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Preface 

This book is intended to help students of Aviation Institute of Riga Technical University to 

study the problem of reliability of an airframe. It describes modern mathematical solutions of 

this problem and its historical background. The book consists of two parts.  

Airframe designers have always been seriously concerned with an issue of preventing of an 

airframe from a fatigue failure. Several approaches to solution of this problem are offered: 

safe-life, fail-safe and damage-tolerance. Mathematical aspects of these approaches are 

considered in the first part of the book.  

There used to be a delusion that only metals suffer from fatigue and that this problem 

would disappear for composite airframe. In November 2001 the composite tail fin of an 

Airbus A300 had broken away just before the plane crashed soon after take-off from the New 

York airport. Now the problem of fatigue of composite materials is being substantially and 

seriously studied. Of course, investigation of static strength and its relation to fatigue life of 

composite material is very impotant. These problems are discussed in the second part of the 

book. 

This book is not „An Introduction to Reliability‖. The introductory courses in both the 

theory of probability and mathematical statistics are prerequisites for this book. Formal 

treatment of the mathematical models considered in the book requires the use of some basic 

facts from Markov chain theory.  

It is worth to mention that some new specific definitions are introduced in this book: p-set 

function, Byes-Fidicial approuch, MinMaxDM distribution family. New solutions of the 

problems with wide field of application are offered: the most uniformly poweful test for 

testing statistical hypotheses (Weibull distribution against lognormal distribution); 

maximization of conditional expectation of estimate of p-quantile (as maximization of 

specified life under condition of limitation of aircraft failure probability by a very small 

value); specific coordinates for fitting test data (estimates of mean value of ordered statistics 

vs sample ordered statistics. But in general this book represents an application of well-known 

methods of the theory of probability and mathematical statistics to a specific problem related 

to reliability analysis of both airframe and composite material. 
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1. Nomination of Specified Life 

1.1. Introduction 

There are two categories of Structural Significant Items (SSI) of airframe, the failure of 

which is considered as failure of an airframe in service. For the first one the service reliability 

is ensured by discarding an SSI from service when its service life exceeds Specified 

Maximum Permitted Life (SMPL), that is the time specified by an appropriate authority after 

which a particular airframe item must be removed from service. We call this category of SSI a 

safe-life-SSI (SLSSI). For the second category of SSI the fatigue damage is detected during 

planned inspections, then the failure danger is eliminated. We call this category of SSI an 

inspection-dependent-SSI (IDSSI). Here based on p-set function definition we consider the 

solution of two corresponding problems (for fatigue-prone airframe): the choice of SMPL for 

SLSSI and inspection program (IP) choice for IDSSI.  

 We suppose that SLSSI is characterized by a random variable, Tc, where Tc is critical 

lifetime (time to failure). IDSSI is characterized by a random vector (r.v.), (Td , Tc ), where Tc 

is the time to failure, Td is service time, when some damage (fatigue crack) can be detected 

with probability equal to unit. So if within an interval (Td , Tc ) some inspection is made, the 

failure of the IDSSI will be eliminated. We suppose that a service life of IDSSI is also limited 

by Limited Service Life (LSL), the service life of SSI at which it is no longer physically 

feasible to repair the item to an acceptable standard. Hereafter we use for short the same 

abbreviation (SL) and the same notation (tSL) for both cases (SMPL and LSL), because in both 

cases we should do the same: discard the SSI from service. We suppose that the c.d.f. type for 

r.v. (Td , Tc) is known, while unknown parameter should be calculated using results of full-

scale fatigue test. 

In section 1 we consider the problem of SL nomination. It should be mentioned also that 

SL can be chosen as (1) some number from [0,) and as (2) some number from the set of two 

numbers {0, t*SL}. This corresponds to (1) nomination of SL, tSL, and (2) rejection or 

acceptance of predetermined (required) SL, t*SL.. Here we consider the problem of fatigue 

failure probability limitation and economical approach, when a fatigue failure leads to some 

economical losses. 

In section 2 we consider the inspection program development. 

1.2. Definition of p-set function and p-bound for random vector and variables 

To make common approach to solution of the reliability problem for SLSSI and IDSSI 

possible we need to introduce the p-set function definition. It is a special statistical decision 

function, which, in fact, is generalization of p-bound for random variable, the definition of 

which was introduced by the author in 1976 [1,2]. As the development of p-bound the p-set 

function definition was offered in 1999 [3] in the following way. 

Definition 1. Let Z and X be random vectors (r.v.) of m and n dimensions and suppose that 

the class is known { P  ,   } to which the probability distribution of the random vector 

W=(Z,X) is assumed to belong. Of the parameter  , which labels the distribution, it is 

presumably known only that it lies in a certain set  , the parameter space. Let 

)()(
1

, xSxS
r

i
iZZ U



 denote some set of disjoint sets of z values as function of x. If  





r

i

iZ pXSZP
1

, ))((sup

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then statistical decision function )(xSZ  is p-set function for r.v. Z on the base of a vector 

),...,,( 21 nxxxx  . 

Remark. Later on the value x, observation of the vector X, would be interpreted as a result 

of some test (for example, the result of full-scale fatigue test of airframe) or parameter 

estimates after processing of x); Z would be interpreted as some random variable (for 

example, log(Tc) or some vector (for example, (log(Td),log(Tc )). 

For the most important case, when m=1 and Z is a random scalar, there are several useful 

definitions of special types of p-set functions )(xSZ  which we denote for this special case by 

)(x . 

Definition 2. P-set function )(x is called a p-bound for r.v. Z if  



sup  P {Z<(X)}= p. (1.1) 

Definition 3. P-set function )(x is called a parameter-free (p.f.) p-set function for r.v. Z if  

P {Z<(X)} = p for all parameters   . (1.2) 

Definition 4. A p-bound for r.v. Z is right-hand binary (r.h.b. p-bound), if for each possible 

observation x of r.v. X, function (x) assigns only one of two decisions: 

(x) = -  if x  S; (x) = 
*
, if x  S

*
,  (1.3) 

where *
 is some number, S

*
 and S are two complementary regions of the sample space. 

In framework of definition of p-set function we can consider a very wide spectrum of 

problems related to prediction interval, tolerance region, testing statistical hypotheses.  

It is easy to see, that in definition 2 the set )(xSZ is, in fact, some interval (-  , (x)) and if 

Z can be interpreted as ''future observation'' with the same c.d.f as c.d.f. of all the components 

of the vector ),...,,( 21 nXXXX   then (x) is some right-hand bound of prediction interval 

(or  -expected bound [4] for  =p). But, for example, it may be that ),...,,( 21 nXXXX   is 

some vector of (stationary) ages of some renewal parallel system of n items, Z is durability of 

one item of the same type. Cumulative distribution function of r.v. Z and X may have the 

same unknown parameter but corresponding c.d.f. are different. It seems that the term ''p-

bound'' in this case is more appropriate than the term ''prediction interval''. We can say also 

that p.f. p-bound (x) is a p-quantile estimate and, as function of p, it is an estimate of inverse 

cumulative distribution function )(1 pFZ


, but very specific estimate: expectation value 

pXFE Z )))(((  .  

If Z=Y
(k)

 is order statistic of independent observations taken on Y, say Y
1
, Y

2
, ... , Y

m
, and 

F
Y
(y, ) strictly increasing c.d.f. of Y has the same unknown parameter  , k = [m], where 

0<<1, [x]-is a maximum integer less than or equal to x, and if m   then approximately  

P{Y(k)< (X) } = P{ 1
YF () < (X) } = P{ YF  ((X))>  } = p

 

and (- , (x)] is  - content tolerance region at confidence level p. 

The binary p-set function has, evidently, some close connection with testing statistical 

hypotheses: S
*
 and S are two complementary regions of the sample space just the same as S0 

and S1 in the problem of hypotheses testing (see [5]). 
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1.3. P-bound for distribution with location and scale parameters 

It is easy to get )(x for distribution with location and scale parameters. As the main 

application of the problem under consideration we will consider a problem of SL nomination 

for some fatigue-prone airframe structure. We suppose to have observations of fatigue lives of 

some identical units as a result of full-scale fatigue tests. Usually for fatigue life data 

processing both lognormal and Weibull distributions are used. If we use logarithm scale (if 

we use )ln(TX  instead of T), both these distributions will become distributions with 

location and scale parameters. So we can say, that r.v. X has the following structure: 

X= 0 + 1
0

X , (1.4) 

where 0 , 1  are unknown parameters, r.v. 
0

X  has either standard normal c.d.f. 

)()(0 xxF
X

 , where ( )x is c.d.f. of standard normal distribution or standard smallest 

extreme value (s.e.v) c.d.f., ))exp(exp(1)(0 xxF
X

 , for lognormal or Weibull distributions 

of T correspondingly. In this case for the specified life nomination problem the following 

theorem can be used (we give it without proof). 

Theorem 1. Let 

0 0

1 1

  ( , ) ,   i 1,...,n,       ( , ) ,o o
iX Z

X Z

x x
F x F F x F

 
 

 

   
    

  
 

where )(0 
X

F , )(0 
Z

F  are known c.d.f. of 
0

X , 
0

Z , 0,1 - are unknown location and scale 

parameters. And let random variables, estimates of
 0,1, as function of ),...,,( 21 nXXXX   

be correct estimates. This means that they have the following structures 

,ˆ   ,ˆ
1110100

oo

   (1.5) 

where 10 ,
oo

  are random variables, in accordance with the estimates of 0,1 using a sample 

of the same size n but when 0=0, 1=1. And let *  be some constant. 

Then p.f. and r.h.b. p-bounds are described accordingly by the formulae 
















,ˆ  ,

,ˆ  ,
)(    ,ˆ)(

2

2

211



 xx   (1.6) 

 ,2,1  ,ˆˆˆ  where 10  itii 
 

1t  is p -quantile of r.v. 1

0

0

00

/)(  ZVZ , 

2t is the root of equation: )(t =p, 

C

( )C C

o

0 1 0 1

     (t)=sup  ( )(1 ( )) sup  ( ) ( ),

               ( ) ,      V ( ) / .

O O O
CV

Z t Z

o o o o

F c F c F c F t

t t c




    

 

   
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2. If one of the parameters 1 or 0 is known, then, as usually, we can transform the initial 

data (x'i = xi/1 or x'i = xi - 0, i1,...,n) in such a way that in previous formulae for  we can 

put 1ˆ
1   or 0̂ =0, and then 

2.1 If it is known that the scale parameter 1 =1 then VZ, VC should be replaced by 

0 0,    
C

o o o

ZU Z U c     ; 

function ξ(t) should be replaced by the function 01( ) max ( ) ( )
CU

C Z

t F c F t   , 

but for 0̂ = (1) 1 2min( , ,..., )nX X X X  by function 0 0

1

1

1 ( ) max ( )(1 ( ))n

C Z X

t F c F c t    . 

2.2. If it is known that the location parameter 0 =0 then VZ, VC should be replaced by 

1 1/ ,   / ,
C

o o o

ZW Z W c    

function ξ(t) by the function )()(max)(0 tFcFt
C

o W
ZC

 , but if additionally 1̂ =

(1) 1 2min( , ,..., )nX X X X  by function 
0

1

0 ( ) max ( )(1 ( / ))o

n

C Z X

t F c F c t   . 

Let us remind that for the purpose of approximate calculation of c.d.f. for V C ,U C ,W C  the 

Monte Carlo method or normal approximation of distributions of estimations 10  ,
oo

 can be 

used. 

1.4. Application of the specified life nomination to the problem 

There are two types of problems: 

(1) nomination of specified life, tSL, 

(2) acceptance or rejection of predetermined (required) specified life, 

SLt , for the m aircraft 

in operation. 

1.4.1. Nomination of specified life 

Let ),...,,( 21 nXXXX  , where iX , ni ,...,1 , are fatigue lives of aircraft in (full-scale) 

laboratory test, ),...,,min( 21 mYYYZ  ,where jY , mj ,...,1 , are fatigue lives of aircraft in 

operation, )()( tFtF
ji YX  , ni ,...,1 , mj ,...,1 ; p- allowed probability of failure in 

operation of at least one aircraft. 

It is important to distinguish two cases: the requirement of safety can be defined either by 

inequality 

1

(1)( )  ( )SLa P Y T    

or by inequality 

2(b)  ) ,                       1  ,(k) SL P(Y T k m     

Where 1

SLT , 2

SLT are some functions of 1( ,..., )nX X X  
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It is easy to see that the solution of the problem number (1) is defined by the p. f. p-bound 

1(x) for Z=Y(1) (for the case (a)) or for Z=Y(k) (for the case (b)) and p=. The solution of the 

problem number 2 is defined by the r.h.b. p-bound 2(x) and for the same Z and p. 

If Z=Y(1) then 

m

YZ
zFzF oo ))(-(1-1)(  . 

If Z=Y(k), m, k/m = q, q - is not too close to 0 or 1, then approximately 

.,)( 











 


km

km

Z

az
zFo


 

where   ,  kmkma  are expectation value and standard deviation of order statistics (k)

o

Y   , 

1 k m  . If in addition we can assume normal approximation of 10
ˆ  ,ˆ   (if sample is large 

enough) then approximately 

.,)( 






 



km

V

at
tF

Z
 

 ,t+2  where 2
1

2
10

2
0

22  rtkm   ,, 10 r are standard deviations of  , 1

o

0

o

 and 

their correlation coefficient. As it has already been mentioned, for fatigue life distribution 

description the two models— log-normal and Weibull distributions are in wide use. If we put 

the Yi in the logarithm of fatigue life, i =1,...,m, then we shall have in both cases the 

distribution with the location and scale parameters. In both cases the approximate distribution 

of random variables 
o

  or VZ,VC,UZ,WC can be obtained using the asymptotically normal 

distribution of the maximum likelihood estimation of parameters, [2]. For the Weibull 

distribution 

0

1 1( ) sup ( )(1 ( )) max ( , )n

Z Xc

t F c F c t c t     ; 

where 
arrtc )1(),(1  , 

))exp(exp( cmr  , mtna /)exp( . 

Let us denote by  the value of r corresponding to the maximum of 
1( , )c t . 

From equation 0
)(

)),(( 1


rd

tcd 
 we have )1/(  aa = ))exp(/( ntmn  . 

And finally 
1( ) max(1 exp( exp( )))exp( exp( ))

c
t m c n c t       

= 1 1
(1 ) ,

1 1

a
a

a a



    
   

  
 

where  / ( exp( ) )n m t n   , mtna /)exp(  

It is useful to note that the same formula defines the solution for the class of distributions 

with monotone increasing hazard rate function [2]. 
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1.4.2. Numerical examples of test time nomination 

Let us consider numerical example of the problem of SL nomination. Assume, for 

example, that simultaneously fatigue tests of 6 airframes of the same type of aircraft have 

been made but only up to 4-th fatigue failure. So we know only 4 first minimal fatigue lives: 

(t(1), ..., t(4))=(59971; 72600; 77630; 80863) and correspondingly for x(i) = ln( t(i)), i=1,...4, we 

know x =(x(1), ..., x(4)) = (11.002; 11.193; 11.260, 11.3005).There are m = 100 aircraft in 

operation and there is a requirement, that the probability of at least one fatigue failure before 

t
*
SL = 50000 cycles should not exceed p  0.05. Then *  = log(50000) = 10.82. In accordance 

with the r.h.b. p-bound definition we can be sure of the required reliability if 0 2 1
ˆ ˆt  > *  

Let us consider at first the log-normal distribution of the fatigue life. Then using the 

Lifereg procedure of SAS system we can easily get ML estimations 145.0ˆ   ,26.11ˆ
10   . 

And then using Monte Carlo method to get VC c.d.f. (5000 samples) we have, that t2= -7.055 

is the root of the equation 

( ) max(1 (1 ( )) ) ( ) 0.05
C

m

Vt c F t p       

Where 
0 0

0 1( ) /CV c    . Accordingly 2 0 2 1
ˆ ˆˆ t      11.26 -7.055*0.145=10.237. 

This value is less than required 
 = 10.82. So the required reliability is not provided. Now 

let us consider the case when 1 = 0.346 is known and a new fatigue test after some structure 

retrofit has to be made. And we have to know time limit of fatigue test without failure, which 

will be enough to be sure of the required reliability. In this case 
1

2t  =-2.04 is the root of the 

equation 

1(t)= 0.05p   , 

where 
1( ) max(1 (1 ( )) )(1 ( ))m n

c
t c c t      , m=100; n=6. 

So for required time limit of fatigue test (in logarithm scale), we have 

52648.11346.0)0425.2(82.10 1

1

2)1(    tx  

or in natural scale 

   101365)52648.11exp(  t . 

For the case of Weibull distribution, using the same Lifereg procedure of SAS system, we 

can easily get ML estimates 

.093.0ˆ     ,3.11ˆ
10    

And then it can be found that t2 = -14.303 is the root of the equation 

.05.0)()))exp(  exp(1(sup=(t)
c

 tFcm
CV  

Accordingly 

.97.9093.0303.143.11ˆˆˆ  1202   t  

And again this value is less than required * = 10.82. So we do not provide the required 

reliability. If then, again, we know standard deviation of logarithm of fatigue life 

{logT}=0.346 and correspondingly 1 =0.346( 6 / )=0.270 then we can find that 1

2t =-4.74 

is the root of the equation 



Nomination of Specified Life and Inspection Program for Fatigue-Prone Airframe 

 8 

,05.0)1()( 11  



 t  

),6 100/(6)/(   where  tt enmen  

and required time limit of fatigue test without failure of 6 aircraft (in order to provide 

required reliability of 100 aircraft in operation) is equal to 

exp( * - t
1
21) = exp(10.82+4.74.0.27) = 179836. 

It is worth to mention, that in case of Weibull distribution of fatigue life the needed test 

time is more than in the case of log-normal distribution. 

1.4.3. Optimality criterion for p-bound used for airframe specified life nomination 

In application to the problem number 1 (SL nomination) we should get the maximum of 

expectation value of )(X  provided that reliability requirements are met, it is if )(X  is a p-

bound for Z. To study the optimality of )(x  we can use the Jensen‘s inequality [6].This 

inequality says that the function of complete sufficient statistics, which is unbiased estimation 

of its own mathematical expectation, provides the minimal risk if the correspondent loss-

function is convex. Consider the simplest case, when 1  is the known parameter. Let 

10  tt   be some quantile. Random variable 10
ˆ)(ˆ  txt   is unbiased estimate of 

its own expectation (which in general case does not equal to t ). In problem under 

consideration the function )(ZF  can be considered as the loss-function. Then the expectation 

))(()}ˆ({ XZPFE tZX    is the risk function. For normal and smallest extreme value (sev) 

distributions of jY  mj ,...,1 , )(ZF  is convex (and the increasing one) if its value is small 

enough and we have minimum of ))(()}ˆ({ XZPFE tZX   = p  at the fixed expectation 

value of )(ˆ Xt   , if )(x  is a function of sufficient statistic. And, on the contrary, if )(x  is 

a function of sufficient statistic and pXZP  ))((   , then we have maximum of expectation 

value of )(X  if p  is small enough and probability ))(( cXP  is high enough for such c, 

that )(zFZ is convex if .cz   For example, for normal distribution )(z  is convex if z<0. 

For the case when parameter 1  is also unknown we can make similar statement. The 

generalization of the Jensen‘s inequality for the case of multivariate sufficient statistic can be 

found in [6]. 

For the problem number 2 (acceptance or rejection of predetermined (required) Specified 

Life, 

SLt ), if instead of (x) we consider exp((x)) (in this way we can avoid difficulty of 

calculation of expectation E{2(X)}, when P{2(X) = -)}>0, we also need to increase 

expectation E{exp(2(X))} and for this purpose we need to use sufficient statistic. In fact, this 

means, that we have to increase the probability to make decision (x) = *. Of course, it is 

very near to the requirement to increase the power of corresponding test, if we consider this 

problem as the test of statistical hypothesis. 

For the case when sufficient statistic coincides with the sample itself  (for example, for the 

Weibull distribution) usually for calculation of prediction interval the Monte Carlo (MC) 

method is used [11]. Here we show that for the problem of p.f. p-bound, )(x , calculation an 

analytic solution can be found using Bayes-fiducial (BF) approach. 



Nomination of Specified Life and Inspection Program for Fatigue-Prone Airframe 

 9 

1.4.4. Bayes-fiducial approach 

This approach was offered in 1976 [1]. Its development was offered in [2,3,7,8]). It was 

shown that using this approach we can get Pitmen‘s estimates of location and scale 

parameters [4] and most powerful invariant test for testing statistical hypotheses  

)/)(()(: 1000  xFxFH  ; )/)(()(: 1011  xFxFH ). It can be used also for unbiased 

estimation [9]. BF estimate, ( )X x , of some function of parameter ( )   is a function, which 

minimizes BF risk 

)())(),((),( ~ 
 dFxL XXBF   , 

where ))(),(( xL X is loss function, )(~ 


F  is fiducial distribution on parameter space 

[2,10]. 

There are two advantages of BF approach: 

1. As in case of using a maximum likelihood (ML) estimates BF solution is always a 

function of sufficient statistic, but in contrast to ML the BF solution takes into account the 

loss function. 

2. In contrast to the usual Bayes solution we do not need to have a priori distribution of 

unknown parameters. 

Using BF approach for p.f. p.-bound calculation 

Let the problem be to estimate p-quantile )( p  for c.d.f. )/)(( 10 xFZ  and loss 

function ( ( ), ( ))p XL x   = 

2

10

2

1010 ))/))(((())/))((()/)(((   xFpxFF XZXZpZ  

when we have sample ),...,,( 21 nxxxx   from population with c.d.f )/)(( 10 xFX . 

Let us denote by ),( pxX the solution of  equation , corresponding to the considered loss 

function 

ppxFE XZ  }
~

/)
~

),((({ 10~ 
 , (1.7) 

where )
~

,
~

(
~

10   , r.v. 0

~
 , 1

~
  have fiducial distribution. Here ))(( XfEX  is an expected 

value of )(Xf  in accordance with c.d.f. of X. 

We can simplify solution of Eq.1.7. Instead of vector ),...,( 1 nxxx   without loss of 

information we can consider vector ),...,,ˆ,ˆ( 2110  nww , where 10
ˆ,ˆ   are correct 

parameter estimates (see (1.5)), 10
ˆ/)ˆ(  ii xw , ni ,...,1 -2 , are components of maximal 

invariant. Then conditional fiducial distribution (at the fixed invariant ),...,( 21 nww ) of 

random variables 10

~
,

~
  is defined by equation [1,2] 

1

1

1

1
10,...,|

~
,

~

ˆ
),(

110 




n

n

ww s
hssf

n


 101

1

010
ˆˆ

dsds
s

sw
f

n

i

i  











 
 , 

where h is just normalization factor. (Note: nn ww ,1  are functions of 10
ˆ/)ˆ(  ii xw , 

1,..., 2i n   , components of maximal invariant  ). 

If in (1.7) we use new notations: 
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1000
ˆ/)ˆ(  sU  , 111 /ˆ sU  , 10

0
ˆ/)ˆ),((),(   pxpx , 

then instead of (1.7) we get equation 

nn wwUUWW EE ,...,|,..., 1101
pUUpxF 








 )/)),((( 10

0

 .  (1.8) 

where random variables 10 ,UU  have conditional p.d.f, which do not depend on unknown 

parameters 

 

 
n

i i

n

wwwUU uwufuhuuf
n 1 10

2

010,...,|, )(),(
110

,  (1.9) 

where wh  is just a normalization factor which depends only on invariant vector 

),...,( 21  nwww . 

If ),(
0

px  is the solution of the equation 

nwwUUE ,...,| 110
pUUpxF 








 )/)),((( 10

0

   (1.10) 

then 

),( pxX = 1

0

0
ˆ),(ˆ  px   (1.11) 

is the solution of Eq. (1.8) and Eq.(1.7) also because equation (1.10) takes place for every 

vector ),...,( 21  nwww , c.d.f. of which does not depend on ),( 10   . So if (1.10) is true 

then (1.7) is true also. 

It is very important that ),(
0

px in (1.10) does not depend on parameter ),( 10    and for 

solution of this equation we can set 00  , 11  . If 10
ˆ,ˆ   have correct structures defined 

by (1.5) then the probability )),(( pXZP   does not depend on ),( 10    and we can find 

1p  for which 

)),(( 1pXZP  =p. 

So ),( 1pxX  is p-bound for random variable Z. 

As it is easy to see (see p.84 in [2]) that the p.d.f (1.9) is conditional p.d.f of 10
ˆ,ˆ   at the 

fixed ),...,( 21  nwww  for the case when 00  , 11  . This means that the values 1p and p 

coincide. 

It is very important also that a result does not depend on the choice of the type of correct 

statistics 10
ˆ,ˆ   (see (1.13), (1.14))), because vector ),...,( 1 nxxx   and vector 

),...,,ˆ,ˆ( 2110  nww  have one-to-one mapping at any choice of correct statistics. 

Example. P-bound for lognormal distribution. 

Let t= ),,( 321 ttt =(45 952, 54 143, 65 440) be the sample from this distribution. Then r.v. 

)log(TX   has a normal distribution ),( 2

10 N  and x= ),,( 321 xxx = (10.735 10.899 11.089) 

is the sample from this distribution. The problem is to calculate the p.f. p-bound for 

independent r.v. Z= ),...,min( 1 mYY , where r.v. iY , mi ,...,1 , has the normal distribution 
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),( 2

10 N  also. We consider here only the case, when m=1, because for this case there is a 

general analytical solution (see, for example, p. 172 in [2]) 

2/1

,110 )/11(ˆˆ)( ntx pn  
,  (1.12) 

where 

x0̂  , 2/12

1 ))1/()((ˆ   nxxi  

are estimates of expected value and standard deviation, qkt , is q-quantile from Student‘s 

distribution with k degrees of freedom. So we can make comparison of this solution with the 

solution which we get, using new approach. 

For considered data, using equation (1.12) and Student‘s distribution table for p=0.01 we 

calculate Stt =exp( )(x ) = 13 162, which is the value of p-bound for r.v. T on the base of 

observations ),,( 321 ttt  . 

Now let us consider a new approach. For normal distribution the conditional p.d.f. has the 

following form 

 

 
n

i i

n

wwwUU uwuuhuuf
n 1 10

2

010,...,|, )(),(
110

 , 

where 
2/12 )2/()2/exp()(  xx  . After transformation the equation (1.10) has the 

following form 

pnDza z  )2/)1((/),,(1
0

 , 

where 

duznDuuuDza z

n

z 













0

0
2/12/)3(

0

)())1(/2()exp(),,(  , nzz
n

i /
1

 , 





n

i

iz nzzD
1

2 /)( , )(  is gamma function, )(  is c.d.f. of standard normal distribution. 

Let us consider two types of statistics 10
ˆ,ˆ  , which for considered data have the following 

values: 

a) 0
ˆ

a x   =10.908, 2 1/2

1
ˆ ( ( ) / ( 1))a ix x n    =0.177 ,  (1.13) 

b) 0 1,
ˆ

b nx  =10.735, 1 , 1,
ˆ

b n n nx x   =0.354,  (1.14) 

where nix ,  is its order statistic of vector ),...,( 1 nxxx  . 

In case a) we have 
0

a = -7.889, in case b) we have 
0

b = - 3.560. 

Corresponding values of p-bound for r.v. T on the base of observations ),,( 321 ttt  are: 

at  exp( ( )a x ) = 13 523, bt  = exp( ( )b x ) = 13 050. 

It seems that the difference between at , bt  and Stt =13 162 is produced only by the problem 

to get required calculation accuracy. 

Example. P-bound for Weibull distribution. 
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Let us have the same sample t= ),,( 321 ttt =(45 952, 54 143, 65 440) or x= ),,( 321 xxx = 

(10.735 10.899 11.089) but r.v. T has a Weibull distribution and, correspondingly )log(TX 

has distribution of the smallest extreme value with c.d.f. )/)exp((exp(1)( 10  xxFX . 

In this case the equation (1.10) has the following form 

pDzbDza zz  ),(/),,(1
0

 , 

where 

 duumuzzuuDza n
n

i

i

n

i

i

n

z ))exp()exp(/()exp(),,(
0

0 11

)2(
0

   





, 

 duuzzuuDzb n
n

i

i

n

i

i

n

z ))exp(/()exp(),(
0 11

)2(

 




  , 

nzz
n

i /
1

 , 



n

i

iz nzzD
1

2 /)( . 

For m=1, p=0.01, using statistics (1.13) we get 
0

 = -11.929, using statistics (1.14) we get 
0

 = -5.424. Corresponding values of p-bound for r.v. T on the base of observations ),,( 321 ttt  

are: 

at  exp( ( )a x ) = 6 616, bt  = exp( ( )b x ) = 6 752. 

For m=500, p=0.2 using statistics (1.13) we get 
0

 = -12.889, using statistics (1.14) we have 
0

 = - 5.970. Corresponding values of p-bound for r.v. T based on the observations ),,( 321 ttt  

are: at  exp( ( )a x ) = 5 584, bt  = exp( ( )b x ) = 5 568. 

Again, it seems that the difference between at  and bt  is produced only by the problem to 

get required calculation accuracy. 

Considered data in fact was studied in several papers. Mee and Kushary (1994) for m=500, 

p=0.2 have got t = 5225 [11] . They say that Lowless (1973) obtained t =5623. In both cases 

for necessary calculation the Monte Carlo method was used. 

