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Abstract 

The assignment problem is a key challenge in optimization and operations research, finding applications 

in diverse real-world scenarios. The Hungarian method is a widely employed algorithm for solving this 

problem, especially in its balanced form. However, for unbalanced assignment problems, where tasks 

outnumber resources (or vice versa), an extension is necessary. One common approach introduces a 

dummy resource, but this may leave tasks unassigned. The Modified Hungarian method improves upon 

the standard algorithm for unbalanced problems, ensuring that all tasks are assigned to real resources. 

This is achieved by modifying the cost matrix and algorithm steps to accommodate additional tasks and 

resources. Triangular fuzzy numbers are discussed when exact parameter information is undefined, and 

fuzzy programming is applied to determine a compromise result. Incorporating cost and profit per 

resource, the Modified Hungarian algorithm addresses the problem of unspecified job allocations to a 

single machine by introducing a cost parameter for each machine. The methodology is demonstrated on a 

numerical example for better comprehension. 

Keywords: Triangular Fuzzy Number, Unbalanced Assignment Problem, 
Modified Hungarian Technique, Fuzzy Programming Approach 

I. Introduction

In the contemporary landscape of industrial and operational management, the allocation 
of tasks to machines stands as a pivotal challenge, especially when confronted with the intricacies 
of handling multiple objectives concurrently. This challenge becomes particularly nuanced when 
multiple jobs must be assigned to a single machine, governed by predefined cost limitations, and 
set against the backdrop of an environment characterized by uncertainties. The fusion of these 
elements gives rise to a multifaceted problem, demanding sophisticated optimization techniques 
to strike an equilibrium among conflicting goals while ensuring resource efficiency. The 
optimization of job allocation on a single machine is a critical concern across various industries, 
spanning manufacturing, services, and beyond. The efficient utilization of resources in the face of 
dynamic and uncertain conditions is essential for organizations striving to enhance productivity, 
reduce costs, and maintain adaptability in an ever-evolving business environment. This intricate 
dance of optimization unfolds against the backdrop of challenges such as varying processing 
times, resource availability fluctuations, and external environmental factors, all of which 
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contribute to the complexity of the multi-objective problem at hand. 
A foundational element in the exploration of the multi-objective problem is the extensive body of 
research on multi-objective optimization in job scheduling. Studies [1] and [2] have pioneered 
methodologies for handling conflicting objectives, including cost reduction, and resource 
utilization. These works have laid the groundwork for understanding the trade-offs involved in 
optimizing multiple objectives simultaneously, providing essential concepts for application in the 
context of job allocation on a single machine. The integration of uncertainty into optimization 
models is a crucial aspect of addressing real-world operational challenges. Researchers, including 
[3, 4], have explored various approaches for modeling uncertainty in scheduling and optimization 
problems. Techniques such as stochastic programming, fuzzy logic, and robust optimization have 
been employed to account for uncertainties in processing times, resource availability, and external 
factors. Understanding these methodologies is vital for adapting optimization models to the 
uncertain environment inherent in the multi-objective problem under consideration. The interplay 
between cost constraints and optimization objectives has been a focal point in operations research. 
Works such as the study by [5] have investigated cost-sensitive optimization models, aiming to 
strike a balance between achieving objectives and adhering to budget limitations. These insights 
are particularly relevant in the context of allocating multiple jobs to a single machine, where cost 
constraints play a pivotal role in decision-making. Recent advancements have seen the emergence 
of hybrid and metaheuristic approaches in solving complex optimization problems. Research by 
[6, 7] exemplifies the application of genetic algorithms, simulated annealing, and other 
metaheuristic techniques to address combinatorial optimization problems. These approaches offer 
promise in handling the intricate nature of the multi-objective problem, providing effective means 
to navigate the solution space efficiently. To bridge the gap between theoretical models and 
practical implementation, several studies have presented real-world applications and case studies. 
Works by authors like [8, 9] have demonstrated the applicability of optimization models in 
industries such as manufacturing, healthcare, and logistics. Examining these cases provides 
valuable insights into the challenges faced by practitioners and the effectiveness of proposed 
