are presented in Table 4.3.

Table 4.3. Values of unreliability indices for various xi.

xi)(11 xq)(22 xq)(33 xq)(44 xq)(55 xq)(66 xq

0 0.0476 0.0905 0.0476 0.0905 0.268 0.359

1 0.00119 0.00452 0.00119 0.00452 0.0536 0.144

2 1.98E-05 0.000151 1.98E-05 0.000151 0.00715 0.0383

3 2.48E-07 3.77E-06 2.48E-07 3.77E-06 0.000715 0.00767

4 2.48E-09 7.54E-08 2.48E-09 7.54E-08 5.72E-05 0.00123

5 2.06E-11 1.26E-09 2.06E-11 1.26E-09 3.81E-06 0.000164

6 1.47E-13 1.8E-11 1.47E-13 1.8E-11 2.18E-07 1.87E-05

7 9.22E-16 2.24E-13 9.22E-16 2.24E-13 1.09E-08 1.87E-06

8 5.12E-18 2.49E-15 5.12E-18 2.49E-15 4.84E-10 1.66E-07

9 2.56E-20 2.49E-17 2.56E-20 2.49E-17 1.94E-11 1.33E-08

 Now we can build the next table where values)(ii x are presented.

Table 4.4. Values)(ii x for all redundant groups.

xi)(11 x)(22 x)(33 x)(44 x)(55 x)(66 x

1

2

0.0464

1

0.086

 8

0.0058

6

0.0107

4

0.0268

3

0.027

2

11
0.00117

9

0.00437

16

0.000146

14

0.000547

7

0.00581

5

0.0132

3

19

1.96E-05

15

0.000147

24

2.45E-06

20

1.84E-05

13

0.000804

10

0.003834

4

28

2.45E-07

23

3.69E-06

 3.07E-08

26

4.62E-07

18

8.22E-05

12

0.000805

 52

5 2.46E-09 7.41E-08 3.07E-10 9.27E-09

22

6.67E-06

 17

0.000133

6 2.05E-11 1.24E-09 2.56E-12 1.55E-10

27

4.49E-07

21

1.81E-05

7 1.47E-13 1.77E-11 1.83E-14 2.22E-12 2.59E-08

25

2.10E-06

8 9.16E-16 2.22E-13 1.15E-16 2.77E-14 1.30E-09

29
2.13E-07

9 5.09E-18 2.47E-15 6.37E-19 3.09E-16 5.81E-11 1.91E-08

 In this table, the numbers in the upper right corner of cells are numbers

corresponding to steps of the SDM procedure.

 On the basis of Table 4.4, let us build the final table, from which one can get

needed optimal solutions.

Table 4.5. Step-by-step results of SDM procedure
 C(X) Q(X) x1 x2 x3 x4 x5 x6

… … … … … … … … …

10 24 0.021871 1 2 1 1 2 3

11 25 2.07E-02 2 2 1 1 2 3

12 26 1.43E-02 2 2 1 1 2 4

13 27 7.83E-03 2 2 1 1 3 4

14 35 3.46E-03 2 2 1 2 3 4

15 36 3.31E-03 2 3 1 2 3 4

16 44 2.14E-03 2 3 2 2 3 4

17 45 1.07E-03 2 3 2 2 3 5

18 46 4.16E-04 2 3 2 2 4 5

19 47 3.96E-04 3 3 2 2 4 5

20 55 2.49E-04 3 3 2 3 4 5

21 56 1.03E-04 3 3 2 3 4 6

22 57 5.01E-05 3 3 2 3 5 6

23 58 4.64E-05 3 4 2 3 5 6

24 66 2.69E-05 3 4 3 3 5 6

25 67 1.00E-05 3 4 3 3 5 7

26 75 6.33E-06 3 4 3 4 5 7

… … … … … … … … …

 The last table allows finding optimal solutions for both optimal problems: direct as

well as inverse.

 By conditions of the illustrative problem, R
0
=0.9995. From Table 4.5, we find that

 53

the solution is reached at Step 18: unreliability in this case is 4.16E-04, i.e. R(X
opt

) =

0.999584 that satisfies the requirements. (Corresponding cost is 46 cost units.)

 At the same time for the inverse problem the solution is reached at Step 15 with the

total cost of 36 units. (Corresponding PFFO=0.99669.) In this case we keep extra 4 cost

units. Of course, they could be spent for 4 additional inexpensive units of types 1, 2, 5 and 6,

i.e. instead of obtained solution)4,3,2,1,3,2(111111  xxxxxx take solution

with all resources spent:)5,4,2,1,4,3(111111  xxxxxx . In this case, the

system PFFO is equal to 0.99844. This solution is admissible in sense of the total cost of

redundant units.

 By the way, to get such a solution we could slightly change the SDM algorithm: If

on a current step of the SDM procedure we “jump” over the admissible cost, we can take

another unit or units with admissible cost.

 Analogous corrections could be performed if the obtained current solution for the

direct problem of optimal redundancy overexceeds the required value R
0
.

4.5.Approximate solution

 For practical purposes, an engineer sometimes needs to know an approximate

solution which would be close to an optimal one a priori. Such a solution can be used as the

starting point for the SDM calculation procedure. (Moreover, sometimes the approximate

solution is a good pragmatic solution if input statistical data are too unconfident. Indeed,

attempts to use strong methods with unreliable input data might be considered as a total

absence of common sense! Remember: the “garbage-in-garbage-out” rule is valid for

precise mathematical models as well!).

 The proposed approximate solution [Ushakov, 1965] is satisfactory for highly

reliable systems. This means that in the direct optimal redundancy problem the value of Q
0

is very small. In a sense, such a condition is not a serious practical restriction. Indeed, if the

investigated system is too unreliable, one should question if it is reasonable to improve its

reliability at all. Maybe it is easier to find another solution, for instance, to use another

system?

 For a highly reliable system one can write

)()(

1

)(0
)X(xQ Q Q N

ii

ni

N 


 (4.8)

at the stopping moment (the Nth step) of the optimization process when the value of the

reliability index should be high enough.

From Table 4.4, one can see that there is some “strip” that divided all values of

γi(xi). For instance, consider cells corresponding to steps 19-24 (shadowed on the table).

The largest value laying above this “strip” (step 18) has value γ = 8.22E-05 that is larger

than any value of γ belonging to the “strip”. At the same time, the largest value laying

below the “strip” (step 25) has value γ = 2·10
-6

 that is smaller than any corresponding

value on the “strip”. It means that there is some value Λ, 2·10
-6

 < Λ < 8.22·10
-5

 that

divides all set of γ in two specific subsets: this Λ in a sense play the role of Lagrange

 54

multiplier. Indeed, approximate equality of γ for each “argument” xi completely

corresponds to the equilibrium in the Lagrange solution.

 Let us make a reasonable assumption that at the stopping moment

)()(

2

)(

1 ... N

n

NN  (4.9)

At the same time,


i

N

iiN

i
c

xQ)()(

)( (4.10)

Now using (4.8)

 c Q i

ni





1

0 (4.11)

and finally

c

Q

i

ni






1

0

 (4.12)

 Now we can substitute (4.12) into (4.10) and obtain:

c

Qc
 xQ

i

ni1

i
N

ii






0

)()((4.13)

 For solving the inverse optimal redundancy problem, one has to use a very simple

iterative procedure.

(1) Find approximate starting values of the xi's

c

C
 = x= ... = x = x

i

ni

n2


1

0
)1()1()1(

1 (4.14)

(2) Use these xi's to calculate Q
(1)

 as

)()1(

1

)1(

i
Q = Q xi

ni




 (4.15)

(3) Calculate g
(1)

 as

c

Q
 =

i

ni


1

)1(
)1(

 (4.16)

 55

(4) For 
)1(

 determine xi
(2)

 for all i from the equations

Qi(xi
(2)

) = ci 
)1(

. (4.17)

(4) For all obtained xi
(2)

, one calculates the total cost of the system's redundant units as:

.xc = C ii

ni

)2(

1

)2(


 (4.18)

5) If C
(1)

 > C
0
 one sets a new 

)1()2(
 , if C

(1)
 < C

0
 one sets a new 

)1()2(
 .

 After this, the procedure continues from the 3
rd

 step. Such iterative procedure

continues until the appropriate value of the total cost of redundant units is achieved.

* * *

Bibliography to Chapter 4

(books are distinguished by bold font)

1965. Barlow, R.E., and F. Proschan. Mathematical Theory of Reliability. John Wiley

& Sons.

1965. Ushakov, I. A. Approximate solution of optimal redundancy problem.

Radiotechnika, No. 12.

1967. Ushakov, I.A. On optimal redundancy problems with a non-multiplicative

objective function. Automation and Remote Control, No. 3.

1969. Ushakov, I.A. Method of Solving Optimal Redundancy Problems under

Constraints (in Russian). Sovetskoe Radio, Moscow.

1981. Ushakov, I.A. Methods of Approximate Solution of Dynamic Standby Problems.

Engineering Cybernetics (USA), Vol.19, No.2.

 56

5.DYNAMIC PROGRAMMING

 As mentioned above, the problem has an essentially discrete nature, so the SDM

cannot guarantee the accuracy of the solution. Thus, if an exact solution of the optimal

redundancy problem is needed, one generally needs to use the Dynamic Programming

Method (DPM).

5.1. Bellman’s Algorithm

 Main ideas of the DPM were formulated by an American mathematician Richard

Bellman [Bellman, 1957], who has formulated the so-called optimality principle.

 The DPM provides an exact solution of discrete optimization problems. In fact, it is

a well organized method of direct enumeration. For the accuracy of the solutions one has to

pay with a high calculation time and a huge computer memory if the problem is highly

dimensional.

 To solve the direct optimal redundancy problem, let us construct a sequence of Bellman's

function, Bk(r). This function reflects the optimal value of the goal function for a system of k

redundant groups and a specified restriction r. As usual, start in the beginning :

 .RrrxRxc =rB
x

0)1()1(

1111

)1(

1 0;)(min)(
1

 (5.1)

Richard Ernest Bellman

(1920 – 1984)
American applied mathematician, who

is famous for his invention of dynamic

programming in 1953. He also made many

important contributions in other fields of

mathematics.

Over the course of his career he

published 619 papers and 39 books. During the

last 11 years of his life he published over 100
papers despite suffering from crippling

complications of a brain surgery.

Bellman's fundamental contributions

to science and engineering had won him many

honors: First Norbert Wiener Prize in Applied

Mathematics (1970).

 57

 It is clear that in such a way we determine the number of units that is necessary for the

redundant group to have reliability index equal to r
(1)

 that is laying within interval [0, R
0
].

Figure 5.1. Illustration of the solution for Equation (5.1).

Now compose the next function

 .RxRrrBxc =rB
x

0

22

)1()1(

122

)2(

2)()(min)(
2

 (5.2)

Figure 5.2. Illustration of the solution for Equation (5.2).

 In a sense, we have a “convolution” of the first and second redundant groups and for

each level of current redundancy the best variant of such convolution is kept for the next

stage of the procedure. In analogous way the recurrent procedure continues until the last

Bellman’s equation is compiled:

 58

 .RxRrrBxc =rB nn

nn

nnn
x

n

n
n

0)1()1(

1

)()()(min)( 

 (5.3)

 Actually, Equation (5.3) gives us only a solution for xn : other xi's are “hidden in

previous stages of compiling Bellman’s equation. Indeed, Equation (5.3) contains

)()1(

1





n

n rB , which allows us to determine xn-1, and so on. The last found will be x1. In a

sense, the process of finding optimal xi’s is going backwards relating to the process of

Bellman’s function compiling.

 Solution of the inverse problem of optimal redundancy is similar. The only

difference is that the system reliability becomes an objective function and the total system

cost becomes the constraint.. The procedure does not need additional explanations.

 At the first stage of the recurrent procedure, one compiles the Bellman’s equation of

the form:

 .CccxcxR =cB
x

0)1()1(

1111

)1(

1 0;)(max)(
~

1

 (5.4)

 Then consequently other equations:

 .CcxccBxR =cB
x

0)1(

22

)1(

122

)2(

2)(
~

)(max)(
~

2

 (5.5)

…

  .CcxccBxR =cB n

nn

n

nnn
x

n

n
n

0)1()1

1

)()(
~

)(max)(
~

 

 (6.6)

Optimal solution is found by the same backward returning to the beginning of the recurrent procedure.

 For illustration of the calculated procedure of dynamic programming, let us consider

a simple illustrative example.

Example 5.1.

 Let us consider a very simple series system consisting of three units with the

characteristics: p1 = 0.7, p2 = 0.8, p3 = 0.9, and c1 = c2 = c3 = 1. For reliability increase, a

“hot” redundancy is used.

 The problem is to find the optimal vector of redundant units for the system under

constrain: C(X) 6 cost units.

 The table with all possible convolutions of redundant groups 1 and 2 is presented

below. Dominating vectors within each are marked with symbols y.

Table 5.1. Convolution of redundant groups 1 and 2.

Cost x1 x2 R(x1, x2) Chosen

0 0 0 0.56 y0

1 1 0 0.728 y1

 0 1 0.672

2 2 0 0.7784

 1 1 0.8736 y2

 59

 0 2 0.6944

3 3 0 0.79352

 2 1 0.93408 y3

 1 2 0.90272

 0 3 0.69888

4 4 0 0.798056

 3 1 0.952224

 2 2 0.965216 y4

 1 3 0.908544

 0 4 0.699776

5 5 0 0.799417

 4 1 0.957667

 3 2 0.983965 y5

 2 3 0.971443

 1 4 0.909709

 0 5 0.699955

6 6 0 0.799825

 5 1 0.9593

 4 2 0.989589

 3 3 0.990313 y6

 2 4 0.972689

 1 5 0.909942

 0 6 0.699991

.

Now compile a table with only dominating sequence for convolution of redundant

groups 1 and 2, denoting each pair as y1, y2, etc.

Table 5.2.

yk R(yk) x3 R3(x3) Rsyst Chosen

y0 0.56 6  1 0.56

y1 0.728 5 0.999999 0.727999

y2 0.8736 4 0.99999 0.873591

y3 0.93408 3 0.9999 0.933987

y4 0.965216 2 0.999 0.964251

y5 0.983965 1 0.99 0.974125 X

y6 0.990313 0 0.9 0.891282

 Thus, the solution is (x3, y5). Now return to Table 5.1 and find there that y5

corresponds to x1 = 3 and x2 = 2. This is the final step of the solving procedure.

 The solution of the direct problem of optimal redundancy is more complicated for

manual calculations, however it can be easily programmed for a computer.

5.2.Kettelle's Algorithm

 Actually, DPM is a well organized enumeration using convolutions of a set of

 60

possible solutions. It has some “psychological” deficiency: a researcher gets the final results

without “submerging” into the solving process. If a researcher is not satisfied by a particular

solution for some specified restrictions and decides to change them, it may lead to a

complete re-solving of the problem.

John D. Kettelle, Jr.

(1925-2012)

 John Kettelle was an American mathematician

who fought for 3 years in WWII in US Navy and then served 2 years

on a submarine during Korean war.

 Next 5 years he had been working in Operations Research

group at Arthur D. Little Co. with the founder of Operations Research

George Kimbell. Later he started a series of consulting corporations.
 He was the author of a well known paper on modified

Dynamic Programming method. He edited 11 books published by

ORSA.

 Recently he has developed a method of negotiations with

computer as the third party.

For most practical engineering problems, using the Kettelle's Algorithm [Kettelle, 1962] is

actually a modification of the DPM. It differs from DPM by a simple and intuitively clear

organization of calculating process. This algorithm is very effective for the exact solution of

engineering problems due to its clarity and flexibility of calculations.

 Of course, the Kettelle's Algorithm, as well as DPM, requires more computer time

and memory than the SDM, but it gives strict solutions. At the same time, this algorithm

allows to construct entire dominating sequence (as SDM), that gives a possibility to switch

from solving the direct optimal redundancy problem to the inverse one using the previously

calculated sequence.

5.2.1. General description of the method.

We shall describe the Kettelle's Algorithm step by step.

(1) For each ith redundant group, one constructs a table of values of Ri(xi), accompanied by

corresponding cost Ci(xi).

Table 5.3. Initial dominating sequences for redundant groups

Group

number

Number of redundant units in the group

0 1 2 … n …

1 R1(0), C1(0), R1(1), C1(1), R1(2), C1(2), … R1(0), C1(0), …

2 R2(0), C2(0) R2(1), C2(1) R2(2), C2(2) … R2(0), C2(0) …

… … … … … … …

N RN(0), CN(0) RN(1), CN(1) RN(2), CN(2) … RN(0), CN(0) …

John D. Kettelle, Jr

(1925-2012)

 John Kettelle was an

American mathematician

who fought for 3 years in WWII

in US Navy and then served 2

years on a submarine during

Korean war.

 Next 5 years he had been

working in Operations Research

group at Arthur D. Little Co. with

the founder of Operations

Research George Kimbell. Later

he started a series of consulting
corporations.

