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Abstract 

In this article, we introduced a new three parameter continuous probability model by extending a 
two parameter log-logistic distribution using the quadratic rank transmutation map technique. We 
provide a comprehensive description of the statistical properties of the newly introduced model. 
Robust measures of skewness and kurtosis of the proposed model have also been derived along with 
the moment generating function, characteristic function, reliability function and hazard rate 
function of the proposed model. The estimation of the model parameters is performed by maximum 
likelihood method followed by a Monte Carlo simulation procedure. The applicability of this 
distribution to modeling real life data is illustrated by two real life examples and the results of 
comparison to base distribution in modeling the data are also exhibited. 

Keywords: Transmuted Probability Model, Survival Analysis, Reliability Measures, Monte 
Carlo Simulation. 

1. Introduction

The quality of procedures that are put to use in a statistical analysis relies greatly upon the 
assumed probability model or distribution. As a consequence of this, significant effort has been 
directed over the course of history towards the development of large classes of standard 
distributions along with relevant statistical methodologies. These happen to be designed for 
serving as models for a wide variety of real-world phenomena. However, many important 
situations exist where real data does not follow any of the classical or standard models. In the work 
that follows, we have obtained a three-parameter Generalized Log-Logistic Distribution (GLLD) by 
utilizing the Quadratic Rank Transmutation Map (QRTM) technique proposed by Shaw and 
Buckley [1]. The field of transmutation has seen a lot of research recently. Ashour and Eltehiwy [2] 
introduced a new generalized distribution of the exponentiated modified Weibull distribution 
using the transmutation technique. Aryal et al. [3] introduced the transmuted extreme value 
distribution. Merovci et al. [4, 5] studied the transmuted Lindley and Rayleigh distributions. Now 
we will study the three-parameter Generalized Log-Logistic Distribution (GLLD) and obtain and 
understand its different characteristics as well as its structural properties. 

According to the Quadratic Rank Transmutation Map (QRTM) technique for 
generalization, the cumulative distribution function (CDF) must satisfy the relationship: 

𝐹௧(𝑥) = (1 + 𝜆)𝐹௕(𝑥) − 𝜆[𝐹௕(𝑥)]ଶ (1) 
which upon differentiation yields, 

𝑓௧(𝑥) = 𝑓௕(𝑥)[1 + 𝜆 − 2𝜆𝐹௕(𝑥)] (2) 
where 𝑓௕(𝑥)and 𝑓௧(𝑥) are the probability density functions corresponding to 𝐹௕(𝑥) and 
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𝐹௧(𝑥)respectively and|𝜆| ≤ 1. 𝐹௕(𝑥)is the CDF of the base distribution. If we put 𝜆 = 0, we get the 
base distribution. 

The log-logistic distribution is a continuous probability distribution particularly useful in 
dealing with survival data. It is specifically used as a parametric model for events whose rate 
increases initially and later diminishes. For example, mortality rate from a certain cancer post 
diagnosis or treatment. The probability density function (pdf) of the two-parameter log-logistic 
distribution is given as: 

𝑓(𝑥; 𝛼, 𝛽) =
𝛼𝛽(𝛼𝑥)ఉିଵ

(1 + (𝛼𝑥)ఉ)ଶ
(3) 

The corresponding cumulative distribution function (CDF) is given as: 

𝐹(𝑥) = Pr(𝑋 ≤ 𝑥) =
(𝛼𝑥)ఉ

1 + (𝛼𝑥)ఉ
(4) 

where 𝛼 is a scale parameter while 𝛽 is a shape parameter. 
The remaining paper is organized as follows. In subSection 1, the three-parameter 

Generalized Log-Logistic Distribution is demonstrated. The various statistical properties of the 
generalized distribution such as the moments, moment generating function, characteristic function, 
order statistics, quantile function, etc. are summarized in Section 2. The MLE of the distribution 
parameters are illustrated in Section 3 of this paper and contains an exhibition of the Monte Carlo 
simulation procedure. Robust measures of skewness and Kurtosis along with graphical 
illustrations are presented in Section 4. Section 5 deals with the applicability of this generalized 
distribution in modeling real life data which is illustrated by two real-life data sets. 

1.1 Three-Parameter Generalized Log-Logistic Distribution (GLLD) 

This section deals with the study of the three-parameter Generalized Log-Logistic Distribution. 
Using (1) and (4), the CDF of GLLD is obtained as follows: 

𝐹௧(𝑥) = (1 + 𝜆)𝐹௕(𝑥) − 𝜆[𝐹௕(𝑥)]ଶ 

⇒ 𝐹௧(𝑥) = (1 + 𝜆) ቈ
(𝛼𝑥)ఉ

1 + (𝛼𝑥)ఉ
቉ − 𝜆 ቈ

(𝛼𝑥)ఉ

1 + (𝛼𝑥)ఉ
቉

ଶ

After simplifying, we obtain the CDF of three-parameter Generalized Log-Logistic Distribution as 

∴ 𝐹(𝑥; 𝛼, 𝛽, 𝜆) =
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
, 𝑥, 𝛼, 𝛽 > 0 & − 1 ≤ 𝜆 ≤ 1 (5) 

Hence, the pdf of GLLD with parameters 𝛼, 𝛽 and 𝜆 is obtained using (5) as follows: 

𝑓(𝑥; 𝛼, 𝛽, 𝜆) =
𝑑

𝑑𝑥

(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ

∴ 𝑓(𝑥; 𝛼, 𝛽, 𝜆) =
𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ
,      𝑥, 𝛼, 𝛽 > 0 & − 1 ≤ 𝜆 ≤ 1  (6)

The CDF and pdf plots for (5) and (6) respectively for different values of the parameters involved 
is illustrated through figure 1 and 2 respectively. The plots reveal quite evidently that the 
distribution of the three-parameter generalized log-logistic random variable 𝑋 is right skewed. 