methodologies in diverse operational contexts. 
Our ultimate goal is to contribute to the evolving landscape of operations research and 
optimization by presenting novel insights and frameworks that not only tackle the complexities of 
the multi-objective problem but also address the uncertainties inherent in real-world industrial 
settings. By doing so, we aspire to furnish decision-makers and practitioners with a 
comprehensive toolkit that enables them to navigate the labyrinth of multi-objective optimization 
within the constraints of cost and uncertainty, fostering resilience and agility in their operational 
strategies. Through this exploration, we aim to illuminate pathways towards a more efficient, 
adaptive, and sustainable operational paradigm. 
The assignment problem and the transportation problem [10] are both types of optimization 
problems in operations research and linear programming, but they are not exactly the same. The 
assignment problem is indeed a special case of the transportation problem, with certain 
constraints and characteristics that make it more specific. There are various methods to solve the 
assignment problem, including enumeration methods, the simplex method, and the Hungarian 
method [11]. In a balanced assignment problem, the number of jobs equals the number of 
machines, and the Hungarian method is generally very convenient and capable of finding the 
optimal assignment. In an unbalanced assignment problem, where the number of jobs and 
machines is not equal, it may not be possible to assign all jobs to machines. In such cases, some 
jobs may remain unassigned. It's important to note that real-world scenarios may indeed involve 
unbalanced assignment problems. In such situations, it might be necessary to address the 
unassigned jobs differently, perhaps by revising the problem formulation or considering 
additional constraints to handle the unbalance. Suppose, in a production factory there are five 
machines and eight numbers of jobs. If one machine can do only one job than remaining jobs not 
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executed, that’s create problem in manufacturing process. The Hungarian approach is improved 
by [12]. Kumar [13] provided a strategy for overcoming the imbalanced assignment problem that 
involves executing all jobs. Rabbani et al. [14] changed the formulation of the Hungarian approach 
by allowing the user to allocate several jobs to a single machine while without limiting any 
machine to a maximum number of jobs. The focus of this exploration lies in dissecting the 
intricacies of the "Multi-Objective Problem with Multiple Jobs Assigned to a Single Machine 
within Available Cost under Uncertain Environment." As we embark on this journey, our aim is to 
delve deep into the complexities of this operational puzzle, surveying existing methodologies, 
pinpointing gaps in current approaches, and proposing innovative frameworks that offer robust 
solutions to the multifaceted challenges faced by industries today. 
In this paper, we will navigate through the theoretical foundations of multi-objective optimization, 
exploring its applications in the context of job allocation on a single machine. We will scrutinize 
the influence of uncertain variables on this optimization process, emphasizing the dynamic nature 
of real-world operational scenarios. Additionally, we will investigate the existing tools and 
methodologies employed in addressing similar challenges, critically evaluating their strengths and 
limitations. This work focuses on cost and profit management for jobs performed by machines, 
using the concept of [14] and providing cost parameters for constraints on each machine. Jobs are 
assigned to each machine based on the cost of each machine. For better comprehension, a step-by-
step approach is provided and solved using a numerical example. 
The motivation for studying the assignment problem originates from its importance in 
optimization and operations research, with numerous applications in real-life situations. While the 
Hungarian approach works well for balanced assignments, it struggles with imbalanced problems 
in which one job or resource exceeds another. The Modified Hungarian technique is unique in that 
it improves on the normal algorithm's ability to manage unbalanced assignments. By adjusting the 
cost matrix and algorithm stages, it assures that all jobs find actual resource allocations, 
eliminating the problem of tasks remaining unassigned while applying dummy resources. 
The Modified Hungarian algorithm introduces a novel solution to the problem of unspecified job 
allocations to a single machine. By assigning a cost parameter to each machine and considering 
both cost and profit per resource, it provides a more comprehensive and realistic model for solving 
assignment problems. The methodology's practicality is demonstrated through a numerical 
example, enhancing understanding and showcasing the applicability of the Modified Hungarian 
algorithm in real-world scenarios. Furthermore, the use of triangular fuzzy numbers addresses 
cases where accurate parameter information is unavailable, resulting in a more flexible method. In 
such cases, the use of fuzzy programming might help identify a compromise solution. 