 He is the author of a well

known paper on modified

Dynamic Programming method.

 He edited 11 books

published by ORSA.

 Recently he has

developed a method of

negotiations with computer as the

third party.

 61

 The sequence of these pairs for each group forms a dominating sequence, i.e. for any

j and k: R(k) < R(k+1) and C(k) < C(k+1).

(2) Take any two redundant groups from Table 5.3, say, 1 and 2, and construct compositions

of pairs located in the corresponding cells by the rule: R12(x1, x2) = R1(x1)×R2(x2) and

C12(x1, x2) = C1(x1) + C2(x2).

Table 5.4. Dominating sequence for the composition of groups1 and 2.

 Number of redundant units of the 1
st
 redundant group

 0 1 2 … n …

Number

of

redundant

units of

the 1
st

redundant

group

0 R12(0,0),

C12(0,0)

R12(1,0),

C12(1,0)

R12(2,0),

C12(2,0)

… R12(n,0),

C12(n,0)

…

1 R12(0,1),

C12(0,1)

R12(1,1),

C12(1,1)

R12(2,1),

C12(2,1)

… R12(n,1),

C12(n,1)

…

2 R12(0,2),

C12(0,2)

R12(1,2),

C12(1,2)

R12(2,2),

C12(2,2)

… R12(n,2),

C12(n,2)

…

… … … … … … …

m R12(0,n),

C12(0,n)

R12(1,m),

C12(1,m)

R12(2,m),

C12(2,m)

… R12(n,

m),

C12(n, m)

…

… … … … … … …

 The size of the table (i.e. values m and n) is not fixed a priori. It could be increased if

a sequence of dominating pairs {R12(x1, x2), C12(x1, x2)} does not include a desired solution.

 As the result, now we have a system with n – 1 redundant groups: groups from 3 to N

and one new group formed by the described composing of groups 1 and 2.

The procedure continues until one obtains a single composed group that is used in both

cases: for solving direct as well as inverse problem of optimal redundancy.

5.2. Numerical example.. For demonstration of the Kettelle’s Algorithm, let us consider a

simple numerical example with a system of three redundant groups of active units.

Figure 5.3. Block diagram of the system for the numerical example.

 Let jx

jjj qxR 1)(and jjjj xcxC )(where 31  j . Assume that q1 = 0.3,

q2 = 0.5, q3 = 0.5, and c1=1, c2=3, c3 = 1.

 For the sake of calculating convenience, let us prepare in advance dominated

sequences for each redundant group, presented in Table 3. (Notice that for a single group,

sequence of pairs “reliability-cost” is always dominating, since each added unit increases

simultaneously both the cost and reliability index.)

 62

Table 5.5. Initial dominating sequences for redundant groups 1, 2 and 3.

Group

number

Number of redundant units in the group

0 1 2 3 4 5 …

1 R 0.7000 0.9100 0.9730 0.9919 0.9976 0.9992 …

C 0 1 2 3 4 5 …

2 R 0.5000 0.7500 0.8750 0.9375 0.9688 0.9844 …

C 0 3 6 8 12 15 …

3 R 0.5000 0.7500 0.8750 0.9375 0.9688 0.9844 …

C 0 1 2 3 4 5 …

 It is easy to see that each function R(C) is concave.

Figure 5.4. Concave shapes of R(C) functions for initial redundant groups.

 Next step is construction of the table with various combinations of possible

configurations of groups 1 and 2 by the rules)1()1(),(21

2121

xx
qqxxR  and

221121),(xcxcxxC  .

Table 5.6. Dominating sequence for the composition of groups1 and 2.

 x2

 0 1 2 3 4 5

x1

0 0.350;

0

1

0.525;

3

4

0.613;

6

0.656;

9

0.678;

12

0.695; 1

5

1 0.454;

1

2

0.683;

4

5

0.796;

7

8

0.853;

10

0.882;

13

0.896;

16

2 0.487;

2

3

0.730;

5

6

0.851;

8

9

0.912

1

12

0.942;

14

15

0.958;

17

3 0.496;

3

0.744;

6

7

0.868;

9

10

0.930;

12

13

0.961;

15

16

0.976;

18

19

4 0.499;

4

0.748;

7

0.873;

10

0.935;

13

0.966;

16

0.981;

19

 63

11 14 17 20

5 0.500;

5

0.749;

8

0.874;

11

0.937;

14

0.968;

17

18

0.984;

20

21

 … … … … … …

Numbers in bold Italic denote the members of dominating pairs by ascending ordering by

weights.

Figure 5.5. Graphical presentation of the data in the upper left corner of Table 5.6.

 From Figure 5.5, one can see that the dominating sequence is not strictly concave,

though there is some kind of concave envelope that, by the way, very often coincides with

solutions obtained by the SDM.

 (3) On the basis of Table 5.6, one constructs Table 5.7 containing only dominating

reliability-cost pairs. For the illustrative example such a table has the form:

Table 5.7. Beginning of the dominating sequence in Table 6.6.

Number 1 2 3 4 5 6 7 8 9 10 11 …

Domin.pair 0.350;

0

0.454;

1

0.487;

2

0.525;

3

0.683;

4

0.730;

5

0.744;

6

0.796;

7

0.851;

8

0.868;

9

0.873;

10

…

(x1, x2) (0, 0) (0, 1) (0, 2) (0, 3) (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (2, 4) …

Let us enumerate corresponding pairs of this dominating sequence with the number x
(1)

.

(4) Now we have a system consisting of two redundant groups: group 3 (data are on the

lower lines of Table 5.5) and the newly composed group (data are in Table 5.7). On the

basis of these data let us combine the final group for the considering system.

Table 5.8. Final data for solving the optimal redundancy problems for the illustrative

example.

 64

 Number of dominating variantof pairs { x
(1)

= (x1, x2)}

1 2 3 4 5 6 7 8 9 . . .

x3

0 0.175; 0

1

0.227;

1

0.243;

2

0.262;

3

0.341;

4

0.365;

5

0.372;

6

0.398;

7

0.425;

8
. . .

1 0.263;

1

2

0.341;

2

3

0.365;

3

0.393;

4

0.512;

5

6

0.546;

6

0.556;

7

0.596;

8

0.638;

9

. . .

2 0.306;

2

0.398;

3

4

0.425;

4

0.458;

5

0.597;

6

7

0.639;

7

0.650;

8

0.696;

9

0.745;

10
. . .

3 0.330;

3

0.427;

4

5

0.456;

5

0.492;

6

0.640;

7

8

0.685;

8

9

0.705;

9

0.746;

10

11

0.798;

11

12

. . .

4 0.340;
4

0.441;
5

0.472;
6

0.510;
7

0.661;
8

0.707;
9

10

0.720;
10

0.772;
11

0.825;
12

13

. . .

5 0.343;

5

0.7448;

6

0.479;

7

0.516;

8

0.672;

9

0.719;

10

0.732

11

0.784;

12

0.837;

13

. . .

.

Table 5.9. Final dominating sequence for the system

R 0.175 0.263 0.341 0.398 0.427 0.512 0.597 0.640 0.685 0.707 0.746 0.798 0.825 …

C 0 1 2 3 4 5 6 7 8 9 10 11 12 …

Figure 5.6. Final dominating sequence for the system.

5.2.3. Solving the direct and inverse problems of optimal redundancy.
 Using Table 5.7, it is easy to get solutions for the both – direct as well as inverse –

problem of optimal redundancy. For instance, if one needs to find the best redundant units

allocation to satisfy the requirement R  0.8, then from Table7 we find that the solution for

corresponding value (R=0.825) is in cell (x
(1)

 =9, x3 = 4). The cost of redundant units in this

case is 12 In turn, for x
(1)

 =9 one finds that this corresponds to x2=1 and x2=2.

 Thus, the solution of inverse problem is (x1=2, x2=2, x3=3).

 If there is a limitation on the redundant units total cost equal to 10, then from the

 65

Table 5.7 one finds that corresponding maximum value of PFFO is 0.746. This solution

corresponds to a cell (x
(1)

 =8, x3 = 3). In turn, for x
(1)

 =8 one finds that this corresponds to

x1=1 and x2=2.

 Thus, the solution of inverse problem is (x1=1, x2=2, x3=3).

Remark. There are two ways of choosing redundant groups for composing a dominating

sequence (see Figure 5.7).

Figure 5.7. Two types of choosing redundant group for composing a dominating sequence

For computer solution, both types are equivalent. However if one needs to make calculations

by hand, then the dichotomous way gives a substantial decrease in calculations.

* * *
Bibliography to Chapter 5.
(books a distinguished by bold font)

1957. Bellman, R. Dynamic Programming. Princeton University Press.

1962. Bellman, R. E., and Dreyfus, S. E. Applied Dynamic Programming. Princeton

University Press.

1962. Kettelle, J. D. , Jr. Least-coast allocation of reliability investment. Operations

Research, No. 2.

1966. Li, J. A bound dynamic programming for solving reliability redundancy

optimization . Microelectronics Reliability, No. 10.

1969. Ushakov, I.A. Method of Solving Optimal Redundancy Problems under

Constraints (in Russian). Sovetskoe Radio, Moscow.

1971. Misra , K.B. Dynamic programming formulation of the redundancy allocation

problem. International Journal of Mathematical Education in Science and Technology,

No.3.

2005. Yalaoui, A., Chatelet, E., and Chu, C. A new dynamic programming method for

reliability and redundancy allocation in a parallel-series system. IEEE Transactions on

Reliability, No. 2.

 66

6.UNIVERSAL GENERATING FUNCTIONS

 The Method of Universal Generating Functions (U-functions), introduced in

[Ushakov, 1986], actually represents a generalization of the Kettelle’s Algorithm. This

method suggests a transparent and convenient method of computerized solutions of various

enumeration problems, in particular, the optimal redundancy problem.

6.1. Generating function

 First, let us refresh our memory concerning generating functions. This is a very

convenient tool widely used in the probability theory for finding joint distributions of

several discrete random variables. Generating function is defined as





kGk

k

k zpz)( (6.1)

where pk is the probability that discrete random variable X takes value k and Gk is the

distribution function domain. In the optimal redundancy problems, in principle, Gk = [0, ),

though any practical task has its own limitations on the largest value of k.

 Consider two non-negative discrete random values 1X and 2X with distributions



















,}{

...

}2{

,}1{

)1(

1

)1(

)1(

2

)1(

)1(

1

)1(

1npnXP

pXP

pXP

and



















.}{

...

,}2{

,}1{

)2(

2

)2(

)2(

2

)2(

)2(

1

)2(

2npnXP

pXP

pXP

 correspondingly, where n1 and n2 are numbers of discrete values of each type.

For finding probability of random variable
)2()1(XXX  , one should enumerate all

possible pairs of
)1(X and

)2(X that give in sum value k and add corresponding

probabilities:

)1(X = 0,

)2(X = k, with probability
)2()1(

0 kpp 
)1(X = 1,

)2(X = k – 1, with probability)2(

1

)1(

1  kpp

 67

)1(X = 2,)2(X = k – 2, with probability)2(

2

)1(

2  kpp

…
)1(X = k,)2(X = 0, with probability)2(

0

)1(ppk  .

 Thus the probability of interest is equal to

)2(

0

)1(

0

)2()1(}{ j

kj

jk

kj

jkj ppppkXP  






 (6.2)

One can see that there is a comvolution transform. It is clear that the same result will be

obtained if one takes a polynomial

)()()()2()1(zzz   (6.3)

and, after combining alike terms of expansions, finds the coefficient at z
k
.

6.2. Universal GF (U-function)

One sees that algebraic argument “z” was introduced only for convenience: everybody

knows that polynomials multiplication means product of coefficients and sum of powers.

Such presentation helps one to obtain a distribution of the convolution of discrete r.v.’s.

However, if random variables should be expose transformation different from convolution?

For instance, if these random variables are arguments of some function?

 Let us use habitual form of presentation, using symbol “ ” instead of “ ” just

to underline that this is not an ordinary product of two GFs but special transform:



































2

1

)2()1(

2

)2(

1

)1(

1
1

),()2()1(

1

)2(

1

)1()2()1()()()(

nj
ni

XXf

ji

nj

X

j

fni

X

i

f

jiji zppzpzpzzz 

(6.4)

 Subscript “f” in 
f

means that some specific operation f will be undertaken over

values X. It is clear that in case of “pure” GF function is operation of summation.

 In general case, using polynomial form of GF is inconvenient and even impossible.

For moving further, let us introduce some terms. We used to say that a system consists of

units which are physical objects characterized by its parameters: reliability, cost, weight, etc.

So, we can consider each unit as a multiplet of its parameter. Relaibility of each unit can be

improved by using redundancy or by replacing with more effective unit. In other words, on

a design stage engineer feals with a “string” of possible multiplets characterizing various

variants of a considered unit.

 Consider a series system of two units. Let unit-1 and unit-2 are characterized by

 68

strings

},...,,{)1()1(

2

)1(

11 1nMMMS 

and

},...,,{)2()2(

2

)2(

12 2nMMMS 

 Each multiplet is a set of parameters },...,,{)()(

2

)(

1

)(k

N

k

j

k

j

k

jM  where N is the

number of parameters in each multiplet.

 “Interaction” of these two strings is an analogue of the Cartezian product whose

memberts fill the cells of the following table:

Table 6.1.

)1(

1M
)1(

2M …
)1(

1nM

)2(

1M
)1(

1M 
)2(

1M
)1(

2M 
)2(

1M …
)1(

1nM 
)2(

1M

)2(

2M)1(

1M 
)2(

2M)1(

2M 
)2(

2M …
)1(

1nM 
)2(

2M

… … … … …
)2(

2nM
)1(

1M 
)2(

2nM
)1(

2M 
)2(

2nM …
)1(

1nM 
)2(

2nM

 Interaction of multiplets consists of iteraction of their similar parameters, for

instance,

)}(),...,(),{()()()(

2

)(

2

)(

1

)(

1

)()(

21

h

Ni
f

k

Nj

h

i
f

k

j

h

i
f

k

j

h

i

k

j
N

MM  

 (6.5)

Operator  , as well as each operator
sf
 , in most natural practical cases

possesses the commutativity property, i.e.

f
 (a , b)=

f
 (b , a) , (6.6)

and the associativity property, i.e.

f
 (a, b, c) =

f
 (a

f
 (b , c))=

f
 ((a

f
 b), c). (6.7)

Of course, operator
sf
 depends on the physical nature of parameter s and the type of

structure, i.e. series or parallel.

 69

Table 6. 2.

Type of parameter Type of structure Result of interaction

A) α is unit’s

PFFO

 series
)()()()(h

Ai

k

Aj

h

Ai
f

k

Aj  

parallel)1()1(1)()()()(h

Ai

k

Aj

h

Ai
f

k

Aj  

B) α is number of

units in parallel

 series

);()()()()(h

Ri

k

Bj

h

Bi
f

k

Bj B 

parallel);()()()()(h

Ri

k

Bj

h

Bi
f

k

Bj B 

C) α is unit’s cost
(weight)

series)()()()(h

Ai

k

Aj

h

Ai
f

k

Aj  

parallel)()()()(h

Ai

k

Aj

h

Ai
f

k

Aj  

D) α is unit’s

ohmic resistance

 series)()()()(h

Ai

k

Aj

h

Ai
f

k

Aj  

parallel   11)(1)()()()()(
  h

Ai

k

Aj

h

Ai
f

k

Aj 

E) α is unit’s

capacitance

 series   11)(1)()()()()(
  h

Ai

k

Aj

h

Ai
f

k

Aj 

parallel)()()()(h

Ai

k

Aj

h

Ai
f

k

Aj  

F) α is pipeline

unit’s capacitance

series  )()()()(,min h

Ai

k

Aj

h

Ai
f

k

Aj  

parallel)()()()(h

Ai

k

Aj

h

Ai
f

k

Aj  

G) α is unit’s

random time to

failure

series  )()()()(,min h

Ai

k

Aj

h

Ai
f

k

Aj  

parallel  )()()()(,max h

Ai

k

Aj

h

Ai
f

k

Aj  

In the problem of optimal redundancy, one deals with triplet of type “Probability-

Cost-Number of units” for each redundant group: },,{ 321 jjjjM  . If there is a system

of n series subsystems (single elements or redundant groups) , one has to use a procedure

almost completely coincided with the procedure of compiling the dominating sequences at

the Kettelle’s algorithm. In other words, the problem reduces to the constructing a single

“equivalent unit” which possesses the entire system’s properties. There are two possible

ways of “convolving” the system into a single “equivalent unit”: dichotomous and

sequential. We will demonstrate these two possible procedures on an exmple of a series

system of four subsystems.

 70

Figure 6. 1 Dichotomous scheme of compiling the equivalent unit.

Figure 6.2. Dichotomous scheme of compiling the equivalent unit.

Numerical example. Consider a series system of four units with parameters given in the

table below. Assume that “hot” redundancy of each unit is used for the system reliability

improvement.