2. Statistical Properties of GLLD

This section deals with the various structural properties of the three-parameter GLLD such as 
moments (non-central and central), moment generating function, characteristic function, order 
statistics, quantile function as well as the survival measures. All these have been obtained and 
discussed in the sub-sections that follow. 
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2.1 Moments 

Moments refer to a set of statistical parameters that are useful in measuring a distribution. They 
are the crucial measures to calculate mean, variance, skewness and kurtosis of the data. Skewness 
deals with symmetry of a distribution, or in more precise terms, the lack of symmetry of a 
distribution. Kurtosis enables us to measure the peakedness or flatness of a distribution. Another 
interpretation of kurtosis is concerned with the heavy or light-tailed nature of the data relative to a 
normal distribution.  

Fig 1: CDF plots of three parameter GLLD 

Fig 1: pdf plots of three parameter GLLD 

The theorem 1.1 is used to arrive at the 𝑟𝑡ℎnon-central moment of the three parameter GLLD. 
Theorem 1.1: If a random variable 𝑋 follows GLLD with parameters 𝛼, 𝛽 and 𝜆 such that 𝛼, 𝛽 >

0and |𝜆| ≤ 1, then the 𝑟𝑡ℎ non-central moment is given by 

𝜇௥
ᇱ =

(1 + 𝜆)

𝛼௥
𝛽 ൬1 +

𝑟

𝛽
, 1 −

𝑟

𝛽
൰ −  

2𝜆

𝛼௥
𝛽 ൬2 +

𝑟

𝛽
 , 1 −

𝑟

𝛽
൰ (7) 

Proof: 
We know by the definition of the 𝑟𝑡ℎ raw moment that 

𝜇௥
ᇱ = 𝔼(𝑋௥) 

⇒ 𝜇௥
ᇱ = න 𝑥௥𝑓(𝑥; 𝛼, 𝛽, 𝜆)𝑑𝑥

ஶ

଴

⇒ 𝜇௥
ᇱ = න 𝑥௥

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ
𝑑𝑥

ஶ

଴
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⇒ 𝜇௥
ᇱ = න 𝑥௥

(1 + 𝜆)𝛼𝛽(𝛼𝑥)ఉିଵ

(1 + (𝛼𝑥)ఉ)ଶ
𝑑𝑥 − න 𝑥௥

ஶ

଴

2𝜆(𝛼𝑥)ఉ𝛼𝛽(𝛼𝑥)ఉିଵ

(1 + (𝛼𝑥)ఉ)ଷ

ஶ

଴

𝑑𝑥

Put (𝛼𝑥)ఉ = 𝑡, we obtain 𝑥 =
௧

భ
ഁ

ఈ
 and 𝛼𝛽(𝛼𝑥)ఉିଵ𝑑𝑥 = 𝑑𝑡 

Also, as 𝑥 → 0, 𝑡 → 0 and as 𝑥 → ∞, 𝑡 → ∞ 

∴ 𝜇௥
ᇱ = (1 + 𝜆) න

൭
௧

భ
ഁ

ఈ
൱

௥

(1 + 𝑡)ଶ
𝑑𝑡 − 2𝜆 න

൭
௧

భ
ഁ

ఈ
൱

௥

𝑡

(1 + 𝑡)ଷ
𝑑𝑡

ஶ

଴

ஶ

଴

⇒ 𝜇௥
ᇱ =

(1 + 𝜆)

𝛼௥
න

𝑡
ቀ

ೝ

ഁ
ାଵቁିଵ

(1 + 𝑡)
ቀ

ೝ

ഁ
ାଵቁାቀଵି

ೝ

ഁ
ቁ

𝑑𝑡 −
2𝜆

𝛼௥
න

𝑡
ቀ

ೝ

ഁ
ାଶቁିଵ

(1 + 𝑡)
ቀ

ೝ

ഁ
ାଶቁାቀଵି

ೝ

ഁ
ቁ

ஶ

଴

ஶ

଴

𝑑𝑡

=
(1 + 𝜆)

𝛼௥
𝛽 ൬1 +

𝑟

𝛽
 ,1 −

𝑟

𝛽
൰ −

2𝜆

𝛼௥
𝛽 ൬2 +

𝑟

𝛽
 ,1 −

𝑟

𝛽
൰

where 

𝛽(𝑎, 𝑏) =
Γ(𝑎)Γ(𝑏)

Γ(𝑎 + 𝑏)

∴ 𝜇௥
ᇱ =

(1 + 𝜆)

𝛼௥

Γ ቀ1 +
௥

ఉ
ቁ Γ ቀ1 −

௥

ఉ
ቁ

Γ(2)
−

2𝜆

𝛼௥

Γ ቀ2 +
௥

ఉ
ቁ Γ ቀ1 −

௥

ఉ
ቁ

Γ(3)

⇒ 𝜇௥
ᇱ =

(1 + 𝜆)