II. Assumption of unbalanced assignment problem

• Here we consider the numbers of machines are always less than the numbers of jobs.
• Each machine is capable of performing multiple jobs.
• Each job can assign to only one machine, and no job can be assigned to multiple machines

simultaneously.
• Every machine is assigned at least one task, and there are no tasks that remain unallocated

to a machine.
• If a machine has multiple tasks to complete, it can perform them sequentially or in

succession.
• The sum of the costs associated with the tasks assigned to each machine does not exceed

the machine's available budget or cost limit.
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III. Formulation

In a scenario with 'm' machines and 'n' jobs (where 'n' is greater than 'm'), each machine has a 
specific effectiveness or cost associated with it. The challenge here is to efficiently assign each job 
to one machine, ensuring that if there are more jobs than machines, the excess jobs are queued and 
processed subsequently. 
Let's denote  𝑐𝑖𝑗  as the cost of assigning the thi machine to the 𝑗𝑡ℎ job, where 𝑖 = 1,2,⋯ ,𝑚 and 𝑗 =
1,2,⋯ , 𝑛. Our aim to find an optimal assignment for the problem, determining the job that will be 
allocated to each machine, in a way to minimize the overall cost and maximize the profit incurred 
while performing all the tasks. It's important to note that the sum of jobs exceeds the sum of 
available machines, and each machine can handle multiple jobs, but a single job cannot be 
assigned on two machines. Additionally, each machine has a specified budget or cost that is 
utilized for executing the assigned jobs. This problem can be represented using a 𝑚 × 𝑛 cost matrix 
[𝑐𝑖𝑗] (Table 1) and a profit matrix [𝑝𝑖𝑗] (Table 2). 

Table 1: The cost matrix 𝑐𝑖𝑗  in the form of 𝑚 × 𝑛 
J1 J2 … Jn Cost 

M1 c11 c12 … c1n C1 
M2 c21 c22 … c2n C2 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
Mm cm1 cm2 … cmn Cm 

Table 2: The profit matrix 𝑝𝑖𝑗 in the form of 𝑚× 𝑛 
𝐽1 𝐽2 … 𝐽𝑛 

𝑀1 𝑝 𝑝12 … 𝑝1𝑛 
𝑀2 𝑝21 𝑝22 … 𝑝2𝑛 
⋮ ⋮ ⋮ ⋮ ⋮ 
𝑀𝑚 𝑝𝑚1 𝑝𝑚2 … 𝑝𝑚𝑛 

Let 𝑥𝑖𝑗  denote the 𝑖𝑡ℎ machine is assigned for 𝑗𝑡ℎ job such that

𝑥𝑖𝑗 = {
1 ,  𝑖𝑓 𝑖𝑡ℎ 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑗𝑡ℎ𝑗𝑜𝑏

0, 𝑖𝑓 𝑖𝑡ℎ 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑗𝑡ℎ𝑗𝑜𝑏
} 

The Mathematical model is stated as 
Minimize 𝑍1 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1  (1) 

Maximize 𝑍2 = ∑ ∑ 𝑝𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1  (2) 

subject to constraints 
∑ 𝑥𝑖𝑗 ≥ 1;𝑛
𝑗=1 𝑓𝑜𝑟 𝑖 = 1,2, … . ,𝑚 (3) 

∑ 𝑥𝑖𝑗 = 1;
𝑚
𝑖=1 𝑓𝑜𝑟 𝑗 = 1,2… . , 𝑛 (4) 