1.4.5. P-bound as function of order statistics 

Let us denote expectation value )}({ XE   by  . The straight way to get approximate 

solution of the problem to get maximum of  provided that reliability requirements are met, 

can be found if )(x  is a linear function of order statistics: )(x = a ),...,1( nx , where a =

),...,( 1 naa  is row vector, ),...,1( nx = 
T

nxxx ),...,,( )()2()1( is column vector of order statistics (here 

the transpose (of a vector or of a matrix) is denoted by a capital superscript T ). If 1a , 

where  =
T)1,...,1(  is column vector of units then )(x is p.f. p-bound for r.v. Z for some p 

because in this case )(x  has the following structure: 

)(x = 0 + 1
0

 , 
0

 = )(
0

X = a ),...,1(

0

nX , 

where ),...,1(

0

nX has the same type of c.d.f. as ),...,1( nX  but 0 =0, 1 =1. 
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Let 
0

  be expectation value of 
0

 . The probability ))(( XZP  is the function of 
0

 . Let us 

define the function 

)(
0

 = ))(( XZP  = )0( UP , 

where U =
0

Z -
0

 . And let us denote the root of equation by p

0

  

)(
0

 = p . 

Temporarily we assume that U  has normal distribution. Then 

p

0

 = )()( 12/122
000 p

ZZ




 , 

where X , X  are expectation value and standard deviation of variable X, )( is c.d.f. of 

standard normal distribution function. 

We see that for p<0.5 the value of p

0

 increases if standard deviation of 
0

  decreases. In 

application to the problem of specified life nomination the value of p is much smaller than 

0.5. Thus for p<0.5 and 

for fixed both expectation value and standard deviation of 
0

Z  we can increase the value of 

p

0

 = p

0

 (a) if we choose a  in such a way that the standard deviation of 
0

 decreases. Using the 

theorem 1.f.1(II) in [10] we can get vector )(
0

a , which provides the minimum of variance of 
0

 = )(
0

X = a ),...,1(

0

nX  for fixed 
0

  and under condition that 1a . These two conditions (fixed 
0

 , condition for parameter free p-bound) can be written as the equality 
TB a W , 

where B=(
0

 , ), 
0

 =
T

n
),...,(

)(

0

)1(

0

 is column vector of expectation of vector of standard 

order statistic, ),...,1(

0

nX , column vector W=
T)1,(

0

 . The variance of 
0

(1,..., )na X  is equal to 

0
TV a D a , where 

0

D  is covariance matrix of order statistics 
0 0

(1) ( )  ,..., nX X . In accordance 

with the mentioned theorem minimum of V takes place for 

)(
0

a =(
1

0

)( D B 1S W
T) , 

where matrix S = TB
1

0

)( D  B, 

Now (in general case, using Monte Carlo method) we can find 
0

 = 
0

 (p) for which 

pXaZP n  ))(( ),..,1(

000

 . 

Corresponding )(x = a ))((
0

p ),...,1( nx  is p.f. p-bound. It has maximum of )}({ XE   if U 

has normal distribution. Some conditions under which the sum of order statistics has 

approximately normal distribution are given in [12]. For general case we have got only an 

approximate solution corresponding to minimum of variance of p.f. p-bound 
0

 = )(
0

X = a
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),...,1(

0

nX  at the fixed 
0

 . True value of pXaZP n  ))(( ),..,1(

000

  can be estimated using, for 

example, Monte Carlo method. 

P-bound as function of order statistics. Numerical examples. 

Suppose that simultaneous fatigue tests of 6 airframes of the same type of aircraft have 

been made but the test was finished at the 4-th fatigue failure. So we know only 4 first 

minimal fatigue lives: )4()1( ,...,tt  = 59971; 72600; 77630; 80863 and correspondingly in 

(natural) logarithm scale )4()1( ,..., xx =11.002; 11.193; 11.260, 11.3005. There are m=100 

aircraft in operation but the probability of at least one fatigue failure up to specified life 

should not exceed p=0.05. 

If it is supposed that the lognormal distribution of fatigue life takes place then we have 

normal distribution of r.v. )ln(TX  . 

Expectation values and covariance matrix for the first four order statistics of 6 observations 

from standard normal distribution can be found in special tables or may be calculated using 

Monte Carlo (MC) method. Then we can calculate the function )(
0

 and for p=0.05 we find 

that p

0

 =-7.0, vector a=[3.8883; 1.5865; 0.3789; -4.8537] and, finally,  = 9.9539. In natural 

scale SLt =21 035. 

1.4.6. Influence of cumulative distribution function type on specified life nomination 

As it was mentioned already, usually lognormal or Weibull cumulative distribution 

functions are used for fatigue life sample, 1,..., nt t , processing. If we use the logarithm scale 

and define log( )i ix t  i=1,2,…,n, then in both cases we have c.d.f. with location, 0 , and 

scale, 1 , parameters: 0 0 1(( ) / )F x    or 1 0 1(( ) / )F x   , where 0( ) 1 exp( exp( ))F x x   , 

1( ) ( )F x x . So later we consider the sev and normal distributions. There are the following 

connections 

0

0 1     , 
0

1    

of parameters 0  and 1  with expectation values 
0

( )E X  and standard deviation 

0

( )X  , where random variable 
0

X  has c.d.f. 0(.)F  or 1(.)F , 
0

 , 
0

  are expectation value 

and standard deviation of random variable
0

X , when 0 =0 and 1 =1. 

For normal distribution
0

 =0, 
0

 =1. For sev distribution 
0

   , 
0

 =/ 6 , where 

=0.5772156649 is Eulerian constant. We suppose that SL is defined by the allowable failure 

probability  and should be equal to p-quantile (p=) of corresponding c.d.f.. In both cases SL 

is defined by equation 

=0 +t1 =+ h , 

where t=F
-1

(p), F
-1

(.) is function, which is inverse to function F(.), 
0 0

1( ( ) ) /h F p    . 

For the purpose of comparison of two values of SL at the same  and  it is enough to 

make comparison of two values of h . The results of calculations of 
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0 (log( log(1 )) ) 6 /h p       for s.e.v and 1

1 ( )h p h1=
-1

(p) for normal 

distributions are given in table 1, where delta = h1-h0. 

Table 1.4.1. Calculation and comparison of h0 and h1 

p 0.001 0.01 0.1 0.2 

1h  -3.090 -2.326 -1.281 -0.841 

0h  -4.935 -3.136 -1.304 -0.719 

delta 1.845 0.8103 0.0230 -0.122 

 

We see, that if p is small (p<0.1) then delta is positive and SL for normal distribution is 

greater than for s.e.v. distribution. So if required reliability is high enough and we don't know 

which of two considered c.d.f. is true then we should use s.e.v. distribution in order to provide 

the required reliability in any case. But this means that we will have some significant loss if 

really normal distribution is true. Of course, the desire appears to make statistical hypothesis 

testing of c.d.f. type before calculation of SL. 

The use of statistical hypothesis testing for c.d.f. type choice 

There is uniformly most powerful invariant test for the case, when we need to make choice 

of one of two c.d.f. with unknown location and scale parameters [2,5]. For the case, when 

hypothesis H0 is s.e.v. distribution and alternative H1 is normal distribution the statistic of this 

criterion is 

NSא = /N Sf f ; 

where ( 1)/2 /2( ) (( 1) / 2) / 2n n

Nf n n    ; 
2

10

( ) / ( exp( ( )))
n

n n

S i

i

f n t dt t z







    

where ( ) /i iz x x s  , 1,...,i n , 



n

i
i nxx

1

/ , 



n

i
i nxxs

1

22 /)( . 

Calculation of c.d.f. for the statistics of the corresponding test is difficult enough. More 

simple test, which has nearly the same power, is offered in [2]. The critical region in this case 

is described by inequality 





n

i
i Cnsxxx

1

/)6/)(exp()(  , 

So we will calculate p-bound or SL (in the logarithm scale) by the use of normal 

distribution function 

)(ˆˆ 1

10 px NNpL

  , 

if (x)>C. And we will calculate SL (in the logarithm scale) by the use of sev distribution 

function 

))1ln(ln(ˆˆ
10 px WWpW    

if (x) C, where WWLL 1010
ˆ,ˆ,ˆ,ˆ   are estimates of corresponding parameters. As it was 

shown, if p is small enough, then pWpL xx  . So the requirement for reliability, R>(1-), will 

be met in any case, if it is met for the s.e.v distribution. Corresponding requirement can be 

written in the following way: 
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.}),/)exp((exp(1{(

}),/)exp((exp(1{(

10

10









CXE

CXE

WWpL

WWpW
  (1.15) 

Here },{ AZE  means }{}|{ APAZE - conditional expectation value of random variable Z, 

if event A takes place, multiplied by probability of event A. Results of calculation by the use 

of Monte Carlo method are given in the table 4.2 for =0.01, sample size n=20, Monte Carlo 

sample number, MCN , is equal to 5000. In the table the following values, corresponding to 

this procedure, are given: level of significance  ; value of C; power of test,  ; 

corresponding value of p and expectation value of pLX̂  (for ,00 L )11 L . If  increases 

(and simultaneously ), we more often use normal distribution and we have larger value of 

SL, but at the same time we should use much smaller value of p in order to provide reliability 

in case of s.e.v distribution. We see, that for n=20 and =0.01 optimal 
*
 is approximately 

equal to 0.1. 

Table 1.4.2. Calculation of expected value ˆ( )pLE X  

  C   p ˆ( )pLE X  

0,00 - 0 0.0050  -3.6230  

0,01 2,4179 0,192 0,0140 -3,4214 

0,05 2,1826 0,428 0,0101 -3,2507 

0,10 2,0867 0,573 0,0067 -3,2294 * 

0,15 2,0318 0,659 0,0045 -3,2665 

0,20 1,9893 0,728 0,0031 -3,2958 

0,25 1,9565 0,785 0,0021 -3,3338 

0,30 1,9272 0,833 0,0015 -3,3488 

0,40 1,8788 0,898 0,0008 -3,4017 

0,50 1,8363 0,936 0,0005 -3,4406 

0,60 1,7920 0,968 0,0003 -3,4917 

0,70 1,7535 0,982 0,0002 -3,5556 

0,80 1,7062 0,993 0,0002 -3,5157 

 

When =0 then we always use s.e.v distribution and for n =20 ˆ( )pLE X =-3.6230. It is 

worth to mention, that if distribution parameters are known but distribution function type is 

unknown, then to provide reliability in any case without test we should choose SL calculated 

for sev distribution and then h0= -3.136 (see table 1). Value of ˆ( )pLE X is much less than h0, 

because in this case we make estimation of parameters by the use of random sample and ˆ
pLX  

is random variable. The final result is defined by specific features of s.e.v. distribution 

function. 

For optimal *=0.1 we have ˆ( )pLE X =-3,2294. For calculations, connected with fatigue 

life, very often the value of standard deviation = (log(T))=0.346 is used. Then in time scale 

increasing of SL is equal to 

k=exp(+ *ˆ( ( ))pLE X  )/exp(+ ˆ( (0))pLE X )=1.482 

The value p=0.01 was chosen to make calculation results clearer, but really we need much 

less value of allowable failure probability and, for example, if p=0.001, then for big enough n, 
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when test power is quite near to 1, k is equal to 1.89. So in the considered case using the 

offered procedure we will make SL nearly two times bigger. 

1.4.7. Economic approach 

This section is devoted to the economic approach to the problem of SL nomination. The 

problem will be studied both for the case when distribution parameters are known and for the 

case when they are not known. Numerical example will be given for the case of lognormal 

distribution of fatigue life with known scale parameter. 

Choice of specified life when fatigue life distribution function is known 

If we measure the income of aircraft successful service during time t as equal to t, but in 

case of failure we suppose to have a loss, which is equal to b, then of one aircraft service 

income, r.v. U is defined by formula 













,   ,

,      , 

SL

SLSL

tTifbT

tTift
U   (1.16) 

where  is r. v., fatigue life of SSI, tSL is some SL. 

Let FT(t,), θ=(θ0,θ1), be c.d.f. of r.v. T. Then u, expectation value of r.v. U, as function of 

tSL, , b is defined by formula 

u(tSL,, b )  
SLt

0

(t-b) d FT(t,)+ tSL (1- FT(tSL,))  (1.17) 

For the case of normal distribution of X = log( )T  

u(tSL ;,b)=exp(0+1
2
/2)(zSL-1)+ tSL - ( tSL+b)( zSL),  (1.18) 

where 0 1(log( ) ) /SL SLz t    . 

An example of this function, as function of SLt , and function q*50 000,where q=FT(tSL,) 

(the factor 50 000 is used for clear visual purpose), for fixed b=346 000, 1=0.346 and 

0=log(20909)= 9.94793 is given in Fig.1.1. 
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Fig.1.1. Expectation value of r.v. U, function u(tSL ;,b), and 50000q , where q=FT(tSL,) 

(the factor 50 000 is used for clear visual purpose), for b=346 000, 0= 9.95, 1=0.346. 

Using Fig.1.1 we see that maximum value of u corresponds to tSL which is approximately 

equal to 8000. More precise result is tSL=7936. It is interesting to note that the value of 

tSL=7936 corresponds (at considered 0= 9.94793, 1=0.346) to the probability failure 

(0.0026). This can be interpreted in following way. Failure of 2.6 from 1000 aircraft can be 

considered as loss of 346000 hours of operation time or loss of 346000/7936=43.6 aircraft of 

the same type (each aircraft of this type has tSL=7936 ). 

In general case maximum of u(tSL, , b ) is reached at t
*

SL, which is the root of the equation 

bfT (t)/ (1- FT(t,)) =1.  (1.19) 

For normal distribution of log( )X T  equation (1.19) can be written in the following form 

1( ) / 1b z t     (1.20) 

where ( ) ( ) / (1 ( ))z z z   , 2( ) exp( / 2) / 2z x   . 

Using equations 

tSL=b(zSL)/1, 0=xSL- zSL1, 

where log( )SL SLx t , we can get optimal value of t
*

SL and 0  as functions of 

*

0 1   ( ) /SL SL SLz x t    (at the fixed 1 ) and then t
*

SL as function of 0 (at the fixed 1  and b): 

t
*
SL = ),;( 10 bS  .  (1.21) 

An example of calculations of *

SLt  as function of 0 for the case of normal distribution of X 

for 346000b , 1=0.346 is given in Fig.1.2 (here *

SLt  is denoted by t_SL, 0 is denoted by 

Th0). 
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If 1 is known, 0 is not known, but there is sample ),...,( 1 nxxx   then using maximum 

likelihood method we can get an estimate of 



n

i

io nxx
1

/  and then calculate 

*

SLt = ),;ˆ( 10 bS 
. This time it is random variable. 

It appears that much better solution can be obtained using Bayes-Fiducial approach. 

 

Fig.1.2. Example of calculations of 
*

SLt  as function of 0 for the case of normal distribution of log( )X T for 

346000b , 1=0.346. 

Choice of specified life using Bayes-fiducial approach 

In accordance with Bayes approach the parameter  is considered as r.v.. For the case of 

fatigue life of airframe it can be interpreted in the following way. Design stress analysis of an 

airframe should be fulfilled in accordance with some requirements (FAR,…). These 

requirements in fact define only some mean value of log( )X T  and corresponding 0 . Of 

course, in every case there are some "occasional mistakes" and we have some specific 

(random) value of 0  for every designed aircraft type. Also, there is a scatter of r.v. X 

(specific random fatigue life of some specific SSI) at this random 0 . It seems that parameter 

1  is function of technology level, and if one is not changed, then the parameter 1  is not 

changed neither. 

Suppose that 1  is known constant, but 0  is random variable, which is denoted by 0

~
 . 

Denote by π(θ0) a priori distribution density of 0

~
 , then c.d.f. of r.v. X will be 






)(
~

xFX FX((x-0)/θ1)π(θ0 )dθ0. 

It is well known that if θ1 is constant, and r.v. 0

~
  has normal distribution with both mean τ0 

and standard deviation τ1 known, then distribution of X is also normal with mean τ0 and 
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standard deviation ((τ1 )
2
+(θ1)

2
 )

1/2
. In this case SL, *

SLt , again will be defined by equation 

(1.21), but θ1 should be replaced by ((τ1 )
2
+(θ1)

2
 )

1/2
. 

Table 1.4.3. Comparison of ML- and FB- approaches 

In fact we do not know a priori distribution of 0

~
 . For this case a BF approach is offered. 

Instead of posterior distribution we offer to use fiducial distribution [10] of 0

~
 . In the 

considered case fiducial distribution of 0

~
  is also normal with mean x  and standard deviation 

θ1 (1+1/n)
1/2

. Then for the purpose of calculation tSL we again can use the same equation 

(1.21), but 0 , θ1 should be replaced by x0̂  and 1/2

1(1 1/ )n 
 
correspondingly. So using 

sample ),...,( 1 nxxx  , the result of full-scale fatigue test, in case of ML approach the 

nominated SL is equal to ),,( 1 bxS 
, but for BF approach *

SLt = ),)/11(,( 2/1

1 bnxS   . 

 

 

Comparison of Byes-fiducial approach with direct use of ML estimates 

The results of 10 calculations of *

SLt and then average of 100 calculations (for every k=1, 2, 

4, 100 observations x1,x2,…,xk ) by the use of Monte Carlo method for both ML and BF 

approaches are shown in table 1.4. We see that for ML-approach, when ML estimate of θ0 and 

corresponding tSL are used, the average of U= u( *

SLt (X);, b ) is a negative value (u decreases 

very rapidly (see Fig.1.1) if tSL is more than optimal). Only at k=4 it has stabile positive value. 

When k=100 and standard deviation θ1/n
1/2 

is very small we have nearly the same expected 

value of U as at known θ0. 

But if we use the BF-approach, then already at k=2 we have stabile positive value of u 

(nearly at the same value as at k=4 when ML-approach is used). As it should be expected, at 

k=100 of course the value of U= u( *

SLt (X);, b ) is nearly the same as at the known θ0. So for 

small k the advantage of FB-approach over the use of ML estimates of θ0 is obvious. 

B - approach to SL nomination. ML - approach to SL nomination. 

10 Mean U for different sample size (k) 10 Mean U for different sample size (k) 

I \ k 1 2 4 100 1 2 4 100 

1 1556.515 4212.891 4790.097 6918.316 -6120.11 3040.754 3800.639 6937.074 

2 1391.894 3888.095 5944.583 6901.444 -9356.71 -463.272 3373.792 6933.383 

3 4891.845 5274.869 5569.536 6917.047 -10404.4 701.5571 4494.191 6926.571 

4 3291.739 4350.727 5428.912 6906.56 -2222.72 2953.583 5308.547 6939.215 

5 4233.825 4347.703 5516.218 6891.818 -13569.7 -1189.63 5032.563 6953.464 

6 -582.891 5257.01 6102.211 6892.028 -10781.4 1494.476 4363.197 6936.326 

7 3261.272 589.4247 5807.507 6902.364 -18960 353.4555 5033.566 6925.607 

8 2074.037 5379.541 5867.967 6901.553 -5359.58 544.8548 4588.427 6904.558 

9 2520.228 2609.616 5262.105 6900.52 -3362.24 -292.094 4135.01 6951.803 

10 463.1878 5310.673 5419.943 6912.179 -6102.06 949.7383 4090.15 6945.736 

……… ………. ………… ………. ………. ………. ………. ………. ………. 

Average 

for 

I=1...100 

2310.165 4122.055 5570.908 6904.383 -8623.89 809.3422 4422.008 6935.374 
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2. Inspection program development 

2.1. Introduction 

Inspection program development should be made based on processing of lifetime test 

result. Usually a confidence interval is used for lifetime distribution parameter estimation and 

then for the reliability estimation. It is always very difficult to find compromise choice of 

required reliability and confidence probability. But if we process some approval test data 

making some redesign of the tested system in case some requirements are not met, then, as it 

will be shown later, it is possible to use minimax approach which provides required reliability 

independently of unknown parameters of lifetime distribution without the use of confidence 

probability. Here for this purpose the p-set function definition is used to solve the problem of 

development and control of inspection program. This time we consider the case when some 

Structural Significant Item (SSI), the failure of which is considered a failure of the whole 

system under consideration, is characterized by a random vector (r.v.) (Td, Tc ), where Tc is 

critical lifetime (up to failure), Td is service time, when some damage (fatigue crack) can be 

detected. So we have some time interval, provided that if during this interval some inspection 

is made the failure of the SSI will be eliminated. We suppose also that a required operational 

life of the system is limited by a so-called Specified Life (SL), SLt , when a system is 

discarded from service. 

2.2. P-set function and inspection program 

Recall p-set function definition. 

Let Z and X be random vectors of m and n dimensions and suppose that a class {P,   

} to which the probability distribution of the random vector W=(Z,X) is assumed to belong 

is known. Regarding the parameter , which labels the distribution, it is assumably known 

only that it lies in a certain set , the parameter space. If  

)()( , xSxS
i

iZZ U
 

is such set of disjoint sets of z values as function of x that 

 
i

iZ pXSZP ))((sup ,
   (2.1) 

then statistical decision function Sz(x) is p-set function for r.v. Z based on a sample 

x=(x1,...,xn). 

Here vector ),( cd TTZ   is interpreted as random vector-characteristic of some SSI in 

service, but instead of x, observation of the vector X, the result of approval test, the estimate  
ˆ ˆ( )x  of parameter  will be used; the set of sets, ,( ) ( )Z Z i

i

S x S x
 
, is a sequence of 

intervals at the end of which inspections have to be done; this sequence defines the inspection 

program under consideration. Technological parameter of the program (value of detectable 

fatigue crack size, da ), is fixed. 
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2.3. Minimax approach to inspection program development 

Now the problem is to find (in general case) a vector function )ˆ(t , where ),...,,( 21 ntttt 

, ti is time moment of  inspection, i=1,2,…,n, n is inspection  number, 1nt SLt , in such a 

way, that failure probability of SSI under consideration 

)(),( 11 icdii
r

f TTTTPtp   , (2.2) 

does not exceed some small value :  




),(sup tp f ,  (2.3) 

where nTT ,...,1  are random moments of inspections: r.v.  ),...,( 1 nTTT  )ˆ(t ; 00 T ; 

SLn tT 1 . This means that vector function )ˆ(t  in fact defines some p-set function for vector 

),( cd TT  at p=. The choice of a structure of the sequence ),...,,( 21 ntttt   is a special 

problem. For the known parameter a choice of optimal sequence is discussed, for example, in 

[1]. We do not study this problem here. Our problem is the choice of a sequence t  when 

parameter   is not known but its estimate is known. The offered minimax approach can be 

used for any structure of sequence t . In real practice, usually the following sequence is used: 

)1(1  idtti , nttd SL /)( 1 , ni ,...,2,1 . In this case we should choose only 1t  and n . 

For simplicity purpose we put dt 1 (in general case 1t  can be chosen, for example, as 

parameter-free p-bound for Tc, or as the value corresponding to the minimum of expectation 

value of n  at a fixed required reliability, etc). Now the probability of failure will be function 

of   and n  and we denote it by ),( np f  . We suppose that ),( np f   is such that 

0),(lim 


np f
n

  for all  , and for every small value  there is minimal inspection number 

),( n  such that  ),( np f  for all n   ),( n . But true value of   is not known. So 

),ˆ(ˆ nn   and )ˆ,(ˆ npp ff 
 

are random variables. It is supposed that we begin the 

commercial production and operation only if some specific requirements are met. For 

example, there are the following requirements: 1) Rnn ˆ , 2) Rc tt ˆ , …, where Rn , Rt  are 

some constants, defined in specific documents, ct̂  is estimate of expected value of Tc . If these 

requirements are met let us denote in general case this event as 0
ˆ  , where 0 , 0   , 

is some part of parameter space. We suppose, that if 0
ˆ   (estimate of required inspection 

number for some fixed   exceeds some threshold, Rn , or estimate of expected value of cT , ct̂

, is too small in comparison with some bound Rt ,…), then we make redesign of the SSI in 

such a way, that probability of failure after this redesign will be equal to zero. 

 

Let us define 
0

0

0

ˆˆ( , )    ,
ˆ

ˆ0    .

f

f

p n if
p

if

 



 
 



  (2.4) 

For this type of strategy (it is demonstrated in Fig. 2.1) the mean probability of fatigue 

failure )ˆ(),( 0fpEw   is a function of 
 
and  . If for limited SLt it has a maximum, 

depending on then the choice of maximal value of  for which *w = 



 * 
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Rw 1),(max *


 and the strategy, which defines the inspection number n *),ˆ( n  is 

such a strategy (decision function) for which required reliability R is provided. 

 

Fig. 2.1. The value of w= )ˆ(),( 0fpEw   as function of )( CTE  for three design versions (three different 

expected values of ,    ( ),Q E Q  and corresponding random fatigue crack growth example sets. 

2.4. Exponential approximation of fatigue crack growth function 

The following approximations are used usually [2,3] for the function of fatigue crack 

propagation: 

 
1/

( ) (0) / 1 ( (0)) exp( (log(1 )) / )a t a a Qt Qt


        ,if 0 , (2.5) 

 

or 

)exp()( Qtta  , if 0 ,  (2.6) 
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where )(ta  is fatigue crack size at time t  (the number of flights); (0)a  , , Q are 

fatigue crack growth model (FCGM) parameters,  =

. Parameter  is a so called 

Equivalent Initial Flow Size (EIFS) [2,3]; depends on material characteristics, technology 

and structure, but Q depends also on the loading mode. Observations of 10 fatigue cracks 

discovered during full-scale fatigue tests of some aircraft are shown in Fig.2.2. 

 

Fig. 2.2. Observations of 10 fatigue cracks discovered during full-scale fatigue tests of some aircraft. 


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Fig.2.3. Example of fatigue crack growth model (FCGM) parameters estimates 

Usually we suppose that all structural significant items (SSI) have the same level of stress. 

This assumption allows us to consider these fatigue cracks as observations of the same 

random process and corresponding vector-parameter (of fatigue crack) estimates, ˆˆ( , )Q , as 

observations of the random vector with the same c.d.f.. We should know this c.d.f. for 

modeling of result of fatigue cracks inspection. It is very difficult for three dimension vector 

(, , Q). So we consider only the case of exponential fatigue crack (equation (2.6)). 

For this case, where 0 , we have 

Qtta  )log())(log(   or xy 10   , (2.7a) 

where ))(log( tay  , )log(0   , Q1 , x t . 

Estimations of parameters 0 , 1  can be easily obtained by the use of regression analysis. 

The results of the processing of 8 fatigue crack growth observations are given in table 2.1 

[4,5]. In fact the growth of 10 fatigue cracks was examined but two of them were considered 

as too specific and they were not taken into account. 

In [2,3] there are also the results of fatigue test of specimens with fixed initial flow size d. 

So in this case we should estimate only Q. We have equations: 

log( ( ) / )a t Qt  , or xy 1 ,  (2.7b) 

where log( ( ) / )y a t  , Q1 , tx  . 

Estimate of Q again can be easily obtained by the use of regression analysis. For example, 

the results of test of 7475-T7351 aluminium specimens under F-16 fighter 400 hour block 

spectrum with maximum stress of 34ksi have been analysed statistically and presented in 

Crack N 75 y = 0.0001862x - 1.2513350

R
2
 = 0.9985112
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[2,3]. Two types of specimens were used: WPF – no loads transfer, XWPF – 15% of loads 

transfer. 

It is worth to notice that the mean and standard deviation of log(Q) estimates by the values 

-8.58733, 0.1557, which are given in table 2.1, are very close to the estimates given in table 

2.2 for WPF specimens. 

Table 2.1 Airframe fatigue crack parameter estimates 

Crack # log( ) Q log(Q) 

 0  1    

75 -1.2513 0.000186 -8.58976388 

77 -1.8768 0.000195 -8.542511 

78 -1.2445 0.000161 -8.73410619 

92 -1.697 0.00022 -8.42188301 

93 -1.5102 0.000207 -8.48279176 

112 -2.5329 0.000228 -8.38616493 

116 -0.6479 0.000154 -8.77855796 

129 -1.4226 0.000157 -8.75926475 

Mean -1.5229 0.0001885 -8.58688044 

StdDev. 0.548084 2.89877E-05 0.155128668 

Corr.coeff. of log(alfa) and log(Q) = -0.794078505 

 

 

Table 2.2. Fatigue crack parameter estimates for specimens WPF and XWPF 

Specimens 

(sample size) 
Mean Q ( 310

) 

Coeff. of 

variation 

log(Q) 

)log(Q  )log(Q  

WPF (33) 0.273 16.86 % - 8.219 0.1552 

XWPF (37) 0.3725 21.57 % - 7.919 0.2197 

 

Despite of all the simplicity, the equation (2.6) gives us rather comprehensible result in the 

range of observation  cd TT , , where Td is a time when the crack becomes detectable and Tc is 

the time when the crack reaches its critical size. We have 

(log log ) / /d d dT a Q C Q   ,  (2.8) 

(log log ) / /c c cT a Q C Q   ,  (2.9) 

where da  is a crack size, when the probability to discover it is equal to unit, ac is a crack 

size, which corresponds to the minimum residual strength of an aircraft component allowed 

by special design regulation. 

2.5. Failure probability calculation using Monte Carlo method 

So let us define failure as the situation, when we were unable to discover crack of the size 

critaaa det , or, in other words, if there were no inspections performed in [Td; Tc] time 

interval and c SLT t . As an example, you can see three such missed cracks in Figure 2.4 – no 

inspections were performed between time moments Td and Tc for those cracks. 