𝛼௥
Γ ൬

𝛽 + 𝑟

𝛽
൰ Γ ൬

𝛽 − 𝑟

𝛽
൰ −

𝜆

𝛼௥
Γ ൬

2𝛽 + 𝑟

𝛽
൰ Γ ൬

𝛽 − 𝑟

𝛽
൰

Thus, the 𝑟𝑡ℎ non-central moment is given by the expression 

𝜇௥
ᇱ =

1

𝛼௥
 Γ ൬

𝛽 − 𝑟

𝛽
൰ ൤(1 + 𝜆)Γ ൬

𝛽 + 𝑟

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 𝑟

𝛽
൰൨ (8) 

Using expression (8), the first two raw moments for three-parameter GLLD can be easily obtained. 
These are given by: 

𝜇ଵ
ᇱ =

1

𝛼
 Γ ൬

𝛽 − 1

𝛽
൰ ൤(1 + 𝜆)Γ ൬

𝛽 + 1

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 1

𝛽
൰൨ (9) 

𝜇ଶ
ᇱ =

1

𝛼ଶ
 Γ ൬

𝛽 − 2

𝛽
൰ ൤(1 + 𝜆)Γ ൬

𝛽 + 2

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 2

𝛽
൰൨ (10) 

Besides, we know that variance is given by 
𝜇ଶ = 𝜇ଶ

ᇱ − (𝜇ଵ
ᇱ )ଶ 

Thus, the variance of the three-parameter GLLD is given by: 

𝜇ଶ =
1

𝛼ଶ
 Γ ൬

𝛽 − 2

𝛽
൰ ൤(1 + 𝜆)Γ ൬

𝛽 + 2

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 2

𝛽
൰൨

− ൤
1

𝛼
 Γ ൬

𝛽 − 1

𝛽
൰ ൜(1 + 𝜆)Γ ൬

𝛽 + 1

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 1

𝛽
൰ൠ൨

ଶ (11) 

It is important note that for the convergence of the 𝑟𝑡ℎ moment, ቀ1 −
௥

ఉ
ቁ in (8) must be greater than

zero. In other words, convergence of 𝑟𝑡ℎ moment is possible only if  𝛽 > 𝑟. Thus, existence of mean 
of the proposed distribution requires that 𝛽 is greater than 1. For variance, 𝛽  must be greater than 
2. Similarly, for skewness and kurtosis, 𝛽 must be greater than 3 and 4 respectively. Any situation
of divergence of the statistical measures is dealt with by employing robust measures.

2.2 Moment generating function (mgf) and characteristic function (cf) 

This sub-section contains the derivation of the mgf and cf of the three-parameter GLLD. The 
following theorem gives the mgf and cf of the distribution under study. 
Theorem 3.2:If a random variable 𝑋 follows GLLD with parameters 𝛼, 𝛽 and 𝜆 such that 𝛼, 𝛽 > 0and |𝜆| ≤

1, then the mgf denoted by 𝑀௑(𝑡) and the cf denoted by 𝜓௑(𝑡) has the following form: 
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𝑀௑(𝑡) = ෍
𝑡௝

𝑗!

ஶ

௝ୀ଴

1

𝛼௝
 Γ ൬

𝛽 − 𝑗

𝛽
൰ ൤(1 + 𝜆)Γ ൬

𝛽 + 𝑗

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 𝑗

𝛽
൰൨

and 

𝜓௑(𝑡) = ෍
(𝜄𝑡)௝

𝑗!

ஶ

௝ୀ଴

1

𝛼௝
 Γ ൬

𝛽 − 𝑗

𝛽
൰ ൤(1 + 𝜆)Γ ൬

𝛽 + 𝑗

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 𝑗

𝛽
൰൨

Proof:  
We know from the definition of mgf that 

𝑀௑(𝑡) = 𝔼(𝑒௧௫) 

= න ෍
(𝑡𝑥)௝

𝑗!
𝑓(𝑥; 𝛼, 𝛽, 𝜆)𝑑𝑥

ஶ

௝ୀ଴

ஶ

଴

= න ෍
𝑡௝

𝑗!
𝑥௝𝑓(𝑥; 𝛼, 𝛽, 𝜆)𝑑𝑥

ஶ

௝ୀ଴

ஶ

଴

= ෍
𝑡௝

𝑗!

ஶ

௝ୀ଴

𝜇௝
ᇱ

From (8), we know 

𝜇௝
ᇱ =

1

𝛼௝
 Γ ൬

𝛽 − 𝑗

𝛽
൰ ൤(1 + 𝜆)Γ ൬

𝛽 + 𝑗

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 𝑗

𝛽
൰൨

∴ 𝑀௑(𝑡) = ෍
𝑡௝

𝑗!

ஶ

௝ୀ଴

1

𝛼௝
 Γ ൬

𝛽 − 𝑗

𝛽
൰ ൤(1 + 𝜆)Γ ൬

𝛽 + 𝑗

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 𝑗

𝛽
൰൨ (12) 

which is the required mgf of the three-parameter GLLD. 
Also, we know that  

𝜓௑(𝑡) = 𝔼(𝑒ఐ௧௫) 
⇒ 𝜓௑(𝑡) = 𝔼(𝑒(ఐ௧)௫)

⇒ 𝜓௑(𝑡) = ෍
(𝜄𝑡)௝

𝑗!