∑ 𝑐𝑖𝑗𝑥𝑖𝑗 ≤ 𝐶𝑖;
𝑛
𝑗=1  𝑓𝑜𝑟 𝑖 = 1,2, … . ,𝑚 (5) 

𝑥𝑖𝑗 = 0 𝑜𝑟 1 (6) 
Eq [1-2] represents the objective functions, while Eq [3] specifies that a machine has the capability 
to handle multiple jobs. Eq [4] enforces the constraint that no identical job can be assigned to 
multiple machines, and Eq [5] signifies that the total assignment cost for any machine must not 
exceed its available budget. Lastly, Eq [6] indicates that only binary values are permissible in this 
context. 
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IV. Method

Solve multiple goal optimization problems by focusing on one objective at a time and disregarding 
the others with the restrictions provided. The following are the step-by-step procedures: 

1. Examine the problem, Is the problem certain? If so, skip the defuzzification approach.
Otherwise, change the problem into a neat model.

2. To reduce fuzzy problems into crisp equivalent forms, the defuzzification approach of the
ranking function is applied.
Using the defuzzification approach, we turn it into the corresponding crisp form. To get a
similar crisp form, the ranking function [15, 16] was applied.

Let𝑃̃𝑗 = (𝑃𝑗
(1)
,P𝑗
(2)
,P𝑗
(3)
)be a triangular fuzzy number, then the following equation must be

used to compute its magnitude:

𝑀(𝑃̃𝑗) =
𝑃𝑗
(1)
+4𝑃𝑗

(2)
+𝑃𝑗

(3)

6
(7) 

3. Input 𝑚, 𝑛
4. Find the lowest cost in each row and deduct it from the relevant row, resulting in at least

one zero in each row.
5. Check all columns; if any column remains without producing a zero, choose the lowest

cost of that column and subtract it from all of the values for that column to produce a zero
in that column.

6. Draw the fewest lines possible to cover the zeros in order to get the optimum matrix.
7. If the number of lines does not match the number of machines, choose the least uncovered

cost and deduct it from each uncovered cost before adding the intersection of lines.
8. Repeat steps 6 and 7 until the number of lines equals the number of rows.
9. To assign the job, identify the smallest number of zeros in each row or column, assign that

zero to the appropriate machine, and remove the actual cost of the assigned job from the
available cost for that machine.

10. We cross the remaining zeros in the relevant column after allocation, and if there will be
availability of cost for that machine is completed, also cross the remaining zeros in that
row (the total cost of allotted jobs to a single machine cannot exceed the availability cost of
that machine).

11. In the event of a tie, i.e., two rows or columns with the same number of zeros; assign the
zero with the lowest cost in the original problem. There will be no duplicate jobs assigned
two separate machines, and no machine will be left without assigning a job.

12. Repeat steps 9–11 until each job have been allocated.
13. End of algorithm.

The resulting solution is the idle solution. Using the idle solution, we constructed the payoff 
matrix. The payoff matrix will help in the development of the desired level for each objective 
function. 

Fuzzy Goal Programming 
The Fuzzy Goal Programming is a strong and adaptable approach that may be used to a wide 
range of decision-making issues with multiple objectives [17]. As a result, we can take advantage 
of this method to get the most effective solution for the specified models. The following are the 
step-by-step procedure: 

• The resulting solution is the idle solution. The idle solution will help in constructing the
payoff matrix. Finally, the payoff matrix helps in the development of the desired level for
each objective function.
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• The target value is established as the objective function's goals level (𝑔𝑘, 𝑘 = 1,2).
• We constructed the fuzzy linear membership function for the fuzzy goal of 𝑍(𝑋) ≺ 𝑔 (i.e.,

fuzzy-min) is as follows:

𝜇(𝑍(𝑋)) =

{

1,   𝑖𝑓 𝑍(𝑋) ≤ 𝑔
𝑈 − 𝑍(𝑋)

𝑈 − 𝑔
, 𝑖𝑓 𝑔 ≤ 𝑍(𝑋) ≤ 𝑈

0,   𝑖𝑓 𝑍(𝑋) ≥ 𝑈

 

where, 𝑈is the fuzzy goal's the highest tolerance limit of 𝑍(𝑋). 