Nomination of Specified Life and Inspection Program for Fatigue-Prone Airframe 

 28 

 

Figure 2.4. Demonstration of missed cracks. 

Our approach is visually presented in 2.5. The beginning of the horizontal bar represents 

time moment Td while the end of the bar – time moment Tc. Black bars represent missed 

cracks and are marked with the exclamation marks. Using equations (2.8) and (2.9) we can 

make modeling random values dT  and cT . 

 

Figure 2.5. Defining the failure probability. 
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If the number of cracks observed is sufficiently big we could accept the part of missed 

cracks among all the cracks in the series as the estimate of probability of failure for a 

particular inspection program: 

ˆ lim
totaltotal

missed
f f

NN
total

N
P P

N

 
   

 
 

where Nmissed is the number of missed cracks and Ntotal is the total numbers of cracks, i.e. 

Ntotal = Nmissed + Ndiscovered. 

Using Monte Carlo method we can take into account a so called ―human factor‖. In general 

case it can be assumed that if inspection takes place within an interval ],[ cd TT  then fatigue 

crack will be detected with probability w. If there will be r inspections during this interval 

then the probability of failure (the fatigue crack will not be discovered) is equal to 
rw)1(  . 

The value of r depends on the interval ],[ cd TT  and on inspection interval d. We suppose that 

every i -th aircraft, 1,2,...,i N , N =Ntotal, can be characterized by interval icd TT ],[ . The 

corresponding value of fatigue failure probability for fixed inspection number n  for specific 

aircraft is 

( ) (1 ) ,ir

fip n w   1,2,...,i N . 

Then we can calculate the mean value of failure probability as, for example, a function of 

inspection number, n , (now it is supposed that all inspection intervals are equal) 

ˆ ( ) ( ) /
N

f fi

i

p n p n N  

2.6. Equations for failure probability calculation 

Let us denote logX Q  and   log log logc cY C a   . From the analysis of the 

fatigue test data it can be assumed, that the logarithm of time required the crack to grow to its 

critical size (logarithm of durability) is distributed normally. It comes from the additive 

property of the normal distribution that log log logc cT C Q   could be normally distributed 

either if both log cC  and logQ  ( log logc cC a   ) are normally distributed (i.e. 

2log ~ ( , )X XX Q N   , 2log ~ ( , )c Y YY C N   ) (with some coefficient of correlation r ), or 

if one of them is normally distributed while another one is constant. In Figure 2.6 these two 

cases are called one- and two-parametric models. 

 

Figure 2.6. One- and two-parametric crack growth modelling (LQ=ln(Q)). 
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The particular inspection program is defined by sequence of inspection time moments, 

),...,,( 21 ntttt  , where ti is time moment of ith inspection, i=1,2,…,n, n is inspection number, 

1nt SLt . For calculation of the failure probability for this inspection program we have to 

sum up all failure probabilities in all intervals: 







1

1

n

i

if qp , (2.10 ) 

where 

1( )i i d c iq P t T T t   
1

d c
i i

C C
P t t

Q Q



    

 
. 

If, in a simplest case, we assume that Cc and Cd are some constants, c dC C , then 

1

1

0,   if ,

,   if ,

c
i i

d

i

c
i i i

d

C
t t

C
q

C
q t t

C











 
 


  (2.11) 

where for normal distribution of random variable logX Q  

1

( )c d
i

i i

C C
q P Q

t t





   = 
   1 0 0

1 1

ln lnd i c iC t C t 

 


    

    
   

.  (2.12) 

For two parametric model, assuming normal distribution of logX Q and log cY C , we 

should take into account that 

log( ) log( ) log( / )c d c d c dC C a a a a      , 

where   is some constant. Then 

iq  1log log log log( ) logc i c iP C t Q C t         






 
 





Y

Y
i

y
dyg





ln

)( , 

where
    1log log log

( ) max 0,

y

i X y i X y

i

X y X y

e t y t
g y

  

 



       
          

, 

 Y

Y

X
XyX yr 




  , 

21 rXyX  . 

Here we suppose, that parameters rYX and,  depend on technology, which does not 

change (for a new aircraft), and these parameters can be estimated using information of 

previous designs. We suppose that they are fixed and they are known values. Then unknown 

parameter,  , has only two components:  = ( X , Y ). 

The example of the linear regression analysis estimates of Q and   is shown in Fig. 2.3. 

(in logarithm scale : log( ( )) log( )a t Qt   ). The observation of only one fatigue crack  was 

used for this estimation. Using these estimates and known ac we can get estimates of X  and 

Y : X̂ is just equal to log( )Q , Y̂ is equal to log( )cC , where log( ) log( )c cC a   . In the 
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following calculation the vector ( X , Y , r) was considered as some constant. In fact, the 

corresponding values were taken from table 2.1. 

2.7. Aircraft failure probability calculation using Markov chain theory 

2.7.1. Failure probability calculation for fixed inspection program 

To be able to use the theory of Markov chains the inspection program is presented as a 

process of several states: first 1n  states represent aircraft service in the appropriate interval 

between two consequent inspections, while three additional states represent aircraft 

withdrawal from the service due to 

the successful end of service when the specified life period is over, 

due to fatigue failure and 

due to discovery of a crack: 

1

n 2

n 3

  aircraft service time  is in the inspection interval, ( , ],  1,2, ,( 1);

  aircraft has successfully reached  without cracks (SL-state);

  fatigue failure, i.e. a crack

i i i

SL

t  i th t t t i n

t







     

 

 

n 4

 has been missed (FF-state);

  crack is detected during the inspection (CD-state). 

Let the probability of crack detection during the inspection number i be denoted as iv ; 

probability of failure in service time interval 1( , ]i it t t , as iq ; and probability of successful 

service continuation as iu . Since these three cases form a complete set 1 iii qvu . In our 

model we also assume that an aircraft is discarded from service at SLt  even if there are no 

cracks discovered by the time moment of SLt . Inspection at the end of (n+1)-th interval (in 

state En+1 ) does not change the reliability but we do it in order to know the state of aircraft 

(whether there is a fatigue crack or there is no fatigue crack). The transition probability matrix 

of this process can be composed as it is presented in Fig.2.7. 

 E1 E2 E3 … En-1 En En+1 
En+2 

(SL) 

En+3 

(FF) 

En+4 

(CD) 

E1 0 u1 0 … 0 0 0 0 q1 v1 

E2 0 0 u2 … 0 0 0 0 q2 v2 

E3 0 0 0 … 0 0 0 0 q3 v3 

… … … … … … … … … … … 

En-1 0 0 0 … 0 un-1 0 0 qn-1 vn-1 

En 0 0 0 … 0 0 un 0 qn vn 

En+1 0 0 0 … 0 0 0 un+1 qn+1 vn+1 

En+2 

(SL) 
0 0 0 … 0 0 0 1 0 0 

En+3 

(FF) 
0 0 0 … 0 0 0 0 1 0 
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En+4 

(CD) 
0 0 0 … 0 0 0 0 0 1 

Fig.2.7. The transition probability matrix. 

The state Ei itself can be reached only if until time ti-1 there was not failure and there was 

not fatigue crack detection during inspection at time ti-1. But in fact it is enough to have just 

the latter event. The probability of the event equal to 

 )( 1 id tTP   

The transition to the state Ei+1 from Ei is possible only if there was not fatigue crack 

detection at time t i. 

As the event is included in previous event 

 }{}{ 1 idid tTtT   

then the conditional probability 

1 1( | ) ( / ) / ( / )i d i d i d i d iu P T t T t P Q C t P Q C t         (2.13) 

Under the considered condition the fatigue failure in the interval (ti-1,ti) can occur if only 

simultaneously two events occur: a fatigue crack is not discovered at (i-1)-th inspection and 

fatigue life Tc is less than ti. 

The product of the events is included in the event {Td > ti-1}. So 

1 1

1

1
1

1

( | )

0, / ,

( / / )
, / ,

( / )

i i d c i i

i c d i

c i d i
i c d i

d i

q P t T T t Td t

if t C C t

P C t Q C t
if t C C t

P Q C t

 








     




  


 
  (2.14) 

1i i iv u q      

Here we suppose that cC  and dC  are constants (one parameter model) but random variable 

)ln(Q  has normal distribution ),( 2
10 N . Then conditional probabilities ui, qi are defined by 

equations 

1/  iii aau , 1 1max(0,( ) / )i i i iq a b a   , (2.15) 

where   )/)/ln( 10  idi tCa ,   )/)/ln( 10  ici tCb , (.) is distribution function of 

standard normal variable. It is clear that 

iii quv 1 . (2.16) 

It is necessary to mention, that if we consider a park of N aircraft of the same type and if 

we are interested to know the probabilities of the failure of at least one aircraft or crack 

discovery in at least one aircraft of the park then instead of qi and ui we should use 

N
iNi qq )1(1,   and 

N
iNi uu )(,  . (2.17) 

Let us denote the corresponding matrix by symbol NP . 

The structure of considered matrices can be described in the following way: 
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Q R 

0 I 

Fig. 2.8. Sub-matrices of transition probabilities matrix. 

where I is a matrix of identity corresponding to absorbing states, 0  is a matrix of zeros. 

Then matrix of probabilities of absorbing in different absorbing states for different initial 

transient states is defined by formula 

 
1

B I Q R


  .  (2.18) 

 

 
En+2 

(SL) 

En+3 

(FF) 

En+4 

(CD) 

E1    

E2    

E3    

…    

En-1    

En    

En+1    

Fig. 2.9. The structure of the matrix B 

The structure of the matrix B is shown in Fig. 2.9. The first row of the matrix B defines the 

probabilities of absorption in states SL, FF, CD, particularly item (1,2)B  defines the failure 

probability for new aircraft which begins operation within the first interval. For the park of 

aircraft, (1,2)NB  is a probability of at least one aircraft failure in fleet of N aircraft. The 

following rows of the matrix B and BN define the same probabilities for different initial states: 

for aircraft which begins operation in different time intervals. So, for example, the failure 

probability of at least one aircraft in fleet of N aircraft is equal to 

f Np aB b ,  (2.19) 

where vector row (1,0,...,0)a  means that all aircraft begin operation within the first 

interval (state 1E ), vector column (0,1,0) 'b  . 

2.7.2. Failure probability calculation for specific inspection program control 

Markov Chains theory is especially attractive to model various scenarios of switching to 

the alternative inspection programs when the certain event takes place. For example, assume 

in the fleet at the beginning there were N aircraft. When the first crack is discovered in the 

fleet we can make repair of corresponding aircraft and change the frequency of inspections of 

the remaining (N-1) aircraft using for our decision not only initial but and also additional 

information on the discovered crack. Here we consider a specific decision: after the fatigue 
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crack was discovered we double the remaining inspection number but in the following service 

time we do not change the inspection program for any aircraft. 

For example, at first we have only one inspection and decide to decrease interval between 

inspections twice if a fatigue crack is discovered during an inspection, and continue service of 

the remaining (N-1) aircraft up to a specified life. We suppose that the aircraft with 

discovered fatigue crack will be repaired and then it will reach specified life without any 

fatigue crack. For this simple example the remaining interval is devided into two parts and 

one additional inspection will be required. Ordinary one-inspection strategy state transition 

diagram is shown in Fig. 2.10. 
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Figure 2.10. Ordinary one-inspection strategy state transition diagram 

The decision to double inspection number (or, which is the same, decrease the inspection 

interval twice) graphically looks as it is shown in Fig.2.11 
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Fig. 2.11. Switching to doubled inspection number program (initial one-inspection model) 

As you can see, this decision is equivalent to continuation of service in accordance with 

inspection plan based on 3 inspections. Thus, the resulting graph will look as it's shown in 

Fig. 2.12. 
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Fig. 2.12. Switching to the double inspection frequency state transition diagram. 

For the purpose of fatigue failure probability calculation the latter can be reduced into the 

state transition diagram shown on Figure 2.13. 
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Figure 2.13. Switching to the double inspection frequency reduced state transition diagram (initially one-

inspection model). 

Similar transformations for initial number of inspections equal to 2 are shown in Fig. 2.14, 

…, 2.17 below. 
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Fig. 2.14. Ordinary two-inspections strategy state transition diagram. 
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Fig. 2.15. Switching to double inspection frequency for initial two-inspection program. 

E
3

E
1

E
SL

E
2

E
CD

E
FF

EE
3

EE
4

EE
5

EE
6

u
1

u
2

u
3

q
2q

1
q
3

qq
3

qq
4
qq

5
qq

6

uu3 uu4 uu5 uu6

v
1

v
2 v

3

vv3 vv
4 vv

5 vv
6

 

Fig. 2.16. Switching to the double inspection frequency state transition diagram for initial two-inspection 

program. 
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Fig. 2.17. Switching to the double inspection frequency reduced state transition diagram for initial two-

inspection program 

For failure probability calculation it is convenient to introduce new ―quasi-absorbing 

states‖ CD1 and CD2 (see Fig.2.17), corresponding to states EE3 and EE5 (see Fig. 2.16) from 

the initial matrix. The states CD1, CD2 are quasi-absorbing states corresponding to 

―absorption‖ of ―initial process‖ at the inspection 1 and inspection 2. These are the points of 
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beginning of ―new‖ process with different inspection program. Corresponding transition 

probability matrix is shown in Fig. 2.19. 

 

 E1 E2 E3 
E4 

(SL) 

E5 

(FF) 

E6 

(CD) 

E7 

(CD 1) 

E8 

(CD 2) 

E1 0 u1,N 0 0 q1,N 0 v1,N 

 

0 

E2 0 0 u2,N 0 q2,N 0 0 

 

v2,N 

E3 0 0 0 u3,N q3,N v3,N 0 

 

0 

E4 

(SL) 

0 0 0 1 0 0 0 

 

0 

E5 

(FF) 
0 0 0 0 1 0 0 

 

0 

E6 

(CD) 
0 0 0 0 0 1 0 

 

0 

E7 

(CD1) 

0 0 0 0 0 0 1 

 

0 

E8 

(CD2) 
0 0 0 0 0 0 0 

 

1 

Fig.2.18. The matrix 
0IP corresponding to the Fig.2.17 and N aircraft in service. 

As in the previous case the matrix of probabilities of absorbing in different absorbing states 

for different initial transient states is defined by formula (2.18). 

It is obvious that the random inspection program ( )IP   has in fact three possible 

realizations: 

 

 
 

0

1 2

1 1
1 2 22

2 1 1
1 2 1 2 22 2

: , , ;

: , , ( ), ;

: , ( ), , ( ), .

SL

SL SL

SL SL

IP t t t

IP t t t t t

IP t t t t t t t

 

   

 

The probability of each scenario to be realized depends on the probability to discover a 

crack during the inspections of the basic scenario. Probability of 1IP  is equal to probability of 

absorption in state CD1, ( 1)p CD . Probability of 2IP  is equal to probability of absorption in 

state CD2, ( 2)p CD . Probability of 0IP ,
0( )p IP , is equal to 1- ( 1)p CD - ( 2)p CD . For every 

scenario, using already described approach we can calculate the probability of failure and then 

to calculate total probability of failure of at least one aircraft in a fleet: 
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0

0 1 1

1

0 2 1

1

(1,2)

(1,4) (1 (1 (2,2)) )

(1,5) (1 (1 (3,2)) )

f N

N

N

N

N

p B IP

B IP B IP

B IP B IP





 

  

  

, 

where ( , )r

NB IP i j is ( ,i j ) –th element of matrix B for rIP  inspection program, 1,2,3r  , 

for fleet with N aircraft. State transition diagram for inspection program 0IP  is shown in Fig. 

2.10. The structure of the matrix 0

NB IP  is shown in Fig. 2.19. 
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Fig. 2.19. Structure of the matrix 
0

NB IP . 

In general case there are n  inspections in the initial inspection program and there are         

( 1n ) transient and ( n +3) absorbing states (initial absorbing states (SL, FF and CD) and n 

additional ―quasi-absorbing‖ states in corresponding matrix of transition probabilities, see 

Fig. 2.20. 
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Fig. 2.20. Modified transition probability matrix 

The optimal changes of initial inspection program can be based on the analysis of new 

information realised after discovering the fatigue crack. 

Thus, there are n  possibilities to switch to the new inspection program, generating a set of 

( 1n ) realizations (or scenarios) of the random inspection program, {
0 1 2, , ,..., nIP IP IP IP }. 

Let  0 1 2, , , nb b b b b  be a vector of corresponding probabilities: iv  is a probability to 

discover a crack during thi  inspection in accordance with initial program, 1, ,i n , 0b  is 

probability of realization of initial inspection program 0IP (it is a probability of non-

discovery of any crack at any first n inspections or probability to be absorbed in states SL, FF 

or CD in accordance with the initial inspection program) 

0(1,3 )i Nb B IP i  , 1, ,i n , 0

1

1
n

i

i

b b


  . 

The total failure probability of the random inspection program can be presented as a sum 

of at least one failure probability of all scenarios multiplied by the probabilities of these 

scenarios to realize: 

 1

0

1

(1 (1 ) )
n

N

f f i fi

i

p p b p 



     , 

where 0fp  is a failure probability of at least one aircraft in accordance with initial 

inspection program; fip , 1, ,i n , is a probability of failure of aircraft with the inspection 

program chosen after crack discovery at i-th inspection (in accordance with initial inspection 

program). The new inspection program is implemented for each of (N-1) aircraft. 
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2.8. Numerical examples 

Here we limit ourselves by calculation of fatigue failure probability using only equations 

2.10,…,2.12 for two cases: 

 Random variable log( )Q  has normal distribution 2

0 1( , )X XN    but values cC and dC  

are constants (in fact we get the estimate 0
ˆ

X of the parameter 0 (log( ))X E Q   and 

the values cC and dC  using equation (2.8), (2.9), the results are shown in Fig. 2.3 

and specific values of da  and ca ). There are N=100 aircraft in service. 

 Random variable log( )cC  has also normal distribution 2

0 1( , )Y YN   . Vector               

( 1 1, ,X Y r  ) is supposed to be known. There are N=1 aircraft in service. 

It is useful to note that similar calculations, but using theory of Markov chains, should be 

made in case of development of ―dynamic‖ inspection program, which was discussed in the 

end of the section 2.7 (but here we do not consider the example of this type). 

2.8.1. Random variable log( )Q  has normal distribution 2

0 1( , )X XN    but values cC and dC  

are constants. There are N=100 aircraft in service. 

Example of the calculations of 

 the function ),( w , 

 the probability of redesign, 

 the reliability without inspection 

as function of 100 /)ˆ(    and corresponding initial data are shown in Fig.2.21. Let us 

remind that 0̂  can be considered as an estimate of speed of fatigue crack growth (in log-

scale). 

In considered example we have event 0
ˆ   if 

 for 1 =0.0001 (in this case probability of at least one failure in park 

11 (1 )N    is approximately equal to 1 N=0.01) the required number of 

inspections ),ˆ(ˆ nn   is more than 3 or 

 value of ˆ /c ct C Q , estimate of mean cT , lesser than SLt =40000 (flights). 

Because of the limitation of specific features of plot-command of MATLAB in Fig.2.21 

the following notations are used: EsTc instead of estimate of )( cTE , the ―th0‖ instead of 0 , 

Esth0 instead of 0̂ , the th1 and theta1 instead of 1 ); NMK trials is the number of Monte 

Carlo trials; Pr is redesign probability, WinspR is reliability without inspections. The maximum 

of the function )ˆ(),( 0fpEw    for 1  N=0.01 is equal to 0.0014. (It is worth to 

mention, that the maximum of this function exists because we make redesign of a―weak‖ 

structural significant item (when 0 = (log( ))E Q , ―the rate‖ of fatigue crack growth (in 

logarithm scale), is too high) and, on the other hand, we do not need any inspection if 

structural significant item is too strong (when 0  is too small) ). So if required reliability (of 

one aircraft) is equal to 0.9986 then for the considered example for 1 N =0.01 we should 

choose the inspection number ),ˆ(ˆ nn  =2. 
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Fig. 2.21. Function )ˆ(),( 0fpEw   for 1 =0.0001 (notation are explained in text). 

2.8.2. Random variable log( )cC  also has normal distribution 2

0 1( , )Y YN   . Vector               

( 1 1, ,X Y r  ) is supposed to be known. There are N=1 aircraft in service. 

Around the point ( 0
ˆ

X , 0
ˆ

Y ) we choose some area in plane { 0 0,X Y  }, where 

0 (log( ))X E Q  , 0 (log( ))Y cE C  (it is supposed that Q  and cC  are found during processing 

test data set). Using Monte Carlo method for modelling of other possible estimates or we 

make calculation for some set of  =( 0 0,X Y  ) in order to get the surface )ˆ(),( 0fpEw   . 

In the Fig. 2.22 and Fig.2.23 the results of modelling for  =0.001 and 0.005 respectively are 

presented (in this examples we use inspection program with special choice of 1t  and evenly 

distributed time moments between 1t  and SLt ; the time moment of the first inspection is 

defined as 
XSLtt 11 5  ; the detectable and critical crack sizes are mmad 20 , 

mmac 84.237 ). For these examples we assume that only one full-scale test was performed 

and we have data on just one single crack growth (crack #75 in Fig. 2.2): 

905525.1ln,588527.8ln  cCQ ). Assume, that the probability of failure should not exceed 

0.0326 and we will return all projects for redesign if required number of inspections exceeds 

Rn =5. If we perform modelling using various values of failure probability   we will get a set 

of ―surfaces‖ )ˆ(),( 0fpEw   . 
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Fig. 2.22. Function )ˆ(),( 0fpEw   for  =0.001. 

 

Fig. 2.23. Function )ˆ(),( 0fpEw   for  =0.005. 

This time maximum values of the function ),( w , ),(max)(* 


ww  , are equal to 

0.030990 and 0.033874 for  =0.001 and 0.005 correspondingly. Similar calculation gives 

),(max)(* 


ww  = 0.032593 for  =0.003. 
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Fig. 2.24. Demonstration of non-monotonous nature of ),( np f  . 

 

Fig. 2.25. Numerical example: The function )(* w . 

Complex form of the function ),( w  is defined by the fact that ),( np f   might be non-

monotonous function of n . For relatively small n , ),( np f   can grow with the increase of n . 

The reason of such ―strange‖ effect comes from the fact of inspection time moments 

relocation with the change of n . Example in Fig. 2.24 demonstrates how a crack, discoverable 

with a single-inspection program, is missed if an inspection program with two inspections is 

applied. The function )(* w is shown in Fig.2.25. In our example we see, that to ensure the 

probability of failure not exceeding *w = 0.0326 at the choice of *n , the required number of 
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inspections for our inspection program (using formula : *n =min(n: ),( np f  < )) we have to 

use the value  = * =0.003 (it is worth to mention that *w is ten times higher than * !). 

 

Fig. 2.26. Numerical example: determining required number of inspections. 

The required number of inspections in our example is *n =5 (the same data give the 

required number of inspections n =4 for  =0.0326). 

2.9. Reliability of airline 

Here we consider the problem of the reliability of airlines and its connection with 

reliability of fatigue-prone aircraft. As it has already been mentioned, the reliability of a 

fatigue-prone aircraft (AC) and airline (AL) operations can be ensured by the implementation 

of a specific inspection program, which can be planned using full scale fatigue test data and 

the theory of Markov Chains (MC) and a Semi-Markov process (SMP). Remeber, that the 

process of the operation of AC is considered as absorbing MC with ( 4)n   states. The states 

1 2 1, ,..., nE E E 
 correspond to AC operation in time intervals 

0 1 1 2[ , ),[ , ),...,[ , )n SLt t t t t t , where n  is 

an inspection number, SLt is specified life (SL), i. e. AC retirement time. States 
2nE 
, 

3nE 
, 

and 
4nE 
 are absorbing states: AC is withdrawn from service when the SL is reached, fatigue 

failure (FF) or fatigue crack detection (CD) take place. 

In the corresponding matrix for the operation process of AL the states 
2nE 
, 

3nE 
 and 

4nE 
 

are not absorbing, but correspond to the return of the MC to state 
1E (AL operation returns to 

the first interval). In the matrix of transition probabilities of AC,
ACP , there are three units in 

the three last lines in the diagonal, but for corresponding lines in the matrix for AL, 
ALP , the 

units are in the first column, corresponding to state 
1E (see Fig.2.27). Using 

ACP  we can get 

the probability of FF of AC and cumulative distribution function, mean and variance of AC 

life, and the same characteristics under the condition of absorption in a specific absorbing 

state. Using 
ALP  we can get the stationary probabilities of AL operation 

 1 1 2 4,..., , ,...,n n n       and the intensity of FF, 
F , i.e. the number of FF in one time unit. It 

can be calculated also using the theory of Semi-Markov Process (SMP) with rewards [7,8]. 

Using this theory we can calculate also the gain of the process. The problem of inspection 

planning is the choice of the sequence  1 2, ,..., ,n SLt t t t (in the case of equal inspection intervals 
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and fixed 
SLt , choice of n ) corresponding to the maximum gain, taking into account the 

limitations of the intensity of fatigue failure of AL or AC fatigue failure probability. 

2.9.1. Formal setting of the problem 

For the formal setting of the problem we should define the matrix of transition probabilities 

of MC and the matrix of rewards for SMP. 

This matrix is very similar to the transition probability matrix of MC corresponding to the 

process of operation of one aircraft but now the process is not absorbed or stopped in states 

SL, FF or CD. If these states are reached, the process restarts from the initial state 1E . This 

means that an  new aircraft is acquired. The modified transition probability matrix,
ALP , is 

shown in Fig.2.27. An example of the state transition diagram is shown in Fig.2.28. 

 

Fig. 2.27. The transition probability matrix for stationary AL operation process. 

where probabilities , , ,    1,..., 1,i i iv q u i n   are the same as in section 4 (probability of 

detection of fatigue crack during inspection at time point it ; probability of fatigue failure in 

interval 1( , )i it t ; probability of absence of mentioned events). 

 

Fig. 2.28. State transition diagram for stationary AL operation process with three inspections. 

Next we will consider economic analysis. The theory of Semi-Markov process with 

rewards is usually used to find the solution of similar problems [7,8]. A reward structure is 

described by the reward matrix R, the component of which, ijr , describes the reward, 
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connected with the transition from state iE  to state jE ; here i,j=1, 2,…, n+4. Let us define 

the reward, related to a successful transition from one operation interval to the following one 

by value ( )a n ; the reward related to transitions to state CD (or 4nE  ) from any state 

1 2 1, ,..., nE E E 
- by value b, to state FF (or 3nE  ) – by value c; and from states SL, FF, CD to 

state 1E (acquisition of new AC) – by value d. 

Let us calculate the airline gain: 

4

1

( ) ( ),
n

i i

i

g n g n





  (2.20) 

where ),...,( 41  n  is the vector of stationary probabilities, which is defined by 

the equation system 

; (2.21) 

( ) ,    1,... 1,
( )

,    2,..., 4

i i i

i

a n u b q c v i n
g n

d i n n

      
 

  
;  (2.22) 

, ,i i iu q v , 1,..., 1i n  , are probabilities of successful transitions from one to the following 

interval, to 
3nE 
 and 

4nE 
 states correspondingly; 

0( ) ( ) ,  insp SLa n a n d t  where
0 1( ) / ( 1)SLa n a t n  , - is the reward, related to successful 

transition from one operation interval to the following one, and insp SLd t is the cost of one 

inspection (negative value) which is supposed to be proportional to 
SLt  if it is supposed that 

all intervals are equal, 
1a defines the reward of operation in one time unit (one hour or one 

flight); the dimension of ( )a n should coincide with dimensions of 
SLt ; 

1 0( )b b a n  and 1 0( )c c a n  are the rewards related to transitions from any state E1,…,En+1 

to state En+3 (FF takes place) and En+4 (CD takes place) which are supposed to be 

proportional to 
0a ;

1 SLd d t is negative reward, the absolute value of which is the cost of new 

aircraft after events SL, FF or CD and transition to 1E  takes place (it is supposed to be 

proportional to SLt ). 

If ( ) 1a n b c   , 0d   and time transition to state 1E  are equal to zero, then 

( ) / ( )tj j jg n g n   defines the part of time which SMP spends in state , 1,..., 1jE j n  ; 

( ) /j jL g n   defines the mean return time for state jE ; specifically, 
1L  is the mean time of 

renewal of AL operation in the first interval, 3nL   is the mean time between FF; so 

31 /F nL   is the intensity of fatigue failure. It should be remembered that the same value 

can be obtained using the theory of absorbing MC. This value is also equal to the ratio of 

aircraft failure probability to the mean life of new aircraft. 

The problem is to maximize gain, ( )g n , under limitations of probability of aircraft fatigue 

failure, fp , or AL intensity of fatigue failure F . In the following numerical example we 

consider the last version of the problem. 

4

1

,    1
n

i

i

P  




 
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2.9.2. Choice of inspection number if parameter of fatigue crack growth trajectory is 

known. Numerical example 

Usually in Aircraft Design Bureau the sequence of inspection time moments, (
1 ,..., nt t ), is 

defined by equation 
1 1( 1)( ) /i SLt t i t t n    , 1,2,..., 1i n  , with specific choice of 

1t . Then 

we should choose only    and n . To simplify the numerical example we suppose that all 

intervals of operation are equal. In Fig.2.29 and 2.30 we see numerical examples of 

calculations of gain, g, and of intensity of fatigue failure, F , as functions of n. 