ஶ

௝ୀ଴

1

𝛼௝
 Γ ൬

𝛽 − 𝑗

𝛽
൰ ൤(1 + 𝜆)Γ ൬

𝛽 + 𝑗

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 𝑗

𝛽
൰൨ (13) 

which is the required cf of the three-parameter GLLD. 

2.3 Order Statistics 

Stated in the simplest of terms, order statistics refer to sampling values arranged in an ascending 
order. If 𝑋(ଵ), 𝑋(ଶ), 𝑋(ଷ), … , 𝑋(௡) denote the order statistics of a random sample 𝑋ଵ, 𝑋ଶ, 𝑋ଷ , … , 𝑋௡drawn 
from a continuous population having CDF 𝐹௑(𝑥) and pdf 𝑓௑(𝑥), then the pdf of the 𝑟𝑡ℎ order 
statistics 𝑋(௥) is given by:  

𝑓௥(𝑥) =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
𝑓௑(𝑥)[𝐹௑(𝑥)]௥ିଵ[1 − 𝐹௑(𝑥)]௡ି௥ , ∀ 𝑟 = 1,2, … , 𝑛

Using (5) and (6), the formula for the pdf of the 𝑟𝑡ℎ order statistic 𝑋(௥) for the three-parameter 
GLLD is obtained and is given as under: 

𝑓௥(𝑥) =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ

× ቈ
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
቉

௥ିଵ

ቈ1 −
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
቉

௡ି௥ (14) 

For 𝑟 = 𝑛, we get the pdf of the 𝑛𝑡ℎ or the largest order statistic 𝑋(௡) for the three-parameter GLLD 
which is obtained as follows: 

𝑓௡(𝑥) =
𝑛!

(𝑛 − 1)! (𝑛 − 𝑛)!

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ

× ቈ
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
቉

௡ିଵ

ቈ1 −
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
቉

௡ି௡
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=
𝑛!

(𝑛 − 1)!

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ
× ቈ

(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
቉

௡ିଵ

∴ 𝑓௡(𝑥) =
𝑛𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ
ቈ
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
቉

௡ିଵ

(15) 

Also, for 𝑟 = 1, we get the pdf of the first or the smallest order statistic 𝑋(ଵ) for the three-parameter 
GLLD which is obtained as follows: 

𝑓ଵ(𝑥) =
𝑛!

(1 − 1)! (𝑛 − 1)!

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ

× ቈ
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
቉

ଵିଵ

ቈ1 −
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
቉

௡ିଵ

=
𝑛!

(𝑛 − 1)!

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ
× ቈ1 −

(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
቉

௡ିଵ

∴ 𝑓ଵ(𝑥) =
𝑛𝛼𝛽(𝛼𝑥)ఉିଵ൛(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉൟ

(1 + (𝛼𝑥)ఉ)ଷ
× ቈ1 −

(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
቉

௡ିଵ

(16) 

Quite evidently, for 𝜆 = 0, the order statistics of the base distribution i.e., the Log-Logistic 
Distribution, are yielded.  

2.4. Quantile function and random number generation 

A prominent method that is put to use for the sake of generating random numbers from a specified 
distribution is the inverse CDF method. This method generates random numbers from a particular 
distribution by equating the CDF of the distribution to a number 𝑢 where 𝑢 itself follows 
continuous uniform distribution, 𝑈(0,1). Solving the equation yields the quantile function of the 
distribution. Employing this inverse CDF method, we proceed to obtain the quantile function of 
the three-parameter GLLD as follows: 

𝐹(𝑥; 𝛼, 𝛽, 𝜆) = 𝑢

⇒
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
= 𝑢

⇒ (𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ = 𝑢൫1 + (𝛼𝑥)ఉ൯
ଶ

After simplifying, we obtain 

𝑥ఉ =
−𝛼ఉ(1 + 𝜆 − 2𝑢) ± ඥ𝛼ଶఉ(1 + 𝜆)ଶ − 4𝑢𝜆𝛼ଶఉ

2𝛼ଶఉ(1 − 𝑢)

 =
−𝛼ఉ(1 + 𝜆 − 2𝑢) ± ඥ(𝛼ఉ)ଶඥ(1 + 𝜆)ଶ − 4𝑢𝜆

2𝛼ଶఉ(1 − 𝑢)

= 𝛼ఉ ൝
−(1 + 𝜆 − 2𝑢) ± ඥ(1 + 𝜆)ଶ − 4𝑢𝜆

2𝛼ఉ𝛼ఉ(1 − 𝑢)
ൡ

=
−(1 + 𝜆 − 2𝑢) ± ඥ(1 + 𝜆)ଶ − 4𝑢𝜆

2𝛼ఉ(1 − 𝑢)

∴ 𝑥 = ൥
−(1 + 𝜆 − 2𝑢) + ඥ(1 + 𝜆)ଶ − 4𝑢𝜆

2𝛼ఉ(1 − 𝑢)
൩

భ

ഁ

, (17) 

Equation (17) is the required quantile function of three-parameter GLLD. Note that the negative 
root of (17) has been discarded since 𝑥 only takes values greater than 0. Equation (17) yields 
random numbers from three-parameter GLLD. For 𝑢 = 0.25, 0.50 and 0.75, the values of 𝑥 obtained 
represent the first, second and third quartiles of the distribution, respectively. In a similar fashion, 
deciles and percentiles of different orders are obtained by assigning different values to 𝑢. 
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2.5. Survival measures of three-parameter GLLD 