Moreover, if the fuzzy goal 𝑍(𝑋) ≻ 𝑔 (i.e., fuzzy-max), then, the membership function is as 
follows: 

𝜇(𝑍(𝑋)) =

{

1,  𝑖𝑓  𝑍(𝑋) ≥ 𝑔

𝑍(𝑋) − 𝐿

𝑔 − 𝐿
,  𝑖𝑓  𝐿 ≤ 𝑍(𝑋) ≤ 𝑔

0,  𝑖𝑓  𝑍(𝑋) ≤ 𝐿

 

Where 𝐿 is the fuzzy goal's lower tolerance limit of  𝑍(𝑋). 

• Finally, we use the linear membership function to convert multi-objective problem into
single objective problem which can be solved by using a suitable traditional optimization
method. The fuzzy achievement function 𝜇 is maximized.

V. Numerical Illustration

We consider a numerical example to illustrate in which five machines are offered to complete 
eight jobs with related cost (in USD). 
The input parameters are in the form of Triangular fuzzy number for transportation cost (Table 3) 
and profit (Table 4). 

Table 3: The transportation cost in the form of triangular fuzzy number 

J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 

M1
26, 30, 

34 
24, 25, 

26 
38, 40, 

42 
45, 50, 

55 
33, 35, 

37 
24, 25, 

26 
39, 40, 

41 
24, 25, 

26 
26, 30, 34 

M2
38, 40, 

42 
26, 30, 

34 
22, 20, 

24 
22, 20, 

24 
22, 20, 

24 
41, 45, 

49 
22, 20, 

24 
24, 25, 

26 
38, 40, 42 

M3
22, 20, 

24 
38, 40, 

42 
26, 30, 

34 
38, 40, 

42 
26, 30, 

34 
45, 50, 

55 
26, 30, 

34 
38, 40, 

42 
45, 50, 55 

M4
24, 25, 

26 
22, 20, 

24 
33, 35, 

37 
26, 30, 

34 
24, 25, 

26 
26, 30, 

34 
33, 35, 

37 
26, 30, 

34 
57, 60, 63 

M5
33, 35, 

37 
33, 35, 

37 
45, 50, 

55 
38, 40, 

42 
38, 40, 

42 
57, 60, 

63 
45, 50, 

55 
38, 40, 

42 
74, 80, 86 

Table 4: The transportation profit in the form of triangular fuzzy number 

J1 J2 J3 J4 J5 J6 J7 J8 
M1 8, 10, 12 11, 12, 13 14, 15, 16 21, 23, 25 15, 17, 19 10, 11, 12 15, 19, 23 8, 9, 10 
M2 13, 14, 15 6, 8, 10 5, 7, 9 4, 5, 6 2, 4, 6 20, 22, 24 1, 3, 5 5, 6, 7 
M3 5, 7, 9 15, 16, 17 11, 13, 15 15, 17, 19 11, 13, 15 25, 27, 29 10, 11, 12 14, 15, 16 
M4 6, 8, 10 1, 3, 5 12, 14, 16 11, 12, 13 8, 9, 10 6, 8, 10 20, 21, 22 8, 10, 12 
M5 11, 13, 15 10, 11, 12 21, 23, 25 12, 14, 16 20, 21, 22 27, 29, 31 15, 19, 23 14, 15, 16 
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The defuzzication approache ranking function (Equation [7]) is used to convert it into a crisp 
equivalent form for Table 3 & 4 will be shown in table 5 (Transportation cost) & Table 6 
(Transportation profit). 