The procedure of choice of n is the following. First we calculate ( )g n  and choose the 

number of n, corresponding to the maximum of gain g:  argmaxgn g n . Then we calculate 

expected value of intensity of fatigue failure, ( )F n , which is a function of n, and choose n  

in such a way that for any large inspection number n n  the function ( )F n  will be equal or 

less than *
F , which is the value intensity of fatigue failure, allowed by specific aviation 

regulation 

 *min : ( ) ,   for all F Fn n n n n     . And finally we should choose max( , )gn n n . 

Consider the numerical example of calculation of gain, g, and intensity of fatigue failure, 

F , for n=2. In this example we will use the same exponential fatigue crack growth model as 

in the previous section: ( ) exp( )a t Qt . But this time we consider the simplest case when 

QX ln  has normal distribution, 2

0 1( , )N   , with mean value 0  and standard deviation 1  

and let the initial, = (0)a , detectable, da , and critical, Ca , crack sizes be known constants. 

Let us have the following initial data: 
SLt =40 000, 

0 = -8.5885, 
1 =0,34600, 0a =0.2181; 

ca = 102, da =20, 
1 1a  , 

1 0.05b  , 
1 0.05c   , 

1 0.3d   , 0.0001inspd   . 

Using equations (2.15-2.16) we have  

 

ALP = 

0 0.94 0 0 0.00638 0.054

0 0 0.347 0 0.269 0.385

0 0 0 0.16 0.242 0.597

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

 
 
 
 
 
 
 
 
 

 

 

Recall that in the corresponding matrix ACP  the first three lines are the same, but in the last 

three lines the units are placed diagonally. 

Using ALP  and equations (2.21) we have stationary distribution for the case when time unit 

is one step in MC:  = (3.06e-001, 2.88e-001, 9.97e-002, 1.60e-002, 1.04e-001, 1.87e-001). 

Let us define the matrix uqvP  with , ,i i iu q v  in every line for 1,..., 1i n  . In the considered 

example 
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uqvP = 

                

0.93958 0.00638 0.054037

0.34655 0.269000 0.384450

0.16030 0.242400 0.597300

 
 
 
  

 

Then (( ( , , ) ') ', , , ) 'uqvg P a b c d d d . In considered case g 1 896. 

If the time dimension unit is the inspection interval then the vector of return times for 

every state 

1 6( / ,..., / )t tL g g  =( 2.27, 2.41, 6.96, 4.34, 6.70, 3.72). 

Here [1;1;1;0;0;0]tg   is the mean airline gain if income is the time and the time unit is 

inspection interval. It is useful to note that 
tg g  if  1a b c   , 0d  . In considered 

case tg = 0.694. 

The return time of failure (to state FF), FL , is equal to corresponding (n+3)-th component 

of vector L : ( 3)FL L n  =6.7. The time length of one interval 
1 / ( 1)SLt t n  =13 333. 

The intensity of falure in t-time unit ( flight or flight hour) 
1(1 / ) /F FL t  = 0.0000112. 

It is useful to note that the same values can be obtained using the theory of absorbing MC. 

For this case we calculate the matrix of absorption 

B =

0.052196 0.33806 0.60975

    0.055552 0.35300 0.59145

0.160300 0.24240 0.59730

 
 
 
  

 

Then we take from it the probability of absorption of new aircraft in state FF, fp =0.338, 

calculate the mean time to absorption of new aircraft,
1 1 1T t  (where 1 =2.27 is the mean time 

to absorption if the time is measured by the number of inspection intervals; its value coincides 

with (1)L !) and calculate the ratio 1/fp T =0.0000112. 

We see in Fig. 2.29 and 2.30 the results of similar calculations for n=1,…,9 after specific 

choice of designed failure intensity F FD  . Using this results we can make the choice of n 

(see section 2.9.3). 



Nomination of Specified Life and Inspection Program for Fatigue-Prone Airframe 

 49 

 

Fig. 2.29. Gain as function of inspection number. 

 

Fig. 2.30. Intensity of failure as function of inspection number. 

2.9.3. Minimax choice of inspection number 

For the considered strategy for the choice of inspection number the real intensity of failure 

is a function of   and designed allowed value of intensity of fatigue failure, FD . But in fact 

we do not know   and we can only get some estimate of this parameter using test results, ̂ . 

So real intensity will be a random variable, ˆ( , )F FD   . We can limit the mean value of this 

function if again we take into account that really full-scale fatigue test is an approval test and 

redesign of airframe will be made (service of aircraft of tested design version of aircraft will 

not be allowed) if some requirement is not met (for example, if it appears, that estimate of 

mean time to failure, ˆˆ / exp( )C Ct C  , is too small or calculated required inspection number, 
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based on using ̂  instead of  , is too great). If full-scale fatigue test is approved and there is 

no necessity to make airframe redesign let us write 
0̂  , where 0  is some part of 

parameter space. Let us denote corresponding fatigue intensity function by  

0

0

0

ˆ ˆ( , ) if ,
ˆ( , , )

ˆ0               if  

F FD

F FD

   
  



 
  

  . 

In Fig. 2.31 we see an example of calculation of expected value of this function, ˆ( )FE  , 

where 
0

ˆ ˆ( , , )F F FD     ,  for different 0 . In order to better understand connection of 0  

and fatigue life in axis we see corresponding estimate of mean time to failure, 

0_ / exp( )C Cmean t C   (where, recall, log( / )C CC a  ). The other initial data are the same 

as in previous example. Additionally, we define, that there is event 
0̂   if 

0_ / exp( )C C R SLmean t C k t  . For Fig. 2.31 1Rk  , FD =0.000001. 

 

Fig. 2.31.Mean intensity of fatigue failure of airline as function of 0_ / exp( )C Cmean t C  . 

 

Fig. 2.32. Example of fatigue crack size as function of flight number (result of full scale fatigue test). 
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We see that there is maximum value of ˆ( )FE  because if design is too bad and test is not 

approved, then we redesign the airframe. But if it is too good then fatigue failure with a great 

probability does not take place before the specified life is reached. Maximum value of ˆ( )FE 

is equal to 1.6*10-6, it is in 1.6 time more than designed FD =0.000001. So we can use this 

value of FD  for calculation of inspection number only if allowed failure intensity 

* 0.0000016  . Suppose that the required reliability is equal to 0.0000016. 

In Fig. 2.32 we see an example of a fatigue crack, which was observed in full-scale fatigue 

test of some airframe. Using this crack data and regression analysis we can get estimates ̂ =-

8.5885. For these data we can make calculations of estimates of inspection intensity F and 

gain g  as a function of inspection number and, finally, can find required inspection number 

(see Fig. 2.29-2.30). In this example Ln = 6; 3;gn  max( , )gn n n = 6. 

So, this section presents a method, based on MC and SMP with rewards theory, to solve 

the problem of inspection planning corresponding to maximum airline gain while airline 

fatigue failure intensity is limited. If the parameters of fatigue crack growth exponential 

models are unknown, but there are results of approval full-scale fatigue test of corresponding 

airframe, then the minimax approach (see [8-12]) should be used. 
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Part 2. Statistical Analysis of Static Strength 
and Fatigue Life of Composite 
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3. Analysis of composite tensile strength 

3.1. Introduction 

There is significant dependence of static strength of a composite on the scatter of static 

strength of its components. It can be illustrated by the following example. Let us consider 

three parallel items with 10 N, 15 N and 30 N strength and identical stiffness. It may seem 

surprising that they will fail at the applied load of 30 N, as if the strength of every item is 

equal to 10 N. Why? 

The reason is that under 30 N load, at first the weakest item will fail because its strength is 

equal to 10 N. At the uniform distribution of total loads, its load is equal to 10 N also. Now 

the load acting on each intact item is equal to 15 N. So the second item, the strength of which 

is equal to the same value of 15 N, fails. Now the load for the last strongest item is equal to 30 

N. It fails also because its strength is just equal to this load. This process (―domino 

phenomenon‖) is shown in Fig.3.1. The same phenomenon takes place if element strengths 

are proportional to the terms of harmonic series: 1, ½, 1/3, …, 1/n, see Fig. 3.2. 

So we see that the composite strength dependence on the strength scatter of its constituents 

can be very significant. 

 

30 N  30 N  30 N 

        

 

30 N 

 

15 N 

 

10 N 

 

 

 

30 N 

 

15 N 

 

 

 

30 N 

        
30 N  30 N  30 N 

Fig. 3.1. This bundle of three parallel longitudinal items fails at the applied load of 30 N, as if the strength of 

every item is equal to 10 N. 
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Fig. 3.2. This bundle of n parallel longitudinal items fails at the applied load of 1 N, as if the strength of every 

item is equal to 1/n. 

A composite specimen for test of tensile strength can be considered as series system, every 

link of which is a parallel system, or more specifically, a bundle of Cn  longitudinal items 

(fibers or bundles) immersed into composite matrix (CM). We make an assumption that the 

CM is a composition of the matrix itself and all the layers with stacking different from the 

longitudinal one. We make an additional assumption also that only longitudinal items (LIs) 

carry the longitudinal load but the matrix only redistributes the loads after the failure of some 

longitudinal items. We can suppose that the composite is divided into Ln  parts (―links‖) of the 

same length, 1l . The total length of the composite specimen is equal to L = Ln 1l . It is 

supposed that the development of the process of fracture of a specimen takes place in one or 

in several of these parts. Let the process of monotonic tensile loading (i.e. the process of 

increase of the nominal stress in the specimen cross section (CS)) be described by an 

ascending (up to infinity) sequence ,...},...,,{ 21 txxx , and let ( )CiK t , 0 Ci CK n  , be the 

number of failures of LI in i-th link (CS) at the load tx  with Cn  initial number of LI. Then the 

strength of i-th CS 

* max( : ( ) 0)i t C CiX x n K t   ,  (3.1) 

but the ultimate strength of the specimen (which is the sequence of Ln CS) is 

*

1 1
min min max( : ( ) 0)

L L

i t C Ci
i n i n

X X x n K t
   

    .  (3.2) 
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Different assumptions about the distribution of strength of one link and a priori distribution 

of the number of initial (technological) defects compose a family of the distributions of 

ultimate composite tensile strength. 

3.1.1. Reliability of series systems with defects 

Let us consider the case 1Cn  , when test specimen can be considered as series system 

some links of which are defected. The probability distributions of strength proposed by 

Weibull for brittle materials have found numerous applications [1]. The Weibull distribution 

complies with one of the three asymptotic forms of extreme value distributions. It is a stable 

distribution of the smallest extreme value in that the strength of a chain of identical links has 

the same type of distribution as the strength of a link; only the distribution parameters change. 

This feature makes the Weibull distribution a convenient and natural means of characterising 

the scale effect of strength, i.e. the decrease of the strength with increase of the specimen size. 

The two-parameter Weibull distribution is apparently the most widely used distribution 

function for fiber tensile strength; the fiber fracture probability dependence on LI length is 

given by cumulative distribution function 

1

( ) 1 exp
L s

F s
l





 
       

  (3.3) 

where s  is the applied tensile stress, L denotes LI length, l1 is a normalizing parameter 

with length dimension,  and  stand for the shape and scale parameters respectively. There 

is a growing amount of experimental data suggesting that equation (3.3) might oversimplify 

the properties of fibers sampled randomly from a yarn – the shape parameter value 

determined from test results at a fixed gauge length is smaller than that obtained from average 

strength vs. fiber length data (see e.g. [2-6]). This phenomenon is analyzed in a great number 

of studies accompanied by extensive lists of references [7-14]. It has turned out that the better 

fitting of experimental data on probability paper is provided by the model originally 

suggested in [6,7]. According to this model, the c.d.f. of strength is described by formula 

1

( ) 1 exp
L s

F s
l

 



  
        

,  (3.4) 

Where  - is additional parameter. Distribution (3.4) {called the ―power-law‖ Weibull 

model (PW) contrary to the ―linear-law‖(LW) model defined by equation (3.3)} and its 

modifications (for example, a volume instead of length is employed to account for the scatter 

of fiber diameter) are being widely applied to describing experimental data. But a good fitting 

of experimental data does not ensure a reliable prediction of changes in c.d.f. with changing 

length of a specimen. 

3.1.2. Probability structure of series system with defected items 

As it has already been mentioned, here we consider a special case of Cn =1 and two types 

of links (with and without defects). Let us denote the random number of ―damaged‖ links by 

LK , 0 L LK n  , with strength c.d.f. ( )YF x  (we say that there are LK of Y-type links), and let 

us denote by ( )ZF x  the strength c.d.f. of ( L Ln K ) links without defects (we say they are Z-

type links). We suppose that the failure process of the considered system has two stages. In 

the first stage the process develops along the specimen and LK  links of Y-type appear. They 



Statistical Analysis of Static Strength and Fatigue Life of Composite 

 56 

can appear before loading in accordance with some a priori distribution, 

1 2 ( 1)( , ,..., )
LL L L L n     , where ( 1)Lk LP K k    , or during the process of loading, when 

the stress in LI exceeds a defect initiation stress with c.d.f. ( )KF x . Then the second stage 

takes place: the process of accumulation of elementary damages in crosswise direction up to 

specimen failure. Two levels of differences between LI with and without defects and three 

groups (levels) of accuracy of description of the difference of strength inside these groups 

form the six types of corresponding probability structures (p.s.) which are shown in Table 3.1. 

Table 3.1. Probability structures of specimen strength dependence on the strength of single links 

 

A 1: 1 1min( ,..., , ,..., )
L L LK n KX Y Y Z Z  ; 

 B1:
1

1

min( ,..., ),    0,

min( ,..., )   0;

L

L

K L

n L

Y Y K
X

Z Z K


 



 

A2: 1min( ,..., , )
LKX Y Y Z ; 

 
B2: 

1min( ,..., ),    0,

,    0;

LK L

L

Y Y K
X

Z K


 


 

A3: min( , )X Y Z   

B3: 
,  0,

,  0.

L

L

Y K
X

Z K


 


 

 

In p.s. of type A it is assumed that the difference between the strength of links of Y and Z 

types is relatively small and the failure of the specimens can be caused by the failure of a link 

of either type. In p.s. of type B it is assumed that the difference between the strength of links 

of Y and Z types is very large and we must take into account the strength of the link of Z type 

only if there are no links of Y-type. In some way, the description of the group of type B is a 

limit of the description of the group of type A if the difference between the c.d.f. of strength 

of Y and Z type links increases. Really, all the description of p.s. different from A1 are some 

form of approximation of the description of the group A1. We suppose that the usefulness of 

considering this set of different p.s. is defined by the difference of materials, different 

requirement to accuracy of calculation and different size of the test sample. 

Sometimes it is acceptable to assume that specimen failure can take place only in items 

with defects. This leads to the structures shown in Table 3.2. It is very essential that in this 

case we do not need to know the c.d.f. of LI without defects. But some limitation appears: for 

r.v. LK we should use only such probability mass function (p.m.f.) that ( 0) 0LP K   . 

Table 3.2. Conditional probability structures of specimen strength dependence on the strength of single links 

 

AC: 1min( ,..., | 0)
LK LX Y Y K   BC: ( | 0)LX Y K   

 

It is easy to connect the c.d.f. of the strength of the specimens and the c.d.f. of the strength 

of single LI. For example, for the ―extreme‖ structures А1 and B3 we have the following 

equations (see details in Appendix 5.2.1) 

0

( ) 1 (1 ( )) (1 ( ))
L

L

n
n kk

k Y Z

k

F x p F x F x 



    ,  (3.5) 

0 0( ) (1 ) ( ) ( )Y ZF x p F x p F x   ,  (3.6) 
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where { , 0,1,..., }k Lp k n  is the probability distribution for the r.v.
LK . This probability 

distribution can be considered as a function of the applied nominal stress and if, for example, 

it is a binomial distribution, ( , , )L Lb k p n = (1 ) !/ !( )!Ln kk

L L L Lp p n k n k  , then it can be 

assumed that ( )L Kp F x , where ( )KF x  is c.d.f. of defect initiation stress. In this case we add 

the letter F to the notation of p.s. For example, processing of the test data in section 3.3 will 

be made using p.s. B3F. In this case 

0 (1 ( )) Ln

Kp F x  .  (3.7) 

The process of gradual (during loading) accumulation of defects and failure of a series 

system can be described by a Markov chain (MC). Then for notation of the p.s. we use 

additional letter M: MA1, MA2 and so on. If the process of monotonic tensile loading (i.e. the 

process of increase of the nominal stress (or mean load of one LI)) is described by an 

ascending (up to infinity) sequence ,...},...,,{ 21 txxx then the number of links of Y-type and the 

strength of specimens are random functions of time, ( )LK t  and ( )X t . For example, for the 

MA1 we have 1 2 ( ) 1 2 ( )( ) min( , ,..., , , ,..., )
L L LK t n K tX t Y Y Y Z Z Z  . Let us consider a MC with 

( 2)Ln   states. MC is in state i  if there are ( 1)i   of Y-type links, i=1,...,nL+1. State 2Lni   is 

an absorbing state corresponding to the fracture of specimen. The process of MC state change 

and the corresponding process ( )LK t  are described by the transition probabilities matrix 

11 12 13 13 1( 1) 1( 2)

22 23 24 2( 1) 2( 2)

33 34 3( 1) 3( 2)

( 1)( 1) ( 1)( 2)

...

0 ...

0 0 ...

... ... ... ... ... ... ...

0 0 0 0 ...

0 0 0 0 ... 0 1

L L

C L

C L

L L L L

n n

n n

n n

n n n n

p p p p p p

p p p p p

p p p p
P

p p

 

 

 

   

 
 
 
 

  
 
 
 
 

  (3.8) 

At the t-th step of MC the matrix P is a function of t, t=1,2,... A priori or initial distribution 

of MC states and r.v. LK  is represented by a row vector 1 2 , 1, , 2( , ,..., )L L L L n L n      , where 

( 2)L n  =0. 

Now the ultimate strength of specimen is defined by equation 

*T
xX  ,  (3.9) 

where 

))(:max(*
txtXtT  .  (3.10) 

The c.d.f. of ultimate strength, X, is defined by equation 

1

( ) ( ( ))
t

X t L

j

F x P j u


  ,  (3.11) 

where vector-column '(0,0,...,1)u  . 

The examples of specifying of the matrix P for ―extreme‖ p.s. MA1 and MB3, for Cn =1, 

are given in Appendix 5.2.2. 
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3.2. Specification of the models 

Now we need to give the specification of the components of the considered structures: 

{ }kp , )(xFY , …First we consider the specification of the components common for all 

probability structures. 

3.2.1. A source of defects. The distribution function of the number of defects 

Defects can appear before loading (technological defect) and during loading. In this paper 

we consider the following hypothesis. For finite number of elements, n, it seems natural to 

assume the binomial p.m.f. of the number of defects, 
LK , ( ; , )L Lb k p n =

(1 ) !/ !( )!Ln kk

L L L Lp p n k n k  , where Lp  is probability that defect appear in one link. Let us 

note that in this case for B3 0 (1 ) Ln
Lp p  . 

If n is large enough then as an approximation of binomial distribution the Poisson pmf is 

used usually: 

!/)exp(),( kkpp k

k   .   

  

Parameters Lp  and  can either be taken as independent of load (―technological‖ defect), 

or ( )L Kp F x ,  = ( )KnF x , where ( )KF x is the c.d.f. of defect initiation stress during loading. 

But there are some limitations. At large but limited n for p.s. A1-B3 conditional Poisson 

distribution should be used (under condition that L LK n ) : 

0 0

(exp( ) / !) / (exp( ) / !) ( / !) / ( / !)
L Ln n

k r k r
k

r r

p k r k r     
 

     , 1,..., Lk n .  (3.12a) 

It is worth to note that (for B3) 

0

0

1/ ( / !)
Ln

r

r

p r


  .  (3.12b) 

Let us underline once again that in framework of p.s. AC and BC we suppose now that the 

failure of a specimen is defined only by failure of the damaged links. Now we call these links 

‖damaged cross sections‖ (DCS). So using this term we describe the composite as a series 

system of DCS. We make an additional assumption that the distribution of the number of cross 

sections with defects is a conditional Poisson distribution under condition of zero probability 

that this number is zero. We denote this distribution by ZCPD. So for random number of 

DCS,
LK , 

( ) ,
1 !

k

L k

e
P K k p

e k








  


  (3.13) 

1,2,...k   

The c.d.f. of strength of this DCS we again denote by ( )YF x . Then c.d.f. of specimen 

strength 

  
( )

1

1
( ) 1 1

1

YF x
k

k Y

k

e
F x p F x

e











   


 .  (3.14) 

Let us note a specific feature of this distribution of r.v. 
LK . It is easy to show that for this 

case for the expected value of 
LK  
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( ) / (1 )LE K e    , 

while the mean value of a random variable with the usual Poisson distribution is equal to 

 . Recall that the natural assumption is: 
1 * L  , where

1 is defect intensity, L is the length 

of specimen. So ( )LE K  is not proportional to the length of specimen contrary to the models, 

in which p.m.f. 
kp  is defined by usual binomial or Poisson distributions. 

For the models based on using MC theory for a priory distribution of (―technological‖) 

defect number, 
LK , again the binomial or Poisson p.m.f. can be used. Poisson p.m.f. ),( kp  

should be ―cutted‖ in point n; this means that ),( kppk   for nk  ; 

n

kn pp
1

1 1 and 

0  for 2kp k n   ; this procedure of ―cutting‖ is necessary because the theory of final 

Markov chains is used. A priory distribution )0,...,0,1(  means that before beginning of 

loading the number of defects is equal to zero. 

3.2.2. Cumulative distribution function of strength of a single link 

Result of processing of test data set depends on c.d.f. of strength of a single link. In some 

cases [15] the lognormal in others [5] the Weibull distribution are used. Usually the answer to 

the question about the appropriate c.d.f. depends on a result of fitting data set in probability 

paper and visual analysis. 

For example the conclusion on the good agreement of fiber strength at a fixed gauge length 

with the Weibull distribution was made in [5] based only on visual evaluation of standard 

probability plot ( )4./()3.(  nipi  vs. )(ix , where )(ix  is order statistic, i=1,…,n). 

Confirmation of similar conclusions is made in Appendix 5.2.3. using OSPPTest (Test based 

on Probability Plot of Ordered Statistics, )(ix , 1,...,i n , versus expected values of standard 

order statistics, )( )(i

o

XE , 1,...,i n , corresponding to 0 =0, 1 =1) and  -approximation of 

most powerful invariant test [16-20]. 

In the following numerical example we suppose the Weibull distribution for a single link 

strength. 

But if for a link strength, S , the Weibull distribution is appropriate, then for )log(SY   

the smallest extreme value (s.e.v.) distribution can be used with c.d.f. 

))/)exp((exp(1)( 10 YYY xxF  .  (3.16) 

The same type of distribution (but with specific parameters) can be used for defect 

initiation stress 

))/)exp((exp(1)( 10 KKK xxF  ,  (3.17) 

and for c.d.f. of strength of link without defects 

))/)exp((exp(1)( 10 ZZZ xxF  .  (3.18) 

In order to decrease the number of unknown parameters it can be accepted that 

1 1 1Y Z K    . If the difference between strength of links with defects and without defects is 

very large then it can be assumed that 

0,   ,
( )

1,   ,
Z

x C
F x

x C


 


  (3.19) 
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where C is large enough (let us note, that (3.19) is a specific case of (3.18), if CZ 0 , but 

01 Z ). 

Then instead of (3.5) we get 

0

1 (1 ( )) ,   ,
( )

1,   ,

n
k

k Y

k

p F x x C
F x

x C




  

 
 


  (3.20) 

or 

1 exp( ( )),   ,
( )

1,   

YF x x C
F x

x C

  
 


,  (3.21) 

if Poisson distribution for 
LK  takes place. And instead of (3.6) we get 

{1 (1 ( )) } ( ),   ,
( )

1,   .

n

K YF x F x x C
F x

x C

   
 


  (3.22) 

3.2.3. Specification of sequence of loads (stresses) in framework of probability structures 

MA and MB 

For processing of experimental data for this paper the sequence ,...},...,,{ 21 txxx  , where for 

specific value 1x , the value Constxx tt 1
 for all ,...2,1t  can be used. The value of 1x  

should be chosen in such a way that 
1( ) 1 exp( exp( ))YF x x    is small enough. The value of 

Const must also be small enough. 

3.3. The processing of test data 

Comparison of the models is made via processing the following tension test results 

Data_1: glass fibers of lengths 
1 2 3 4( , , , )L L L L =(10,20,40,80 mm) at the number of 

specimens ( 4321 ,,, nnnn )=(78,74,49,60) (see [5]). 

Data_2: flax fibers of length ),,( 321 LLL =(5, 10, 20 mm) at the number of specimens           

( 321 ,, nnn )=(90,70, 58 ) (see [9]). 

Data_3: carbon fibers of length ( 4321 ,,, LLLL )=(1, 10, 20, 50 mm), at the number of 

specimens ( 4321 ,,, nnnn )=(57,64,70,66) (see [8]). 

Data_4: epoxy-impregnated carbon fiber bundles of length ( 4,321 ,, LLLL )=(20, 50, 150, 

300 mm), at the number of specimens ( 4321 ,,, nnnn )=(28,30,32,29) (see [8]). 

Here we consider the fitting of the test data and estimation of c.d.f. parameters using test 

results at 
1 2( , )L L  and then predict the expected values of order statistics for the longest length, 

3L  ( for flax fibers) or 
4L (for all the other data set). 

Note. The result of similar processing  of these data was done in [16,17] but for „opposed 

prediction direction‖: fitting of experimental data and estimation of c.d.f. parameters was 

made using test results at 
2 3( , )L L  (for flax fibers) or 

3 4( , )L L  (for all the others LI) but 

prediction of expected values of order statistics for the smallest length, 
1L . 
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The maximum likelihood method (MLM) can be used for parameter estimation but it is 

excessively labor-consuming. The estimates of parameters 0  and 1  (at fixed other 

parameters) can be found easily using regression analysis of order statistics. Our purpose here 

is to investigate the possibility of using the considered models for prediction of fiber strength 

distribution changes when fiber length is varied and compare the models. So we have limited 

ourselves by the use of regression analysis. 

Let r.v. X  (logarithm of strength) have c.d.f. with a location and a scale parameter and let 

ijx  be j-th order statistic for 
iLL  . Here inj ,...,2,1 , 

in  is the number of specimens with 

iLL  , Lki ,...,2,1 , Lk  is the number of different Li. Let us denote by )( ijXE  the expected 

value of random order statistic ijX , )(
0

ijXE  is the same but for 0 =0 and 1 =1. 

Then we have 

ijXE( )= 0 + 1 )(
0

ijXE ,  (3.23) 

where )(
0

ijXE  is a function of 
in , j and Li (or 

i  for ZCPD). 

For the LW model for processing data of test at different length 
iL  

ijXE( )= 0  + 1 (- log( 1/ lLi ) + )(
0

ijXE ),  (3.24) 

where 
0 = log( ) ,  /11  . 

For PW model we have equation with three unknown parameters 00 = log( ) , 01 =-  /  

and 1  

ijXE( )= 00  + 01  log( 1/ lLi ) + 1 )(
0

ijXE   (3.25) 

This equation can be used for linear regression (LR) estimation of 0  and 1 . Modern PC 

allows to use the Monte Carlo method for a very simple calculation of )(
0

ijXE . If R  is r.v. 

with a uniform distribution in interval (0,1) then r.v. 
0

log( log(1 ))X R   has a standard s.e.v. 

distribution but if   is known then r.v. 
00

1( log(1 (1 )) / )X F R e        has c.d.f.

 ( )( ) (1 ) / (1 )YF xF x e e     . 

Here 
0
1(.)F 

 is the inverse function. 

For numerical evaluation and comparison of different models, the following three 

additional statistics were calculated: 

Statistic OSPPt  - for experimental data fitting. This statistic for the case of use the samples 

corresponding to 
1L  and 

2L  for parameter estimation is defined by equation 

1 2OSPPt 
= 

2 2
2 2 1/2

1 1 1 1

ˆ( ( ) / ( ) )
k kn n

kj kj kj k

k j k j

x x x x
   

     , 
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where kjx  is j-th order statistic of sample at L kL ; )(ˆˆˆ
10 kj

o

kj XEx    is an estimate of 

)( kjXE ; 0̂ , 1̂  are estimates of 
0 , 1 ; k

n

j

kjk nxx
k





1

/ , 
kn  is sample size at L kL . 

As LR-estimates are used here, then in this case OSPPt -statistic coinsider with 

2/12 )1( RRLR  ,  (3.26) 

where 2R  is the standard statistic of LR analysis (the coefficient of determination). 

Statistic 
kOSPPt , where 3k   for flax fiber and 4k   for other LIs, - for prediction of 

order statistic of test results at different length L kL , 

kOSPPt = 



kk n

j

kkjkj

n

j

kj xxxx
1

2/122

1

))(/)ˆ(( ,  (3.27) 

Statistic 
1Q - for prediction of mean strength at different L  

2/1

1

2

1

2

1 ))(/)ˆ(( 



LL k

i

i

k

i

ii xxxxQ ,  (3.28) 

where 
1

ˆ /
in

i ij i

j

x x n


 , 



Lk

i

Li kxx
1

/ . 

There is a great deal of variations of the models in framework of considered family. First, 

we consider four basic models with )(xFY , ( )KF x and )(xFZ  defined by (3.16 – 3.18), with 

binomial ( for ―Markov‘s ‖ model) or Poisson distribution of defect number with following 

p.s.: 

1. A1with the c.d.f. specified by (3.5). 

2. B3 with the c.d.f. specified by (3.6). 

3. MA1 with the c.d.f. ispecified by (3.11); the matrix P is described in Appendix 5.2.2.1; 

( )ZF x  is defined by (3.19) with C   . 