Table 6.3. System unit parameters
 Unit-1 Unit-2 Unit-3 Unit-4

PFFO 0.6 0.6 0.7 0.7

Cost 3 1.5 2 1.2

Let us solve two problems of optimal redundancy:

(a) Find the optimal allocation of redundant units to reach required PFFO

level of 0.95;

(b) Find the optimal allocation of redundant units to reach maximum

possible PFO level under condition that the total cost of the system

does not exceed 30 cost units.

 71

In this case, each unit is characterized by the following strings of triplets (Cost,

PFFO, Number):

S1 = [{3; 0.6; 1}, ... , {12; 0.9744; 4}, {15; 0.9898; 5}, {18; 0.9959; 6}, {21; 0.9984; 7}, {24; 0.9993; 8},

{27; 0.9997; 9}, ...]

S2 = [{1.5; 0.6; 1}, ... , {6; 0.9744; 4}, {7.5; 0.9898; 5}, {9; 0.9959; 6}, {10.5; 0.9984; 7}, {12; 0.9993; 8},

{13.5; 0.9997; 9}, ...]

S3 = [{2; 0.7; 1}, ... , {6; 0.9730; 3}, {8; 0.9919; 4}, {10; 0.9976; 5}, {12; 0.9993; 6}, {14; 0.9998; 7},
{16; 0.9999; 8}, ...]

S4 = [{1.2; 0.7; 1}, ... , {3.6; 0.9730; 3}, {4.8; 0.9919; 4}, {6; 0.9976; 5}, {7.2; 0.9993; 6},

{8.4; 0.9998; 7}, {9.6; 0.9999; 8}, ...].

Let us apply dichotomous scheme of compikling equivalent unit, and, first,

consider the subsystem consisting of Unit-1 and Unit -2. We omit all intermediate

calculations performed with help of a simple Excel program.

Table 6.4. Triplets belonging to
*

1S .

Cost PFFO X=(x1,x2)

… … …

18 0.9495 (4,4)

19.5 0.9644 (4,5)

21 0.9704 (4,6)

21 0.9644 (5,4)

22.5 0.9796 (5,5)

22.5 0.9728 (4,7)

24 0.9857 (5,6)

24 0.9704 (6,4)

24 0.9738 (4,8)

25.5 0.9881 (5,7)

25.5 0.9857 (6,5)

25.5 0.9741 (4,9)

27 0.9728 (7,4)

27 0.9918 (6,6)

27 0.9891 (5,8)

28.5 0.9881 (7,5)

28.5 0.9943 (6,7)

28.5 0.9895 (5,9)

30 0.9738 (8,4)

30 0.9943 (7,6)

30 0.9953 (6,8)

… … …

In this table, as well as in next tables below, shadowed are those triplets which are

dominated by dominating ones.

 72

In the same manner construct *

2S .

Table 6.5. Triplets belonging to
*

2S .

Cost PFFO X=(x3,x4)

… … …

9.6 0.9467 (3,3)

10.8 0.9651 (3,4)

11.6 0.9651 (4,3)

12 0.9706 (3,5)

12.8 0.9839 (4,4)

13.2 0.9723 (3,6)

13.6 0.9706 (5,3)

14 0.9895 (4,5)

14.4 0.9728 (3,7)

14.8 0.9895 (5,4)

15.2 0.9912 (4,6)

15.6 0.9723 (6,3)

15.6 0.9729 (3,8)

16 0.9951 (5,5)

… … …

 Now on the basis of
*

1S and
*

2S , one constructs the final string for the equivalent

unit. The result is given in the table below.

Table 6.6. Resulting string of triplets for the equivalent unit.

Cost PFFO X=(x3,x4,x3,x4)

… … …

27.6 0.8989 (4,4,2,3)

28.8 0.9164 (4,4,4,3)

29.1 0.9164 (4,5,2,3)

30.0 0.9216 (4,4,5,3)

30.3 0.9307 (4,5,4,3)

30.6 0.9187 (3,6,2,3)

30.8 0.9342 (4,4,4,8)

31.5 0.9360 (4,5,5,3)

31.8 0.9365 (3,6,4,3)

32.0 0.9395 (4,4,5,4)

32.1 0.9274 (5,5,2,3)

32.3 0.9489 (4,5,4,8)

33.0 0.9419 (3,6,5,3)

33.2 0.9411 (4,4,6,4)

33.3 0.9454 (5,5,4,3)

33.5 0.9543 (4,5,5,4)

33.6 0.9389 (5,6,2,3)

33.8 0.9548 (3,6,4,8)

 73

… … …

One can notice that the final string in this particular case completely coincides

with the final dominating sequence obtained by the Kettelle’s Algorithm: the only

difference is that we kept “the track of solving process” and have the resulting solution

immediately from the table. (Frankly speaking, the Kettele’s Algorithm could be easily

modified to get the same property of the final solution.)

Solutions of the problems above can be easily found from the last table. First time

PFFO exceed level of 0.95 when X=(4,5,5,4) and the corresponding system cost is 33.5

cost units. The second task has solution X=(4,4,5,3) with the cost equal exactly 30 cost

units. FFO for this case is equal to 0.9216.

In the conclusion of this chapter, let us notice that the U-function method is very

constructive not only for solving optimal redundancy problem, but also for a number of

other problems, particularly associated with multi-state systems analysis.

Bibliography to Chapter 6

(books are distinguished by bold font)

1986. Ushakov, I.A. A Universal Generating Function (in Russian). Engeneering

Cybernetics, No. 5.

1987. Ushakov, I.A. Solution of multi-criteria discrete optimization problems using a

universal generating function. Soviet Journal of Computer and System Sciences , No. 5.

1987. Ushakov, I. A universal generating function. Soviet Journal Computer Systems

Science, No.3.

1987. Ushakov, I.A. Optimal standby problem and a universal generating function.

Soviet Journal Computer and System Science, No.4.

1988. Ushakov, I.A. Solving of optimal redundancy problem by means of a generalized

generating function. Elektronische Informationsverarbeitung und Kybernetik, No.4-5

2000. Ushakov, I.A. The method of generating sequences. European Journal of

Operational Research, No. 2.

2000. Ushakov, I.A. The Method of Generating Sequences. European Journal of

Operational Research, Vol. 125/2

2005. Levitin, G. The Universal Generating Function in Reliability Analysis and

Optimisation. Springer-Verlag.

2008. Chakravarty, S.,and Ushakov, I.A. Object Oriented Commonalities in Universal

Generating Function for Reliability and in C++, Reliability and Risk Analysis: Theory &

Applications, No. 10.

http://gnedenko-forum.org/Journal/2009/032009/RATA_3_2009-05.pdf
http://gnedenko-forum.org/Journal/2009/032009/RATA_3_2009-05.pdf

 74

7.GENETIC ALGORITHMS

7.1. Introductory

Computer simulations of evolution started in the mid-1950s. A Norwegian-Italian

mathematician Nils Aall Barricelli (1912-1993), who had been working at the Institute

for Advanced Study in Princeton, published his first paper on the subject. Then a series of

works have been published in 1960-70s.

Genetic algorithms in particular became popular through the work of John Holland in

the early 1970s., and particularly his book “Adaptation in Natural and Artificial Systems”

(1975).

Holland wrote: "A Genetic Algorithm is a method of problem analysis based on

Darwin's theory of natural selection. It starts with an initial population of individual

nodes, each with randomly generated characteristics. Each is evaluated by some method

to see which ones are more successful. These successful ones are then merged into one

"child" that has a combination of traits of the parents’ characteristics."

In recent years, many studies on reliability optimization use a universal optimization

approach based on metaheuristics. Genetic algorithms are considered as a particular class

of evolutionary algorithms that use techniques inspired by Darwin’s evolution theory in

biology that includes such components as inheritance, mutation, selection, and crossover

(recombination).

These metaheuristics hardly depend on the specific nature of the problem that is being

solved and, therefore, can be easily applied to solve a wide range of optimization

problems. The metaheuristics are based on artificial reasoning rather than on classical

mathematical programming. An important advantage of these methods is that they do not

require any prior information and are based on collection of current data obtained during

the randomized search process. These data are substantially used for directing the search.

John Henry 'Dutchy' Holland

(born in 1929)

American scientist and Professor of Psychology and

Professor of Electrical Engineering and Computer Science at
the University of Michigan, Ann Arbor. He is a pioneer in

complex system and nonlinear science. He is known as the

father of Genetic Algorithms. In 1975 he wrote his book on

genetic algorithms, "Adaptation in Natural and Artificial

Systems".

 75

Genetic algorithms are implemented as a computer simulation in which a population

of abstract items (called “chromosomes” or “the genotype of the genome”) represent

“candidate solutions” (called individuals, creatures, or phenotypes) systematically lead

toward better solutions.

The GAs have the following advantages in comparison with traditional methods:

- they can be easily implemented and adapted;

- they usually converge rapidly on solutions of good quality;

- they can easily handle constrained optimization problems.

A genetic algorithm requires strong definition of two things:

a genetic representation of the solution domain,

a fitness function to evaluate the solution domain.

The fitness function is defined over the genetic representation and measures the

quality of the presented solution. The fitness function always depends on the problem

nature. In some problems, it is impossible to define the fitness expression, so one needs to

use interactive procedures based on expert’s opinion.

As soon as we have the genetic representation and the properly defined fitness

function, GA proceeds to initialize a population of solutions randomly.

Genetic algorithm includes the following main phases.

Initialization

A number of individual solutions is generated at random to form an initial population.

The population size depends on the nature of the problem, but typically contains

hundreds or thousands of possible solutions. The population is generated to be able to

cover the entire range of possible solutions (the search space). Occasionally, some

solutions may be "seeded" in areas where actual optimal solution is located.

This initial population of solutions is undertaken to improve the procedure through

repetitive application of selection, reproduction, mutation, and crossover operators.

Selection

Obtained individual solutions are selected through a special process using a fitness

function that allows ordering the solutions by specified quality measure. These selection

methods rate the fitness of each solution and preferentially select the best solutions.

Reproduction

The next step is generating the next generation of solutions from those selected

through genetic operators: crossover (recombination), and mutation.

Each new solution is produced by a pair of "parent" solutions that selected for

“breeding”. By producing a "child" solution using the above methods of crossover and

mutation, a new solution is created which typically shares many of the characteristics of

its "parents". New parents are selected for each child, and the process continues until a

new population of solutions of appropriate size is generated.

Termination

This process described above is repeated until a termination condition has been

reached. Common terminating conditions are:

 76

the predetermined number of produced generations has been reached,

or a satisfactory fitness level has been reached for the population.

7.2. Structure of Steady-state Genetic Algorithms
3

The steady-state GA (see Figure 7.1) proceeds as follows: an initial population of

solutions is generated randomly or heuristically. Within this population, new solutions

are obtained during the genetic cycle by using the crossover operator. This operator

produces an offspring from a randomly selected pair of parent solutions that are selected

with a probability proportional to their relative fitness. The newly obtained offspring

undergoes mutation with the probability pmut.

Figure 7.2. Structure of a steady-state GA

Each new solution is decoded and its fitness function value is estimated. These

values are used for a selection procedure that determines what is better: the newly

obtained solution or the worst solution in the population. The better solution joins the

population, while the current one is discarded. If the solution population contains a pair

of equivalent items, then either of them is eliminated and the population size decreases.

The stopping rule is when the number of new solutions reaches some level Nrep, or when

the number of remained solutions in the population after excluding reaches a specified

level. After this, the new genetic cycle begins: a new population of randomly constructed

solutions is generated and the process continues. The whole optimization process

terminates when its specified termination condition is satisfied. This condition can be

specified in the same way as in a generational GA.

The steady-state GA can be presented in the following pseudo-code format.

begin STEADY STATE GA

 Initialize population 

 Evaluate population  {compute fitness values}
 while GA termination criterion is not satisfied do

{GENETIC CYCLE}
while genetic cycle termination criterion is not satisfied do

 Select at random Parent Solutions S1, S2 from 

3 Material for this section is presented by G. Levitin.

 77

 Crossover: (S1, S2)  SO {offspring}

 Mutate offspring SO  S*O with probability pmut
 Evaluate S*O

Replace SW {the worst solution in  with S*O } if S*O is
better than SW

 Eliminate identical solutions in 
 end while

 Replenish  with new randomly generated solutions
 end while
end GA

7.3. Related techniques4

Below is given a list (in alphabetic order) of a umber of techniques “genetically”

close to Genetic Algorithm:

Ant colony optimization (ACO) uses many ants (or agents) to traverse the solution

space and find locally productive areas.

Bacteriologic Algorithms (BA) inspired by evolutionary ecology and, more

particularly, bacteriologic adaptation.

Cross-entropy method (CE) generates candidates solutions via a parameterized

probability distribution.

Evolution strategies (ES) evolve individuals by means of mutation and intermediate

and discrete recombination.

Evolutionary programming (EP) involves populations of solutions with primarily

mutation and selection and arbitrary representations.

Extremal optimization (EO) evolves a single solution and makes local modifications

to the worst components.

Genetic programming (GP) is a technique, in which computer programs, rather than

function parameters, are optimized.

Deluge algorithm (GD) is a generic algorithm similar in many ways to the hill-

climbing and simulated annealing algorithms.

Grouping Genetic Algorithm (GGA) is an evolution of the GA where the focus is

shifted from individual items, like in classical GAs, to groups or subset of items.

Harmony search (HS) is an algorithm mimicking musician’s behaviors in

improvisation process.

Immune optimization algorithm (IOA) is based on both the concept of Pareto

optimality and simple interactive metaphors between antibody population and multiple

antigens.

Interactive evolutionary algorithms (IEA) are evolutionary algorithms that use human

evaluation when it is hard to design a computational fitness function.

Mimetic algorithm (MA) is a relatively new evolutionary method where local search

4 This section is based partly on http://en.wikipedia.org/wiki/Genetic_algorithm.

 78

is applied during the evolutionary cycle.

Particle swarm optimization (PSO) is an algorithm to find a solution to an

optimization problem in a search space, or model and predict social behavior in the

presence of objectives.

Simulated annealing (SA) is a related global optimization technique that traverses the

search space by testing random mutations on an individual solution.

Taboo search (TS) is similar to Simulated Annealing in that both traverse the solution

space by testing mutations of an individual solution.

Bibliography to Chapter 7

1966. Coit, D.W., and Smith, A.E. Reliability optimization of series-parallel systems

using a genetic algorithm. IEEE Transactions on Reliability, No. 45

1966. Coit, D.W., Smith, A.E. and Tate, D.M. Adaptive penalty methods for genetic

optimization of constrained combinatorial problems, INFORMS Journal of Computing,

No. 8 .

1995. Kumar, A., Pathak, R., and Gupta, Y. Genetic algorithm-based reliability

optimization for computer network expansion, IEEE Transaction on Reliability, No. 1.

1995. Kumar, A., Pathak, R., Gupta, and Parsaei, H. A genetic algorithm for distributed

system topology design. Computers and Industrial Engineering, No 3.

1995. Painton, L., and Campbell, J. Genetic algorithm in optimization of system

reliability, IEEE Transactions on Reliability, No. 2.

1996. Coit, D.W., and Smith, A.E. Reliability optimization of series-parallel systems

using genetic algorithm. IEEE Transactions on. Reliability, No. 2.

1996. Coit, D.W., and Smith, A.E. Solving the redundancy allocation problem using a

combined neural network/genetic algorithm approach. Computers & OR, No.6.

1996.Coit, D.W., and Smith, A.E. Penalty guided genetic search for reliability design

optimization. Computers and Industrial Engineering, No. 30

1997. Dengiz, B., Altiparmak, F., and Smith, A. Local search genetic algorithm for

optimal design of reliable networks, IEEE Transaction on evolutionary computation, No.

3.

1997. Dengiz, B., Altiparmak, F., and Smith, A. Efficient optimization of all-terminal

reliable networks,using an evolutionary approach, IEEE Transaction on Reliability, vol.

46 No. 1.

1997. Gen, M., and Cheng, R. Genetic Algorithms and Engineering Design, , John Wiley

& Sons, New York.

 79

1997. Gen, M., and Kim, J. GA-based reliability design: state-of-the-art survey.

Computers and Industrial Engineering, No 1/2.

1997. Ramachandran, V., Sivakumar, V., and Sathiyanarayanan, K. Genetics based

redundancy optimization, Microelectronics and Reliability, No 4.

1997. Shelokar, P.S., Jayaraman, V. K., and Kulkarni, B. D. Ant algorithm for single and

multi-objective reliability optimization problems. Quality and Reliability Engineering

International, No. 6

1998. Coit, D.W., and Smith, A.E.) Redundancy allocation to maximize a lower

percentile of the system time-to-failure distribution. IEEE Transactions on. Reliability,

No. 1.

1998. Hsieh, Y., Chen, T., and Bricker, D. Genetic algorithms for reliability design

problems. Microelectronics and Reliability, No 10.

1998. Taguchi, T., Yokota, T., and Gen, M. Reliability optimal design problem with

interval coefficients using hybrid genetic algorithms. Computers and Industrial

Engineering, No. 1/2.