Table 5: Crisp equivalent form of transportation cost 

J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 
M1 30 25 40 50 35 25 40 25 30 
M2 40 30 20 20 20 45 20 25 40 
M3 20 40 30 40 30 50 30 40 50 
M4 25 20 35 30 25 30 35 30 60 
M5 35 35 50 40 40 60 50 40 80 

Table 6: Crisp equivalent form of transportation profit 

𝐽1 𝐽2 𝐽3 𝐽4 𝐽5 𝐽6 𝐽7 𝐽8 
M1 10 12 15 23 17 11 19 9 
M2 14 8 7 5 4 22 3 6 
M3 7 16 13 17 13 27 11 15 
M4 8 3 14 12 9 8 21 10 
M5 13 11 23 14 21 29 19 15 

The cost associated with machines for jobs will be represented in crisp form as shown in Table 7. 

Table 7: The cost associated with machines for jobs (in USD) 
J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 

M1 30 25 40 50 35 25 40 25 30 
M2 40 30 20 20 20 45 20 25 40 
M3 20 40 30 40 30 50  30 40 50 
M4 25 20 35 30 25 30 35 30 60 
M5 35 35 50 40 40 60 50 40 80 

Find the simplest cost in each row and subtract it from the row that results in at least one zero in 
each row. 
If any column remains without a zero, choose the lowest cost in that column and subtract it from 
all of the items in that column to obtain zero (Table 8). 

Table 8: Zeros row and column 

J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 
M1 5 0 15 25 10 0 15 0 30 
M2 20 10 0 0 0 25 0 5 40 
M3 0 20 10 20 10 30 10 20 50 
M4 5 0 15 5 5 10 15 10 60 
M5 0 0 15 5 5 25 15 5 80 

Draw the number of lines required covering all zeros; in this case, four lines are required to cover 
all zeros, and the number of lines is not equal to the number of machines (Table 9). Go to step 7. 
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Table 9: Line covered to all zeros 

J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 
M1 5 0 15 25 10 0 15 0 30 
M2 20 10 0 0 0 25 0 5 40 
M3 0 20 10 20 10 30 10 20 50 
M4 5 0 15 5 5 10 15 10 60 
M5 0 0 15 5 5 25 15 5 80 

Select the least uncovered cost, i.e. 5, and subtract it from each uncovered cost and add it to the 
intersection point (Table 10). Also, check that there are zeros in each row and column. Draw lines 
to cover all of the zeros. In this case, five lines are drawn that are equal to the number of rows to 
generate the needed matrix. 

Table 10: New line on updated values that covering all zeros 
J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 

M1 10 5 15 25 10 0 15 0 30 
M2 25 15 0 0 0 25 0 5 40 
M3 0 20 5 15 5 25 5 15 50 
M4 5 0 10 0 0 5 10 5 60 
M5 0 0 10 0 0 20 10 0 80 

Begin by assigning jobs to the rows. Find a row with only one zero, assign that zero, then cross the 
other zeros in that column i.e. 𝐽1 assign to 𝑀3 and subtract the cost of the allocated job from the 
available cost. Here, the available cost for machine 𝑀3 is 50 USD, and after assigning the work, the 
remaining cost is 30 USD. Now, verify the columns that have one zero allocated to the relevant 
machine i.e.,𝐽3,𝐽7 assign to 𝑀2 and 𝐽6 assign to 𝑀1 and subtract the cost from the corresponding 
machine's available cost (Table 11). 

Table 11: Available cost of corresponding machine 
J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 

M1 10 5 15 25 10 0 15 0 5 
M2 25 15 0 0 0 25 0 5 0 
M3 0 20 5 15 5 25 5 15 30 
M4 5 0 10 0 0 5 10 5 40 
M5 0 0 10 0 0 20 10 0 0 

In the event of a tie, i.e., two rows or columns with the same number of zeros, we allocate the zero 
with the lowest cost in the problem. There will be no duplicate jobs assigned two separate 
machines, and no machine will be left without assigning at least one job. 
If the cost is not accessible to do any more jobs for that machine after it has been assigned, and 
there are still any position related to that machine, then cross it for not assigning any other job. 
Continue step 8 to 10 until all jobs are assigned. 