4. MB3 with the c.d.f. specified by (3.11); the matrix P is described in Appendix 5.2.2.2; 

( )ZF x  is defined by (3.19) with C   . 

We study also the model with AC probability structure with the c.d.f. specified by (3.14). 

For prediction stability it is very important to minimize the number of unknown 

parameters. For this purpose we set 1l = 1L for all models and materials. 

At the same time the calculation for both LW and PW (if possible) models was done. 

The results of processing the test data are shown in Table 3.3 in four blocks. In the first 

one, the results (quality statistics and parameters) corresponding to the best of four considered 

models are given. In the following blocks there are the results (quality statistics and 

parameters) for AC p.s. with ZCPD as a priori distribution with the c.d.f. specified by (3.14) 

and for PW, and LW models. In the two last blocks, parameter estimates, using only data at 

1L ,
2L  (_LRA_2) or whole data set (_LRA_

Lk ) both linear regression and maximum 

likelihood (_ML) estimates are given (if there were these estimates in original papers [5,9,8]). 

We think (see [17] ) that the difference between the estimates _LRA_
Lk - and maximum 

likelihood _ML- estimates is not significant taking into account that actually the likelihood 
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function has no distinct maximum. So we are not too far from ML-estimates if we use LR-

estimates of parameters. 

Let us note again that for every data set with a specific L it was accepted that parameter
1l  

is equal to 
1L . As the estimate of nonlinear parameters 

1 1/ L   and p  we take the value of  
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Table 3.3. Criteria statistics. Estimates of parameters 

 

№ Criteria 

statistics. 

Estimates of 

parameters 

 

Glass 

fibers. 

[5] 

Flax fibers. 

[9] 

Carbon 

fibers 

[8] 

 

Bundles 

1000 of 

epoxy-

impreg. 

carbon 

fibers [8]  

1 (
LRR , OSPPt, 

1Q )_MMDM 

0.156 

0.174 

0.124 

MB 

 

0.119 0.197 

0.316 

 

0.182 

0.284 

0.230 

 

0.417 

0.578 

0.433 

 

Structure 

0 , 1  

p  

1   

MB 

7.63 0.246 

0.15  

BF 

6.76 

0.479  

MA 

8.436 

0.152 

0.99  

MA 

7.97 

0.044 

0.025  

2 (
LRR ,OSPPt, 

1Q )_ZCPD 

0.1567 

0.3800 

0,4184 

0.1394 

0.6483 

1.2933 

0.1614 
0.3246 

0.2499  

0.2107 

0.7054 

0.5855  

0̂ , 1̂  

1  

 

7.8499 

0.1661 

0.142  

7.0978 

0.2893 

0.27 

 

8.5047 

0.1498 

1.655 

 

7.9778 

0.0448 

0.0198 

3 (
LRR ,OSPPt, 

1Q )_PW 

0.1525 
0.2155 

0.1644 

0.1534 

0.3332 

0.5121 

0.1705 

0.4026 

0.2809 

0.2109 

1.1647 

1.1228 

 (  ,   

 )_LRA_2 

2 381 

5.440 

0.601 

1 068 

3.15 0.580 

4 543 

6.23 

0,887 

2 896 

20.7 

0.149 

 (  ,  

 )_LRA_ Lk  

2 394 

5.159 

0, 608 

1 076 

3.09 0.623 

4 582 

6.15 

1.022 

2 965 

16.6 

0.732 

 (  ,  

 )_ML 

3 030 5.43 

0. 580 

1 400 

2.80 0.460 

4 630 

5.31 

0.9 

3 250 

16.8 

0.580 

4 ( LRR ,OSPPt, 

1Q )_LW 

0.1855 

0.4760 

0.6702 

0.1890 

0.7937 

1.6501 

0.1803 

0.2778 

0.2268 

0.3680 

0.5386 

0.3793 

(  , )_LRA_2 3 663 

5.605  

1 810 

3.25  

4 575 

6.58  

3 340 

23.3  

(  , )_LRA_

Lk  

3 691 

5.827  

1 836 

3.31  

4 571 

6.07 

3 510 

18.8 

 (  , )_ML 

 

3010 

8.99  

1 836 

3.31 

- - 
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Table 3.4. The best models, criteria statistics 

 

№ Criteria  Glass fibers. 

[5] 

Flax fibers. 

[9] 

Carbon fibers 

[8] 

 

Bundles 

1000 of 

epoxy-

impreg. 

carbon fibers 

[8]  

1 
LRR  PW 0.1525 BF 0.119  ZCPD 

0.1614 

ZCPD 

0.2107 

2 OSPPt MB 0.174 BF 0.197  LW 0.2778 LW 0.5386 

3 
1Q  MB 0.124 BF 0.316 LW 0.2268 LW 0.3793 

 

parameters, which provide the best fitting (minimum of ). The best results 

(corresponding to minimum of specific criterion) are marked out in the table 3.3 by bold 

figures. 

In table 3.4 we see the best models for every data set for every criterion. 

Examples of detailed comparison of the models are shown in Fig. 3.3-3.4 The processing 

of single carbon fiber experimental data is shown in Fig. 3.3. Here we do not see a great 

difference between the models. 

Processing of impregnated bundle data is shown in Fig. 3.4. Here it is worth to note that all 

three models provide nearly the same quality of fitting of data for 
1L and 

2L  but there is a 

significant difference of prediction for 
4L . 

 

Figure 3.3. Single carbon fiber test data (+) ; predictions, jx1
ˆ , jx2

ˆ , jx4
ˆ and 

ix , using MA-model (*) ( LRR

=0.1737, OSPPt-4=0.3863, 1Q =0.2549), LW model (□) ( LRR =0.1803, OSPPt-4=0.278, 1Q =0.2268 ) and PW 

model (o) ( LRR =0.1705, OSPPt-4=0.4026, 1Q =0.2809). Initial data: samples with L=L1 and L=L2. 

LRR
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Fig. 3.4. Data of bundles of 1000 impregnated carbon fibers (+); predictions, jx1
ˆ , jx2

ˆ , jx4
ˆ and jx , using MA-

model (*) (
LRR =0.4218, OSPPt-4=0.6981, 1Q =0.4890), LW model (□) ( 

LRR =0.368, OSPPt-4=0.5386, 1Q = 

0.4890) and PW model (o) (
LRR =0.2109, OSPPt-4=1.1647, 1Q = 1.1228). Initial data: samples with L=L1 and 

L=L2. 

3.4. Reliability of series of parallel systems with defects. MinMaxDM distribution family 

Here we consider the models of reliability of parallel systems and their connection with 

MinMaxDM distribution family (MMDF) and apply the models into processing of test data of 

fiber strength. 

The most significant contribution to the solution of the considered problem was made by 

Peirce [21] and Daniels [22, 23]. A review of later papers devoted to this problem can be 

found in [10-12]. A deep analysis of the Daniels‘ results was given in [7]. It was shown that 

this model yields accurate results only in specific cases. Here a version of Daniels‘ model and 

model based on using the theory of Markov chains are considered. A solution of the same 

problem was considered in [14] using the theory of continuous Markov process. We suppose 

that using the theory of Markov chains allows us to make much broader analysis of the 

problem. The size effect of fibrous material was modeled in [24] but there was no comparison 

of the models with the test data. We consider similar modeling using another version of 

models and provide numerical estimate of the quality of prediction of the test data. 

3.4.1. Randomized Daniels’s model 

Here we consider the models of failure of a parallel system with redistribution of load after 

failure of some LIs and a connection of the c.d.f. of the strength of the link and the c.d.f. of 

the strength of a single LI. Statistical description of the development of the process of fracture 

of one link (as a loose bundle of LIs (fibers or strands) or as a parallel system without initial 



Statistical Analysis of Static Strength and Fatigue Life of Composite 

 67 

defects with redistribution of load after failure of some LI) was studied by Daniels [22-23]. 

The corresponding model can be described in a following way. Let 
1( ,..., )nX X  be random 

strength of intact LIs in some link and jX be the j-th order statistics. If there is a uniform 

distribution of load between intact LI and the applied load increases monotonically, then the 

ultimate strength of this link 

*X =
1
max ( 1) /j

j n
X n j n

 
  .  (3.29) 

We consider the case when 
C Cn n K  . In this case mean strength of initial Cn  LIs 

*X =
1
max ( 1) /j C

j n
X n j n

 
  .  (3.30) 

Daniels studied the case 
CK =0. In the general case for random number of (technological) 

failures, ,  there is a priori distribution 1 2 ( 1)( , ,..., )
CC C C C n      (here 

( 1)Ck CP K k    , ( 1) 0
CC n   ). Then 

* ( ) ( )CX
F x F x



 ,  (3.31) 

where vector column 
11( ) ( ( ),..., ( )) '

CnF x F x F x


 , ( )kF x , 1,..., Ck n , is c.d.f. of *X  if 

1Cn n k   , 1( )
CnF x  is identical with unity (there are no intact LI). 

Now we consider the specification of distribution of strength of link based on a 

randomized Daniels‘ model with Weibull distribution of the strength of a single LI. If the 

number n  in an equation (3.29) is sufficiently large then for r.v. *X  there is a convergence in 

probability to a constant  defined by equation 

 = max (1 ( ))X
x

x F x , 

where ( )XF x  is the c.d.f. of strength of a LI. We consider the case of Weibull distribution 

of the single LI strength (without defects). Then using logarithmic scale (in order to use the 

advantage of s.e.v. distribution with the location and scale parameters) we can write the 

equation for   in the following form 

 = 0 1max exp( )exp( exp(( ) / ))
x

x x    . 

We have the following solution of this equation 

1

1 0 1exp( )
     . 

Daniels has shown that for a sufficiently large n, the r.v. *X in equation (3.29) has 

approximately normal distribution. For the considered case, when CK =0, the parameters of 

this distribution are   and 1/2
1(exp( 1) / )Cn    . But if there are CK damaged LIs (i.e. there 

are only ( C Cn K ) intact LIs) then we should use ( ) /n C C Cn K n    and 

( ) /n C C Cn K n    ( the denominator is equal to Cn  instead of ( C Cn K ) because the 

specimen strength is calculated taking into account the initial number of LI, Cn ). 

So if C Cn n K  , where random variable CK has a truncated binomial a priori distribution 

(note that we should eliminate the case of C CK n ) with parameters ( ,C Cn p ), is large enough 

then c.d.f. of *X  is approximately defined by the equation 

CK
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* *
1

( ) ( ) ( , , ) / (1 ( , , ))C

n

n

C C C C C CX Xn
F x F x b n n p n b n p n


   ,  (3.32) 

where * ( ) (( ) / )
n

n nX
F x x    ; (.)  is the c.d.f. of the standard normal distribution, 

( , , ) (1 ) !/ !( )!k m kb k p m p p m k m k   . 

Let us call this model as randomized Daniels‘model and denote it by MinMaxDM_RDM 

or just RDM. Let us denote the usual nonrandomized Daniels‘ model by NRDM. 

3.4.2. Description of reliability of a parallel system using Markov chain theory 

Let us recall that the process of monotonic tensile loading (i.e. the process of increase of 

the nominal stress (or mean load of one LI)) is described by an ascending (up to infinity) 

sequence ,...},...,,{ 21 txxx , and let ( )CiK t , 0 Ci CK n  , be the number of random failures of 

LIs under the load 
tx  in i-th link with 

Cn  - the initial number of LIs. There is a failure of i-th 

link if Ci CK n . We again consider the process of accumulation of failures as an 

inhomogeneous finite Markov chain (MC) with finite state space. We say that MC is in state 

i  if ( 1)i  of LIs have failed, 1,..., 1Ci n  . State 1Cn   is an absorbing state corresponding 

to the fracture of the link. The process of MC state change and the corresponding process 

( )CiK t  is described by transition probabilities matrix P and at the t-th step of MC the matrix P 

is a function of t, t=1,2,... 

The c.d.f. of strength of link, *X , is defined on the sequence ,...},...,,{ 21 txxx by equation 

*

1

( ) ( ( ))
t

t CX
j

F x P j u


  ,  (3.33) 

where )( jP is the transition probability matrix for t=j, column vector )'1,0,...,0(u . 

Four main versions (hypotheses) of the structure of matrix P, denoted as 
aP ,

CanP ,
bP and 

cP  

are considered in Appendix 5.2.34. Matrix 
aP  corresponds to an assumption that in one step 

of MC only one LI can fail and it is the nearest to the already failed LI (or it is extreme side 

one), 
CanP corresponds to a failure of the weakest item in the cross section considered, 

bP  

corresponds to a binomial distribution of failure number at every step of MC, 
cP  corresponds 

to the case when we know the stress concentration function (see details in Appendix 5.2.34) 

3.4.3. Modeling of reliability of parallel system using Monte Carlo method 

Let 1 2, ,..., nE E E  be the elastic moduli, 1 2, ,..., nf f f  the cross-sectional areas of n  LIs and 

/i i   , where i is the strain in an i-th LI at mean strain   in the cross section and the 

distribution of r.v. i  does not depend on  . Then we have a random stress-strain function 

( ) /
p

i i ii i i

p
i i i i

E XE X

E f f


   


   ,  (3.34a) 

where iX is the strength of i-th LI, p

iE is a r.v. which is equal to iE  with probability Cp  

and equal to zero with probability (1- Cp ), 1,..., Ci n . 

Random strength is defined by equation 

max ( )


   .  (3.34b) 
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Using Monte Carlo method, these equations allow to obtain the distribution of CS strength 

easyly if we know the combined distribution of random variables iE , i and if , 1,..., Ci n . 

 

a) b) 

  

c) d) 

  

e) f) 

  

g) h) 

Fig. 3.5. Function ( )   for different LE ,  , Cp : 

a) ( LE , L , Cp )=(0;0;0) ; b) ( LE , L , Cp )=(0,2;0;0) ; 

c) ( LE , L , Cp )=(0;0;0,7) ; d) ( LE , L , Cp )=(0,2;0;0,7) ; 

e) ( LE , L , Cp )=(0;0,1;0) ; f) ( LE , L , Cp )=(0,2;0,1;0); 
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g) ( LE , L , Cp )=(0;0,1;0,7) ; h) ( LE , L , Cp )=(0,2;0,1;0,7). 

In [25] there are examples of modeling of ( )   for Cn =5 assuming normal distribution of 

log( )X  and log( )E  with correlation coefficient , independent normal distribution of 

log( )  with the expected value equal to zero and with if f Const   , 1,..., Ci n . 

Figure 3.5 shows examples of the function ( )  modeled on the assumption that log( )X  

and log( )E   have a normal joint distribution with parameters , , , ,LE LE LX LX r     and log( )  

has a normal distribution with a zero mathematical expectation and a nonzero standard 

deviation L . To ensure the equilibrium of the cross section (
1

Cn

i C

i

n


 ) an additional 

condition was used:  

. 

In these examples, Cn =5 , ,if f 1,..., Ci n , , , ,LE LX LX r   =(12.01; 7.69; 0.133; 0.255) 

and two values of each of the parameters ,LE L  and Cp  are considered. If all these three 

parameters are equal to zero then all realizations of the random function ( )   in Fig. 3.5a 

coincide up to the moment of failure of the weakest LI. In Fig. 3.5b, for ( , ,LE L Cp  )= (0.2, 

0,0), they do not coincide because of the different elastic moduli. The following two figures 

(for 3.5c ( , ,LE L Cp  )=(0;0;0.7) ; for 3.5d ( , ,LE L Cp  )=(0,2;0;0,7) ) differ from the two 

preceding ones by a random number of defect-free LIs and by the corresponding number of 

peaks on realizations of the function ( )  . The following four figures differ from the four 

previous ones in the scatter of strain: L = 0.1. 

 

3.4.4. Numerical example 

In [15], the results obtained in testing 64 bundles of carbon fibers separated from a 

monolayer and the same number of strips consisting of 10 similar 20-mm long bundles, are 

reported. The following estimates of distribution parameters of the left-hand extremum for the 

(natural) logarithm of strength, log( )X , of separate bundles are obtained: 
0 1
ˆ ˆ( , )LX LX   = (6.55, 

0.132). For the corresponding estimates of the mean, (log( ))E X , and the standard deviation 

(s.d.), (log( ))X , we have ˆ ˆ( , )LX LX   = (6.4769, 0.1732). For the monolayer of 10 fiber 

bundles, ˆ ˆ( , )LX LX  = (6.156, 0.194). Figure 3.6 presents the results of strength tests on a 

monolayer and the results of prediction according to the nonrandomized Daniels model with 

data on 

r

1 1

1( ) 1( )
C Cn n

i i i i i

i i

E X E X 
 

   
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а) b) 

 Fig. 3.6. Comparison between the results of strength tests of a monolayer made of 10 fiber bundles (+) and the 

prediction (*) based on data on the strength of separate bundles for a nonrandomized (a) and randomized (b) 

Daniels models. 

 

Fig. 3.7. Comparison between the data of strength tests on a monolayer of 10 fiber bundles (+) and the results of 

prediction (*) according to the model based on the theory of Markov chains with a matrix of type Pb. 

The strength of separate fiber bundles. Here, x is the natural logarithm of test order 

statistics for the sample of results of strength tests on a monolayer, and x̂  is the prediction 

(estimate) of the respective mathematical expectations made on the basis of the 

nonrandomized Daniels model on the assumption that the strength of one bundle has the 

Weibull distribution. The distribution of elastic modulus was neglected. The predicted 

estimates for the strip strength were ˆ ˆ( , )LX LX  = (6.245, 0.095), while the experimental 

results, as mentioned before, were (6.156, 0.194). In this case, the measure of prediction error 

according to the order statistics was OSPPt = 0.695 (the definition of OSPPt is given in 

Appendix 5.2.3). A comparison shows that the prediction error is relatively small for the 

average strength and rather significant for the Standard deviation (s.d.). The prediction can be 

improved (see Fig. 3.6.b) if the randomized Daniels model is used (see Eq. (3.32)): at Cp = 

0.2, we have ˆ ˆ( , )LX LX  = (6.152, 0.173). Then, OSPPt = 0.3. 

By using the model based on the theory of Markov chains with a matrix of the type Pb 

(Fig.3.7), we succeeded in decreasing the value of OSPPt to 0.27 and obtained that 

ˆ ˆ( , )LX LX  = (6.16, 0.157). 
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An average strength (but not s.d.!) can be also easily predicted by using the two-

dimensional lognormal distribution of strength and elastic modulus with the following 

parameters of a separate fiber bundle: ( , , , ,LE LE LX LX r    )= (11.9,0.332, 6.4769, 0.1732, 

0.255). For estimates of the mean and s.d. of strip strength, we have ˆ ˆ( , )LX LX  = (6.17, 

0.0844) in the logarithmic scale. As seen, the s.d. is underestimated. The corresponding value 

of OSPPt is rather great: 0.58 (Fig. 3.8.a). The prediction can be improved by selecting 

appropriate structural parameters. However, in such a case (as in all cases of using structural 

 

а) b) 

Fig. 3.8. Experimental values (+) and prediction (*) of the strength of a 10-bundle monolayer by using the 

NRDM (a) and RDM (b) with a two-dimensional normal distribution of log(X) and log(E) (the parameters are 

given in the text). 

parameters for fitting experimental data), this is not a prediction, but a "conditional fitting," 

i.e., "fitting" with the help of structural parameters at fixed strength distribution parameters 

equal to those of individual fibers. An increase in the content of processing defects Cp  

markedly reduces the predicted average strength, but slowly raises the value of s.d. The effect 

of chage of L  is similar. We should note that the quantity Cn can be considered not as an 

actual number of LEs in a cross section, but as an additional parameter — the critical size of a 

cluster, whose failure leads to the failure of the entire specimen. Its estimate ˆ
Cn  can be 

determined upon processing experimental results. A decrease in ˆ
Cn  markedly increases the 

average strength and s.d., but only within some limits. By simultaneously decreasing ˆ
Cn  to 4, 

increasing L to 0.1, and increasing ˆ
Cp  to 0.05, we managed to reduce OSPPt to 0.25 and to 

raise the estimate of ˆ
LX to 0.174 at its experimental equal to 0.194 (see Fig. 3.8.b). 

Taking into account the results obtained in processing experimental data we se that the use 

of the Daniels model for describing the distribution of strength of a cross section (link) 

consisting of parallel LIs makes it possible to predict, with a sufficient accuracy, an average 

value of the strength of a monolayer consisting of 10 fiber bundles by employing data of the 

strength of one bundle of the same length. However, in this case, the s.d. of the strength is 

considerably underestimated, which can lead to a dangerous overestimation of the warranted 

strength (p-quantiles of distribution at low p). Recall that similar results were obtained in [7]. 

This also leads to a heightened value of the criterion for estimating the prediction error OSPPt 

of the order statistics of strength. Its magnitude can be reduced from 0.695 to 0.3 by using the 

randomized model with Cp  = 0.2, with an independent distribution of the strength and elastic 

modulus. A further decrease in OSPPt down to 0.27 can be achieved by employing the model 

based on the Markov chains theory with a matrix of type bP . When the joint normal 
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distribution of the logarithms of strength and elastic modulus is utilized, the prediction 

becomes worse, and OSPPt reaches the value 0.6. This value can be lowered to 0.26 if we 

assume that a priori probability of a defect is 0.05 and additionally accept that the cross 

section fails just after the break of a critical cluster consisting of Cn = 4 LIs. 

Based on the results of analysis of the foregoing examples of processing experimental data, 

we obviously can conclude that the models examined deserve a more extended testing. 

3.5. Reliability of series of parallel systems with defects 

3.5.1. MinMaxDM distribution family 

For the case Cn =1, considered in section 3.1, the types of c.d.f. )(xFY  and )(xFZ should 

be chosen ―a priori‖. But clearly, all the ideas considered in section 3.1 can be used also for 

the series system in which the links are parallel systems with Cn >1. C.d.f. )(xFY  and )(xFZ  

define now c.d.f. of strength of parallel systems of Y-type or Z-type correspondingly with Cn

>1. In accordance with (3.2) the strength of specimen can be described by equation 

*

1 1
min min max( : ( ) 0)

L L

i t C Ci
i n i n t

X X x n K t
   

    , 

where ( )CiK t is ( )CK t  for i-th link. 

For building the c.d.f. of X in the numerical examples we suppose that the logarithm of 

strength of one LI (in one link) without defects has a s.e.v. distribution. Of course it is not the 

only possible assumption. Different assumptions about the distribution of strength of one link, 

a priori distribution of initial (technological) defects compose a family of the distributions of 

ultimate composite tensile strength. Taking into account (3.2) the corresponding family of 

distributions of X  was denoted by abbreviation MinMaxD (in honour of Daniels). If for 

calculation of c.d.f. the MC theory is used then it is appropriate to use the abbreviation 

MinMaxM. The abbreviation MinMaxDM is appropriate for the unified family. It should be 

mentioned that, within the framework of assumption that the strength of defective LIs is equal 

to zero, it may be assumed that the c.d.f.s )(xFY  and )(xFZ  differ only in the a priori 

distribution of the number of defective LIs in a cross section. The models of MinMaxDM 

family distribution contain two groups of parameters. The first group includes the strength 

and rigidity parameters of individual LIs (fibers, fiber bundles, etc.): for example, parameters 

0  and 
1  in Weibull c.d.f. of strength individual LI, 

0 1( ) 1 exp( exp((log( ) ) / ))F x x      . 

The second group contains the structural parameters: 1, , , ,C C L Ln p l p  , where 1 / Ll L n , L  is 

the specimen length, and Ln  is the number of links. The structural parameters give us a 

numerical estimate of the quality of the technology used to produce the tested specimens. 

3.5.2. Processing of test data using MinMaxD_RDM model 

In [8] carbon fiber test data are presented (for every specimen) for 1 4( ,..., )L L =(1,10, 20, 50 

mm) (Data_B1) and in [7] the mean values, X , and standard deviations, X , for dry bundle 

(of the same fibers) tests with 1 4( ,..., )L L =(5, 20, 100, 200 mm) are given (Data_B2 ). Just as 

in [7] we perform fitting and parameter estimation using Data_B1 for L=20 mm and attempt 

to predict the strength of bundles (Data_B2 ) for different lengths (note that the processing of 

Data_A we performed only for one L). Of course, we cannot consider all the versions of 

models in the framework of MinMaxDM distribution family. In Table 3.5 there are results of 

using randomized Daniels‘ model (MinMaxD_RDM) in comparison with similar processing 

of the same data using the model provided in [7]. 
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Table 3.5. Summary of prediction of Data_B2 using parameter estimates obtained by processing Data_B1 

L (mm) 5 20 100 200 Parameter estimates 

Number of observations 28 25 29 27 
0̂  1̂  Cn  Cp  1l  Lp  

Mean 

(GPa) 

Observed 1.92 1.68 1.58 1.38 7.883 0.182 1000 0 20 0 

NRDM[13] 2.19 1.71 1.28 1.14 7.883 0.182 1000 0 20 0 

MinMaxD_RDM 1.61 1.57 1.48 1.4 7.883 0.182 1000 0.2 20 0.1 

Std 

(GPa) 

Observed 0.07 0.1 0.13 0.11 7.883 0.182 1000 0 20 0 

NRDM[16] 0.031 0.024 0.018 0.016 7.883 0.182 1000 0 20 0 

MinMaxD_RDM 0.057 0.114 0.161 0.156 7.883 0.182 1000 0.2 20 0.1 

 

In [7] a good agreement of NRDM prediction of mean strength of dry bundle with the 

same length, 20 mm, is observed, but this agreement does not extend to other values of L and 

there is a significant mismatch of standard deviation  for all four lengths. 

Using p.s. B3, when 

0 0( ) (1 ) ( ) ( )Y ZF x p F x p F x   , 

where 0 (1 ) Ln
Lp p  , 

and corresponding to RDM equation (3.32) with ( )YF x = * (.)
X

F  with a specific 
Cp  and 

( ) (( ) / )ZF x x     corresponding to 
Cp =0 we obtained results shown in Table 3.5. 

For the considered model we see much better estimations of S  and not too bad estimation 

of S  at least for L≥20 mm if we use strength parameters of single fibers and specific 

structural parameters mentioned above (see Table 3.5). 

3.6. Conclusions 

The analysis of Tables 3.3 and 3.5 shows that the considered models as part of 

MinMaxDM distribution family provide good fitting of the results of tensile strength tests and 

can explain some specific features of the strength of LI in the framework of a more complex 

structure. Good fitting is not surprising, of course, if the considered models have a large 

number of parameters which can be used for fitting of a test data. But some versions of this 

family models provide good fitting and at the two estimated parameters (see Table 3.3, flax 

fibers). Unlike other models, the parameters of the models in the framework of the 

MinMaxDM distribution family allow a natural interpretation and give us an additional 

numerical information about both the specific local parameters of fibers (strands) and the 

structure of composite: for example, parameter 
1 , parameters Cp  and 

Lp  provide us with 

estimates of defect intensity; model RDM allows to explane the increase of standard deviation 

in comparison with the theoretical value, corresponding to usual nonrandomized Daniels‘ 

model. 

But as we see in Table 3.4 and 3.5, for prediction of size effect of specimen length the best 

results are obtained using models with minimum number of unknown parameters: models 

MB3, B3F and LW have only two unknown parameters. 

It seems that MinMaxDM distribution family opens a broad field for study of the problem 

considered. We can study different versions of the strength distribution of a single fiber, 

different versions of a priori distribution of a defect number, different versions of matrix of 

transition probability for MC-models etc. The results obtained now should be regarded only 

as preliminary, but it seems that the MinMaxDM distribution family deserves to be studied 

much more thoroughly using more test data. 
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4. Markov Model of Connection between the Distribution of Static 

Strength and Fatigue Life of Composite 

In this section within the framework of a unified mathematical model based on the Markov 

chain (MC) theory, an attempt is made to describe the connection between the distribution of 

static strength and the fatigue curve, and the accumulation of fatigue damages in 

programming loading of composite. We consider different possible structures of transition 

probabilities matrix of MC. In the framework of the most complex structure it is assumed that 

the fatigue failure of a test specimen occurs after the destruction of its critical microvolume 

(MCV) consisting of two parts: elastic (brittle fibers) and plastic (matrix). In the second part, 

permanent strains accumulate as soon as the cyclic local stress exceeds some level. We take 

into account also the length of the fatigue test specimen. Here the theory of reliability of 

series system with partly damaged links is used. Numerical examples are presented. 

4.1. Introduction 

The distribution of a static strength, a fatigue curve and an accumulation of fatigue 

damages under a program loading are often described by poorly interconnected theories and 

hypotheses. The distribution of static strength is usually analyzed by the Weibull or lognormal 

distributions, while the fatigue curve is described by formal regression dependences. For 

example, in [1, p.139], the fatigue curve is presented by the equation of nonlinear regression 

48185,5389,087,39lg SSN  , 

where S is the stress amplitude and N is the corresponding average number of cycles. 

In Table 4.1, taken from [2, p.299], the seven models for the fatigue curve quantile 

estimate are given. 

Table 4.1. Models of fatigue curves [2] 

 

Model Quantile Number of 
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RFL model (1999) )ˆ),log(;()ˆlog( 1 jiWij xpFy   5 

 

Here the following notations are used: xj – is the j-th stress level, yij – is the estimate of ip

quantile at the jth stress level; W=log(N), FW(w; x, ) – c.d.f. of random variable W, 

corresponding to Random-Fatigue-Limit (RFL) model, offered in [2]: 

log(N)=0 + 1 log(S-) + , 

where  is an error term, V=log() has normal or smallest extreme value probability 

distribution function (p.d.f.). 