This sub-section deals with the survival measures of three-parameter GLLD such as the survival 
function and the hazard function. The survival function, also known as the survivorship function, 
refers to the probability that a life, system or a component will survive beyond a specified time. In 
mathematical terms, it happens to be the complement of the CDF and is given by: 

𝑆(𝑥) = Pr(𝑋 > 𝑥) = 1 − 𝐹(𝑥) (18) 
Using (5) in (18), we obtain the survival function of three-parameter GLLD as follows: 

𝑆(𝑥; 𝛼, 𝛽, 𝜆) =
൫1 + (𝛼𝑥)ఉ൯

ଶ
− (𝛼𝑥)ଶఉ − (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ

𝑆(𝑥; 𝛼, 𝛽, 𝜆) =
൫1 + 2(𝛼𝑥)ఉ + (𝛼𝑥)ଶఉ൯ − (𝛼𝑥)ଶఉ − (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ

∴ 𝑆(𝑥; 𝛼, 𝛽, 𝜆) =
1 + (1 − 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
, 𝑥, 𝛼, 𝛽 > 0 & − 1 ≤ 𝜆 ≤ 1 (19) 

The hazard function, also known as the hazard rate or failure rate or force of mortality, happens to 
be an important quantity used for the characterization of life phenomenon. Hazard function is 
defined as the conditional probability that a life, system or a component that survives up to a 
specified time, will undergo failure or succumb in the immediate, infinitesimally small interval of 
time that follows. In mathematical terms, the hazard rate or the hazard function is given by: 

ℎ(𝑥) = lim
୼௧→଴

Pr[𝑡 ≤ 𝑋 < 𝑡 + Δ𝑡 | 𝑋 ≥ 𝑡]

Δ𝑡
which upon simplification yields 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
(20) 

Using (6) and (19) in (20), we obtain the hazard function of three-parameter GLLD as follows: 

ℎ(𝑥; 𝛼, 𝛽, 𝜆) =
𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ){1 + (1 − 𝜆)(𝛼𝑥)ఉ}
,      𝑥, 𝛼, 𝛽 > 0 &|𝜆| ≤ 1

 (21) 
The survival function and the hazard function plots for (19) and (21) respectively for different 
values of the parameters involved is illustrated through figure 3 and 4 respectively. 

3. Maximum Likelihood Estimation

One of the most useful frameworks in parameter estimation is the Maximum Likelihood 
estimation (MLE). This method obtains the unknown population parameters by the virtue of 
likelihood maximization.  

In this section, the parameters 𝛼, 𝛽 and 𝜆of the three-parameter GLLD are estimated using 
the method of maximum likelihood estimation (MLE). The procedure is given as follows: Consider 
a random sample 𝑋ଵ, 𝑋ଶ, . . . , 𝑋௡of size 𝑛 taken from the three-parameter GLLD. The likelihood 
function based on this sample is therefore given as: 

𝐿(𝑥|𝛼, 𝛽, 𝜆) = ෑ
𝛼𝛽(𝛼𝑥௜)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥௜)ఉ൯ − 2𝜆(𝛼𝑥௜)ఉ}

(1 + (𝛼𝑥௜)
ఉ)ଷ

௡

௜ୀଵ

(22) 

⇒ 𝐿 = ൫𝛼ఉ𝛽൯
௡ ∏ 𝑥௜

ఉିଵ ∏ {(1 + 𝜆)൫1 + (𝛼𝑥௜)ఉ൯ − 2𝜆(𝛼𝑥௜)ఉ}௡
௜ୀଵ

௡
௜ୀଵ

∏ (1 + (𝛼𝑥௜)ఉ)ଷ௡
௜ୀଵ

 (23) 

Taking logarithm on both sides of (23), we obtain the log likelihood function as follows: 

⇒ log 𝐿 = log ൥൫𝛼ఉ𝛽൯
௡ ∏ 𝑥௜

ఉିଵ ∏ {(1 + 𝜆)൫1 + (𝛼𝑥௜)ఉ൯ − 2𝜆(𝛼𝑥௜)
ఉ}௡

௜ୀଵ
௡
௜ୀଵ

∏ (1 + (𝛼𝑥௜)
ఉ)ଷ௡

௜ୀଵ

൩
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Fig. 3: Survival function plot for three parameter GLLD 

Fig. 4: Hazard rate function plot for three parameter GLLD 

⇒ log 𝐿 log 𝐿 = 𝑛𝛽 log 𝛼 + 𝑛 log 𝛽 + (𝛽 − 1) ෍ log 𝑥௜

௡

௜ୀଵ

+ ෍ log{(1 + 𝜆)൫1 + (𝛼𝑥௜)
ఉ൯ − 2𝜆(𝛼𝑥௜)ఉ}

௡

௜ୀଵ

− 3 ෍ log(1 + (𝛼𝑥௜)ఉ)

௡

(௜ୀଵ)

which is the required log-likelihood function. 