1999. Yang, J., Hwang, M., Sung, T., and Jin, Y. (1999) Application of genetic algorithm

for reliability allocation in nuclear power plant, Reliability Engineering & System Safety,

No. 3.

2000. Levitin, G., Kalyuzhny, A., Shenkman, A., and Chertkov, M. Optimal capacitor

allocation in distribution systems using a genetic algorithm and a fast energy loss

computation technique. IEEE Transactions on Power Delivery, No. 2.

2003. Levitin G., Dai,Y., Xie, M., and Poh, K. L. Optimizing survivability of multi-state

systems with multi-level protection by multi-processor genetic algorithm. Reliability

Engineering & System Safety, No. 2.

2004. Liang, Y., and Smith, A. An ant colony optimization algorithm for the

redundancy allocation problem, IEEE Transactions on Reliability, No. 3.

2005. Coit, D.W., and Baheranwala, F. Solution of stochastic multi-objective system

reliability design problems using genetic algorithms. In Advances in Safety and

Reliability. Taylor & Francis Group.

2005. Levitin, G. Genetic algorithms in reliability engineering. Reliability Engineering

& System Safety, No.2.

2005. Marseguerra, M., Zio, E., and Podofillini, L. Multi-objective spare part allocation

by means of genetic algorithms and Monte Carlo simulation, Reliability Engineering &

System Safety, No. 87.

2006. Gupta, R., and Agarwal, M. Penalty guided genetic search for redundancy

optimization in multi-state series-parallel power system. Journal of Combinatorial

Optimization, No. 3.

 80

2006. Levitin, G. (Ed.) Computational Intelligence in Reliability Engineering.

Evolutionary Techniques in Reliability Analysis and Optimization, Series: Studies

in Computational Intelligence, Vol. 39, Springer-Verlag.

2006. Levitin, G. (Ed.) Computational Intelligence in Reliability Engineering. New

Metaheuristics, Neural and Fuzzy Techniques in Reliability. Series: Studies in

Computational Intelligence, Vol. 40, Springer-Verlag .

2006. Levitin, G. (Ed.). Computational Intelligence in Reliability Engineering. New

Metaheuristics, Neural and Fuzzy Techniques in Reliability. Series: Studies in

Computational Intelligence. Springer-Verlag.

2006. Levitin, G. Genetic Algorithms in Reliability Engineering. Reliability Engineering

and System Safety, 91(9).

2006. Konak, A., Coit, D., Smith. A. Multi-objective optimization using genetic

algorithms: a tutorial. Reliability Engineering and System Safety, 91(9).

2006. Parkinson, D. Robust design employing a genetic algorithm. Quality and

Reliability Engineering International, No. 3.

2007. Levitin, G. Intelligence in Reliability Engineering: New Metaheuristics, Neural and

Fuzzy Techniques in Reliability. Springer-Verlag.

2008. Taboada, H.A., Espiritu, J.F., and Coit, D.W. A multi-objective multi-state

genetic algorithm for system reliability optimization design problems. IEEE Transactions

on Reliability, No. 1.

8.MONTE CARLO SIMULATION

8.1. Introductory remarks

Very often a reliability goal function cannot be expressed in convenient analytical form

that makes even calculation of reliability decrements practically impossible. For instance,

such situations arise when system units are mutually dependent or their reliability

simultaneously depends on some common to all environmental factors (temperature,

mechanical impacts, etc.). In these cases, the Monte Carlo simulation is usually used for

reliability indices calculation. However, the problem arises: How to use the Monte Carlo

simulation for optimization?

 Roughly speaking, the idea is in observing the process of the spare unit expenditure

(replacement of failed units) until specified restrictions allow one to do so. This may be a

simulation process or an observation of the real deployment of the system. After the

stopping moment, we start another realization of simulation process or observation of the

real data. When the appropriate statistical data are collected, the process of finding optimal

solution starts.

 81

 Avoiding a formal description of the algorithm, let us demonstrate it on numerical

examples which will make the idea of the method and its specific technique clearer.

8.2. Formulation of optimal redundancy problems in statistical terms

 Standard methods do not give a solution if the goal function is the mean time to

failure

T = R t x dt
i n

i i|() ()x
0 1



 
  (8.1)

or if units are dependent, for instance, via a vector of some external factors g (temperature,

humidity, vibration, etc.):

R = R x ,x ,...x | dF
g G

n() () (x g g)


 1 2 (8.2)

where F(g) is the d.f. of some external parameter g and G is its domain.

8.3.Algorithm for Trajectory Generation

 For solution of the formulated problems, we need to have data obtained from real

experiment (or system deployment) or from Monte Carlo simulation of the system model.

Though this procedure is routine, we will briefly describe it for the presentation closeness.

The procedure is as follows.

 Consider a series system of n units. (For simplicity of explanation of the algorithm,

we will assume that the units are independent. However, everything described below can be

easily extended to the general case: it will effect only a mechanism of random sequences

generation.)

 Let us consider the process of spare units expenditure as the process of changing the

system states and the total cost of spare units at sequential replacement moments. After

failure each unit is immediately replaced with a spare one. Let tk
(j)

 be the moment of the kth

replacement during the jth Monte Carlo experiment. The number of spare units of type i

spent at moment)(j

kt is denoted)(j

ikx .

 An initial state at)(

0

jt =0 is:

)(

0

j

ix for all i, 1, 2, …4, and j, j=1, 2, …, N.

 The total cost of spare units at the initial moment is C0 = 0. (Sometimes it might be

reasonable to consider the initial cost of the system with no spare units as C0, that is,

 82

C0= 
 ni

iick
1

 where ki is the number of units of type i within equipment before reliability

improvement.)

 Consider the step by step procedure of generating trajectories)(s , s=1, 2, We

begin with)1( but the corresponding subscript, (1), will be omitted for the sake of

convenience.

Step 1. Generate random time to failure (TTF) for each unit, and define bi1=ξi, that is bi1 is

the moment of the earliest failure (and instantaneous replacement) of the ith unit. The

current moment (for every unit i) at the beginning of any trajectory)(s is bi0=0.

Step 2. Determine the moment of the occurrence of the first event (first replacement) within

the first realization)1( as 1

1

1t = b
i n

i .
 

min 5

Step 3. Assign to the corresponding unit (for which the moment of failure is the earliest

one) a specific number i=i1.

Step 4. Put into the spare units counter a new value
1 1i ix = x + .1 0 1 6

Step 5. Rename remaining xi0 as follows: xi0=xi1 for all i i1.

Step 6. Calculate a new value of the system cost C1=C0+ ci1
7

Step 7. Generate the next random TTF for unit i1, .
i


1

8

Step 8. Calculate the next event occurring due to unit i1: .+t=b i2i 
11 1 9

Step 9. Rename the remaining values bi1=bi2 for all i i1.

 His completes the first cycle. GOTO Step 2, i.e. find 2

1

2t = b
i n

i

 
min 10, and so on

until stopping the first realization.

 The type of problem to be solved determines the stopping rule of each realization.

 Stopping rule for the Inverse Problem of optimal redundancy: The process is

stopped at the moment tN when the total cost of spare units exceeds the permitted C
0
.

 Stopping rule for the Direct Problem of optimal redundancy: The simulation

process for each realization stops at the moment MM ttt  *1 where t
*
 equals the required

operational time t0 (if the reliability index is the probability of failure free operation) or t
*
 is

the required system's MTTF.

 After the termination of generating the first trajectory,)1( , we start to generate

)2( by the same rules. The number of needed realizations, N, is determined by the required

accuracy of statistical estimates.

 Thus, each trajectory j represents a set of the following data:

)}(;;{)(

1

)(

1

)(

1

jjj XCXt

)}(;;{)(

2

)(

2

)(

2

jjj XCXt

…

)}(;;{)()()(j

M

j

M

j

M XCXt

 83

where)(j

sX is the set of spare units at moment)(j

st , i.e., }...,,,{)()(

2

)(

1

)(j

ns

j

s

j

s

j

s xxxX  .

 After the description of the Monte Carlo simulating process, let us consider the

optimization problems themselves. We cn make an important remark: previously all

problems were formulated in probabilistic terms, but dealing with statistical (empirical)

functions has its specific. Below these problems are reformulated in an appropriate way.

8.4.Description of the Idea of the Solution

 Assume that we need to supply some system with spare units for a specified period

of time. We have no prior knowledge on units reliability but we have an opportunity to

observe a real process (or simulation) of failure occurrence.

 Consider the direct problem of optimal redundancy. What shall we do in this case?

We observe the process of spare unit expenditure during time t*. This process can be

described as a random travel – call it trajectory – in discrete n-dimensional space X.

Illustration of such process –n two-dimensional case is presented bellow.

Figure 8.1. Example of a two-dimensional trajectory.

 Let us observe N such trajectories, j=1, 2, ... , N in an n-dimensional space where n

is the number of unit types. Each realization is stopped when the total cost of spare units

exceeds the permitted amount, that is, each trajectory reaches or even penetrates a hyper

plane

 })({ 0CXC  (8.3)

determined by the restriction on the total system cost (example for two-dimensional case is

given in the figure below).

 84

Figure 8.2. Example of two-dimensional trajectory inside hyper plane C(x1, x2)=C

0
.

 After this, in the same n-dimensional space, we construct such hypercube r , r = 1,

2, ... that each of their vertexes is lying under the hyper plane). In Figure 8.2 there are two

such hypercube though there could be many of them: actually in this case all pairs (x1, x2)

that belong to hyper plane C(x1, x2)=C
0
 could be vertices of such hypercube.

 Denote the maximum time that trajectory)(j is spending within the hypercube r

by),()()(

r

jj

r   . Introduce an indicator

 Among all hypercubes above we choose such hypercube r that maximizes the

frequency of failure-free operation during required interval t0 under the cost restrictions:

where C
0
 is the admissible redundant group cost.

 Maximization of the system average time to failure is reached by the hypercube r'

that corresponds to the solution of the following problem of the conditional optimization:







 

otherwise.0

if 1 0

)(

t

 =

(j)
r

j
r



 (8.4)

 .Ccx
N

 ii

x
ni

j
r

Nj

ri

r 



















0

1

)(

1

1
max




 (8.5)

 85

 Now consider the Direct Problem of optimal redundancy. In this case, the required

time of the system failure-free operation equals t0. We observe the process of spare units

expenditure N times until the system failure-free time exceeds t0 and record trajectories
)(j , j = 1, 2, ... , N in an n-dimensional space. Afterwards we construct such hypercubes

r , r = 1, 2, ... in the same n-dimensional space that include (cover) R
0
 100% of all

trajectories where R
0
 is the specified level of the reliability index. Among all hypercubes

described above, we choose the one that is characterized by the minimum total cost. In other

words, the hypercube r

~ must satisfy the solution of the following problem:

 Now let the specified requirement be given for the system average time to failure,

T
*
. The hypercube r

~ presenting the solution, must be chosen corresponding to the

solution of the problem:

.T
N

1
 xc j

r

Nj

ii

x
ni

ri

r 





















0)(

1
~

1~
min 




 (8.8)

 Of course, one should take into account that the operation with the frequency differs

from the operation with the probability. The proposed solution is asymptotically accurate.

Thus all these arguments are satisfactory only for a large enough sample size.

8.5.Inverse Optimization Problem

8.5.1. System Successful Operation vs. System Cost

 We need to find opt that satisfies (8.5). The algorithm for solution is as follows.

Step 1. Choose a hypercube 1 whose diagonal vertex is lying on or under the hyperplane

(8.3).

Step 2. Take the first realization,)1( obtained with the help of the Stopping Rule 1. Find

moment)1(

1 when this trajectory "punctures" the hypercube 1 . This corresponds to the

 .Ccx
N

 ii

x
ni

j
r

Nj

ri

r 












0

1

)(

1

1
max




 (8.6)

 .R
N

1
 xc j

r

Nj

ii

x
ni

ri

r 





















0)(

1
~

1~
min 




 (8.7)

 86

moment)1(

kt where

where 1i is a component of 1 .

Step 3. Assign to)1(

1 a value 1 or 0 by using the indicator function (8.4).

Step 4. Add)1(

1 to the value in the counter (initial value equals 0) of successful trajectories.

 Repeat the procedure from Step 2 for the next realization,)2( .

 After the analyzing of all trajectories, we calculate the frequency of successful

trajectories, 1 0

1
1

1
 () ()
P t =

N

j N

j

 

  16 for the chosen hypercube 1 . Then we find such

hypercube K that is characterized by the maximum value of KP t . ()0 For this purpose, we

can use a random search, steepest descent, or other numerical optimization procedure in the

discrete space of the trajectories of the spare units expenditure.

Numerical example.
 Consider a series system of n=3 units. For the sake of simplicity of illustrative

calculations and possibility to compare an obtained solution with analytical solution, assume

that the system units are independent and ci = c for all i, 31  i . Let the unit TTF be

distributed exponentially with parameters 1 = 1, 2 = 0.5, and 3 = 0.25, respectively. The

specified time of failure-free operation is t0=1. Admissible total cost of a spare unit is equal

to 4.

 In the left three columns of Table 8.1, there are random exponentially distributed

time-to-failure, i , for all three units. In the next three columns there are corresponding

sequences of replacement times)(ki : ikiiki   ...21)(are also there in the same

table. In other words,)(ki is a random survival time of the ith redundant group consisting

of one main and k-1 spare units.

Table 8.1. Random TTF and replacement time for 10 Monte Carlo realizations

TTF Replacement time

unit 1 unit 2 unit 3 unit 1 unit 2 unit 3

Realization 1

0.07 0.75 0.24 0.07 0.75 0.24

0.53 4.97 3.19 0.6 5.72 3.43

0.06 0.45 1.41 0.66 6.17 4.84

0.53 2.59 3.42 1.19 8.76 8.26

1.44 5 1.59 2.63 13.76 9.85

Realization 2

0.42 0.13 4.92 0.42 0.13 4.92

0.16 1.15 12.9 0.58 1.28 17.82

     . > x x :k = k
iikiki, TRUE IS
111   

 87

0.45 3.29 0.83 1.03 4.57 18.65

0.28 0.35 2.35 1.31 4.91 21

0.25 2.1 1.74 1.55 7.02 22.73

Realization 3

0.62 3.47 3.22 0.62 3.47 3.22

3.66 2.72 3.92 4.28 6.2 7.14

5.11 2.47 3.9 9.39 8.67 11.04

0.31 1.69 1.21 9.7 10.36 12.25

1.42 0.86 0.96 11.12 11.22 13.21

Realization 4

1.45 5.85 0.51 1.45 5.85 0.51

1.13 1.26 8.64 2.58 7.11 9.15

1.27 2.14 4.71 3.85 9.25 13.86

0.45 0.67 1.16 4.29 9.92 15.01

2.48 1.52 6.38 6.77 11.44 21.4

Realization 5

0.32 0.22 0.54 0.32 0.22 0.54

0.75 0.15 1.53 1.08 0.37 2.06

0.73 1.49 1.78 1.81 1.87 3.84

0.01 0.68 0.89 1.82 2.55 4.73

0.25 3.06 1.68 2.07 5.6 6.41

Realization 6

0.11 2.03 5.54 0.11 2.03 5.54

1.03 0.48 10.57 1.13 2.52 16.11

0.88 2.26 5.14 2.01 4.77 21.25

0.39 5.19 0.92 2.41 9.96 22.17

3.45 1.12 6.58 5.86 11.08 28.74

Realization 7

1.22 0.11 2.69 1.22 0.11 2.69

1.87 0.91 0.1 3.09 1.02 2.79

0.41 2.11 1.9 3.5 3.13 4.69

3.95 0.36 3.72 7.45 3.49 8.41

0.4 1.67 1.43 7.85 5.17 9.84

Realization 8

0.27 1.49 22.49 0.27 1.49 22.49

0.44 0.53 1.24 0.71 2.02 23.73

0.74 1.07 12.07 1.45 3.09 35.8

0.76 1.13 2.86 2.2 4.22 38.65

0.36 2.99 2.87 2.57 7.21 41.52

Realization 9

0.46 1.55 7.9 0.46 1.55 7.9

1.06 4.8 7.59 1.52 6.35 15.49

1.9 2.66 8.14 3.42 9.01 23.63

0.17 0.37 1.26 3.59 9.38 24.89

2.18 0.43 5.17 5.77 9.8 30.06

 88

Realization 10

0.83 1.08 0.58 0.83 1.08 0.58

0.4 1.76 3.76 1.23 2.84 4.33

1 0.94 8.73 2.23 3.79 13.07

0.4 1.48 3.74 2.63 5.26 16.81

0.47 2.91 3.73 3.1 8.18 20.54

Remark: We will use the same random numbers for all of the examples below. This

leads to a dependence of the results obtained for different problems, but our main goal is to

illustrate the algorithm of the solution with the use of a numerical example, rather than to

execute an accurate statistical experiment.