Table 12: Jobs assigned to all machine 
J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 

M1 15 5 15 25 10 0 15 0 5 
M2 30 15 0 0 0 25 0 5 0 
M3 0 15 0 10 0 20 0 10 0 
M4 10 0 10 0 0 5 10 5 15 
M5 5 0 10 0 0 20 10 0 40 
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Table 13 shows the task assignment that minimizes overall cost, and Figure 1 shows a graph of job 
allocation to the respective machine. 

Table 13: Jobs assigned to respected machines with the associated cost 

Machine Jobs Cost (USD) 

𝑀1 𝐽6 25 

𝑀2 𝐽3, 𝐽4 20+20=40 
𝑀3 𝐽1, 𝐽7 20+30=50 
𝑀4 𝐽2, 𝐽5 20+25=45 

𝑀5 𝐽8 40 

Total Cost 200 

Figure 1: Allocation of Jobs to the Machines for cost 

The second objective is maximizing type, so we select the maximum value from the Table 6 and 
subtract each element of the Table 6 from the selected value. Similarly, Table 14 shows the 
assignment of work that maximizes profit, and Figure 2 shows a graph of job allocation to the 
respective machine. 

Table 14: Jobs assigned to respected machines with the associated profit 
Machine Jobs Profit (USD) 
M1 J2 12 
M2 J3, J4 7+5=12 
M3 J6 27 
M4 J5, J7 9+21=30 
M5 J1, J8 13+15=28 

Total Profit 109 
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Figure 2: Allocation of Jobs to the Machines for the profit 

After solving each objective, we have lower and upper bound of each objective such as: 200 ≤
𝑍1(𝑥) ≤ 250,68 ≤ 𝑍2(𝑥) ≤ 109. Then, we construct the membership function of each objective are 
as follows: 

𝜇1(𝑍1(𝑥)) =

{

1,       𝑍1(𝑥) ≤ 200

250 − 𝑍1(𝑥)

250 − 200
 200 < 𝑍1(𝑥) < 250

0  𝑍1(𝑥) ≥ 250

 

and 

𝜇2(𝑍2(𝑥)) =

{

0,        𝑍2(𝑥) ≤ 68

𝑍2(𝑥) − 68

109 − 68
,  68 < 𝑍2(𝑥) < 109

1,  𝑍2(𝑥) ≥ 109

 

Use the fuzzy programming approach with these memberships, we get a compromise solution for 
the assignment of jobs as shown in Table 15 and graphical illustrating work allocation to the 
relevant machines in terms of cost and profit are shown in Figure 3 and 4 respectively. 

Table 15: Jobs assigned to respected machines with the associated profit 
Machine Jobs Cost (USD) Profit (USD) 
M1 J6 25 11 
M2 J3, J4 20+20=40 7+5=12 
M3 J1, J5 20+30=50 7+13=20 
M4 J2, J7 20+35=55 3+21=24 
M5 J8 40 15 

Total Profit 210 82 
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Figure 3: Compromise allocation of Jobs to the Machines for the cost 

Figure 4: Compromise allocation of Jobs to the Machines for profit 

VI. Discussion

Acknowledgment of the assignment problem's critical role in optimization and operations 
research, with broad applicability in real-world scenarios. Recognition of the Hungarian method's 
effectiveness in addressing the assignment problem in its balanced form. Expansion of the 
exploration to encompass unbalanced scenarios where tasks or resources outnumber each other. 
Introduction of a new and straightforward strategy for assigning multiple activities within given 
resources to achieve specific goals. Addition of two parameters, cost and profit for each resource, 
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in the formulation to meet the demand of allocating more jobs to one resource within a specified 
time frame. Utilization of fuzzy programming to find compromise solutions for multi-objective 
problems, offering adaptability in scenarios with undefined parameter information. In-depth 
exploration of triangular fuzzy numbers when the exact information of parameters is not defined, 
showcasing a flexible approach in problem-solving. Recognition of the Modified Hungarian 
method as a significant advancement in rectifying the shortcomings of leaving tasks unassigned. 
Explanation of how modifications to the cost matrix and algorithm steps ensure the comprehensive 
allocation of tasks to real resources. 