(24) 

The MLEs of the parameters 𝛼, 𝛽 and 𝜆 of GLLD are obtained by differentiation of the log-
likelihood function (24) w.r.t 𝛼, 𝛽 and 𝜆.The partial derivatives used for estimating the parameters 
are obtained as follows: 

𝜕

𝜕𝛼
log 𝐿 =

𝑛𝛽

𝛼
+ ෍ ቎

ቄ(1 + 𝜆)൫𝛽𝛼ఉିଵ𝑥௜
ఉ

൯ − 2𝜆𝛽𝛼ఉିଵ𝑥௜
ఉ

ቅ

{(1 + 𝜆)(1 + (𝛼𝑥௜)
ఉ) − 2𝜆(𝛼𝑥௜)ఉ}

቏

௡

௜ୀଵ

− 3 ෍ ൥
𝛽𝛼ఉିଵ𝑥௜

ఉ

(1 + (𝛼𝑥௜)ఉ)
൩

௡

௜ୀଵ

(25) 

𝜕

𝜕𝛽
log 𝐿 = 𝑛 log 𝛼 +

𝑛

𝛽
+ ෍ log 𝑥௜

௡

௜ୀଵ

+ ෍ ቈ
{(1 + 𝜆)(𝛼𝑥௜)

ఉ log(𝛼𝑥௜) − 2𝜆(𝛼𝑥௜)ఉ log(𝛼𝑥௜)}

{(1 + 𝜆)(1 + (𝛼𝑥௜)
ఉ) − 2𝜆(𝛼𝑥௜)ఉ}

቉ − 3 ෍ ቈ
(𝛼𝑥௜)ఉ log(𝛼𝑥௜)

(1 + (𝛼𝑥௜)ఉ)
቉

௡

௜ୀଵ

௡

௜ୀଵ

(26) 

𝜕

𝜕𝜆
log 𝐿 = ෍ ቈ

1 − (𝛼𝑥௜)
ఉ

{(1 + 𝜆)(1 + (𝛼𝑥௜)ఉ) − 2𝜆(𝛼𝑥௜)ఉ}
቉

௡

௜ୀଵ

(27) 

The derivative equations (25), (26) and (27) cannot be analytically solved and thereby estimates of 
the parameters 𝛼, 𝛽 and 𝜆 denoted by 𝛼ො, 𝛽መ  and 𝜆መ are obtained by maximization of log-likelihood 
function through the employment of powerful iterative numerical methods such as the Newton-
Raphson method. The second order partial derivatives are computed which are helpful in 
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obtaining the Fisher’s Information Matrix in the following manner: 

𝐼௫(𝛼, 𝛽, 𝜆) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡−𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝛼ଶ
ቇ −𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝛼𝜕𝛽
ቇ −𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝛼𝜕𝜆
ቇ

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝛽𝜕𝛼
ቇ −𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝛽ଶ
ቇ −𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝛽𝜕𝜆
ቇ

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝜆𝜕𝛼
ቇ −𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝜆𝜕𝛽
ቇ −𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝜆ଶ
ቇ

⎦
⎥
⎥
⎥
⎥
⎥
⎤

(28) 

It can be shown that the three-parameter GLLD satisfies the regularity conditions and thereby the 
MLE vector Θ = ൫𝛼ො, 𝛽መ, 𝜆መ൯

்
 is consistent as well as asymptotically normal, i.e., √𝑛 ቂ൫𝛼ො, 𝛽መ, 𝜆መ൯

்
−

(𝛼, 𝛽, 𝜆)்ቃ converges to a normal distribution with mean vector 0 and the identity covariance 
matrix. Fisher’s Information matrix in (28) is calculated by virtue of the following approximation: 

𝐼௫൫𝛼ො, 𝛽መ, 𝜆መ൯ ≈

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝛼ଶ
ቇቤ

൫ఈෝ,ఉ෡,ఒ෡൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝛼𝜕𝛽
ቇቤ

൫ఈෝ,ఉ෡,ఒ෡൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝛼𝜕𝜆
ቇቤ

൫ఈෝ,ఉ෡,ఒ෡൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝛽𝜕𝛼
ቇቤ

൫ఈෝ,ఉ෡,ఒ෡൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝛽ଶ
ቇቤ

൫ఈෝ,ఉ෡,ఒ෡൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝛽𝜕𝜆
ቇቤ

൫ఈෝ,ఉ෡,ఒ෡൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝜆𝜕𝛼
ቇቤ

൫ఈෝ,ఉ෡,ఒ෡൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝜆𝜕𝛽
ቇቤ

൫ఈෝ,ఉ෡,ఒ෡൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝜆ଶ
ቇቤ

൫ఈෝ,ఉ෡,ఒ෡൯⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(29) 

Where 𝛼ො, 𝛽መ and 𝜆መ are the MLEs of 𝛼, 𝛽 and 𝜆መ respectively. This approximation is useful in the 
construction of the confidence intervals for the parameters of three-parameter GLLD. The 
approximate 100(1 − 𝛼)% confidence intervals for 𝛼, 𝛽 and 𝜆 are respectively given by: 

𝛼ො ± 𝑧ഀ

మ
ට𝐼ଵଵ

ିଵ൫Θ෡൯, 𝛽መ ± 𝑧ഀ

మ
ට𝐼ଶଶ

ିଵ൫Θ෡൯ 𝑎𝑛𝑑 𝜆መ ± 𝑧ഀ

మ
ට𝐼ଷଷ

ିଵ൫Θ෡൯ (30) 