Numerical solution

(1) Consider Realization 1 from Table 8.1. First, take values i of the first row of the left

block of columns: 11 = 0.07, 21 = 0.75 and 31 = 0.24. Denote them)1(1 ,)1(2 and)1(3 ,

respectively, and set them into the first row of the right block of columns ("Replacement

time"). Find the minimum value: min {)1(1 ,)1(2 ,)1(3 }=)1(1 =0.07.

(2) Next take the value 12 = 0.53 in the column "TTF; Unit 1". Form a new value:)2(1 =

)1(1 + 12 = 0.07 + 0.53 = 0.6. Rename)1(2 =)2(2 and)1(3 =)2(3 . Set this value into the

second place in the column "Replacement time; Unit 1".

(3) Find the minimum value: min {)2(1 ,)2(2 ,)2(3 }=)2(3 = 0.24. Repeat step (2) until

the total cost of each system equals 7. (For the case ci=c, it means that all 7 units are spent.)

As the result, we spent three units of type 1, no units of type 2, and two units of type 3. In

this particular case, the system TTF does not reach the specified time t0=1.

(4) Repeat steps (1) to (3) with the remaining realizations from Table 8.1 and fill out Table

8.2.

Table 8.2. Initial experiment with exclusion of "extra units" (marked with "*")

Unit-2 Unit-2 Unit-3

Realization 1

0.07 0.75 0.24

0.6 3.43

0.66

1.19

Realization 2

0.42 0.13 4.92

0.58 1.28

1.03

1.31*

Realization 3

0.62 3.47 3.22

4.28 6.2* 7.14*

 89

9.39*

Realization 4

1.45 5.85 0.51

2.58* 9.15

3.85*

4.29*

Realization 5

0.32 0.22 0.54

1.08 0.37 2.06

 1.87

Realization 6

0.11 2.03 5.54

1.13 2.52*

2.01*

2.41*

Realization 7

1.22 0.11 2.69

3.09* 1.02 2.79*

 3.13*

Realization 8

0.27 1.49 22.49

0.71 2.02*

1.45

2.2*

Realization 9

0.46 1.55 7.9

1.52 6.35*

3.42*

3.59*

Realization 10

0.83 1.08 0.58

1.23 2.84* 4.33

2.23*

(5) Notice that units marked with "*" in Table 8.2 are auxiliary, that is, in each particular

case they are not necessary because t0 has been reached before all permitted resources were

spent.

(6) In Table 3, list all vectors:),,()(

3

)(

2

)(

1

)(kkkk xxxX  , k=1,2, ... ,10, that are obtained from

Table 8.2 after exclusion of the marked units (see Table 8.3).

Table 8.3. Realization of units spent (corrected for t0  1)

Realization

Number

x1 x2 x3 System's

TTF

#1 4* 1* 2* <1

 90

#2 3 2 1 1.03

#3 2 1 1 3.22

#4 1 1 2 1.45

#5 2 3 2 1.08

#6 2 1 1 1.13

#7 1 2 1 1.02

#8 3 1 1 1.45

#9 2 1 1 1.55

#10 2 1 2 1.08

Maximum 3 3 2

Remark: Realization #1 is not taken into account because its TTF<1.

(7) Order each component of these vectors separately (see Table 8.4). In other words,

Table 8.4 shows the frequency with which a corresponding number of spare units of each

type has been met during 10 realizations of the Monte Carlo simulation. We see that the use

of the vector (3, 3, 2) of spare units for this realization will lead to 1 failure in 10

experiments. However, the total system cost equals 8 units. So, the next step is to find the

best way of reducing the total system cost.

Table 8.4. Ordered numbers of the use of units of different types

x1 x2 x3

1 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 (1) 2

3 2 2

3 2 2

3 2 2

 (4) 3 (2)

Note: Numbers in parenthesis correspond to the first realization which was not taken into

account.

(8) Put the number of realizations for which TTF has not reached t0=1 into the failure

counter. In our case there is only one such realization with TTF  1.

(9) Exclude from Table 8.2 all vectors which correspond to the realizations mentioned in

step (7).

(10) Find which unit in Table 8.4 has the smallest number of the use of largest values of

x
k

i

k

)(

101
max



. In our example, three units of type 1 were used in three realizations, three units

of type 1 were used once, and two units of type 3 were used four times. (We exclude from

consideration Realization #1 since it did not deliver TTF>1.)

 91

 In this case we exclude one unit of type 2 because in this case we gain one unit of

cost and "loss" only one realization.

(11) Add number of units excluded at the step (9) into the counter of system failures.

(12) Check if the system cost equal to or less than C
0
 =7. If "No", correct Table 11.3 by

exclusion of the vector 1 and continue the procedure from step (6). If "Yes", stop the

procedure and

(13) calculate the ratio of realization without failure (the total number of realization minus

the number of failures from the counter) to the total number of performed realizations.

 In the example considered the final solution is (3, 2, 2).

As a direct calculation with the use of tables of Poisson distribution shows, this vector

delivers the probability 0.804. Of course, such a coincidence with the observed frequency

equal to 0.8 in a particular statistical experiment is not a proof of the method. However,

multiple results obtained by the proposed method for different other examples show a proper

closeness to the exact solution even for a relatively small sample size.

 The asymptotical convergence of the solution to the optimal one was proved in

[Gordienko & Ushakov, 1978].

8.5.2. System Average Time to Failure vs. System Cost

 We need to find opt' that satisfies the solution of (8.6). In this case the algorithm

almost completely coincides with the one described above. The only difference is in the

absence of Step 3. At Step 4 we put directly)(

1

i in a counter of the survival time. After

analyzing all of the trajectories, the estimate of the MTTF for the hypercube 1 is

calculated as

 After this we perform the analogous calculations for other hypercubes finding such

of them that are characterized by the maximum estimate of MTTF. The search for the

maximum can be performed in the same way as was done previously.

Example 8.5. We will consider the same data as in the example above. The system is

again allowed to have at most 7 units in total.

Numerical solution

 Repeat steps from 1 to 4 of that described in Section 3. In other words, we assume

that Table 8.2 is constructed. For solution of this problem, we will use all data of Table 8.2.

The continuation of the algorithm for this case is as follows.

(5) Consider vectors of Table 8.2. In this case, the components marked with "*" are

included. Those vectors are obtained in the imitation process until 7 units of price are spent.

Now extract corresponding values from the right side of Table 8.1 (see Table 8.5).

 .
N

 = T
Ni


)1(

1

1

1

1



 (8.9)

 92

Table 8.5. Random time to failure for each realization until expenditure of seven units.

unit 1 unit 2 unit 3

Realization 1

0.07 0.75 0.24

0.53 3.19

0.06

0.53

Realization 2

0.42 0.13 4.92

0.16 1.15

0.45

0.28

Realization 3

0.62 3.47 3.22

3.66 2.72 3.92

5.11

3.9

Realization 4

1.45 5.85 0.51

1.13 8.64

1.27

0.45

Realization 5

0.32 0.22 0.54

0.75 0.15 1.53

 1.49

Realization 6

0.11 2.03 5.54

1.03 0.48

0.88

0.39

Realization 7

1.22 0.11 2.69

1.87 0.91 0.1

 2.11

Realization 8

0.27 1.49 22.49

0.44 0.53

0.74

0.76

Realization 9

0.46 1.55 7.9

1.06 4.8

1.9

0.17

 93

Realization 10

0.83 1.08 0.58

0.4 1.76 3.76

1

In this table we can see for how long each unit was operating.

(6) On the basis of this table, we compose Table 8.6. In each position of this table we

have the total sum of the time spent during all realizations. First of all, for independent and

identical units, these values depend on the number of realizations where this unit was

observed. (In general case, where units are different and could be dependent, the number of

such realizations might not be a dominant parameter.) These values from the bottom show

how much we will loose by excluding a unit.

Table 8.6. Sum of the times spent by units on the specified positions

unit 1 unit 2 unit 3

5.77 16.68 48.63

11.03 12.5 21.14

11.41 3.6* 3.9*

2.58*

"*" denotes the units which are eliminated (x1 = 4, x2 = 3, and x3 = 3).

 It is clear that the loss will be less if we leave x1 = 3, x2 = 2 and x3 = 2. By

eliminating them we decrease the total system cost up to 7 units of price.

 The time to failure for the system in each realization is calculated as the minimal

value among those, which are restricted by vector (x1=3, x2=2,x3), that is, for the kth

realization

 These values can be found on the right side of Table 8.6. The results are shown in

Table 8.7. These values allow calculating the mean time to failure of the investigated

system.

Table 8.7. Time to failure for 10 realizations picked up for vector (3, 2, 2)

Realization

number

TTF

1 0.66

2 1.03

3 6.2

4 3.85

5 0.37

6 2.01

7 1.02

 },,min{)(

32

)(

22

)(

13

)(kkkk   Syst

(k) (k) (k) (k)
 = , ,    min()13 22 32

 94

8 1.45

9 3.42

10 2.23

8.6. Direct Optimization Problem

8.6.1. System Cost vs. Successful Operation

 We need to find r

~ which satisfies the solution of (8.5). The algorithm of solution

in this case is as follows.

Step 1. Construct a realization of the first trajectory of the spare unit expenditure until)1(

1t

exceeds the specified value of operational time t0. Memorize the number of spare units

spent,)1(

ix , i = 1, 2, ..., n. Continue this procedure until all of N required trajectories are

constructed.

Step 2. Construct a hypercube 1 whose edges 1i are found as ,x = ij

Nj
i max

1
1



 that is,

1i is the maximum number of spare units of type i observed during all N realizations. (It

means that for this particular sample of realizations, all of them will lay within such a

hypercube that is with such a stock of spare units we would not observe any system failure.)

Step 3. Calculate the system cost for the hypercube)1( for which all trajectories have the

survival time no less than t0

Step 4. Calculate for each i:

where)1(

i shows how many numbers equal to 1i exist for a unit of type i and ci
)1( is the

value of the system cost decrease if we reject to use  ij
Nj

 max
1 

and will use the next value in

the descending order.

Step 5. Find the type of units which correspond to the maximum value of)1(

i and name it

as i1, that is, this number corresponds to the following condition:

 .c = C ii

ni

 1

1

max 


c

 =
i

i

i)1(

)1(
)1(






 95

Step 6. Exclude 
(1)
i1

 units of type i1 and form a new value

Step 7. Rename remaining numbers

Step 8. Calculate the system successful operation index after the exclusion of  i1
 units of

type i1

Step 9. Calculate the system spare units cost after the exclusion of  i1
 units of type i1

 After these steps we have a new hypercube
2 :

 Repeat the procedure from step 5 until the system spare units cost is equal to or

smaller than the given restriction.

Numerical example.

Let us take 9.0)(ˆ XR . In the previous example we found that the vector of spare units (4,

3, 2) satisfies 100% of successful realizations. So, if we take a vector (3, 3, 2) it will satisfy

the condition .9.0ˆ
0
=R Now we need to find the lower 90% confidence limit for the

frequency 0.9 obtained in 10 experiments. This limit can be found with the use of Clopper-

Pearson method.

 .j

nj
i
= :i = i











)1(

1

1 max

 .- = ii2i )1(

1 111

 11
allfor

11
ii = ji2i



N

=P
i

)1(
)2(11ˆ 

 .c-C=C ii 
)1(

max
)2(

11

 2 12 22 2
    = , , ... , .n{ }

 96

 In this particular case it is easier to make direct calculations. If we choose the

estimate of the searched probability equal to 0.9 then the probability that we will observe no

less than 8 successes is equal to

 So, in the process of decreasing the number of used spare units, we must stop after

the first exclusion, i.e., the solution in this case is (3, 3, 2).

 Thus, the solutions of direct and inverse problems of optimal redundancy are

different though they should coincide. The difference lies in the difference of approaches:

having the restriction on the system cost, we maximize the possible observed frequency; in

the latter case we consider minimization of the system cost under condition that the level of

probability is guaranteed. This difference will be smaller if the number of realizations is

larger.

Remark: We could solve the problem above with an iteration procedure using the solution

of the direct problem of optimal redundancy. The use of the "fork method" is convenient in

this case. We find the solution, opt

1 for some cost restriction, say, C1
*
, and calculate the

value R1=R(opt

1). If R1 < R
*
 we chose C2

*
> C1

*
 and continue the procedure; if R1 > R

*
 we

chose C2
*
< C1

*
 and also continue the procedure. For the next steps, we can use a simple

linear approximation

where subscript k stands for the current step, subscript k – 1 for the previous step, and

subscript k + 1 for the next step.

8.6.2.System Cost vs. Average Time to Failure

 We need to find r

~ which satisfies the solution of (8.6). We could not find a

convenient procedure for solving this particular problem. One might consider using an

iteractive procedure using the sequential solution of the second direct problem considered

above. For instance, we can fix some restriction on the system cost, say,)1(

systC and find the

corresponding optimal solution for T syst
ˆ

)1(
. If this value is smaller than the required syst

*
T , it

means that the system cost must be increased, say, up to some
)2(

systC >)1(

systC . If systT
() 1

> syst

*
T ,

one must choose
)2(

systC <
)1(

systC . This procedure continues until a satisfactory solution is

obtained. At an intermediate step L for choosing T
L

syst
ˆ)(

, one can use some linear

extrapolation method. For example, assume that in first situation described above, the value

systT
() 2

 is still less than syst

*
T . Then the value of

)3(

systC can be chosen from the following

 0.9298. =)(0.9)(0.1
2

10
+)(0.1)(0.9

1

10
+0.9

82910


















 k+
*

k
*

k
*

k-
* k

*

k k -

C = C - C - C
R - R

R - R
.1 1

1

()

 97

equation

 Obviously, one can also use the procedure similar to that in a solution of the direct

problem. However one should somehow find an initial hypercube and construct all

trajectories within it. (There is no stopping rule in this case.) Then one should construct a

system of embedded hypercubes and again use the steepest descent.

 While solving this problem one must remember that the condition syst
*

T T  can be

considered only in a probabilistic sense.

Bibliography to Chapter 8

1977. Ushakov, I.A., and Yasenovets , A.V. Statistical methods of solving problems of

optimal standby. Soviet Journal of Computer and System Sciences, No. 6,.

1978. Ushakov, I. A., and Gordienko, E.I. On statistical simulation approach to solution

of some optimization problems. Elektronische Informationsverarbeitung und Kybernetik,

No.3.

1978. Ushakov, I.A., and Gordienko, E.I. Solution of some optimization problems by

means of statistical simulation. Electronosche Infdormationsverarbeitung und Kybernetik,

No.11.

1988. Mohan, C., and Shanker, K. Reliability optimization of complex systems using

random search technique. Microelectronics and Reliability, No. 28.

1992. Boland, P.J., El-Neweihi, E., and Proschan, F. Stochastic order for redundancy

allocations in series and parallel systems. Advances in Applied Probability, No. 1.

2003. Zhao, R., and Liu, B. Stochastic programming models for general redundancy-

optimization problems. IEEE Transaction on Reliability, No. 52.

9.COMMENTS ON CALCULATION METHODS

9.1. Comparison of methods

 Optimal redundancy is a very important practical problem. The solution of the

problem allows one to improve the reliability at a minimal expense. But here, as in many

other practical problems, questions arise: What is the confidence of the obtained results?

What is the real effect of the use of sophisticated mathematics?

 These are not unreasonable questions!

 We already have discussed what it means to design an "accurate" mathematical

syst syst

syst syst

syst
*

syst

syst syst

C - C

C - C
=

T - T

T - T
.

() ()

() ()

()

() ()

3 1

2 1

1

2 1

 98

model. It is always better to speak about a mathematical model which more or less correctly

reflects a real object. But let us suppose that we “almost sure” that the model is perfect.

What price are we willing to pay for obtaining numerical results? What method is best, and

best in what sense?

 The use of excessively accurate methods is, for practical purposes, usually not

necessary because of the uncertainty of the statistical data. On the other hand, it is

inexcusable to use approximate methods without reason.

 We compare the different methods in the sense of their accuracy and computation

complication.

 The Lagrange Multiplier Method (LMM) demands the availability of continuous,

differentiable functions. This requirement is met very rarely: one usually deals with

essentially discrete nature of the resources. But LMM sometimes can be used for a rough

estimation of the desired solution.

 The Steepest Descent Method (SDM) is very convenient from a computational

viewpoint. It is reasonable to use this method if the resources that one might spend on

redundancy are large. Of course, this generally coincides with the requirement of high

system reliability because this usually involves large expenditures of resources.

But unfortunately, it happens very rarely in practice. At any rate, one can use this approach

for solution of most practical problems without hesitation.

 The absolute difference between costs of the two neighboring SDM solutions cannot

exceed the cost of the most expensive unit value. Thus, it is clear that the larger the total cost

of the system, the smaller the relative error of the solution.

 The Dynamic Programming Method (DPM) and its modifications (Kettelle's

Algorithm and the Method of Universal Generating Function) are exact but they demand

more calculation time for and a larger computer memory. As with most discrete problems

requiring an enumerating algorithm, these optimal redundancy problems are np-hard.