If we try to use these formulae for composite material we will see that parameters of these 

formulae have no connections with the parameters of static strength distribution of composite 

material component. 

In other publications the equation, suggested by Weibull, is used frequently: 


  )(1 BNCSS , 

where S1, C, B, and  are some parameters. These parameters, as in the previous similar 

equations, are not connected with the parameters of distribution of static strength. 

The summation of fatigue damages under a program loading, as a rule, is carried out by 

using the Palmgren-Miner hypothesis and its modifications. For example, in [3], containing a 

brief review of 50 papers, for describing the condition of failure in two-stage fatigue loading 

of woven carbon fibre reinforced laminates, the equation 

1)/()/(
2

22
1

11 


NnNn  

is suggested, where n1 and n2 are the numbers of loading cycles; N1 and N2 are average 

lives at the first and second loading levels; 1 and 2 are constants. 

In the present study an attempt is made to unite the solution of the three above-mentioned 

problems within the framework of a unified mathematical model. This model is a 

development of the models described in [4-7], where the connection between the distribution 

of the static strength of fibers and the fatigue life of a unidirectional fibrous composite is 

considered neglecting the plastic properties of the matrix. The models presented in [5-7] give 

a rather plausible description of p-quantile fatigue curves (corresponding to the probability of 

failure p). However, upon processing the data of program tests, results that only slightly differ 

from those found with the help of the Palmgren-Miner linear hypothesis are obtained, 

although even in tests with a single change in the loading mode, the deviations from the 

Palmgren-Miner hypothesis are rather noticeable. 

In [8], a relationship between the distribution functions of fiber strength and strength of an 

aggregate of parallel fibers at a uniform distribution of load between them was determined. 

―Developing‖ this model in time, we come to a sequence of local stresses ,...},,{ 210 sss  (in the 

cross section where the failure proceeds): 

,...2,1,0)),(1/(1  isFSs ii , 

where Ss 0  is the initial rated stress in the undamaged specimen. An example of such 

sequences for different S is shown in Fig.4.1a. 
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Fig.4.l. Growth of local stresses according to the quasi-stochastic model (a) 

and the corresponding fatigue curve (b). 

The behavior of the respective curves is very similar to that of the S-shaped curves 

describing changes in some physical parameters of a composite in fatigue tests (see, for 

example, Fig.2.30 in [l]). 

Let us assume that 

dNdsssFS /))(1/(   

or 

dsdNssFS /)))(1/(/(1   

and expand the function ( ssFS  ))(1/( ) into the Taylor series at the point where its first 

derivative is equal to zero, restricting our calculations only to second-order terms. After 

integration, we arrive at the following approximation for the fatigue curve: 

)2//)(tan( 321  CSNCCS . 

An example of a rather satisfactory description of test data for CFRP specimens [11] is 

presented in Fig.4.1b. However, this result may be explained by the facts that only three stress 

levels are considered and equation derived contains just three constants. Two serious 

drawbacks of the model are obvious. First, Fig.4.1 shows that the number of cycles before 

failure grows rapidly and tends to infinity with fairly small changes in the amplitude of the 

cyclic stress, thus this model, giving a correct qualitative description of the process of 

accumulation of fatigue damages, can be used practically for approximating the fatigue curve 

only in a rather narrow range of changes in the stress amplitude. Second, the equation derived 

determines only an average strength. However, it is important to know also the distribution 

function of fatigue life. To overcome these drawbacks, it seems necessary to consider the fact 

that the failure of a specimen takes some time, even if its average static strength is lower than 

the maximum of the cyclic stress applied and that the number of components failing during 

one cycle is a random variable. The above-mentioned drawbacks, to some extent, may be 

overcome by using the theory of Markov chains (MC) for describing the process of 

accumulation of fatigue failure. Although this idea is not new (see [9]), the formulation of the 

relation between the parameters of distribution of static strength and fatigue life suggested in 

this study and described here is really new. Below numerical examples of approximation of 

the fatigue curve, prediction of the residual strength and the residual fatigue life found in tests 
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with a single change in the loading mode are given. Finally possible directions of further 

investigations are outlined. 

4.2. Unidirectional composite fatigue model based on the Markov chains theory 

In this section following Daniels [8] we consider a model of unidirectional composite, 

which is called now the ―classical model of bundle of n parallel fibers stretched between two 

clamps‖. Strands or some set of strands can be considered in general case instead of fibers. 

For all structural items of these types we use the terms ―component‖ or ―item‖. Destruction of 

the specimens under cycling fatigue loading is destruction of these components. It is a random 

process. It can be described as a Markov Chain (MC) with the following matrix of transition 

probabilities 
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 

, 

corresponding to a MC with one (r+1)-th absorbing state and r nonrecurrent states. 

The vector of cumulative distribution functions of number of steps to absorption, T, 

components of which correspond to different initial states of MC,{ ( )}TF t 

(1) (2) ( 1) '( ( ), ( ),..., ( ))r

T T TF t F t F t , is defined in the following way. 

{ ( )} t

TF t P b , ,...,, 321t ,  (4.1) 

where )'...( 0100b  is the column vector. 

If the probability distribution on initial states of MC,  = 1 2 ( 1)( , ,..., , )r r     , is known, 

then for c.d.f. of T we have 

bPtF t

T )( = (1) (2) ( 1) '( ( ), ( ),..., ( ))r

T T TF t F t F t . 

So if initial state is the first state ( 1r  ) then c.d.f. and probability mass function (p.m.f.) 

of T are defined by the formulae 

baPtF t

T )( , )()()( 1 tFtFtp TTT  , (4.2) 

where )...( 0100a is the row vector. 

We consider the number of steps to absorption, T, as a life time or, more precisely, fatigue 

life of specimen measured in number of steps of MC, but we assume, that in general case one 

step in MC corresponds to Mk  cycles in fatigue test and in processing of experimental data 

we will use this value as a scale factor. It is considered as some parameter of the model. 

4.2.1. One-step Markov model 

It is useful, of course, to consider the first of all the simplest model (One-Step-Markov-

Model (OSMM) [9]), for which only transitions to the nearest ‗senior‘ states are allowed: 
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Here r  is the number of parallel longitudional items, i is equal to the number of failured 

longitudional items plus one, i = 1,…,r+1. The main characteristics of this type of MC are 

well known. Time to failure (time to absorption) T=X1+X2+...+Xr, where
iX  (time the process 

spends in i-th state), are independent random variables with p.m.f. of geometric distribution  

i

n

ii ppnXP 1)1()(  , 1,2,...i   

Expectation value and variance are equal to 

ii pXE 1)(   and .)1()( 2

iii ppXV    (4.3) 

Probability generating function for random variable T (which can be used to obtain p.m.f. 

of T) 
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 

  . 

All these formulae are well known. A new step which we offer to do is the connection of 

probabilities pi, i=1,...,r, with parameter of composite material component strength 

distribution and parameters of cycles of fatigue loading. Then we can get the fatigue curve 

equation. 

Recall our assumption that in one step of Markov process (1 cycle or may be 1000 cycles) 

only one parallel structural item (for example strand) can fail. Then if there are (R-i) still 

intact parallel structural items (MC is in ( 1)i  -th state because in the first state the number of 

failed items is equal to 0) and the same c.d.f. )(sF  for every item, then the probability of 

failure of at least one additional item, 
1ip 
, is defined by the formula 

1 1 (1 ( ))R i

i i ip F s 

    , 

where (.)iF is the conditional distribution function of the ultimate strength of yet intact 

items after i  (―the weakest‖!) items are failed (in the numerical example to decrease the time 

of calculation we make assumption that this function does not depend on i). R is an initial 

number of items, i is the number of items, which have already failed, is  is the corresponding 

stress applied uniformly to all (R-i) intact items. 

We suppose also that 

Ri

SRiSS

iR

iSSR
s

ff

i










1

))1(
, 

where S is an initial stress in every item (at the start of the test), Sf is a stress which already 

failed item is still able to carry (as at least at the beginning of damage accumulation the 

rupture of fibers can be found in different cross sections). 

Let us consider the case when c.d.f. F(s) has location and scale parameters: 

F(s)=F0((g(s)-0)/ 1 ), 
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where g(.) is some known function, F0(.) is some known c.d.f. For example, below we will 

consider lognormal c.d.f. F(s) and use normal c.d.f. instead of F0(.) and log( )s  instead of 

( )g s . Now the considered model has 6 parameters: 
0 , 1 , r, R, Mk , Sf,. They have the 

following ‖physical‖ interpretation: 
0 , 1  are the parameters of c.d.f. of strength of 

composite item (strand or fiber); for example, if g(s)=s (normal distribution of strength) then 

0  is an expectation value and 1  is a standard deviation of item strength; R is the number of 

composite items in the critical volume, failure of which corresponds to the total failure of 

specimen; r is a critical number of failed elements inside this critical volume, corresponding 

to failure of this volume; the ratio r/R defines a part of the cross section of critical volume, the 

destruction of which is consideres to be a failure of specimen; the value r defines mainly the 

variance and coefficient of variation of fatigue life; Mk  is the number of cycles corresponding 

to one step in MC; Sf is residual strength of failed item (it depends on the orientation and 

number of layers, the characteristics of matrix,...). 

So from now on we will use ),;( StFT as the specific notation of c.d.f. of a random 

variable T  instead of more general notation, )(tFT . 

4.2.2. Binomial Markov model 

For the model, which we call as Binomial Markov Model (BMM) we consider a possibility 

of MC ‖jumps‖ from state i -th to any other j- th state, 1, 2,..., 1j i i r    . It is natural to 

use here the binomial distribution 

 
1

,1 ,1

1
( , ) (1 ) ,    k r k

i i

r i
p i j p p k j i

k

 
  

   
 

, 

where ,1 ( ),   (.),   i i i i ip F s F s  are the same as in the previous section. 

The calculation of average and variance of time to failure can be calculated of course by 

the use of equation (4.2). But another approach can be used also. Again, let the structure of 

the matrix of transition probabilities be described in the way 











I

RQ
P

0
,  (4.4) 

Then, as it is known [10], the vector of average and variance of step number to absorption 

from different transient states is defined by formulae 

  N ,   sqIN   2
2

  (4.5) 

where   1
 QIN ,   is a column vector of units,   Tsq Iiii  ,)()(

2
 , TI is a set of 

transient states. 

Note, that this version of the model has only 4 parameters (including 
Mk ). 

4.3. Estimation of the model parameters of OSMM 

Formulae (4.2), (4.3) can be used in both directions: for calculation of mean and p-quantile 

fatigue curves, if parameters are known, or for nonlinear regression analysis for model 

parameters estimation, if fatigue life dataset is known. Mean and p-quantile fatigue curves are 

defined by formulae 
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1
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E T S p S 
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 , ),;()( jTjp SpFSt 1 .  (4.6) 

where ))(( jSTE , )( jp St  are mean value and p -quantile of fatigue life for stress jS . 

The parameters of the model can be estimated by the use of Maximum Likelihood Method 

(MLM), which is more preferable. For the profound investigation of this model nonlinear 

regression procedure of SAS system can be recommended. But in any case it is a very 

difficult task to find 6 unknown parameters. So we limit ourselves to only approximate 

solution of this problem. At first we consider OSMM. To decrease the number of estimated 

parameters we put: 1Mk , Sf = 0. 

An approximate estimate of parameter r can be found, if we assume, that approximately 

0 0 11 (1 ( )) (( ( ) ) / )R i

i ip F s p cF g S         for all i=1,2,…,r,  (4.7) 

where c is some constant. 

Then for the expectation value, variance and coefficient of variation we have 

p

r
TE )( ; 

2
)(

p

r
TV  ; rTETVCV /1)(/)(  . 

And approximate estimate of parameter r is defined by formula 

[)ˆ/(1]ˆ 2

VCr  +1, 

where ˆ
VC is an estimate of coefficient of variation 

VC ; ] х [ is the nearest integer towards 

minus infinity. 

Value 
p

r
TE )(  is very large (10

5
-10

7
!!!), while r is small enough, so the value of p is 

very small and )(sF  is very small too. All the above mentioned gives us the idea to make 

rather serious assumption defined by formula (4.7). Not too bad final result is the only 

justification of it! Let us denote /fD r c . Then we have an approximate formula 

)/))(((
))((

100



SgF

D
STE

f
.  (4.8) 

At the fixed fD we can get the following linear regression model 

iiifi xSgSTEDFy 10110

1

0 )()/1(/)))((/(   
, ( )i ix g S , ni ,...,2,1 . 

Parameters 
0

  and
1

  of this model can be estimated by the use of some statistical 

program of linear regression analysis at every fixed value of parameter fD . And it is not too 

serious problem to find only one nonlinear parameter fD . Then 11
ˆ/1ˆ   , 100

 ˆ/ˆˆ   are 

estimates for 
1

  and 
0

 . 

Estimate of parameter R can be obtained after estimation of ratio  Rr / . Recall that this 

ratio defines the part of the cross section area of critical volume, the destruction of which we 

consider as total failure of specimens. In the Daniels‘s model of static strength [8] this value 

corresponds to the value of )( *xF , where *x  is such, that ))(1(max))(1( ** xFxxFx
x

 . 

We can estimate *x , using estimates of 
0

  and
1

 . So we have 
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̂ = )( *xF , 11
2  )[ˆ)/((]ˆ VCR . 

Now we have approximate estimates of all four parameters 
0

  and
1

 , r and R. At the fixed 

estimates of r and R more precise estimates of 
0

  and
1

  can be found by the use of MLM and 

formula (7.2). But for calculation of c.d.f. we should first calculate tP . But this is very 

expensive. It is offered to use some approximation of (.)TF . It appears, that lognormal 

approximation is good enough for our purpose [6] 
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where
LT0

 , LT1
  are such, that we have the same (as defined by formula (4.3)) expectation 

value and standard deviation 

21
2

0
/))(log())(log(  VLT CTE , 212

1
1

/))(log(  VLT C . 

The time of fatigue test is usually limited and live observations are censored, so maximum 

likelihood function in logarithm scale is defined in the following way 

))(ln()(  Ll  , 

where 





n

i

A

i

A

i
ii FfL

1

1
1 )()(    , ii Ff   ,  are probability density function and cumulative 

distribution function of a random variable T  (for fixed   and S ) ; iA is equal to 1, if fatigue 

test is finished by the failure of specimens; 
iA is equal to 0, if the time of test is limited (right 

censored observation). 

For the BMM the same approach can be used, because in fact the probability ( , 1)p i i   has 

the largest value in every i-th row of matrix P. So for approximate parameter estimation all 

the relevant previous formulae can be used. 



Statistical Analysis of Static Strength and Fatigue Life of Composite 

 84 

 

Fig.4. 2. Experimental data (  ) and the results of calculations of the expectation values of relevant order 

statistics (o). 

4.4. Processing of the experimental data of fatigue test of laminate panel 

For numerical example we consider the problem to fit the experimental data of fatigue test 

of laminate panel. These data were kindly given to the authors by W.Q. Meeker, who studied 

them in paper [2] and gives the following description of these data: ―the data come from 125 

specimens in four-point out-of-plane bending tests of carbon eight-harness-satin/ epoxy 

laminate. Fiber fracture and final specimen fracture occurred simultaneously. Thus, fatigue 

life is defined to be the number of cycles until specimen fracture. The dataset includes 10 

right censored observations (known as ―runouts‖ in the fatigue literature)‖. 

Using these data in accordance with the approach considered in section 4.3 for OSMM we 

have got: r̂ =3, 15R̂ , : 0
̂  = 7.646, 

1
̂  =0.345, maximum of )(l =-155.19. For the BMM: 

r̂ =20, 0
̂  = 7.46, 

1
̂  =0.326, maximum of )(l =-152.09. It seems that BMM is more 

appropriate for this data and has some smaller number of parameters. The fatigue curves, 

more precisely, the experimental data (  ) and the results of calculations of the expectation 

values of the relevant extreme order statistics (o) are shown in Fig. 4.2. It seems that it is not 

too bad. The considered models can be used for prediction of fatigue life under program 

loading, too. Preliminary calculations show a small difference from Miner‘s law. Some 

experimental investigations do not contradict this law, but it seems that it takes place only for 

nearly unidirectional composite. But a significant deviation from this law can be expected if 

the role of composite matrix is more significant. Another type of model to take into account 
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this phenomenon is offered in the next section. It is more appropriate for prediction of fatigue 

life under program loading. 

4.5. Model of accumulation of fatigue damages based on the Markov chain theory 

taking into account matrix plasticity 

4.5.1. Mathematical description of the model 

Now we assume that the fatigue failure of a test specimen occurs after destruction of some 

its critical microvolume (CMV) consisting of perfectly elastic (brittle) longitudinal fibers 

(bundles) (the elastic part) and a matrix where plastic deformations accumulate during cyclic 

loadings (the plastic part) (Fig. 4.3 and Fig. 4.4). 

    

 

Fig.4.3. Model of the critical microvolume of a 

composite under a load 

Fig. 4.4. Model of the critical microvolume of a 

composite after removal of the load. 

And we assume that except for the longitudinal elements, a plastic part includes all other 

composite components, i.e., the matrix itself and all the layers with stackings different from 

the longitudinal one. 

We assume that, if the number of intake elastic elements in the CMV (able to take up the 

longitudinal load) decreases by Rr  during the cyclic loading, the elastic part of the specimen 

breaks down, which is followed by the failure of the specimen as a whole. The slanted 

hatching in Fig. 4.3 points symbolically to the possibility of accumulating an irreversible 

permanent strain, Y  (see Fig. 4.4). If permanent strain exceeds some critical level, YC , the 

failure of the CMV and the specimen as a whole takes place. We emphasize that this graphic 

image, as applied to a composite, should be understood symbolically. It is more suitable for 

metals, where the accumulation of plastic strains is associated with some "act of yielding" (for 

metal — a shift over slip planes). We assume that an individual act of yielding in the 

mathematical description of the process, leads to a respective change in the state of MC, while 

in the physical description — to the appearance of a constant plastic strain 1Y . The failure of 

CMV takes place after the accumulation of a "critical" number of such acts, Yr , i.e., after the 

accumulation of a critical permanent strain, the relation 1YC Y Yr  is valid, where YC  and Yr  

are model parameters. 

Since the elastic and plastic parts are integrated in a unit, accumulation of permanent strain 

leads to the appearance of residual stresses: tension in the elastic and compression in the 

plastic part of the specimen. 

Let us associate the process of a gradual failure of a specimen with a stationary Markov 

chain of two dimensions: the number of broken elastic elements and the number of acts of 

yield. We will consider the matrix of transition probability as a complex of blocks: ( Yr +1) 
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blocks with (
Rr +1) states within each of them. Then, the indices of input and output states, i  

and j, respectively, can be expressed in terms of the corresponding local indices , ,Y R Yi i j  and 

j
R
 by the formulae 

RYR iiri  )1)(1( ; RYR jjrj  )1)(1( . 

Table 4.1.Example of transition probabilities matrix 

 

 
jY 1 2 3 

jR 1 2 3 1 2 3 1 2 3 
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3 3 0 0 1 0 0 0 0 0 0 
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2 5 0 0 0 0 p
R0

p
Y0

 p
R1

p
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 0 p
R0

p
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 p
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p
Y1

 

3 6 0 0 0 0 0 1 0 0 0 

3 

1 7 0 0 0 0 0 0 1 0 0 

2 8 0 0 0 0 0 0 0 1 0 

3 9 0 0 0 0 0 0 0 0 1 

 

Table 4.1 shows the example of (symbolic) filling of the matrix for the case where 

2Y Rr r  . In this case, destruction of a specimen occurs if two longitudinal elements fail 

(event A), or two acts of yielding take place (event B), or events A and B take place 

simultaneously. To these events the absorbing states of the Markov chain correspond. In the 

example considered, there are ( 1)( 1) 9Y Rr r    such states. The symbols 
0 1, ,...R Rp p  

designate the probabilities of failure of the corresponding number of elastic (rigid) elements; 

0 1, ,...Y Yp p  are the probabilities of the corresponding numbers of acts of yielding. 

In the present study we assume that the number of elastic elements destroyed in one step 

has a binomial distribution. If we have Rn  still intact elements, the probability of failure Rk  of 

additional elements is defined by the equation: 

        RRR kn

YRRR

k

YRRR

R

R
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
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
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where RRR irn  , RRR ijk  , for RR nk 0 , )1(1  RR rn , (.)RF  is c.d.f. of 

strength of intact elastic element,  YRR iiS ,  is the stress in elastic part, when the process is in i 

– th state. The probability of the fact that at the same state of the process, an additional 

number of acts of yielding will be equal to Yk , is described by a similar equation: 
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where YYY irn  , YYY ijk  , at YY nk 0 ; )1(1  YY rn  and (.)YF  is c.d.f. of the 

yielding point, ( Yj -1) is the number of acts of yielding;  YRY iiS ,  is the stress in the plastic 

part; the number of preceding acts of yielding is (iY-1), and the number of already destroyed 

elastic elements is (iR, -1). 

The stress itself is the function of applied ―brutto‖ stress and the function of the number of 

failure of rigid items and number of acts of yielding. Let initial cross-section of considered 

(the weakest) critical volume be 

YR fff  , 

where YR ff ,  are cross-sections of rigid and yielding parts of critical volume 

correspondingly. 

If failure of i rigid items in the same cross-section takes place, then cross-section area 

decreases: 

 RRiR Riff / 1  

The cross-section of yielding part does not change but the length of it changes as the 

function of the number of yielding. If both rigid and plastic parts are working within the limits 

of elasticity then we have two equations for corresponding stress calculation: 

,R R Y Y

R Y

R Y

S f S f S f

S S

E E

    







, 

where S is stress, E is Young‘s modulus, R and Y are subscripts of rigid and yielding parts 

correspondingly. The first equation is an equation of equilibrium; the second is the condition 

of compatibility: equality of strains of both parts. If the lengths of both parts are equal, we 

have the following solution of this equation system: 

)//( RYYRR EEfffSS  , )//( YRRYY EEfffSS  . 

But if we have some yielding of the plastic part and its new length becomes equal to 

(1 )Y Yl    instead of an initial length 1Yl   then we should take into account the residual 

stress, which appears in both parts after an outside load is eliminated. This residual stress can 

be found as the solution of the equation system: 
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Here again the first equation is an equation of equilibrium, the second is an equation of 

length equality. The solution of this system (in limits of elasticity) is defined by the formulae 

 YYRRYYRR EfEfES )(   11 ,  RRYYYYYY EfEfES   1 . 

We make an additional assumption that the value of Y is proportional to j - the number of 

acts of yielding: 
1,   1,...,Y Y Yj j r   . The value of 

1Y is considered as the parameter of the 

model. 

The vector of probability functions of times to absorption from different initial transient 

states is defined by formula (4.1) again, but now we should use column vector b of type (0, … 

0,…,1,…,0,…,1)‘ where the order number of units is equal to the ordered number of 

absorbing states of matrix P . 
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By renumbering the states the matrix of transition probabilities again can be transformed to 

the one which is defined by (4.4). Then, if an initial state is the first state ( 1Y Ri i  ), c.d.f. of 

number of MC steps up to absorption,
ST , is defined by the equation 

( , , )
S

t

TF t S aP b  , ,....3,2,1t  

where a = (1, 0, 0, …0), b = (0, … 0,…,1,…,1)‘, where the number of units is equal to the 

number of absorbing states. Here S is cycle maximum stress,   - parameter-vector with 

component equal to the parameters of c.d.f. of strength of an item of elastic part and the 

yielding point of matrix. 

If one step in MC corresponds to Mk  cycles in fatigue test, the c.d.f. of the number of 

cycles, 
CT , is defined in a similar equation 

 
/( , , ) M

C

t k

TF t S aP b  , ,2 ,3 ,...M M Mt k k k . 

The Mk  is the component of   also. 

The fatigue life (cycles), corresponding probability of failure p  in a test with an initial 

stress S  (the p-quantile fatigue curve) is defined by the equation 

1 1( ) ( ; , ) ( ; , )
S Cp M T Tt S k F p S F p S    . 

Again the vectors of average and variances of step numbers to absorption from different 

transient states are defined by the formulae (4.5). 

In the considered model we are interested in the matrix  ijB B , which defines the 

probabilities of absorption in Sj absorbing state if an initial transient state is Si. This matrix is 

defined by the formula 

  NRBB ij  , 

where N , R  are matrices corresponding to (4.4). Using matrix B we can calculate, for 

example, the probability that just the failure of matrix is the reason of final failure of 

specimens. 

4.5.2. Application to the program loading. Residual fatigue life in two-stage fatigue 

loading 

The offered model can be easily used for fatigue life calculation for program fatigue test. 

Let us assume that Mk =1 but instead of 
ST  we shall use just T . For any arbitrary stress cycle 

consequence 
1 2{ , ,...}S S  the probability distribution function of time to failure from the first 

initial state is defined by the formula 

 
1

( ) ( )
t

T i

i

F t a P b


  , 

where matrix 
iP  is the matrix of transition probabilities, corresponding to the parameters of 

i-th cycle (for example, maximum value of stress 
iS , 1,2,3,...i  , in ith cycle); ,a b  are the 

same as in the previous formula. At our disposal we have experimental data [11] 

corresponding to the program which is shown in Fig 4.5. 
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Fig.4.5. Example of the program of cyclic loading with a single change in the level of the maximum cycle stress. 

For this program the distribution function of time to failure is defined by the formula 
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  (4.9) 

Conditional distribution function of residual fatigue life, 2T , of the specimen without 

failure in the first stage test after n1 cycles with S
I
, as usually, is defined by the equation 

)(1

)()(
)(

1

11

2 nF

nFtnF
tF

T

TT

T 


 . 

Here we limit ourselves by checking the offered model forecasting the expectation value of 

T2 if fatigue curve and n1 are known. The calculation of expectation value of T2 is similar to 

the calculation of expectation value, E(T), and the variance, V(T), for the case without stress 

change. But now we should take into account that the order number of the initial state at the 

end of n1 cycles with stress S=S
I
 is a random variable with distribution 

1001
nII

IS
P...),,( .  (4.10a) 

Then expectation value and variance of time to failure at the second stage with S=S
II
 will 

be defined by the formulae [10] 

IIIITE  )(
2

, 
2

2

22

22
)()())(()()( IIIIII

sq

IIIITETETV   .  (4.10b) 

4.5.3. Processing of residual fatigue life data set in two-stage fatigue loading 

In [11], the results of fatigue tests at an approximately pulsed (
min max/ 0.1S S  ) load on 

CFRP specimens with an average static strength of 356 MPa are represented. The purpose of 

these tests was to construct the fatigue curve (Table 2.11 in [11]) and to examine residual 

durability at a single change in the loading mode (Table 4.3 in [11] and Fig.4.5 of the present 

study). 

The maximum stresses were 290 and 323 MPa; an average fatigue life was 1,200,000 and 

116,000 cycles respectively (Tables 4.2 and 4.3 in [11]). Figure 4.6 of the present study shows 

experimental data for constructing the fatigue curve and presents the calculation results for 

mathematical expectations of order statistics for the fatigue life (the sample size is equal to 

the number of specimens tested at the corresponding loading level). 
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Fig.4.6. Results of fatigue life tests at a pulsating loading (+) according to [11] and the calculated estimates of 

mathematical expectations of the respective order statistics (O). 

The calculation results for a relative residual durability in the tests with a single change in 

the loading mode namely n2/N2 (the conditional relative residual durability E(T|T>n1)/E(T
II
) of 

specimens not destroyed at the first stage of loading) as functions of n1/N1 (more clearly, 

1 / ( )In E T ), in comparison with experimental data and calculations according to the 

Palmgren-Miner linear hypothesis, are illustrated in Fig.4.7. 

 

a b 

Fig.4.7. Calculation results for the relative residual durability n2/N2 according to the model suggested (), the 

Palmgren-Miner hypothesis (- - -), and experimental data(+) from [11] at S
I
 = 290 MPa, S

II 
= 323.7 MPa (a) and 

S
I 
=323.7 Mpa, S

II 
=290 Mpa (b). 
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Similar information based on the experimental data published in [3] is given in Fig.4.8 and 

Fig.4.9. 

 

Fig.4.8. Experimental data (+) (according to [3]) and the corresponding calculated values (o) of the average 

fatigue life. 

 

a b 

 

Fig.4.9 Calculation results for the relative residual durability n2/N2 according to the model suggested (), the 

Palmgren-Miner hypothesis (- - -), and experimental data (+) at S
I
 = 315 MPa, S

II
 = 340 MPa (a) and S

I
 = 340 

MPa, S
II
 = 315 MPa (b). (Experimental results for n2/N2 = 2.73, 1.63, and 4.33 at n1/N1 = 0. 1086, 0.1129, and 

0.1476 are not shown.) 

Unfortunately, the data on the fatigue curve in [3] are very scanty: only average values of 

strength at two stress levels are given. Therefore, Fig.4.8 actually has no independent 

importance - it is given here only to better understand Fig.4.9. Table 1 and Figures 2 and 3 

given in [3] represent data on the residual durability of CFRP specimens with a static strength 

of 422 MPa. The cycle of fatigue loading is close to a pulsating one (with a ratio between the 

minimum and maximum stresses, R, equal to 0.05).The residual durability was investigated at 

two loading levels with maximum stresses 315 and 340 MPa, and average durability was 

found to be 115,150 and 8800 cycles, respectively. The data on the residual durability are 

given for each specimen separately. 