3.1. Monte Carlo Simulation Study of ML Estimates 

Monte Carlo simulation refers to a wide range of computational algorithms aimed at obtaining 
numerical results by using repeated random sampling. This sub-section contains a behavioral 
analysis of the maximum likelihood estimates of three-parameter GLLD for a finite sample of size 
𝑛. A MC simulation study for different values of parameters 𝛼, 𝛽 and 𝛾 is employed for this 
purpose with random numbers being generated using the quantile function (17) obtained earlier. 
The procedure undertaken involves a simulation study for each triplet (𝛼, 𝛽, 𝜆) for the parameter 
combinations (𝛼 = 0.7, 𝛽 = 0.5, 𝜆 = 0.4) and (𝛼 = 1.2, 𝛽 = 0.8, 𝜆 = 0.5).The iterative process is 
carried out 100 times for samples of size 𝑛, where 𝑛 = 25,75,150,200 and 500, generating 100 
samples of the mentioned sample sizes. ML estimates for each sample generated are then obtained 
and their average bias, variance and MSE is calculated. The results have been tabulated in Table 1 
and clearly indicate that with the increase in the sample size 𝑛, agreement between theory and 
practice improves significantly. MSE and variance of estimates of 𝛼, 𝛽 and 𝜆 indicate consistency 
and that the ML method performs well for estimation of parameters of the three-parameter GLLD. 

Table 1: Average Bias, Variance and MSE for simulated results of MLEs 
Sample 
size 𝑛 

Parameters 
(𝛼 = 0.7, 𝛽 = 0.5, 𝜆 = 0.4) (𝛼 = 1.2, 𝛽 = 0.8, 𝜆 = 0.5) 

Bias Variance MSE Bias Variance MSE 

25 
𝛼 0.026299 2.645356 2.646048 -0.15184 0.633681 0.656737 
𝛽 0.008205 0.009891 0.009958 0.012896 0.052401 0.052567 
𝜆 0.284835 0.18187 0.263 0.160373 0.173618 0.199338 

75 
𝛼 -0.184323 0.841443 0.875418 -0.16281 0.495852 0.522358 
𝛽 -0.009204 0.003322 0.003407 -0.04699 0.026425 0.028633 
𝜆 0.237382 0.142089 0.198439 0.156228 0.153889 0.178296 
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150 
𝛼 -0.357382 0.54484 0.672562 -0.05974 0.366872 0.370441 
𝛽 -0.020729 0.001617 0.002047 -0.03842 0.012117 0.013593 
𝜆 0.271836 0.148146 0.22204 0.067127 0.140693 0.145199 

200 
𝛼 -0.276202 0.540957 0.617245 0.037218 0.422209 0.423594
𝛽 -0.018463 0.001689 0.00203 -0.00735 0.012184 0.012238 
𝜆 0.241823 0.135421 0.193899 0.03889 0.128701 0.130213 

500 
𝛼 -0.377683 0.375987 0.518631 0.095593 0.332553 0.341691
𝛽 -0.01319 0.000977 0.001151 -0.02082 0.006032 0.006466 
𝜆 0.252524 0.10096 0.164728 -0.01595 0.102887 0.103141 

4. Robust Skewness and Kurtosis Measures for three-parameter GLLD

This section deals with the study of skewness and kurtosis measures for the proposed distribution. 
Skewness and kurtosis both deal with the shape of the distribution with the former concerned with 
symmetry while latter with the tailedness and peakedness of the distribution. The effect of 
parameters on the skewness and kurtosis of the distribution is studied in this section by 
considering measures based on quantiles.  

Bowley[6] proposed a coefficient of skewness based on quantiles which is well known in 
statistical literature and is one of the earliest measures of skewness. It is defined as the average of 
the first and third quartiles minus the median divided by half the interquartile range. It is given by: 

𝛣 =
𝑄ଷ + 𝑄ଵ − 2𝑄ଶ

𝑄ଷ − 𝑄ଵ

=
𝑄 ቀ

ଷ

ସ
ቁ − 𝑄 ቀ

ଵ

ସ
ቁ − 2𝑄 ቀ

ଵ

ଶ
ቁ

𝑄 ቀ
ଷ

ସ
ቁ − 𝑄 ቀ

ଵ

ସ
ቁ

(31) 

Bowley’s coefficient of skewness lies between +1 and −1. 
Moors[7] proposed a robust alternative to the conventional measure of kurtosis in order to 
overcome the shortcomings of the latter. For many heavy tailed distributions, the conventional 
measure is infinite and uninformative as such. The new measure of kurtosis based on quantiles, 
however, is less sensitive to outliers and even exists for distributions for which there are not any 
defined moments. The Moors’ kurtosis based on octiles is given by: 

𝑀 =
(𝐸ଷ − 𝐸ଵ) + (𝐸଻ − 𝐸ହ)

𝐸଺ − 𝐸ଶ

=
𝑄 ቀ

ଷ

଼
ቁ − 𝑄 ቀ

ଵ

଼
ቁ + 𝑄 ቀ

଻

଼
ቁ − 𝑄 ቀ

ହ

଼
ቁ

𝑄 ቀ
଺

଼
ቁ − 𝑄 ቀ

ଶ

଼
ቁ

(32) 

For distributions that are symmetrical to 0, the Moors’ kurtosis reduces to: 

𝑀 =
𝑄 ቀ

଻

଼
ቁ − 𝑄 ቀ

ହ

଼
ቁ

𝑄 ቀ
଺

଼
ቁ

(33) 

Table 2: Bowley’sskewness for GLLD (𝑥; 𝛼, 𝛽, 𝜆) for different parameter combinations 