 As we mentioned above, the SDM may provide even an absolutely exact solution,

since a dominating sequence for SDM is a subset of dominating sequence of DPM.

 In figures below, one finds two solutions obtained by SDM and DPM .

 Figure 9.1. Comparison DPM nad SDN solutions.

 99

The left figure contains dominating sequence obtained by DPM, and the right one does o

those obtained by SDM. The dots of the left figure marked with black color corresponds to

the dots of the right figure.

 Of course, one of the questions of interest is the stability of the solutions. How does

the solution depend on the accuracy of the input data? How does the solutions obtained by

the use of different methods distinguished? How much the numerical results of the solutions

differ from one method to another?

 An illustration of the problem is given by numerical experiments.

Numerical example.

 Consider a series system consisting of three units. The input data are assumed to be

uncertain: units' PFFO and cost are known with an accuracy of 10%. To demonstrate

possible difference in solutions, let us take the following five systems:

Table 9.1.

System

Unit-1 Unit-2 Unit-3

q c q c q c

A 0.2 1 0.2 1 0.2 1

B 0.2 0.9 0.2 1 0.2 1.1

C 0.18 0.9 0.2 1 0.22 1.1

D 0.18 1.1 0.2 0.1 0.22 0.9

E 0.18 1 0.2 1 0.22 1

 The problem is to check the stability of the optimal solutions over the range of

variability of the parameters.

Solution

 At first, we compare the solutions for all five cases if the specified total system cost

is to be at most 30 units. For each case we give two results: one obtained by the SDM and

the second (marked with *) obtained by the DPM. The results are as follows:

Table 9.2.

System

Number of redundant units Probab. of

syst. failure

Factual

syst. cost x1 x2 x3

A 10 10 10 3.07·10
-7 30

A* 10 10 10 3.07·10
-7 30

B 10 10 10 3.07·10
-7 30

B* 10 10 10 3.07·10
-7 30

C 9 10 10 5.66·10
-7

 29.1

C* 10 10 10 4.04·10
-7

 30

D 9 10 11 3.59·10
-7 29.8

D* 9 10 11 3.59·10
-7 29.8

E 9 10 11 3.59·10
-7 29.8

E* 9 10 11 3.59·10
-7 29.8

 The table shows that the only differences between the approximate and exact

 100

solutions are observed for the cases C and C*. However, all solutions are very close.

 With an increase in spent resources, the relative difference between the solutions

obtained by the SDM and the DPM will be increasingly smaller.

 We now analyze the solutions corresponding to a specified level of reliability. In the

table below for the same systems respective results for Q0=1·10
-6

 are collected.

Table 9.3.

System

Number of redundant units Probab. of

syst. failure

Factual

syst. cost x1 x2 x3

A 9 10 10 7.7·10
-7 30

Equivalent solution are (10.9,10) and (10,10,9)

A* 9 10 10 7.17·10
-7 30

B 10 10 9 7.17·10
-7 30

B* 10 10 9 7.17·10
-7 30

C 9 9 10 9.76·10
-7 29.1

C* 9 9 10 9.76·10
-7 30

D 9 9 10 9.76·10
-7 29.8

D* 9 9 10 9.76·10
-7 29.8

E 9 9 10 9.76·10
-7 29.8

E* 9 9 10 9.76·10
-7 29.8

 Numerical computer experiments and practical experience in finally solution of the

optimal redundancy problem could develop a keen engineering intuition in the approximate

solving of such problems and their sensitivity analysis.

9.2.Sensitivity analysis of optimal redundancy solutions

Solving practical optimal redundancy problems, one can ponder: what is the sense

of optimizing if input data are plucked from the air? Indeed, statistical data are so

unreliable (especially, in reliability problems ) that such doubts have a very good

ground.

Not found any sources after searching the answer for this question, the author

decided to make some investigation of optimal solutions sensitivity under influence of

data scattering.

A simple series system of six units has been considered (see Figure 1). For

reliability increase, one uses a loaded redundancy, i.e. if a redundant group k has xk

redundant units, its reliability is
1

)1(1)(


 kx

kkk pxP

where pk is a probability of failure free operation (PFFO) of a single unit k. The total cost

of xk redundant units is equal to ck·xk, where ck is the cost of a single unit of type k.

Figure 9.2. Series system underwent analysis.

 101

Units’ parameters are presented in Table 9.4.

Table 9.4. Input data.

 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

pk 0.8 0.8 0.8 0.9 0.9 0.9

ck 5 5 5 1 1 1

Assumed that units are mutually independent, i.e. system’s reliability is defined as





61

)()61,(
k

kkkSystem xPkxP

And the total system cost is:





61

)61,(
k

kkkSystem xckxC

Below solutions of both problems of optimal redundancy are presented: direct:

 *)61,()61,(min
1

PkxPkxC kk
xk




and inverse:

 *)61,()61,(max
1

CkxCkxP kk

xk




For finding the optimal solutions, the Steepest Descent Method was applied. For

this “base” system the solutions for several sets of parameters are presented for Direct

Problem in Table 9.5 and for Inverse Problem in Table 9.6. (Numbers are given with high

accuracy only for demonstration purposes; in practice, one has to use only significant

positions after a row of nines.)

Table 9.5. Solution for Direct problem.

P* x1 x2 x3 x4 x5 x6 Achieved P System C

0.95 3 3 3 3 2 2 0.9559520 52

0.99 4 4 3 3 3 3 0.991187 69

0.995 5 4 4 4 3 3 0.995229 75

0.999 6 5 5 4 4 4 0.999218 93

Table 9.6. Solution for Inverse problem.

C* x1 x2 x3 x4 x5 x6 Achieved C System P

50 3 3 2 2 2 2 46 0.931676

75 4 4 3 3 3 3 75 0.995229

100 5 4 4 4 3 3 99.5 0.999602

The questions of interest are: how optimal solution will change if input data are

changed? Two types of experiments have been performed: in the first series of

experiments, different unit’s costs with fixed probabilities were considered (see Figure

9.3) and in another one different unit’s probabilities with fixed costs were considered

(see Figure 9.4).

 102

Figure 9.3. Input data for the first series of experiments.

Figure 9.4. Input data for the second series of experiments.

The results of calculations are as follows:

Table 9.7. Values of Probabilities of Failure-free operations.

 0.999 0.995 0.99 0.95

Initial 0.999218 0.99566 0.9922 0.955952

Various

C

0.998996 0.99566 0.9922 0.955952

Various

P

0.999218 0.99566 0.9922 0.955952

In addition, a Monte Carlo simulation was performed where parameters of the

PFFO and cost were changed simultaneously. In this case, parameters of each unit were

calculated (in Excel) as:

pk=0.8pk+0.4pk*RAND()

and

ck= 0.8ck+0.4*RAND(),

i.e. considered a random variation of the values within ±20% limits.

The final results for this case are presented in Tables 9.8 – 9.11.

Table 9.8. Results of Monte Carlo simulations for P*=0.999.

No.

P* = 0.999

P C x1 x2 x3 x4 x5 x6

1 0.999352 100 6 6 6 4 4 4

2 0.999218 102 6 6 6 5 4 4

3 0.999313 102 6 6 6 4 4 4

4 0.999212 97 5 6 6 4 4 4

5 0.999182 102 6 6 6 4 4 4

6 0.999171 97 6 6 5 4 4 4

7 0.999171 103 6 6 6 4 5 4

8 0.999596 100 6 6 6 4 4 4

9 0.999526 100 6 6 6 4 4 4

 103

10 0.999399 100 6 6 6 4 4 4

Table 9.9. Results of Monte Carlo simulations for P*=0.995.

No.

P* = 0.995

P C x1 x2 x3 x4 x5 x6

1 0.995478 84 5 5 5 3 3 3

2 0.996755 85 5 4 4 4 3 3

3 0.995026 85 5 4 5 4 3 3

4 0.996777 79 4 5 5 3 3 3

5 0.996777 84 5 5 5 3 3 3

6 0.995525 79 5 5 4 3 3 3

7 0.996732 85 5 5 5 3 4 3

8 0.996732 85 5 5 5 3 4 3

9 0.995645 84 5 5 5 3 3 3

10 0.99567 84 5 5 5 3 3 3

Table 9.10. Results of Monte Carlo simulations for P*=0.99.

No.

P* = 0.99

P C x1 x2 x3 x4 x5 x6

1 0.990147 69 4 4 4 3 3 3

2 0.990965 70 4 4 4 4 3 3

3 0.990229 70 4 4 4 4 3 3

4 0.99185 69 4 4 4 3 3 3

5 0.990389 71 4 4 4 4 4 3

6 0.99107 69 4 4 4 3 3 3

7 0.992185 74 5 4 4 3 3 3

8 0.990422 71 4 4 4 3 4 3

9 0.990893 71 5 4 4 3 3 3

10 0.990466 69 4 4 4 3 3 3

Table 9.11. Results of Monte Carlo simulations for P*=0.95.

No.

P* = 0.95

P C x1 x2 x3 x4 x5 x6

1 0.950045 52 3 3 3 3 2 2

2 0.955842 52 3 3 3 3 2 2

3 0.951936 52 3 3 3 3 2 2

4 0.951711 54 3 3 3 2 2 2

5 0.957883 50 3 3 3 3 3 2

6 0.951908 51 3 3 3 2 2 2

7 0.962227 51 3 3 3 2 2 2

8 0.962227 51 3 3 3 3 3 2

9 0.95261 50 3 3 3 3 2 3

10 0.950393 52 3 3 3 3 2 2

Analysis of data presented in Tables 9.8 - 9.11 shows relatively significant

 104

difference in numerical results (see Figure 9.5).

Figure 9.5. Deviation of maximum and minimum values of probability of failure-

free operation obtained by Monte Carlo simulation.

However, the problem is not in coincidence of final values of PFFO or cost. The

problem is: how the change of parameters influences the optimal values of x1, x2, … .

However, one can observe that even with a system of six units (redundant groups)

a visual analysis of sets (x1, x2, …, x6) is extremely difficult and, at the same time,

deductions based on some averages or deviations of various xk are almost useless.

The author was forced to invent some kind of a special presentation of sets of xk’s.

Since there is no official name for such kind of graphical presentation, it is called

“multiple polygons”. On such multiple polygon there are numbers of “rays”

corresponding to the number of redundant of units (groups). Each ray has several levels

corresponding to the number of calculated redundant units for considered case (see

Figure 9.6).

Figure 9.6. Multiple polygon axes with numbered levels.

 The multiple polygons give a perfect visualization of “close-to-optimal” solutions

and characterize observed deviation of particular solutions. Such multiple polygons for

 105

considered example are given in Figure 9.7. (Here bold lines re used for connecting the

values of xk obtained as optimal solution for units with parameters given in Table 9.4.)

P* = 0.999 P* = 0.999 P* = 0.999 P* = 0.999

Figure 9.7. Deviations of optimal solutions for randomly varied of parameters

from the optimal solution obtained for parameters given in Table 1.

Thus, one can notice that input parameters variation may influence significantly

enough the probability of failure-free operation and the total system cost from run to run

of Monte Carlo simulation though the optimal solution remains more or less stable.

10.OPTIMAL REDUNDANCY WITH SEVERAL LIMITING FACTORS

10.1. Method of “weighing costs”

 A number of cases arise when one has to take into account several restrictions in

solving the optimal redundancy problem. For example, various objects such as aircraft,

satellites, submarines, etc. have restrictions on cost and also on weight, volume, required

electric power, etc. (Apparently, the cost for most of these technical objects is an important

factor, but, perhaps, less important than other mentioned.)

 In these cases, one has to solve the optimization problem under several restrictions:

to maximize the system reliability index, under restrictions on all other factors.

 Consider a system consisting of n redundant groups connected in series. For each

additional redundant unit of the system, one has to spent some quantity of M various types

of resources (for instance, cost, weight, volume, etc.), say, Cj(X). There are constrains on

each type of resources: 0)(jj CXC  . The optimization problem is formulated as

 00

22

0

11)(,...,)(,)()(max MM
X

CXCCXCCXCXR  (10.1)

where),...,,(21 nxxxX  is the vector of the system redundant units.

 Let us assume that each Cj(X) is a linear function of the form

 106

xc =)(C iji

Mi

j 
1

X (10.2)

where cji is the resource of type j associated with a unit of type i.

 One of the most convenient ways to solve this problem is reducing it to a one-

dimensional problem. To this end, we introduce "weight" coefficients dj such that: 0 < dj <

1, and

. = d j

Mj

1
1




 (10.3)

 A set of dj satisfying (10.3) presents a diagonal hyperplane within n-dimensional

unitary hypercube. Denote this hyperplane by D. An explanation is given for a 3-

dimensional case in the figure below.

Figure 10.1. Hyperplaine with all possible dj.

 Use the Steepest Descent Method for the solution. The process of a solution is as

follows. Choose a point D
k
 = (d1

k
, d2

k
, ... , dM

k
), .DDk  Produce for each unit j “weighed

cost” k

jc corresponding to vector kD :





Mk

k

jj

k

j dcc
1

 (10.4)

 Solving one-dimensional problem simultaneously controlling all M constrains. As

soon as the optimization procedure has been stopped due to a possible violation of at least

one of the constrains, the value of a reached level of R
k
 and realized vector X

k
 are

memorized.

 Then the next vector, say, D
j
, is chosen and new values R

j
 and X

j
 are found.

Compare admissible solutions and keep that with largest value of R.

 The procedure of oriented choosing of D
k
 rather than direct enumerating can be

organized: the procedure of the steepest descent could be used for this purpose.

 Probably, even better procedure is as follows. At the stopping moment, pay attention

 107

to the type of constrain that is closest to violation. Sometimes it means that the process is

“less optimal” relating to this type of resources. Increase a corresponding weight multiplier

and repeat the process.

 As in most practical cases, to find the appropriate choice of the increment to change

d is more of an art than a science.

 Maximum found value R corresponds to the optimal solution X
opt

.

 An illustrative example might be useful to demonstrate the method.

Numerical example.

 Consider a series system consisting of three units with the characteristics given in

Table 10.1.

Table 10.1 Data for example xxx.

Unit

(i)

Reliability index

Pi

Cost

Ci1

Weight

Ci1

1 0.7 3 1

2 0.8 5 1

3 0.9 2 3

 A “hot” redundancy is permitted to improve the system reliability. The problem is to

find the optimal solutions for the following constrains on the redundant system units as a

whole:

(1) Cost: 0

1C = 15 conditional units; Weight: 0

2C =15 conditional units;

(2) Cost: 0

1C = 20 conditional units; Weight: 0

2C =15 conditional units.

Solution. Choose the increment for each di equal to 0.25. Then the “weighed cost” can

be calculated as:

)1(1

icc  ,)2()1(75.0 25.075.0 ii ccc  ,)2()1(5.0 5.05.0 ii ccc  ,
)2()1(25.0 75.025.0 ii ccc  ,)2(0

icc  . (10.5)

Using (10.5), we get the following values:

Then one gets the following values for the equivalent costs:

 c1
2
=2.5, c2

2
=4.0, c3

2
=2.25;

 c1
3
=2.0, c2

3
=3.0, c3

3
=2.5;

 c1
4
=1.5, c2

4
=2.0, c3

4
=2.75;

 c1
5
=1.0, c2

5
=1.0, c3

5
=3.0 .

 Now we separately solve all five problems for different equivalent costs. For

simplicity, let us use the Steepest Descent Method. We omit all intermediate calculations

that are routine and present only step-by-step results of the solution process.

Table 10.2. Solution process for various dj.

 108

dk 1 2 3 4 5 6 7 8 9 10

1 X 1,0,0 1,0,1 1,1,1 2,1,1 2,2,1 3,2,1 3,2,2 4,2,2 4,3,2 5,3,2

C1 3 5 6 9 10 13 16 19 20 23

C2 1 4 9 10 15 16 17 18 23 24

0.75 X 0,1,0 1,1,0 1,2,0 2,2,0 3,2,0 3,3,0 4,3,0 4,3,1 5,3,1 6,3,1

C1 1 4 5 8 11 12 15 17 20 23

C2 5 6 11 12 13 18 19 22 23 24

0.5 X 0,1,0 1,1,0 1,2,0 2,2,0 3,2,0 4,2,0 5,2,0 5,2,1 6,2,1 6,3,1

C1 1 4 5 8 11 14 17 19 22 23

C2 5 6 11 12 13 14 15 18 19 24

0.25 X 1,0,0 1,1,0 2,1,0 2,2,0 3,2,0 4,2,0 5,2,0 5,3,0 6,3,0 7,3,0

C1 3 4 7 8 11 14 17 18 21 24

C2 1 6 7 12 13 14 15 20 21 22

0 X 1,0,0 1,1,0 2,1,0 3,1,0 3,2,0 4,2,0 5,2,0 6,2,0 6,3,0 7,3,0

C1 3 4 7 10 11 14 17 20 21 24

C2 1 6 7 8 13 14 15 16 21 20

Admissible solutions are (2,2,1) and (4,2,0). Solution (3,2,0) is not taken into account since

it is dominated by (4,2,0). Let’s now compare solutions:

)1.01)(2.01)(3.01()1,2,2(233R 0.9956

9.0)2.01)(3.01()0,2,4(35 R =0.8906.