The parameters of the model (of the critical volume) used in calculations are shown in 

Table 4.2. 
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Table 4.2. Parameters of the model. 

 

 

Parameter 

Data 

[11] [3] 

Elastic modulus of longitudinal elastic elements, ER, MPa. 207,972  21,0000  

Elastic modulus of the plastic part, EY, MPa. 27,946 28,000 

Ultimate total relative elongation of the plastic part, Y. 0,00255 0,00255 

Relative area of the elastic part, Rf  ( Yf =1- Rf ) 0,286 0,14 

Number of longitudinal elements in the elastic part of critical 

microvolume, rR 

2 9 

Number of elongation ―steps‖ in the plastic part of a critical 

microvolume, rY. 

3 9 

Average value of the (natural) logarithm of the strength of 

longitudinal elastic elements, R0 (exp( R0 )). 

7,5 

(1808 MPa) 

7,55 

Standard deviation of the (natural) logarithm of the strength of 

longitudinal elastic elements, R1  

0,15 0,053 

Average value of the (natural) logarithm of yield point of the 

plastic part of critical microvolume, Y0 (exp( Y0 )). 

5,8579 

(350 MPa) 

5,7038 

Srandard deviation of the (natural) logarithm of yield point of the 

plastic part of critical microvolume, Y1 . 

0,3 0,2 

Number of cycles equivalent to one step of Markov chain, kM 1 1,945 

Minimum stress for the two-level loading program, Smin, Mpa 290,1 315 

Maximum stress for the two-level loading program, Smax, Mpa 323,7 340 

Probability that the destruction of the specimen is caused by 

destruction of the plastic part of a microvolume under loading with 

a constant amplitude equal to Smin, bY (Smin) 

0,10087 0,057306 

Probability that the destruction of the specimen is caused by 

destruction of the plastic part of a microvolume under loading with 

a constant amplitude equal to Smax, bY (Smax) 

0,35015 0,76965 

 

Note. In parentheses, values according to notural scale are given. 

The first four parameters are regarded as known constants of the CMV of material, while 

the subsequent seven are the parameters of nonlinear regression and are chosen upon 

processing the experimental data. Clearly, to better describe the results of fatigue tests, the 

first four parameters can be chosen as distinct from the ―theoretical‖ values. For processing 

the data presented in [11], the values of these parameters were taken directly from the study. 

Almost the same values of the parameters (slightly rounded) were also used for processing the 

results of [3] (because there was not necessary detailed information in [3]). We remind that in 

the considered model the ―plastic‖ part is the entire structure of CMV of the composite except 

the longitudinal elastic elements (and not only the corresponding volume of the ―physical‖ 

matrix of the composite). 

4.5.4. Residual strength in two-stage fatigue loading 

Investigation of degradation of residual strength after fatigue is of vital importance to the 

reliability of aircraft structures. A lot of papers are devoted to this problem. Fine discussion of 

the state-of-the-art phenomenological residual strength models is provided in [13] referencing 

to 49 papers. 
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All the considered models give deterministic phenomenological description of degradation 

of residual strength. For example considered in [13], some (nunlinear) modification of linear 

Bourtman and Sahu [14] model for description of residual strength ( )X n  after n  fatigue 

cycles the following equation is offered: 

max( ) (0) ( (0) )( / )kX n X X n N   . 

Corresponding c.d.f. of ( )X n was developed using Weibull distribution for (0)X  

max max
( )

( / )
( ) 1 exp

(1 ( / )

k

X n k

x n N
F x

n N

 
 



    
             

 

with a ,   being parameters of Weibull c.d.f.: ( ) 1 exp( ( / ) )F x x    . For offered in [13] 

model, which is referred to as OM model, 1 2exp( / )k k k n N , 
1k and 

2k are some parameters. 

But in conclusion of [13] it is said that ―even though the OM … in most cases predict 

satisfactory the residual strength … it requires a considerable experimental effort for 

implementation and do not consistently produce safe prediction‖ 

The stress amplitude (at a symmetric reversed loading cycle) or, in the general case, the 

maximum stress (at an arbitrary fixed stress ratio) at which no fatigue failure takes place after 

a fixed number of cycles, N , is regarded as the restricted fatigue limit on the fixed base 

(duration) of tests. A certain development of the statistical theory of the restricted fatigue 

limit and fatigue curve is given in [15] and [16], the joint cumulative distribution function, 

( , )F S N , which is equal to the probability of fatigue failure at a number of cycles smaller 

than N and a stress lower than S, has the form 

0 0

0

( ) ( )
( , ) 1 exp

V S S N N
F S N

V C

 



  
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 
 

where 
0 0 0,  ,  ,   and V S N    are some material parameters 

 

Fig. 7.10. Schematic of a family of quantile fatigue curves, of c.d.f. of the conditional fatigue limit at a fixed 

limited duration of tests F(S | N) and of c.d.f. of the fatigue life at a constant stress level F(N | S). 

Fig. 7.10, taken from [16], schematically shows a family of quantile fatigue curves, as well 

as the c.d.f. of the conditional fatigue limit at a fixed ultimate number of cycles and the c.d.f. 

of service life at a fixed level of stresses. 

It seems that without a deep probabilistical analysis we can not get the solution of the 

problem. One Step version of a model is considered in [17]. Here we try to use the binomial 
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version of transition probability matrix of a considered model for processing data set reported 

in special OPTIMAT BLADES testing program documents [19-22]. It is shown that this 

model gives some reasonable result. 

First, let us consider distribution of the restricted fatigue limit at a fixed number of cycles 

of fatigue loading. The matrix of transition probabilities, P, is a function of S. Therefore, the 

function 

baPxF t

t
)( ,  (4.11) 

where x = S, ,a b  are the same as in the previous section, determines the probability of 

failure of specimens in t steps ((kM t) cycles) at a stress equal to S, i.e., it determines the 

distribution function of conditional fatigue limit at a fixed restricted number of fatigue kM t 

cycles. 

Now let us consider a distribution of the residual strength. The vector of probabilities on 

the states of the Markov chain after loading ( 11,nS ), i.e., after n1 steps with a stress S1, is 

defined as 

11nS = 1

1
,...)0,1(

n
P ,  (4.12) 

where 
1P  is P for 

1S . 

The last )1( RY rr  components of this vector define the absorption probabilities of the 

Markov process at the states corresponding to the failure of the specimen. 

The residual strength 
1 1S n after loading (S1, n1), i.e., after n1 steps with a stress S1 is 

measured, of course, only on intact specimens. The corresponding components of the vector 

of distribution of probabilities on the irreversible states of the Markov chain are 





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111111

1

* )(/)()(
m

m

nSnSnS mkk  ,  (4.13) 

where )(
11

knS , and *,...,1 mk  ,- are components of the vector 
11nS ; 

*m = )1)(1(  RY rr -

)1( RY rr  - is the total number of non absorption (irreversible) states. The last )1( RY rr 

components of the vector 
1 1

*

S n , corresponding to the absorbing states, are obviously equal to 

zero, since here we consider only the specimens not failed upon the preliminary loading. 

For such specimens, the distribution function of the stress 
II

n1
 at which absorption in one 

step in the Markov chain occurs (which corresponds to the failure of a specimen in kM cycles), 

has the form 

1 11 1

*( ) ( )
S n S nF x P x b  ,  (4.14) 

where 1Sx  , )(xP - is the matrix of transition probabilities at xS  . If kM is equal to unity 

or is relatively small, the relation (4.14) determines the distribution of the residual strength. 

The words ―relatively small‖ have to be defined more exactly during the accumulation of 

practical experience in using the model for processing experimental data. In general case, the 

function 
1 1

( )
S n

F x determines the distribution of a conservative estimate of residual strength 

since, obviously, the destruction in one cycle requires a greater load than in kM cycles. 

The formulae (4.12)-(4.14) are easily generalized for a case where the residual strength is 

investigated after some arbitrary sequence of loadings ),( 11 nS , ),( 22 nS ,..., ),( rr nS : 
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For example, after the application of a load (S2, n2 ), subsequent to a ―normal‖ preliminary 

load (S1, n1), we have to assume that r = 2 in Eqs. (4.15) – (4.17). 

4.5.5. Processing of residual strength data set in two-stage fatigue loading 

In [19-22], the results of 17 fatigue tests at R=0.1 and the results of 33 residual strength 

tests for 3 different stress levels (48.5; 63.6 and 78.3 MPa) of a preliminary loading in the 

framework of OPTIMAL BLADES testing program of the OB UD material are reported. ISO 

standard specimens, [+45/-45]s, were therefore used. We see that in this case there are no 

straight longitudinal items (fibers or strands). But if we consider the described model just as a 

nonlinear regression model we can try to make fitting of fatigue and residual strength test data 

using this model. 

 

  

 

Fig.4.11. Results of fatigue life tests at 

approximatelly pulsating (R=0.1) loading (+) 

according to [19] and the calculated estimates of 

mathematical expectations of the respective order 

statistics (O). 

 

Fig. 4.12. Test results (+) [19] and estimates of the 

average residual strength vs the duration of 

preliminary loading with three stress levels (78.3 ( ); 

63.6 (+) and 48.5 (x) MPa). 

 

In Fig. 4.11. we see the fitting of the fatigue data and in Fig. 4.12. the residual strength and 

corresponding ―prediction‖ using the considered model and fatigue parameter estimates are 

shown. In Table 4.3 we see parameters of the model, which was used for these calculations. 

Table 4.3. Parameters of the model 

 

Parameters 

Elastic modulus of longitudinal elastic elements, ER, MPa. 79, 000  

Elastic modulus of the plastic part, EY, MPa. 5,000 

Ultimate total relative elongation of the plastic part, Y. 0,2 

Relative area of the elastic part, Rf  ( Yf =1- Rf ) 0,21 
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Number of longitudinal elements in the elastic part of a critical 

microvolume, rR 

20 

Number of elongation ―steps‖ in the plastic part of a critical 

microvolume, rY. 

10 

Average value of the (natural) logarithm of the strength of 

longitudinal elastic elements, R0 (exp( R0 )). 

5.7038 

(300 MPa) 

Standard deviation of the (natural) logarithm of the strength of 

longitudinal elastic elements, R1  

0,2 

Average value of the (natural) logarithm of yield point of the 

plastic part of a critical microvolume, Y0 (exp( Y0 )). 

4.0943 

(60 MPa) 

Srandard deviation of the (natural) logarithm of yield point of the 

plastic part of a critical microvolume, Y1 . 

0,2 

Number of cycles equivalent to one step of Markov chain, kM 6934 

 

Note. In parentheses, values according to natural scale are given. 

4.6. Conclusions and areas for further research 

An analysis of the calculation results shows that the considered model satisfactorily 

describes the fatigue curve; however, in some cases predicted fatigue life is greater than actual 

for large stress (see Fig.4.6). The model examined also allows to predict the probabilities that, 

upon loading with a constant amplitude, the failure of a specimen is caused by the destruction 

of the plastic part (but not by the destruction of the elastic elements). These probabilities are 

illustrated in the last two rows of Table 4.2. As it is seen, the model correctly reflects the 

expected effect: with an increasing stress, this probability increases. 

The residual durability calculated by the model is much closer to the experimental data 

than that predicted by the Palmgren-Miner linear hypothesis. The model predicts the 

inequality 1
2

2

1

1 
N

n

N

n
 if S

I 
> S

II
 and 1

2

2

1

1 
N

n

N

n
 if S

I 
< S

II
. This phenomenon is observed in 

the experiment, too. We should note that, in describing similar test results, it is usually 

assumed (see, for example, [3]) that 0/ 22 Nn  for 1/ 11 Nn . However, if 1/ 11 Nn  about 

half of the specimens did not fail at the first stage of loading, and their residual durability at 

the second stage is not equal to zero, as it is shown by the calculations presented. 

Comparing experimental data on residual static strength after fatigue load with the 

calculation results, we can conclude that with the model parameters found, it is possible to 

simultaneously describe both the data used to construct the fatigue curve and the data on the 

residual static strength of the composite after some preliminary loading (see Fig. 4.11 and Fig. 

4.12). 

The mathematical model suggested, from unified positions, gives a tool for consistently 

analyzing the distribution of static strength, the data for constructing the fatigue curve, the 

restricted fatigue limit, and the prediction of both the distribution of fatigue life under a 

program loading and residual strength after some preliminary loading. The model is too 

simple to be able to exactly predict the fatigue life based only on the data of static strength. In 

essence, it is a model of nonlinear regression, but as distinct from, for example, the Weibull 

model of fatigue curve, the parameters of the model can be interpreted as parameters of 

distribution of the local static strength. 

The model has a rather general ―modular‖ structure. Its ―moduli‖, namely the distribution 

law for the static strength, the laws of accumulation of residual stresses and residual 
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permanent strain in the critical micro volume, and the size of the critical micro volume can 

vary depending on the structure of a particular composite. 

The determination of parameters of the model of nonlinear regression (the parameter kM 

can be easily found by using the methods of linear regression) is a serious problem. The 

search for its efficient solution is the subject of a special investigation. Therefore, at present, it 

seems that the model considered here cannot be recommended for ―engineering‖ applications 

yet. However, it is of a great interest not only for student studies, but also for a serious 

scientific investigation, since it gives a sufficiently informative ―translation of mathematics 

into physics‖. 

And it deserves to be studied more circumstantially. 

There are several possible extentsions that deserve to be explored further: 

 The model considered is most suitable for describing the processes with pulsating 

loading cycles. But using some method of ―converting‖ of some cycle with 

arbitrary min max/R    into ―equivalent‖ pulsating loading cycles (see, for 

example, [23]) this model can be extended to arbitrary loading cycles. 

 In the preceding section we considered the influence of the size of the specimens on 

its static strength. The same investigation can be done in exploring the fatigue life. 

If specimen has stress uniformly distributed along its length then just as in the study 

of static strength the specimen can be parted in 
Ln  parts and it can be assumed that 

a fatigue process takes place in 
LK , 1 L LK n  , items but fatigue life of specimens 

is the fatigue life of the weakest item. Conditional binomial (under condition: 

( 0) 0LP K   ) or its Poisson‘s approximation (under conditions: ( 0) 0LP K    

and ( 1) 0L LP K n   ) distributions of r.v. 
LK  can be explored. The value of 

1 / Ll L n , where L is the length of specimens, appears in this case as an additional 

parameter of the model.―Direct Poisson approach‖ can be tried out also. In this case 

it is assumed that r.v. 
LK  has a conditional Poisson distribution under condition: 

( 0) 0LP K   .  

 In the general case, we should take into account that fatigue process in several cross 

sections (weak sites) does not begin simultaneously. We may assume that the 

instants of origination of weak sites form a Poisson process with intensity 

),(ScF  where c is the factor of proportionality, (.)F is the c.d.f. of static 

strength, and S is the maximum cycle stress. Then, the time intervals between the 

occurrences of the weak sites, 1 2 3, , ,...X X X have an exponential distribution with 

an average 1/ . Let T1, T2, T3, ... be a fatigue lives of  weak sites.  Then the c.d.f. of 

the random variable Y (the time before failure of the ―weakest‖ element), 

,...),,min( 213121 XXTXTTY  , 

is determined by the formula [12] 

0

( ) 1 (1 ( ))exp( ( ) )

y

Y T TF y F y F t dt     . 

For example, if FT (t) can be approximated by a lognormal distribution [12], we have 

)))(*)2/exp()(((exp()(1)( 1

2

1 LLY zzyzyF   , 

                    

where LLyz 10 /))(log(  ;   L0 , L1   are the parameters of the lognormal distribution. 

However, the estimation of the parameters of the model becomes a very serious problem. 
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5. Appendices 

5.1. Aircraft fatigue. History and current trends 

Compiled by Yu. M. Paramonov 

5.1.1. Introduction 

This is a short survey of aircraft fatigue fractures. The safe-life concept, the fail-safe 

concept, damage tolerance and the DTR analysis are discussed. 

As it was told in " A survey of serious aircraft accidents involving fatigue fracture " 

prepared by G. S. Campbell and R. Lahey in 1981 [1]: ―A total of 1885 accidents since 1927 

to 1981 where identified as having fatigue fractures as a related cause, and these accidents 

resulted in 2240 deaths;... the earliest reported accident was the wing-failure of a Dornier 

Merkur on 23 september 1927,... recently, there has been an average of about 69 fixed - wing 

fatigue accidents per year‖. 

C. Torkingtion in his paper [2] reminds: ―In a two year period from 1942, about 20 Vickers 

Weillington bombers were lost in the UK as a result of fatigue failures of the wing main spar 

joints. In the war situation, if 20 failures in the UK were identified as fatigue, one can only 

guess that at least a similar number were lost over the sea or enemy territory. 

The Wellington wing utilised a rather too-clever serrated wing joint which was 

subsequently found to have a mean fatigue life of between 200 and 300 flying hours. 

Following fatigue testing, a new joint was designed which achieved a life of 1200 hours. 

The Wellington case is well-documented, but many other aircraft of that time had similar 

problems. The post-war Martin 202 had a similar four-step wing spar splice fitting which 

resulted in fatigue failure on two aircraft at 1542 and 1400 hours. Fatigue cracks were found 

in a further 13 aircraft, with total times as low as 335 hours.‖ 

The most significant accidents were the catastrophic failure of Comet (1953, 1954), Fokker 

F-27 (1968), F-111 (1969), Hawker Siddeley (1976) and Boeing - 707 - 321C (1977). The 

most massive structural failure ever survived by an airliner was a geriatric (89,000 - flight) 

failure of B - 737 (1988). 

5.1.2. The de Havilland crashes. Safe-life principle 

The crash of three Comets was the most significant event, which has a very strong 

influence on the next aircraft airframe development. The first comet accident happened at 

Calcutta on May 2nd. 1953. As it would be told later by Lord Brabazon of Tara, chairman of 

the Air Registration Board [2], that was a strange accident, occurring at 9,000ft. Great experts 

had gone into it, and they told us that the aeroplane had met weather condition - I think it was 

a downward gust, they said, of 90 ft/ sec on the tail so extraordinary and so unprecedented as 

to be capable of breaking any machine in the air... 

The second accident happened during the regular flight from Singapore to London on 

January 10th. 1954."On leaving Rome the aircraft climbed rapidly in accordance with the 

flight plan, and at 0950 hours, when the last message was received at Ciampino the pilot 

reported that he was at 26,500 ft. over the Orbetello beacon, and intended to continue to climb 

to 36,000ft. as planed...The absence of any further message to the second stations provided a 

negative indications, after which the usual emergency services were soon alerted. Meanwhile, 

positive indication of an accident was received. The eye-witnesses had seen pieces of the 

aircraft falling, in flames, into the sea... 
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Chief officer of the Harbour Authority of Portoferraio had immediately arranged for a 

search by aircraft and ships, and the search for wreckage was taken up by Italian and British 

Navies... Between February and September 80 percent of aircraft structure was recovered... 

"The Accident Branch of the Ministry of Transport and Civil Aviation had gone into action at 

once as soon as the accident was reported, and they were making investigations in all 

directions. They arranged for the wreckage as it came up to be sent to England, and the Royal 

Aircraft Establishment agreed to carry out an examination of it; but of course, this took time 

and mean while other events occurred..." 

The third accident ―took place on April 8th, 1954, when the machine had done 2,704 

hours. It was on a flight from London to Johannesburg... Again the take off was perfectly 

normal. The last message was received at 1905 hours that is to say, 33 minutes after the 

aircraft took off. The pilot said that he was climbing to 35,000ft, which was the cruising 

height called for by the flight plan, and he was asked to report when he reached that height, 

but no more was heard". There were no eye-witnesses, but emergency service were put into 

operation that night, and the following morning some wreckage and five bodies (out of 14 

passengers and seven crew) were found". [3]. 

Of course, already after the Elba accident, the Air Safety Board was asked by the Minister 

of Transport and Civil Aviation for advice concerning the resumption of Comet services. On 

March 2nd. a meeting was held, at which the A.R.B.(Air Registration Board) described their 

investigation, the modification they proposed, and the consultation they had had with the 

Havilland, B.O.A.C.(British Overseas Airways Corporation ) and outside experts. As a result 

of the meeting, a minute was sent from the Board of the Minister, which read as follows: "The 

Board... realizes that no cause has yet been found that would satisfactorilly account for the 

Elba disaster... the Board realizes that every thing humanly possible has been done to insure 

that the desired standard of safety shall be maintained... and... recommends that Comet 

aircraft should return to normal operational use after all the current modifications have been 

incorporated and the aircraft have been flight tested." [3]. 

And indeed after the Elba accident, the B.O.A.C. ceased Comet operations and a 

programme of investigations was arranged together with the de Havilland Company. Firstly, 

the remaining Comet aircraft were to be inspected. 
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Fig. 5.1. The remaining Comet aircraft. 

And secondly, consideration was given to all possible features which might have resulted 

in the accident. The possible causes were: 1, control flutter; 2, primary structure failure; 3, 

flying control failure; 4, fatigue, and particularly wing fatigue; 5, explosive decompression of 

pressure cabin; and 6, the possibility of malfunction of either the engines or the installation. 

Inspection and modification were introduced to guard against these contingencies. 

Preliminary medical evidence had indicated an explosion. 

Modification after the Elba accident included the addition of steel plate protection against 

turbine-blade penetration, for the fuel tank and the main aircraft structure, and precautions 

against fatigue failure of the impeller and diffuser vanes. All these modifications have been 

devised to cover the worst possible combinations of circumstances which it was thought 

might arise. 

"...About six Comets were given proof tests on their pressure cabins of 11 lb/sq. Later the 

veritable cause of the crash has been found, -the fatigue crack - but it was subsequent to the 

Naples accident. 

The cracks in fact were formed during manufacture and were drilled to prevent their 

propagation. But it appears that if you do stop a crack with a location hole, there is quite a 

good chance of the crack spreading beyond that hole. 

The source of the pressure cabin failure was a point near the rear automatic direction finder 

window: fracture analysis showed that all fractures in the fuselage in the area ran away from 

this point, and none ran into the area. The sources of information apart from the wreckage, 

included Comet G-ALYU which was subjected to fatigue tests, and Comet G-ANAV which 

was used for flight test. The Farnborough report described test on a one tenth scale perspex 

model of a Comet cabin, fitted with seats and dummy passengers. This had been placed in a 

pressure chamber evacuated in effect to 40,000ft, with the cabin at 8 1/4 lb/sq in differential 

pressure, and had been caused to burst near the point at which Elba Comet G-ALYP was 

beloved to have failed. 
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A number of photographs showed the effect of sudden decompression: after the equivalent 

of 0.03 sec, the seat-backs in the aft end of the cabin were moving forward; after 0.07sec, 

seats were flying about in all directions and one dummy passenger was hitting the roof with 

considerable violence. Although the timing could not be considered exact, these pictures gave 

a qualitative idea of what probably happened and again gave agreement with conclusions 

from all others sources. 

There was an evidence of decompression of the lungs in the bodies of the victims 

consistent with sudden loss of pressure in the cabin. "It is clear on general principles that if a 

fracture of any substantial size occurs in the wall of a tube or vessel which in under 8 lb 

pressure, a large hole will immediately open up and the tube will at once become what the 

layman might describe as a compressed air-gun. A terrific blast of air will force anything and 

everything out of the hole and will tend to throw the aircraft into violent contortions and so 

tear the whole of the fuselage to pieces." 

This experiment "indicated the sequence in which, according to the R.A.E. (Royal Aircraft 

Establishment) report the Elba Comet had broken up. The first thing that happened was a 

violent disruption of the centre part of the pressure cabin. The next thing that happened was 

that the fuselage aft of the rear spar, the nose and the outer port wing fell away under what are 

called downward force. Thirdly, the main part of the wing separated and caught fire. Next, the 

fuselage aft of the rear spar with the tail unit still attached, fell into sea with the open end first 

and the tail plane last. Last of all, the main part of the wing, still on fire, hit the water in an 

inverted position..."[3]. 

Additional evidence was given by full scale Farnborough fatigue tests. The fuselage 

pressurization was tested in a water tank, while fluctuating gust loads were applied to the 

wings (which projected out of the tank) by means of hydraulic rams. 

The Elba Comet failure bore a marked similarity to that of the Comet tested to failure at 

Farnborough. The failure occurred after 5,546 total pressurization, i.e. after a total equivalent 

life (including actual flying) of 9,000 flying hours. The 3,861 hours of the Elba Comet and 

these 9,000 hours cannot be regarded as outside the realm of the possible spread of the fatigue 

trouble....3,681 is within what is called the reasonable scatter, and the 2,701 (of the Naples 

Comet) is also said to be within that area. 

The apparent cause of the disruption was obtained by a process of elimination. The 

possibility of an internal explosion, abnormally high tail-loads, insufficient tail strength, an 

abnormal increase in atmospheric pressure, failure of the powered control system or the 

pressurization control, and inefficiency of the pilot had in turn been eliminated. There was 

only one thing left - metal fatigue, and nothing contradicts it. 
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Fig. 5.2. Probable failure origin of service aircraft Comet G-ALYP [4]. 

So the conclusion that the accident to Comet G-ALYP near Elba in January, 1954, was 

caused by structural failure of the pressure cabin brought about by fatigue was put forward by 

the Crown in the opening stages of the Comet inquiry in London. This conclusion was based 

on a detailed investigation by the staff of the Royal Aircraft Establishment into all possible 

causes of the disaster, using evidence from the wreckage, practical tests and theoretical 

analysis. In the absence of wreckage from the accident to G-ALYP near Naples in April, 

1954, no definite cause could be suggested, although the same explanation appeared to be 

applicable [ 3 ]. 
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Although there was earlier theoretical knowledge of fatigue, it did not begin to be seriously 

considered as a practical problem until about the beginning of the 1952. Although already in 

1947 it had been decided that the wings should be submitted to repeated loading tests, but that 

static testing would suffice for the fuselage. Fatigue problem of pressure cabin was indeed not 

fully appreciated at that time. 

In the whole of the Comet project the de Havilland Aircraft Company had carried out 500 

test investigations, involving some thousands of actual tests. Even before the Comet went to 

Farnborough for the tank test, it was the most tested civil aircraft. 

But it was not enough, that special philosophy and system of aircraft development should 

have been created in order to prevent aircraft fatigue failure. 

The first main ideas of the system were offered just during the Comet inquiry [3] in 

October - November 1954. Air Registration Board proposed to take certain practical steps. 

Board indicated its intention that complete cabins of pressurized aircraft should be submitted 

to tank tests similar to those used at Farnborogh. At least two airframes of each prototype 

would have to be made available, one for static testing and the other for fatigue testing. 

Much attention was paid to the scatter of fatigue life. This is the opinion of director of the 

Royal Aircraft Establishment: ".... I would have the whole aeroplane tests carried on until the 

next failure took place, and then take half a dozen specimens and get a safety life, we would 

then put variation as 3:1 on either side of the average. Whereas, if you only work on a single 

specimen, you would have to give a safety life of about one ninth of what the specimen comes 

to, because the specimen might by chance have been the strongest..."[3]. ―Нормы летной 

годности‖ of SU defines the figures as 3:1 and 5:1 correspondingly). 

The approach to the fatigue problem, which developed from these ideas, was called a 

SAFE-LIFE approach. Basically this requires that all the parts of the structure, the failure of 

which could result in loss of the aircraft, are to be able to remain safely in use for a 

predetermined retirement life. Safe - life components are not normally subject to inspections 

related to fatigue, though they may be examined periodically for such problems as wear or 

corrosion. 

5.1.3. Fail-safe concept 

Now the fail - safe concept will be discussed, which was initially developed in U.S.A., but 

until now most general aviation aircraft have safe-life structures; all helicopters have a 

mandatory retirement schedule which commonly includes almost every component that 

moves and even some that do not. 

U.S.rules in fatigue evaluation for fixed wing transport aircraft later would serve as the 

framework for common international standards. This new standard resulted from the U.S. 

FAA Transport Category Airplane Fatigue Regulatory Review Conference held in March, 

1977. The European position, primarily advocated by the United Kingdom, was that transport 

category aircraft should meet two standards, the fail-safe and the safe-life method, for 

certification of fixed wing aircraft. 

U.S. industry officials opposing the safe-life concept cite the services experience of the 

8,000 U.S. aircraft manufactured under the damage tolerance practice, the cost and time 

involved in conducting fatigue tests, difficulty in simulating corrosion damage after 10 years 

in a laboratory test, and the extra weight an aircraft would have to carry around to take care of 

a "what if" situation. 

The damage tolerance evaluation of structure is intended to insure that should serious 

fatigue cracks or damage occur, the remaining structure can withstand reasonable loads 

without excessive structural deformations until the damage is detected. 
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Design features which may be used in attaining a damage tolerance structure are: 

* Use of multipath construction and the provision of crack stoppers to limit the growth of 

cracks. 

* Use of duplicate structures so that a fatigue failure occurring in one-half of the member 

will be confined to that half and the remaining structure will still posess appreciable load 

carrying ability. 

* Use of a backup structure where one member carries the entire load, with the second 

member available and capable of assuming the extra load if the primary member fails. 

* Selection of materials and stress levels that provide a controlled slow rate of crack 

propagation combined with high residual strength after initiation of cracks. 

* Arrangement of design details to permit easy detection of failures in all critical structural 

elements before the failures can result in appreciable strength loss, and to permit replacement 

and repair [5]. 