The role of triangular fuzzy numbers in providing adaptability in scenarios with 
undefined parameters. Discussion on the contribution of fuzzy programming to compromise result 
determination, enhancing the methodology's effectiveness. Emphasis on the incorporation of cost 
and profit considerations per resource, adding a practical and comprehensive dimension to the 
algorithm. Explanation of how the Modified Hungarian algorithm adeptly handles unspecified job 
allocations by introducing a cost parameter for each machine. Recognition of the methodology's 
practical demonstration on a numerical example as a key element for enhancing comprehension. 
Emphasis on how the envisioned future scope aims to ensure the continued evolution and broader 
applicability of the Modified Hungarian algorithm in effectively addressing intricate assignment 
problems across diverse and dynamic contexts. 

I. Needs
❖ Address the fundamental need for optimization in various real-life applications.
❖ Fulfill the need for effective solutions in scenarios where tasks significantly outnumber

resources or vice versa.
❖ Cater to the need for flexibility when dealing with scenarios lacking exact parameter

information through the discussion of triangular fuzzy numbers.
❖ Meet the need for a comprehensive approach by incorporating both cost and profit

considerations for each resource in the formulation.

II. Limitations
➢ Acknowledge the limitation of dependency on the Hungarian method, particularly in its

balanced form.
➢ Recognize the potential limitation of leaving tasks unassigned when utilizing the common

approach of introducing a dummy resource.
➢ Understand that the Modified Hungarian method, while addressing unbalanced problems,

may introduce complexity in modifying cost matrices and algorithm steps.
➢ Acknowledge the subjective nature of fuzzy programming in finding a compromise result,

as it relies on fuzzy logic and human judgment.

VII. Conclusion

The assignment problem, crucial in optimization and operations research, spans diverse real-
world applications. While the Hungarian method adeptly tackles the problem in its balanced 
form, the exploration extends to address unbalanced scenarios where tasks or resources 
outnumber each other. In this work, a new and easy strategy for assigning multiple activities 
within the given resources for a particular goal is proposed. Two more parameters as cost and 
profit for each resource is included in the formulation. This strategy meets the demand of 
allocating more jobs to one resource within a certain time frame while producing the most 
effective results. The fuzzy programming approach is used to find the compromise solution to a 
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multi-objective problem. We also discussed triangular fuzzy number if the exact information of 
the parameter is not defined. In future, researcher can used different fuzzy number for the 
allocation of the jobs to the machine and also used different techniques under the different 
circumstances. 
The Modified Hungarian method, a significant advancement, rectifies the shortcomings of leaving 
tasks unassigned. By modifying the cost matrix and algorithm steps, it ensures all tasks find 
allocation to real resources. The discussion on triangular fuzzy numbers provides adaptability in 
scenarios with undefined parameters, and fuzzy programming contributes to compromise result 
determination. Incorporating cost and profit considerations per resource, the Modified Hungarian 
algorithm adeptly handles unspecified job allocations by introducing a cost parameter for each 
machine. The methodology's practical demonstration on a numerical example enhances 
comprehension. Looking forward, the future scope involves algorithmic refinements, dynamic 
resource models, integration with machine learning, validation across industries, and robustness 
to noisy data, ensuring the continued evolution and applicability of the Modified Hungarian 
algorithm in solving complex assignment problems across diverse and dynamic contexts. 
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