Thus the solution of the problem is vector (2,2,1), i.e. x1=2, x2=2, and x3=1.

The inverse problem of optimal redundancy occurs in practice extremely rarely, so we omit

its consideration.

10.2. Method of Generalized Generating Functions

 The problem treated above can be solved exactly with the use of the Method of

Generalized Generating Functions. The legion for each ith redundant group is

represented as the set of the cohorts

 Li = { Ci1, Ci2,...,CiNi}

where Ni is the number of cohorts in this legion. (In principle, the number of cohorts is

unrestricted in this investigation.) Each cohort consists of M+2 maniples:

 Cik = (Rik, cik
1
, ... ,cik

M
, xik)

where M is the number of restrictions. All maniples are defined as in the one-dimension case

that we considered above. A similar interaction is performed with the maniples:

k
i l i l

k
ic

M
ij
k

lj
k

ij
k

l j
k

1 i n
c
M

i
k

1 i n

ij
k(c ,c) = c + c and c = c 

   



R
M

ij kl ij kl

1 i n
R
M

i j

1 i

ij(R , R) = R R and R = R
i i

; 
   



 109

x
M

ij lj ij lj

1 i n

x
M

ij 1 j 2 j nj J(x , x) = (x , x) and x = (x , x , ... , x) =
i l i l i 1 2 n

 
 

X

where J is the set of subscripts: J=(j1, ... ,jn).

 The remaining formal procedures totally coincide with the one-dimensional case

with one very important exception: instead of a scaler ordering, one must use the special

ordering of the cohorts of the final legion.

 It is difficult to demonstrate the procedure on a numerical example, so we give only

a detailed verbal explanation.

 Suppose we have the file of current cohorts ordered according to increasing R. If we

have a specified set of restrictions: Cj(X)<C0j for all j: 1<j<M], then there is no cohort in

this file which violates at least one of these restrictions. When a new cohort, say, Ck,

appears during the interaction procedure, it is put in the appropriate place in accordance with

the value of its R-maniple. The computational problem is as follows.

 1. Consider a part of the current file of cohorts for which the values of their R-

maniple are less than the analogous value for Ck. If, among the existent cohorts, there is a

cohort, say, C
*
, for which all costs are larger than those of Ck, this cohort C

*
 is excluded

from the file.

 2. Consider a part of the current file of cohorts for which the values of the R-maniple

are larger than the analogous value for Ck. If between the existent cohorts there is a cohort,

say, C
**

, for which all costs are smaller than those of Ck, the new cohort is not included in

the file.

 3. If neither 1 nor 2 take place, the new cohort is simply added to the file on the

appropriate place.

 After a multi-dimensional undominated sequence is constructed, one easily finds the

solution for the multiple restrictions: it is the cohort with the largest R-maniple value (in

other words, a cohort on the right if the set is ordered by the values of R).

 The stopping rule for this procedure is to find the size of each cohort which will

produce a large enough number of cohorts in the resulting legion so as to contain the optimal

solution. At the same time, if the numbers of cohorts in the initial legions are too large, the

computational procedure will take too much time and will demand too large a memory

space.

 Of course the simplicity of this description should not be deceptive. The problem is

very bulky in the sense that the multi-dimensional restrictions and the large numbers of

units in typical practical problems could require a huge memory and computational time.

(But who can find a non-trivial multi-dimensional problem which has a simple solution?)

Bibliography to Chapter 10

1970. Proschan, F., and Bray, T.A. Optimum redundancy under multiple constraints.

Operations Research, No. 13.

1971. Ushakov, I. A. Approximate solution of optimal redundancy problem for

multipurpose system. Soviet Journal of Computer and System Science, No. 2.

1972. Ushakov, I. A. A heuristic method of optimization of the redundancy of

multipurpose system. Soviet Journal of Computer and System Sciences, No. 4.

 110

1981. Nakagawa, Y., and. Miyazaki, S. Surrogate constraints algorithm for reliability

optimization problem with two constraints. IEEE Transaction on Reliability, No. 30.

1984. Genis, Ya. G., and Ushakov, I.A. Optimization of multi-purpose systems. Soviet

Journal of Computer and System Sciences, No.3.

11.Optimal Redundancy in Multistate Systems

Solution of the problems of optimal redundancy allocation for multistate systems

(MSS) consisting of multistate units is more laborious than solution of analogous

problem for systems which have only two states: normal operation and failure.

Today this problem is investigatedin details. In first turn, the works by Gregory

Levitin and Anatoly Lisnjanskij have to be mentioned (a complete nough lisy of hei

papers is presented in the bibliography to the chapter.)

For more transparent explanation of the sense of the problem we begin with a

simplest numerical example. Consider a series system of two different multistate units,

each of which is characterized by several levels of performance. Performance may be

measured by various physical values. Effectiveness of such system operation depends on

levels of performance of Unit-1 and Unit-2.

 Let units are characterized by the following parameters:

Table 11.1. Characterization of Unit-1

Level of performance (W1) Probability p1 Cost of a single unit

100% p11=Pr{ W1=100%}=0.9

c1=1
70% p12=Pr{ W1=100%}=0.05

40% p13=Pr{ W1=100%}=0.04

0% p14=Pr{ W1=100%}=0.01

Table 11.2. Characterization of Unit-2

Level of performance (W1) Probability p2 Cost of a single unit

100% P21=Pr{ W2=100%}=0.8
c2=2

80% P22=Pr{ W2=80%}=0.18

20% P23=Pr{ W2=20%}=0.01

0% P24=Pr{ W2=0%}=0.01

 Assume that performance effectiveness of each unit can be improved by using

loaded redundancy. Let suppose that at each moment of time, performance effectiveness

of a redundant group is equal to the level of performance of the best component of the

redundant group. Thus, behavior of Unit-1, consisting of the main component and single

redundant element, can be depicted as in Figure 11.1.

 111

Figure 11.1. A realization of stochastic behavior of Unit-1, consisting of two elements,

main and redundant. The shadowed area denotes the behavior of the Unit-1.

For Unit-2 analogous process is presented in Figure 11.2.

Figure 10.2. A realization of stochastic behavior of Unit-2, consisting of two elements,

main and redundant. The shadowed area denotes the behavior of the Unit-2.

 Further, assume that the entire system (series connection of Unit-1 and Unit-2) is

characterized by the worst level of effectiveness of its units at each moment of time. In

Figure 11.3, one can see the system behavior for the case when both units consist of a

single main element.

 112

Figure 11.3. A realization of stochastic behavior of the entire system when both its units

consist of a single main element. The shadowed area denotes the behavior of the system.

Let the problem is to find optimal redundant elements allocation described above series

system:

(1) Direct problem: Find such an allocation of redundant elements than delivers

average level of the system performance not less than required level of

performance with minimum possible cost of redundant elements;

(2) Inverse problem: Find such an allocation of redundant elements than delivers

maximum possible level of system performance under condition that the total

expenses on redundant elements do not exceed the given total cost of redundant

units.

Now consider construction of dominating sequence during the optimization process.

In principle, one has to construct a table of type that presented below and choose

members of dominating sequence.

Table 11.3. Construction of dominating sequence.

Number of redundant elements for Unit-1

0 1 2 …

Number of redundant

elements for Unit-2

0

X=(0, 0)

P(0, 0)

W(0,0)

C(0, 0)

X=(1, 0)

P(1, 0)

W(1, 0)

C(1, 0)

X=(2, 0)

P(2, 0)

W(2, 0)

C(2, 0)

…

1

X=(0, 1)

P(0, 1)

W(0,1)

C(0, 1)

X=(1, 1)

P(1, 1)

W(1, 1)

C(1, 1)

X=(2, 1)

P(2, 1)

W(2, 1)

C(2, 1)

…

2

X=(0, 2)

P(0, 2)

W(0, 2)
C(0, 2)

X=(1, 2)

P(1, 2)

W(1, 2)
C(1, 2)

X=(2, 2)

P(2, 1)

W(2, 2)
C(2, 2)

…

… … … … …

 113

 As one sees, in this case we deal with quadruplets of type:

{[Vector of numbers of redundant units];

 [Discrete distribution of performance levels];

 [Performance levels];

 [System cost]}.

The problem complicates due to necessity of calculations because “Probabilities

of performance levels” and “Performance levels” are not numbers but vectors that needed

special type of calculations. This aspect will be demonstrated below. Here we would like

to note that there is no necessity to calculate quadruplets for all cells of Table 1.

Fortunately, we can use the property of Kettelle Algorithm: members of dominating

sequences are located around table’s diagonal and corresponding cells form simply

connected area. It allows using “dichotomy tree” procedure, i.e. avoiding unnecessary

calculations by cutting non-perspective branches (see Figure 11.4). Indeed, consider

bordering cells around simple connected area (they marked with sign “x”.). There is no

dominating cells in area located upper the right border, and there is no dominating cells in

area located lower the left border.

Figure 11.4. Example of excluding non-perspective branches. Black arrows are members

of dominating sequence; grey ones are trial test that led to non-perspective variants

marked by “x”. All cells marked with dark grey cannot contain dominating quadruplets.

Thus, in this case calculations occur to be sufficiently compact. However, as we

mentioned above some special calculations for each redundant group have to be done.

 In accordance with described above calculating procedure, one has to consider

first variant (0, 0), i.e. just Unit-1 and Unit-2 with no redundancy at all, and find

quadruple, In this case resulting solution will be:

{[0]; [(p11, W11), (p12, W12), (p13, W13), (p14, W14)]; [c]1} {[0]; [(p21, W21), (p22, W22),

(p23, W23), (p24, W24)]; [c2]} =

{0

 0; [(p11, W11), (p12, W12), (p13, W13), (p14, W14)]}

UGF
 {0; [(p21, W21), (p22, W22), (p23,

W23), (p24, W24)]; c1

 c2 }. (11.1)

Here we use the following operators:

 114


 is an operator of forming a vector, i.e.),(kjkj 


;

UGF
 is an operator equivalent to the U-function, i.e.































kj

WW

kj

Bk

W

k
UGF

Aj

W

j

kj
kj zppzpzp

,

min

, where, in turn, Wj min
 Wk = min(Wj, Wk);

c1

 c2 is operator of summation, i.e. c1


 c2 = c1+ c2.

Of course, the same procedure can be presented in terms of U-functions. One can write

two “polynomials” of type

.
,

),(max)0,0(

,

00
0

2

0

1

2221

22
min2211












































kj

ccWW

kj

kj

ccWW

kj

Bk

cW

k
UGF

Aj

cW

j

kjkj

kjkjjjjj

zyxpp

zyxppzyxpzyxp

 (11.2)

Of course, a power of argument x has a very conditional sense: any value in

“power” of vector has no common sense. For avoiding such confuses, we will operate

with sequences of triplets, quadruplets and other “multiplets”.

Let us continue the numerical example because it helps us not explain relatively

simple procedures on unnecessary formal level. Return to the series system, consisting of

two units without redundancy. Numerical results are presented in Table 11.4.

Table 11.4. Initial state of the process of optimization.

(0, 0)

 Unit-2

p21=0.8
)0(

21W =100%

p22=0.18
)0(

22W =80%

p23=0.01
)0(

23W =20%

p24=0.01
)0(

24W =0%

Unit-

1

p11=0.9
)0(

11W =100%

p21· p11= 0.72

),min()0(

11

)0(

21 WW =100%

p22· p11= 0.171

),min()0(

11

)0(

22 WW =80%

p23· p14= 0.009

),min()0(

11

)0(

23 WW

=20%

p24· p14= 0.009

),min()0(

11

)0(

21 WW

=0%

p12=0.05
)0(

12W =70%

p21·p12= 0.04

),min()0(

12

)0(

21 WW

=70%

p22·p12=0.0095

),min()0(

12

)0(

22 WW =70%

p23· p14= 0.0005

),min()0(

12

)0(

23 WW

=20%

p24· p14= 0.0005

),min()0(

11

)0(

21 WW

=0%

 · ·

p13=0.04
)0(

13W =40%

p21· p13= 0.032

),min()0(

13

)0(

21 WW =40%

p22·p13=0.0076

),min()0(

13

)0(

22 WW =40%

p23· p14= 0.0004

),min()0(

13

)0(

23 WW

=20%

p24· p14= 0.0004

),min()0(

11

)0(

21 WW

=0%

p14=0.01
)0(

14W =0%

p21· p14= 0.008

),min()0(

14

)0(

21 WW

=0%

p22· p14= 0.0019

),min()0(

14

)0(

22 WW

=0%

p23· p14= 0.0001

%0

),min()0(

14

)0(

23



WW

p24· p14= 0.0001

%0

),min()0(

14

)0(

23



WW

 115

This leads to the following final result (see cells with the same background colors):

P
(0.0)

(Wsyst=100%) =0.72;

P
(0.0)

(Wsyst=80%) =0.171;

P
(0.0)

(Wsyst=70%) =0.04+0.0095=0.0495;

P
(0.0)

(Wsyst=40% =0.032+0.0076=0.0396;

P
(0.0)

(Wsyst=20%) =0.009+0.0005+0.004=0.0099;

P
(0.0)

(Wsyst=0%) =0.008+0.0019+0.0001+0.0001+0.0009+0.0005+0.0004= 0.0201.

Cost of additional units in this case equals 0. As one can easily calculate, the

average level of the system performance is equal to

.9092.02.00095.05.00396.07.00497.08.0171.072.0)0,0(systW

Now let’s make trial steps to the neighbor cells: check cells (1, 0) and (0, 1). Let

us start with cell (1, 0) as it shown in Figure 11.4. First find the distribution of

performance levels distribution for Unit-1 consisting of two elements, main and

redundant.

Table 11.5. Forehand calculation of performance levels distribution for Unit-1, consisting

of two elements, main and redundant.
 Element-1

Element-

1

p11=0.9
)0(

11W =100%

p12=0.05
)0(

12W =70%

p13=0.04
)0(

13W)
=40%

p14=0.01
)0(

14W =0%

p11=0.9
)0(

11W =100%

(p11)
2=0.81

)0(

11W =100%

p12 ·p11=0.045

),max()0(

11

)0(

12 WW =100%

p13 ·p11=0.036

max

(
)0(

13W ,
)0(

11W)

=100%

p14 ·p11=0.009

max

(
)0(

14W ,
)0(

11W)

=100%

p12=0.05
)0(

12W =70%

p11·p12=0.045

max

(
)0(

11W ,
)0(

12W)

=100%

(p12)
2=0.025

max(,)0(

12W))0(

12W =70%

p13· p12=0.002

max

(
)0(

13W ,))0(

12W

=70%

p14 ·p12=0.0005

max

(
)0(

14W ,))0(

12W)

=70%

p13=0.04
)0(

32W =40%

p11·p13=0.036

max

(
)0(

11W ,
)0(

32W)

=100%

p12·p13=0.002

max (
)0(

12W ,
)0(

32W)

=70%

(p13)
2=0.0016
)0(

32W =40%

p14· p13=0.0004

max

(
)0(

14W ,
)0(

32W)

=40%

p14=0.01
)0(

14W =0%

p11·p14=0.009

max

(
)0(

11W ,
)0(

14W)

=100%

p12·p14=0.0005

max (
)0(

12W ,
)0(

14W)

=70%

p13 ·p14=0.0004

max

(
)0(

13W ,
)0(

14W)

=40%

(p14)
2=0.0001

)0(

14W =0%

On the basis of this table, one gets for Unit-1 the following distribution

%}100Pr{)1(

1 W = (p11)
2
+2p11·(p12+ p13+ p14) =

 = 0.81+2· (0.045+0.036+0.009)=0.99;

 %}70Pr{)1(

1W =(p12)
2
+2 ·p12 · (p13+ p14)=0.025+

 + 2·0.025 (0.002+0.0005)=0.0075;

 %}40{Pr)1(

1W =(p13)
2
+2p13· p14=0.0016+2·0.0016·0.0004≈0.0016:

 116

 %}0{Pr)1(

1W =0.0001.

Let us assume that the first step is made from (0, 0) to (1, 0) as it presented in

Figure 11.5.

Figure 11.5. Direction of Step 1 of the optimization process.

Using the results, presented above, one can compile Table 11.6 that gives

performance levels distribution for the system characterized by vector of redundant

elements X = (1, 0).

Table 11.6. Step 1 of the optimization process.