"Fail-Safe structures are generally more efficient for large modern aircraft with low 

thickness/chord ratio wings and integral fuel tanks. However, the substantiation of such 

designs can be difficult and expensive. A structure can only be accepted as fail-safe or 

damage-tolerant if it is inspected using a substantiated technique at repetitive inspection 

intervals. Hence there is a greatly increased maintenance cost. It is surprising how often some 

manufactures have to be reminded about inspection capability in their designs. 

There is a general tendency to adopt a complacent attitude towards a defect in a fail-safe 

design. After all, is not the structure designed to accept a failure of any part in a safe manner 

with the remaining structure caring full loads? A few benchmark case histories may assist in 

answering these questions. 

The Fokker F27. At the time of certification, Fokker carried out a comprehensive full-

scale fatigue test of the F27 which resulted in important structural modifications to production 

aircraft and formed the basis for the structural inspection system used in service. 

One of the problems identified during the fatigue testing was cracking of the structure 

surrounding the outer wing lower surface fuel tank access door opening. Cracking of the tank 

door surround was identified and propagation rates established. Modification actions were 

taken on Fokker-built aircraft to vary the skin thickness and improve the tank doors. 

Additionally, a radiographic inspection technique was devised, capable of detecting fatigue 

cracking before it reached a critical stage. 

In December, 1968, an accident occurred to a Fairchild F27B aircraft in Alaska, when the 

right outer wing separated from the aircraft during decent. The outer wing failed at a tank 

access door location in an area weakened by fatigue cracking. 

Of great significance was the fact that from their fatigue test Fokker had identified the tank 

door area as a fatigue crack location and the radiographic inspection technique had been 

specifically developed for aircraft in service. Unfortunately, although the accident aircraft had 

been so inspected and cracking was visible on radiographs taken over a year before the 

accident, this cracking was not identified at the time and no action was taken to repair the 

wing. It is worth noting that, of 67 other aircraft of same type reinspected after the accident, 

eight were found to have cracks not previously identified. 

The Hawker Siddeley HS748. The HS748 is another example of fail-safe structure which 

had been thoroughly fatigue-tested by the manufacturer but which nevertheless suffered a 

fatal fatigue accident. The accident occurred in Argentina in April, 1976, as a result of an in-

flight wing failure. 
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Fatigue cracking occurred in the wing lower surface in a reinforced area in the region of 

the engine outer rib. The total crack length at the time of final separation was approximately 

36in.[90cm.] subsequently, cracks approximately 27 in (68.6cm) and 10in. [25.4cm.] long 

were found on two other aircraft of the same fleet. 

The Argentine investigators stated that the detectable cracking progressed rapidly, in less 

than a year. They based this statement on the fact that the three aircraft with large cracks had 

been inspected at between three and a half and 10 months previously and no cracks had been 

found. The inspection schedule included a 500 hour repeat inspection for cracks in the failure 

area. The main conclusion of the accident reports reads: 

"The cracks remained undetected and became critical because the manufacturer's 

inspection program for the area concerned was insufficiently precise and made it possible for 

the operator not to detect and correct them in time." 

The manufactures position was that this particular crack location had been discovered in 

the fatigue test and propagation rates measured. Full-scale structural tests showed that a 36in. 

[90cm.] crack would take 10,000 hours, or five years flying and 20 inspections, to grow from 

detectable size to such a length as outsiders, all we can say is that the fail-safe, system failed, 

either because inspections were not sufficiently precise, or because they were not properly 

carried out" [2]. 

In 1977, the British Airways fleet of Trident 3‘s was temporarily grounded by the 

discovery of a fatigue crack in the wing root joint. This fortuitous discovery prevented an 

accident, but the disruption of schedules caused British Airways considerable loss [ 6 ]. 

 

Fig.5.3. Failure origin of Boeing 707-321C right hand horizontal stabilizer [4]. 
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"The Boeing 707: On May 14, 1977, an accident occurred to a Boeing 707-321C at Lusaka 

when the right hand horizontal stabilizer failed in flight. 

Examination of the detached stabilizer revealed a fatigue failure of the top chord of the rear 

spar, about 36cm outboard of the root attachment pin. 

The Boeing 707 was designed and certified against the fail-safe option of the airworthiness 

requirements and the -100 series underwent fatigue and fail-safe tests before certification. 

These included tests specific to the horizontal stabilizer structure. As a result of the fatigue 

test program, cracks were found in the horizontal stabilizer rear spar upper chord rear flange. 

Fail-safe tests demonstrated that the structural integrity of the horizontal stabilizer was 

maintained. 

When the 707-300/400 series was developed, the stabilizer assembly was extensively 

redesigned. No fatigue tests of the redesigned stabilizer structure were carried out. 

The airworthiness criteria were met by calculations which were deemed to show that the 

static and fail-safe strengths of the 300 series horizontal stabilizer were adequate for the 

design. 

In order to comply with fail-safe requirements it would be necessary to define inspections 

adequate to ensure that small cracks were detected in the spar chord, or to establish that the 

full fail-safe load could be supported with a complete chord failure. 

In the event, neither of these conditions was met. Post accident tests showed that the 

structure did not have the anticipated residual strength, and neither the inspections detailed in 

the approved maintenance schedule, nor those recommended by the manufacturer, were 

adequate to detect partial cracks in the horizontal stabilizer rear spar top chord. 

In the immediate post-accident inspections carried out around the world, a further 38 

aircraft with horizontal stabilisers were discovered with rear spar fatigue cracks. 

The Douglas Dc-10. The accident to a DC-10 at Chicago in May,1979, is covered briefly 

because, though not resulting from a fatigue problem, it did highlight some important fail-safe 

issues. Following the accident, the structure concerned was not only re-assessed against the 

FAR 25.571 rules to which it had been designed, but also was evaluated against the new 

fatigue rules of FAR 25.571 at amendment 25-45. 
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Fig. 5.4. DC-10 Pylon-to-wing attachment [7]. 
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The aircraft crashed following the loss of the left engine and pylon assembly during take-

off. The separation of the assembly from the wing damaged the leading edge slat system, 

causing retraction of the outboard slats and a consequential asymmetric stall of the aircraft. 

Following exhaustive tests, the NTSB concluded that the only pre-existing damage to the 

pylon and its attachment to the wing were a 13in. cracks in the pylon aft bulkhead upper 

flange. This flange connected the aft bulkhead to the pylon upper spar. Application of take-off 

thrust resulted in failure of the aft bulkhead allowing the pylon to rotate upwards, fail the 

other attachments, and separate from the aircraft. 

It was determined that 10in. [25.4cm.] of the crack in the bulkhead flange was caused 

during aircraft maintenance such that, when the pylon was being installed, the wing clevis 

fitting contacted the flange and its fasteners. A further 3in. propagated in service as a result of 

fatigue. 

During post-accident inspections, six other DC-10 aircraft were found to have cracked 

upper flanges, though only one had started any fatigue propagation. 

Some serious fatigue defects were found in other aircraft which, though not related to the 

accident, did influence the airworthiness action at the time. 

One aircraft was found to have suffered extensive damage to upper spar. This aircraft was 

certainly not airworthy and maintenance practices were not involved. Because this area was 

subject only to a sampling inspection program, the fastener failures and web cracking would 

not have been detected on this particular aircraft had it not been for the inspection required as 

a result of the accident. Another 30 aircraft was found with fastener defects" [2]. 

The Aloha Airlines Boeing 737 accident of April 1988 drew popular attention to the 

aging aircraft question although, of course, the problem has been with us for many years. 
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Fig. 5.5. The Aloha Airlines Boeing 737 accident [4, 9]. 

The U S National Transportation Safety Board (NTSB) findings as to the probable cause of 

the Aloha accident, released in May 1989, are worth some study as they illustrate the breadth 

of the problem. 

In part, the findings read as follows. " The National transportation Safety Board determines 

that the probable cause of this accident was the failure of the Aloha Airlines' maintenance 

programme to detect the presence of significant disbonding and fatigue damage which 

ultimately led to failure of the lap joint at 5-10L and the separation of the fuselage upper lobe. 

Contributing to the accident was: 

* the failure of Aloha Airlines‘ management to supervise properly its maintenance force; 

* the failure of the Federal Aviation Administration (FAA) to evaluate property Aloha 

Airlines maintenance programme and to assess the airline's inspection and quality control 

deficiencies; 

* the failure of FAA Airworthiness Directive 87-21-08 to require inspection of all the lap 

joints proposed by Boeing Alert Service Bulletin 737-53A1039; 

* and, the lack of a complete terminating action (nether generated by Boeing nor required 

by the FAA ) after the discovery of early production difficulties in the Boeing 737 cold bond 

lap joint which resulted in low level durability, corrosion and premature fatigue cracking." 
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The NTSB report clearly allocates blame to all parties including the operator of the 

aircraft, the manufacturer and the regulatory authority, and covers almost every aspect from 

initial design to maintenance supervision." [8]. 

5.1.4. Structural Damage Tolerance. MSG-3 

The F-111 is an unusual aircraft: it is variable geometry ―swing-wing‖ fighter-bomber. On 

December 22, 1969, just over a year after entering service, F-111 #94 lost the left wing during 

a low-level training flight. The aircraft had accumulated only 107 flight hours and a failure 

occurred while it was pulling about 3.5g (less than half the design limit load factor). An 

immediate on-site investigation revealed a flaw in the lower plate of the left-hand wing pivot 

fitting. This flaw had developed during manufacture and remained undetected despite its 

considerable size: 23.4 mm x 5.9 mm. 

The USAF reconsiders and abandons a SAFE-LIFE approach and provided new 

guidelines: DAMAGE TOLERANCE philosophy. 

 

Fig.5. 6. F-111 lost the left wing during a low-level training flight. An immediate on-site investigation revealed a 

flaw in the lower plate of the left-hand wing pivot fitting [4]. 

This philosophy is in many ways similar to the fail-safe approach but it goes somewhat 

further in that consideration is given to crack growth from flaws which may be present in the 

structure as manufactured. Such flaws may arise from inherent metallurgical imperfections in 

the material used, or from manufacturing imperfections. The size of the flaws which must be 

assumed to exist are laid down in the appropriate specifications-typically, they have 

dimensions lying between 0.51 mm and 2.54 mm and they are assumed to be located at 

fastener holes and in other critical areas [10]. 

Fail-Safe concept makes emphasis on the design and test. During strength analysis we have 

to provide strength under the limit load factor for structure, in which there is so called tolerant 
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damages (usually, fatigue cracks, length of which is equal two interval between stringers on 

the wing skin or between two frames on the fuselage skin). 

During fail-safe test we have to prove, that the requirements are met. But it appears that 

"fail-safe" structure is not safe, if it is not timely inspected and repaired. So "far better title 

would be "inspection dependent". This clearly puts the emphasis for safety on the inspector, 

and implies that, without inspection, things may well be dangerous" [6]. 

The most clearly the idea was given in the ATA documents, "Airline/Manufacturer 

Maintenance Program Planning Document, MSG-3", in which described the Damage 

Tolerance Concept. The document gives guidance for detection inspection program planning. 

Unlike MSG-1 and MSG-2, used on U S wide body jet transports, MSG-3 consider a 

quantitative rating system, which is based on the evaluation of probability of timely detection 

fatigue damage. It is assumed, that the probability is a function of three independent 

probabilities : (1) the probability, P1, of inspecting an airplane with a damaged structural 

significant item (SSI), whose failure could affect the structural integrity necessary for the 

safety of the airplane; (2) the probability, P2, of inspecting the SSI; (3) the probability, P3, of 

crack detection - a function of crack length, inspection frequency and method, and many 

variables that defy precise analysis, but may be classified (inspector skill, lighting condition, 

etc.). 

If we have n independent inspections, then the probability of not detecting damage 

1-P(D) = (1-P(D, 1))... (1-P(D, n), 

where P(D, 1),..., P(D, n) are probabilities of detections for 1,..., n-th inspections. 

If we put 

DTR = log(1-P(D))/log(1/2), 

then 

DTR = DTR(1) +... + DTR(n) 

-is a such way of representing the cumulative probability of detection, that (1) instead of 

products of probabilities of non-detections we can use addition of DTR of different 

inspections; (2) the value of DTR can be interpreted as equivalent number of inspections, 

when each inspection has a true 50/50 chance of detecting a crack. 

DTR increases, when P(D) increases. (P(D) =.96875 corresponds to DTR = 5; P(D) 

=.99902 corresponds to DTR = 10), and choosing the number of inspection we can get 

required value of P(D) or DTR. 

The DTR system was used by Boeing and operations in order to develop the 727/737/747 

Supplemental Structural Inspection programs, which provides credit for existing maintenance 

programs and options for individual operations to select the most convenient combination of 

method and frequency for supplemental inspections. Later by Boeing and customer airlines 

was developed the 757/765 Structural Inspection Programs. 

The DTR system is described, for example in [11], in 1984, but fatigue failure of Aloha 

Airlines Boeing 737 in 1988 has shown, that we have not found a solution to the problem. In 

fact, there are at least three problems : (1) the assurance, that the designed inspection program 

will be accomplished by inspector; (2) required value of P(D) or DTR; (3) initial information 

and method of calculation of DTR; 

The first problem is a problem of "human factor", and we do not touch upon it. The second 

problem in the first approximation can be resolved by the comparison of the value DTR for 

the fleet of new airplanes with the value for the fleet of similar already discarded airplanes, 

the level of reliability acceptable for us. And, the last, the third problem, in fact, is "virgin 

soil". Information is required about the crack lengths detected and associated inspection 
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intervals and methods. A key element is operator feedback to manufacturer, and execution of 

this task is very difficult. The method of DTR calculation, which is offered by Boeing, is only 

―very-very approximate approach‖ (more serious approach was made in the works [12-13]. In 

fact special worldwide system is needed in order to collect the initial information and to 

create computer program system for simulation of maintenance process and corresponding 

calculation. The work is worth to be done. 
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5.2. Extensions and techniques 

5.2.1. A connection of the c.d.f. of the strength of the specimens and the c.d.f. of the 

strength of a single LI in series system (
Cn =1) 

In accordance with the structures shown in the Table 3.1. we have the following equations. 

For the structures А1, А2, А3 we have respectively 
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For the structures В1, В2, В3 
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where { , 0,1,..., }k Lp k n  is the probability distribution for the r.v. LK . 

For binomial distribution 

( ; , )k L Lp b k p n ,  (5.7) 

where ( ; , )L Lb k p n = (1 ) !/ !( )!Ln kk

L L L Lp p n k n k  , Lp is the distribution parameter. 

Let us note that in this case 

0 (1 ) Ln
Lp p  .  (5.8) 

If we approximate a binomial distribution by the right-censored conditional Poisson 

distribution (under condition that L LK n ) then : 
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If 
Ln  is large enough, then using usual Poisson distribution, instead of equations (5.1) and 

(5.2), the following equations can be used 

( ) 1 (1 ( )) exp( (1 ( ))Ln

ZF x F x x      , ))(1/())(1()( xFxFx ZY  ,  (5.11) 

( ) 1 (1 ( ))exp( ( ))Z YF x F x F x    ,  (5.12) 

where 
L Ln p   or it is an independent parameter of the Poisson distribution. If the defects 

appear during the process of loading, it may be assumed that ( )L Kp F x , where ( )KF x  is a 

c.d.f. of stress of initiation of a link of Y -type. 

We should pay a special attention to the case when r.v. LK  can take only two values. For 

example L LK n with probability KLp  and LK = 0 with probability (1- KLp ). Then, for 

example, for the structure В2 we have 

  ( ) (1 1 ) (1 ) ( )
Ln

KL Y KL ZF x p F x p F x     .  (5.13) 

In the numerical examples the Weibull distribution is used for a single LI strength, S. Then 

the smallest extreme value distribution takes place for log( )S with c.d.f. 

0 1( ) 1 exp( exp(( ) / ))F x x      .  (5.14) 

The same type of distribution (but with specific parameters) was used also for defect 

initiation stress of Y - type link and also for ( )YF x  and ( )ZF x  in case of Cn =1. Assumption 
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that the strength of LI without damage is very large is equivalent to the assumption that 

( ) 0ZF x  for all x  . In this case it should be simultaneously assumed that 
0 0p  . 

5.2.2. Connection of the c.d.f. of the strength of the specimens and the c.d.f. of the 

strength of a single LI using the MC theory (
Cn =1 ) 

We consider two cases: 

1) general definition of ( )ZF x ; and 

2) ( )ZF x  is defined by equation (3.19). 

General definition of ( )ZF x  

As examples, the specifying of the matrix P for p.s. M A1 and MB3, for Cn =1, are 

considered. The probability that in some link a defect appears at the stress tx  under the 

condition that it has not appeared at the stress 1tx  is 

( 1) ( 1)( ) ( ( ) ( )) / (1 ( ))K t K t K tb t F x F x F x    . 

Consider the case of s defects present. The probability that r new defects appear, 

snkr 0 , and the total number of defects is equal to m=s+r 

)!(!/!))(1())(()(~ rkrktbtbtp rkr
sm  

 

Conditional probability of Y-type link fracture at the nominal stress tx  

( 1) ( 1)( ) ( ( ) ( )) / (1 ( ))Y Y t Y t Y tq t F x F x F x    . 

Conditional probability of Z-type link fracture at the nominal stress tx  

( 1) ( 1)( ) ( ( ) ( )) / (1 ( ))Z Z t Z t Z tq t F x F x F x    . 

Corresponding probability that none of the links (of both types) fail when there are defects 

in m links for probability structure MA1 is 

( ) (1 ( )) (1 ( )) Ln mm

m Y Zu t q t q t    , 

The probability of coincidence of these events, which we consider as independent, and the 

probability of transition from state i=s+1 to state j=i+r 

)()(~)( 1)1)(1( tutptp jjiij  , 

where )1(  nji . 

Conditional fracture probability for the structure MA1 at state i 
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ijni 




  . 

Of course, 0)( tpij , if ij  , and 1)()2)(2(  tp nn . 

The corresponding Markov chain for probability structures MB3 has only three states. The 

first state corresponds to the absence of damaged links, the second one means the presence of 

at least one damaged link, and the third, an absorbing one, means the failure of the specimen. 

Corresponding probabilities at a t-th step are determined by the formulae 

11( ) [1 ( )] ,Lnp t b t   
12 11( ) (1 ( ))(1 ( ))(1 )Y Zp t p t q t q    , 

13 11 12( ) 1 ( ) ( )p t p t p t   , 

0)(21 tp , 22( ) (1 ( ))(1 ( ))Y Zp t q t q t   , 
23 22( ) 1 ( )p t p t  , 0)()( 3231  tptp , 1)(33 tp . 

( )ZF x is defined by equation (3.19). 
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Specification of the transition probability matrix for a model in framework of probability 

structures MA. 

If ( )ZF x is defined by equation (3.19) and C    then the probability that in some element a 

defect appears at the stress tx  under the condition that it has not appeared at the stress 1tx  is 

( 1) ( 1)( ) ( ( ) ( )) / (1 ( ))K t K t K tb t F x F x F x    . 

Consider the case of s defects present. The probability that r new defects appear, 

snkr 0 , and now the total number of defects is equal to m=s+r 

)!(!/!))(1())(()(~ rkrktbtbtp rkr
sm  

 

In case when )(xFZ is defined by (3.19) and parameter C is very large (the ‗theoretical‘ 

strength is much higher than the real strength) conditional probability of one element fracture 

at the nominal stress tx  

))(1/())()(()( )1()1(   tYtYtY xFxFxFtq . 

Corresponding probability that there are defects in m elements but none of the elements 

fails is 

m
m tqtu ))(1()(  . 

The probability of coincidence of these events, which we consider as independent, is the 

probability of transition from state i=s+1 to state j=i+r 

)()(~)( 1)1)(1( tutptp jjiij  , 

where )1(  nji . 

Conditional probability of fracture at state i 
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Of course, 0)( tpij , if ij  , and 1)()2)(2(  tp nn . 

Specification of the transition probability matrix for a model in framework of probability 

structures MB 

The corresponding Markov chain has only three states. The first state corresponds to the 

absence of defective elements, the second one means the presence of at least one defective 

element, and the third, an absorbing one, means failure of the specimen. The corresponding 

probabilities at an tth step are determined by the formulae 

,)](1[)(11

ntbtp   ))(1))((1()( 1112 tqtptp  , )())(1()( 1113 tqtptp  , 

0)(21 tp , )(1)(22 tqtp  , )()(23 tqtp  , 0)()( 3231  tptp , 1)(33 tp . 

Here )(tb  and )(tq  are the same as in previous section. 

5.2.3. Hypothesis testing 

In accordance with goodness-of-fit OSPPTest (Test based on Probability Plot of Ordered 

Statistics) the ordered observations, )(),2()1( ..., nxxx , from population with c.d.f. of the type 

)(xF =   100 /xF , are plotted versus expected values of standard order statistics 

corresponding to 0 =0, 1 =1, )( )(i

o

XE . Such a plot can be used for preliminary visual 

evaluation of the applicability of the model. 
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The critical region of the goodness-of-fit test of the hypothesis under consideration is 

defined by the inequality 

OSPPt =

1/2

2 2

( ) ( )

1

ˆ( ) /
n

i i alfa

i

x x ns C



 

 
 , 

where OSPPt is the statistic of OSPPTest, )(ˆˆˆ )(10)( i

o

i XEx   , 0̂ , 1̂  are estimates of 

0 , 1 , 



n

i
i nxx

1

/ , 



n

i

i nxxs
1

22 /)( . 

If linear regression analysis is used for estimation of 
0  and 1 , then 

 
1/22 1/2 2 2

( ) ( )

1

ˆ(1 ) ( ) /
n

LR i i alfa

i

OSPPt R R x x ns C


      , 

where 
LRR  is the specific notation for OSPPt, 2R  is the standard statistic of linear 

regression analysis (coefficient of determination). An example of a plot ( )(ix  vs )( )(i

o

XE ) for 

s.e.v. distribution of X =log (Y), where Y is fiber tensile strength for glassfiber with l=10 mm 

(see [5]), is shown in Fig. 5.7.a, and the statistic amounts to OSPPt=0.184. The same data are 

presented in Fig. 5.7.b for normal distribution of X, where OSPPt=0.321. 

 

Fig. 5.7.a. Plot of )(ix  versus )( )(i

o

XE for sev distribution of X =log (Y), where Y is fiber tensile strength for 

specimens with l=10 mm; OSPPT=0.184. 
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Fig. 5.7.b. Plot of )(ix  versus )( )(i

o

XE for normal distribution of X =log (Y), where Y is fiber tensile strength 

for specimens with l=10 mm; OSPPt=0.321. 

In Fig. 5.8.a, the histograms of OSPPT statistics for sev distribution hypothesis and normal 

alternative, and in Fig. 5.8.b, the histograms of OSPPT statistics for normal distribution 

hypothesis and s.e.v. alternative are shown. Numerical values of the boundaries of the critical 

region, Calfa, and powers of the test for OSPPTest are also given in Fig.5.8: vector (Calfa, 

power) is equal to (0.23, 0.625) and to (0.179, 0.85) for s.e.v. and normal hypotheses 

respectively. The Monte Carlo modeling was used for the necessary calculations. Number of 

Monte Carlo trials,
MCN , is equal to 1000. We see that OSPPt=0.184< Calfa = 0.23 and 

OSPPt=0.321> Calfa = 0.179 so the s.e.v distribution is more appropriate than a normal 

distribution. The same conclusion is reached also for glass fibers with l = 20, 40, 80 mm [5]. 

Nevertheless, it should be noted that the power of OSPPTest is rather limited. Therefore 

additional analysis is performed using an approximation of the uniformly most powerful 

invariant test. 
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Fig. 5.8.a. Histograms of OSPPT statistics for sev distribution hypothesis and normal alternative 

 

Fig. 5.8.b. Histograms of OSPPT statistics for normal distribution hypothesis and sev alternative 

But for the case when we need to make a choice of one of two c.d.f. with unknown 

location and scale parameters, that is we need to make testing of the hypothesis 
0H :

    101 //1)(   xgxf , against 
1H -     101 /)/1(   xhxf , as it has been already 

told in section 1.6, there is uniformly most powerful invariant test (UMPIT) [18,19]. For the 

case when hypothesis H0 is sev distribution, and alternative H1 is normal distribution the 

statistic of this criterion is 

NSא = /N Sf f ; 



Statistical Analysis of Static Strength and Fatigue Life of Composite 

 120 

where /2 ( 1)/2(( 1) / 2) / 2 ( )n n

N Zf n n D    , 2

10

( ) / ( exp( ( )))
n

n n

S i

i

f n t dt t z z







   , 

( ) /i iz x x s  , 



n

i
i nxx

1

/ , 



n

i
i nxxs

1

22 /)( . 

Calculation of c.d.f. for the statistics of the corresponding test is difficult enough. More 

simple test which has nearly the same power is offered in [19]. The critical region in this case 

is described by inequality 

1

( ) exp( ( ) / 6) /
n

SN i

i

x x x s n C 


   , 

Conversely, when 
0H  is normal c.d.f. and 

1H is sev c.d.f., statistic 
NS =1/

SN  should be 

used. 

In Fig. 5.9.a the histograms of 
SN statistics for the sev hypothesis and the normal 

alternative and in Fig. 5.9.b the histograms of NS  statistics for the normal hypothesis and the 

sev alternative are given. In the same figures, the boundary values of critical regions and the 

test power are shown. For the considered sample of processing the data [5] of test of glass 

fibers (l =10, n=78) SN = 1.7652, NS = 0.5665, hence: 

SN = 1.7652< Calfa = 1.96, 

NS = 0.5665 > Calfa = 0.51. 

Therefore, we arrive at the same conclusion as with OSPPTest: the s.e.v. hypothesis can be 

accepted while normal hypothesis should be rejected. But now the test power is equal to 0.95, 

clearly higher than power of OSPPTest. The same conclusion again holds true for l = 20, 40, 

80 mm. 

Note that it would be of a considerable interest to apply the OSPPTest to the whole 

strength data sample (i.e. strength data at all four length values of l=10, 20, 40, 80 mm 

combined); this is an area for further research. 
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Fig. 5.9.a.  Histograms of SN  statistics for sev hypothesis and for normal alternative. 

 

Fig. 5.9.b.  Histograms of NS  statistics for normal hypothesis and for sev alternative. 

5.2.4. Four main versions (hypotheses) of the structure of matrix P 

Four main versions (hypotheses) of the structure of matrix P, denoted as 
aP ,

CanP ,
bP and 

cP  

are considered. In the simplest version we assume that in one step of MC failure of only one 
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LI can take place. It is convenient (but not necessary) to think that the first failure appears at 

the boundary of the link and all the following failures can appear only in the adjacent LI. This 

version corresponds to a transverse crack growth in the monolayer. The stress concentration is 

supposed to be negligibly small in the so called Global Load Sharing [10-12], leading to 

uniform distribution of load between the intact LI. We assume that a very small stress 

concentration is present at a break and neglect it. 

For the corresponding matrix 
aP  we define 1 ( ( ))ii C tp F x i  , where 

( ) ( / ( 1))t t C Cx i x n n i   , 
0 0 1 0 1( ( )) ( ( ( ) ( ( )) / (1 ( ( )))C t t t tF x i F x i F x i F x i     is the conditional 

c.d.f. of strength of a LI, the failure of which does not take place under load 
1tx 
, 

0 ( )F x  is the 

initial c.d.f. of strength of a LI ; ( 1) 1i i iip p   , 1,..., Ci n , ( 1)( 1) 1
C Cn np    , but all the other ijp  

are equal to zero. 

In the second hypothesis we suppose again that in one step of MC a failure of only one LI 

can take place but now it is the weakest intact LI in the link. Then for the matrix 
CanP  

1
(1 ( ( ))) Cn i

ii C tp F x i
 

   and, again, ( 1) 1i i iip p   , 1,..., Ci n , ( 1)( 1) 1
C Cn np    , but all the other 

ijp  are equal to zero. 

In the third hypothesis it is assumed also that the number of failures in one step of MC has 

a binomial distribution. Then for the corresponding matrix 
bP  we have ( ) ( ; , )i i rp b r p k  =

(1 ) !/ !( )!r k rp p k r k r  , ( ( ))C tp F x i , 1ck n i   , 0,...,r k , 1,..., Ci n ; and again 

( 1)( 1) 1
C Cn np    , but all the other ijp  are equal to zero. 

For the previous versions of P , denoted by
aP , 

CanP  and
bP , we suppose a uniform load 

distribution between intact LI. In the fourth hypothesis it is assumed again that the matrix CP  

corresponds to a transverse crack growth in the monolayer but this time we take into account 

the stress concentration at the tip of the crack. Let us denote by j the order number of LI in a 

link (j=1 for the boundary LI) and let the redistribution of load ( )x t  between the intact LI be 

defined by a ―stress concentration‖ function ( ; , )Ch j i n . Then in the corresponding 
cP  matrix 

we have 
1

1 1
( ( )) (1 ( ( ))

Cj n

ij C ij C iji j
p F x t F x t



 
    for 1,..., Cj i n  ; 

1

( 1) 1
( ( ))

C

C

n

i n C iji
p F x t



 
  for 

Cj n ; 
1

1
1

Cn

ii iji
p p




  , 0ijp   for j i , 1,..., Ci n ; where

( ) ( ; , ) ( ) / ( 1 )ij C C Cx t h j i n x t n n i   describes stress in j-th order LI after failure of i-th order 

LI. 
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