(1, 0)

 Csystem= Unit-2

p21=0.8
)0(

21W)
=100%

p22=0.19
)0(

22W)
=80%

p23=0.01
)0(

23W)
=20%

p24=0.01
)0(

24W)
=0%

Unit-

1

=0.99

)1(̀

11W =100%

= 0.792

min (
)0(

21W ,
)1(̀

11W)

=100%

= 0.188

min(
)0(

22W ,
)1(̀

11W)

=80%

≈0.01

min(
)0(

23W ,
)1(̀

11W)

=20%

≈0.01

min(
)0(

24W ,
)1(̀

11W))

=0%

=0.0075
)1(̀

12W =70%

= 0.006

min(
)0(

21W ,
)1(̀

12W)

=70%

≈0.0014

min(
)0(

22W ,
)1(̀

12W)

=70%

≈0.0001

min(
)0(

23W ,
)1(̀

12W)

=20%

=0.0001

min(
)0(

24W ,
)1(̀

12W)

=0%

=0.0016
)1(̀

13W =40%

0.0013

min(
)0(

21W ,
)1(̀

13W)

=40%

≈0.0003

min(
)0(

22W ,
)1(̀

13W)

=40%

≈0

min(
)0(

23W ,
)1(̀

13W)

=20%

min(
)0(

24W ,
)1(̀

13W)

=0%

=0.0001
)1(̀

14W =0%

≈0.0001

min(
)0(

21W ,
)1(̀

14W)

=0%

≈0

min(
)0(

22W ,
)1(̀

14W)

=0%

≈0

min(
)0(

23W ,
)1(̀

14W)

=0%

≈0

min(
)0(

24W ,
)1(̀

14W)

=0%

This leads to the following final result:

 117

P
(1.0)

(Wsyst=100%) =0.792;

P
(0.0)

(Wsyst=80%) =0.188;

P
(0.0)

(Wsyst=70%) =0.006+0.0014=0.0074;

P
(0.0)

(Wsyst=40% =0.0013+0.0003=0.0016;

P
(0.0)

(Wsyst=20%) =0.01+0.0001=0.0101;

P
(0.0)

(Wsyst=0%) =0.008+0.0019+0.0001+0.0001+0.0009+0.0005+0.0004= 0.0201.

Cost of additional units in this case equals 1. Average system’s performance level equals

.9502.02.00095.04.00396.07.00497.08.0188.0792.0)0,1(systW

Then try another neighbor cell, namely (0, 1). Beforehand, one has to perform an

additional calculation of performance levels distribution for Unit-2 consisting of two

elements, main and redundant.

 It is necessary note that for parallel connection of multistate elements (that

compiles a unit), more realistically to assume that the level of performance of the unit is

equal to maximum among all currently operating elements. So, the table below represents

results of calculation for Unit-2 that consists of two identical elements.

Table 11.7. Forehand calculation of performance levels distribution for Unit-2, consisting

of two elements, main and redundant.
 Element-2

Ele-

ment

-2

p21=0.8
)0(

21W =100%

p22=0.19
)0(

22W =80%

p23=0.01
)0(

23W =20%

p24=0.01
)0(

24W =0%

p21=0.8
)0(

21W =100%

(p21)
2=0.64

)0(

21W =100%

p22  p21=0.045

max(
)0(

22W ,
)0(

21W)

=100%

p23  p21=0.036

max (
)0(

23W ,
)0(

21W)

=100%

p24  p21=0.008

max (
)0(

24W ,
)0(

21W)

=100%

p22=0.19
)0(

21W =80%

p21  p22=0.152

max (
)0(

21W ,
)0(

21W)

=100%

(p22)
2=0.0361

)0(

22W =80%

p23  p22=0.0002

max (
)0(

23W ,
)0(

21W)

=80%

p24  p22=0.0002

max (
)0(

24W ,
)0(

21W)

=80%

p23=0.01
)0(

23W =20%

p21  p23=0.008

max (
)0(

21W ,
)0(

23W)

=100%

p22  p23=0.0002

max (
)0(

22W ,
)0(

23W)

=80%

(p23)
2=0.0001
)0(

23W =20%

p24  p23=0.0001

max (
)0(

24W ,
)0(

23W)

=20%

p24=0.01
)0(

24W =0%

p21  p24=0.008

max (
)0(

21W ,
)0(

24W)

=100%

p222  p24=0.0002

max (
)0(

22W ,
)0(

24W)

=70%

p p23  p24=0.0001

max (
)0(

23W ,
)0(

24W)

=20%

(p24)
2
=0.0001
)0(

24W =0%

On the basis of this table, one gets for Unit-2, consisting of two elements, the

following distribution

%}100Pr{)1(

2 W = (p21)
2
+2p21· (p22+ p23+ p34) = 0.64+2· 0.8·

(0.045+0.036+0.008) ≈0.7709;

 %}80Pr{)1(

2W =(p22)
2
+2 ·p22 · (p23+ p24)=0.0361+2·0.0361 (0.0002+0.0002) ≈

0.0361;

 %}20{Pr)1(

2W =(p13)
2
+2p13· p14=0.0001+0.0001+0.0001=0,0003:

 %}0{Pr)1(

2W =0.0001.

 118

After such preparations, one can make Step2 (see Figure 11.6)

Figure 11.6. Direction of Step 2 of the optimization process.

This step consists in construction of Table 11.8 and presents the system’s performance

levels distribution for the system configuration characterized by vector of redundant

elements X = (0, 1).

Table 11.8. Step 2 of the process of optimization.

(0, 1)

 Csystem=
Unit-2

=0.7709
)1(

21W =100%

=0.0361

)1(

22W =80%

=0.0003

)1(

23W =20%

=0.0001

)1(

24W =0%

Unit-

1

p11=0.9
)0(

11W =100%

 0.6038

min (
)1(

21W ,
)0(̀

11W)

=100%

≈ 0.0325

min(
)0(

22W ,
)1(̀

11W)

=80%

≈0.0003

min(
)0(

23W ,
)1(̀

11W)

=20%

≈0.0001

min(
)0(

24W ,
)1(̀

11W))

=0%

p12=0.05
)0(

12W =70%

0.0386

min(
)0(

21W ,
)1(̀

12W)

=70%

≈0.0018

min(
)0(

22W ,
)1(̀

12W)

=70%

≈0

min(
)0(

23W ,
)1(̀

12W)

=20%

≈ 0

min(
)0(

24W ,
)1(̀

12W)

=0%

p13=0.04
)0(

32W =40%

0.0308

min(
)0(

21W ,
)1(̀

13W)

=40%

≈0.0014

min(
)0(

22W ,
)1(̀

13W)

=40%

≈0

min(
)0(

23W ,
)1(̀

13W)

=20%

min(
)0(

24W ,
)1(̀

13W)

=0%

p14=0.01
)0(

14W =0%

≈0.00771

min(
)0(

21W ,
)1(̀

14W)

=0%

≈0.0004

min(
)0(

22W ,
)1(̀

14W)

=0%

≈0

min(
)0(

23W ,
)1(̀

14W)

=0%

≈0

min(
)0(

24W ,
)1(̀

14W)

=0%

This leads to the following final result:

P
(1.0)

(Wsyst=100%) =0.6038;

P
(0.0)

(Wsyst=80%) =0.0325;

P
(0.0)

(Wsyst=70%) =0.0386+0.0018=0.0404;

 119

P
(0.0)

(Wsyst=40% =0.0308+0.0014=0.0322;

P
(0.0)

(Wsyst=20%) ≈0.0003;

P
(0.0)

(Wsyst=0%) =0.0077+0.0004+0.0001≈0.0082.

Cost of additional units in this case equals 2 units of cost. Average system’s performance

level equals

.671.02.00003.04.00322.07.00404.08.00325.0.06038.0)1,0(systW

Thus, for vector (1, 0) one has additional cost equal 1 and 9502.0)0,1(systW
 and for vector

(0, 1) corresponding values equal to 2 and 0.671, so system configuration (1, 0) is

dominating over configuration (0, 1), since higher average performance level delivers with

less expenses. It means that all vectors of type (0, k) are excluded from further analysis.

The next cells, for which current trials have to be done, are cells (1, 1) and (2, 0).

Avoiding simple, however cumbersome calculations, let us present only final results (see

Table 11.9).

Table 11.9. Costs and levels of performance for different vectors of redundant

elements.
 Unit-1: Number of redundant elements

0 1 2 3 4 5 6

Unit-2:

Number

of
redundant

elements

0 C=0

W=

90.16

C=1

W=

94.26

C=2

W=

94.57

 …

1 C=2

W=

94.68

C=3

W=

99.16

C=4

W=

99.50

C=5

W=

99.53

 …

2 C=4
W=

95.03

C=5
W=

99.54

C=6
W=

99.89

C=7
W=

99.92

?

 …

3 C=7

W=

99.61

C=8

W=

99.95

?

 …

.

4 ? …

.

… … …

.
 …

…

…

…

…

Legend: light grey color – dominated cells, dark grey color – non-prospective variants.

The table above is constructed as it shown in Figure 11.7.

\

 120

Figure 117. The process of step-by-step development of the optimization process.

Probably, the last table needs some explanations.. Vector (2, 0) is dominated by

vector (0, 1), since vector (0, 1) is characterized by higher performance level for the same

total cost of redundant units. So, all vectors of type (3, 0),(4, 0), …, (k, 0), … are excluded

from the further consideration. The same type of domination one observes for the following

pairs: (3, 1) is dominated by (1, 2), vector (0, 2) is dominated by (1, 1), vector (1, 3) is

dominated by (2, 2) and so on.

Such trials and selection of dominating vectors continued until appearance of first

vector with the average level of performance higher than required value of W
o
 for the direct

problem of optimal redundancy, or until total expense of all redundant elements are not

exceed given value C
o
for the inverse problem. These comments become absolutely

transparent if one takes a look on Figure 118.

Figure 11.. Depiction of the process of compiling the dominating sequence.

From Table 11.9, one can see that optimal solution for requirement that the average

level of system performance is not less than W
o
 =0.999 is delivered by vector (3, 2), and the

total expenses of redundant elements is 7 cost units. For the total expenses on redundant

elements limited by C
o
 ≤5 cost units, one gets maximum possible solution as vector (1, 2)

that characterizes by W=99.54%.

It is interesting what happens with the optimal solution if one changes costs of

elements> Let us assume that for the same system cost of a single redundant element of the

1
st
 type is c1=2 and the cost am element of the 2

nd
 type c2=1.

 121

Table 11.10. Costs and levels of performance for different vectors of redundant

elements for new element’s costs.
 Unit-1: Number of redundant elements

0 1 2 3 4 5 6

Unit-2:

Number
of

redundant

elements

0 C=0

W=90.156

C=2

W=

94.26456

 …

1 C=1

W=

94.68072

C=3

W=

99.16318

C=5

W=

99.50462

 …

2 C=2

W=

95.02683

C=4

W=

99.54058

C=6

W=

99.88507

C=8

W=

99.9156

 …

3 C=3

W=

95.08558

C=5

W=

99.60514

C=7

W=

99.9502

?

 …

.

4 C=6

W=

99.61784

?

 …

.

… … …

.
 …

…

…

…

…

Legend: light grey color – dominated cells, dark grey color – non-prospective variants.

In this case optimal solutions found from Table 11.10 are: For the direct problem

vector (2, 3), for which W=99.95% and total expenses on redundant elements are equal to 7

cost units, and for inverse problem the solution is (1, 3), for which W=99.54% and total

expenses C=5.

Solution of optimal redundancy problems for system consisting of several multilevel

units seems a bit cumbersome. However, let us note that all enumerative methods like

dynamic programming practically unsolvable without computerizing calculations.

Numerical example above was solved with the help of a simple programs using Microsoft

Excel.

For complex systems consisting of n multiple multistate units, one can compile a

simple program for a mainframe computer. The algorithm should include the following

steps.

1. Take an n-dimensional vector of redundant elements

)0...,,0,0()0()0(

2

)0(

1

)0( nxxxX
.

2.
Perform calculations to get initial pair of values

),()0()0(

systsyst CW
 (see Table 11.2).

3.
Put calculated pair

),()0()0(

systsyst CW
into list of dominating solutions,

 122

4. Generate vectors

)1(

iX such that each of them distinguishes from

)0(X by changing

number of elements of Unit-i on one, i.e.

)0...,,1...,,0,0()0()0()0(

2

)0(

1

)1( nii xxxxX
.

5. For each ,,1,)1(niX i 
calculate new values of

, for all ki where ki is the

number of performance levels of Unit-I.

6.
Perform calculations to get n pairs

),,(,....),,(),,()1()1()1(

2

)1(

2

)1(

1

)1(

1 nn CWCWCW
for all

vectors.

Such solution appears a bit clumsy and laborious. However, computer calculating

program is relatively simple and solution can be obtained easy enough; final results are

presented in the form of dominating sequence (in Kettelle’s terminology),so solution for

direct and/or inverse problem optimal redundancy can be easily found..

Conclusion.We restrict ourselves by consideration this simple and ore or less transparent

illustrative example. Last years this problematic generates a number of interesting and

theoretically deep publications, as the reader can see from bibliography below, However,

we think that more detailed consideration of this problem could lead us too far from the

“highway” of main practical optimal redundancy tasks.

Bibliography to Chapter 11

(books are distinguished by bold font)

1985. Reinschke, K. Systems Consisting of Units with Multiple States. In Handbook:

Reliability of Technical Systems (Ed. I. Ushakov). Sovetskoe Radio, Moscow..

1988. El-Neweihi, E., Proschan, F., and Sethuraman, J. Optimal allocation of multistate

components. In: Handbook of Statistics, Vol.7: Quality Control and Reliability. Edited by

P.R.Krishnaiah, C.R.Rao. North-Holland.

1988. Ushakov, I. Reliability analysis of multi-state systems by means of modified

generating function. Elektronische Informationsverarbeitung und Kybernetik, No. 3.

1998. Levitin, G., and Lisnianski, A. Joint redundancy and maintenance optimization for

multistate series-parallel systems. Reliability Engineering & System Safety, No.64, No.1.

1998. Levitin, G., Lisnianski, A., Ben Haim, H., and Elmakis, D. Redundancy

optimization for series-parallel multi-state systems, IEEE Transactions on Reliability, ,

No. 2.

1999. Levitin, G., and Lisnianski, A. Importance and sensitivity analysis of multi-state

systems using universal generating functions method, Reliability Engineering & System

Safety, No. 65.

2000. Levitin, G., and Lisnianski, A. Optimal Replacement Scheduling in Multi-state

 123

Series-parallel Systems. Quality and Reliability Engineering International, No. 16.

2000. Levitin, G., Lisnianski, A., and Ben Haim, H. Structure optimization of multi-state

system with time redundancy. Reliability Engineering and System Safety, No. 67.

2001. Levitin, G. Redundancy optimization for multi-state system with fixed resource-

requirements and unreliable sources. IEEE Transactions on Reliability, No. 50.

2001. Levitin, G., and Lisnianski, A. A new approach to solving problems of multi-state

system reliability optimization, Quality and Reliability Engineering International, No. 47.

2001. Levitin, G., and Lisnianski, A. Structure Optimization of Multi-state System with

two Failure modes. Reliability Engineering and System Safety, No. 72.

2002. Levitin, G. Optimal allocation of multi-state elements in linear consecutively-

connected systems with delays. International Journal of Reliability Quality and Safety

Engineering, No. 9.

2002. Levitin, G., Lisnianski, A., and Ushakov, I. Multi-state system reliability: from theory

to practice, with G.. Proc. of the 3rd Internationall Conference on Mathematical Models in

Reliability, Trondheim, Norway.

2003. Levitin, G. Optimal multilevel protection in series-parallel systems, Reliability

Engineering & System Safety, No. 81.

2003. Levitin, G. Optimal allocation of multi-state elements in linear consecutively-

connected systems. IEEE Transactions on Reliability, No. 2.

2003. Levitin, G., Dai, Y., Xie, M., and Poh, K. L. Optimizing survivability of multi-state

systems with multi-level protection by multi-processor genetic algorithm. Reliability

Engineering & System Safety, No. 82.

2003. Levitin,G., Lisnianski, A., and Ushakov, I. Reliability of Multi-state Systems: A

Historical Overview. Mathematical and Statistical Methods in Reliability, No. 7.

2003. Lisnianski, A., and Levitin, G. Multi-state System Reliability: Assessment,

Optimization and Applications, World Scientific.

2004. Levitin, G. A universal generating function approach for analysis of multi-state

systems with dependent elements. Reliability Engineering & System Safety, No.3.

2004. Nourelfath, M., and Dutuit, Y. A combined approach to solve the redundancy

optimization problem for multi-state systems under repair policies, Reliability

Engineering & System Safety, No.3.

2004. Ramirez-Marquez, J.E., and Coit, D.W. A heuristic for solving the redundancy

allocation problem for multi-state series-parallel systems. Reliability Engineering &

System Safety, No. 83.

2008. Ding, Y., and Lisnianski, A. (2008) Fuzzy universal generating functions for multi-

state system reliability assessment. Fuzzy Sets and Systems, No. 3.

 124

2008. Tian.Z, Zuo, M.J., and Huang, H. Reliability-Redundancy Allocation for Multi-

State Series-Parallel Systems. IEEE Transactions on Reliability, No. 2.