Parameters 
𝛼 = 1.3 

𝛽 
0.7 1.4 1.9 2.6 3.3 4.4 5.6 

𝝀

-0.9 0.62570 0.36985 0.28923 0.22568 0.18823 0.15298 0.13014 
-0.7 0.63217 0.36683 0.28241 0.21574 0.17642 0.13942 0.11543 
-0.6 0.63601 0.36633 0.28009 0.21192 0.17169 0.13383 0.10929 
-0.3 0.64848 0.36931 0.27877 0.20697 0.16455 0.12460 0.09870 
0.3 0.64453 0.36414 0.27336 0.20143 0.15894 0.11895 0.09303 
0.6 0.60956 0.33252 0.24491 0.17596 0.13538 0.09727 0.07260 
0.7 0.59349 0.31787 0.23156 0.16380 0.12400 0.08664 0.06248 
0.9 0.55777 0.28555 0.20196 0.13671 0.09850 0.06271 0.03959 

RT&A, No 1 (82) 
Volume 20, March 2025 

1029



Khawar Javaid, Bilal Ahmad Para 
A NEW TRANSMUTED PROBABILITYMODEL: PROPERTIES …

Table 3: Moors’ kurtosis for GLLD (𝑥; 𝛼, 𝛽, 𝜆) for different parameter combinations 

Parameters 
𝛼 = 2.6 

𝛽 
0.7 1.4 1.9 2.6 3.3 4.4 5.6 

𝝀

-0.9 3.02678 1.75277 1.56318 1.45452 1.40469 1.36648 1.34594 
-0.7 3.05154 1.74699 1.55687 1.45018 1.40247 1.36694 1.34849 
-0.6 3.06594 1.74405 1.55301 1.44675 1.39978 1.36525 1.34763 
-0.3 3.11493 1.73857 1.54241 1.43495 1.38840 1.35504 1.33856 
0.3 3.07158 1.72426 1.53261 1.42809 1.38310 1.35111 1.33550 
0.6 2.76317 1.64151 1.48248 1.39720 1.36142 1.33684 1.32545 
0.7 2.60943 1.59528 1.45225 1.37657 1.34545 1.32469 1.31549 
0.9 2.27908 1.48840 1.37979 1.32506 1.30423 1.29197 1.28772 

For standard normal distribution, it is easy to compute that 
𝐸ଵ = −𝐸଻ = −1.15, 𝐸ଶ = −𝐸଺ = −0.67 𝑎𝑛𝑑 𝐸ଷ = −𝐸ହ = −0.32 

Therefore, 𝑀 = 1.23. The centered Moors’ coefficient is thus given by: 

𝑀 =
𝑄 ቀ

ଷ

଼
ቁ − 𝑄 ቀ

ଵ

଼
ቁ + 𝑄 ቀ

଻

଼
ቁ − 𝑄 ቀ

ହ

଼
ቁ

𝑄 ቀ
଺

଼
ቁ − 𝑄 ቀ

ଶ

଼
ቁ

− 1.23 (34) 

Using R software, the values of Bowley’sskewness and Moors’ kurtosis for the three-parameter 
GLLD for different parameter values have been numerically calculated and tabulated in Tables 2 
and 3 respectively. Clearly, Bowley’sskewness as well as Moors’ kurtosis are decreasing function 
of 𝛽 for a fixed value of the transmuted parameter 𝜆. However, for a fixed value of the scale 
parameter 𝛽, both Bowley’s skewness and Moors’ kurtosis reflect both increasing and decreasing 
behavior for different values of the transmuted parameter 𝜆. 

5. Applications of three-parameter GLLD

In this particular section, the performance of the proposed generalized log-logistic model is put to 
test by comparing it with base model. Two real life data sets, one based on survival times and the 
other on strength data, that are already available in the literature have been used to carry out the 
comparisons. The procedure involves the computation of MLEs of the transmuted model as well 
the base model based on both data sets using R software. The various goodness of fit statistics for 
the two models are then calculated and comparisons carried out. These statistics include AIC 
(Akaike’s Information Criterion) provided by Akaike[8], AICC (AIC Corrected) and BIC (Bayesian 
Information Criterion) given by Schwarz[9]. AIC, AICC and BIC for a model with 𝑘 parameters are 
calculated using the following generic functions: 

𝐴𝐼𝐶 = 2𝑘 − 2 log 𝐿

𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
𝐵𝐼𝐶 = 𝑘 log 𝑛 − 2 log 𝐿

Kolmogorov-Smirnov test is also carried out for testing model significance based on the two 
mentioned real-life data sets. 

Data Set I: The data set reported by Efron[10] is analyzed for carrying out comparisons between 
three-parameter GLLD and LLD. Efron [10] reported the data set in which observations represent 
the survival times of a group of patients suffering from head and neck cancer disease and are 
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treated using radiotherapy. The data set is given in Table 4. 
Table 4: Survival times of 58 patients suffering from head and neck cancer disease 

The MLEs, model functions alongside the standard errors based on the above data set are 
tabulated in Table 5. 

The Table 6 contains various goodness of fit measures for models fitted to data given in 
Table 4. From the table, it is evident that the AIC, AICC and BIC values for the transmuted model 
(GLLD) are better as compared to the base model (LLD), thereby suggesting that the new model is 
a better performer. Furthermore, the KS 𝑝-value is also greater than 0.05 for GLLD as such 
reiterating the statistical significance of the new transmuted model over the base model. 

Table 5: MLEs with standard errors of parameters for GLLD and LLD for data set I 
Model Model function MLEs Standard Error 

Transmuted 
Model 

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ

𝛼ො = 0.01

𝛽መ = 1.55

𝜆መ = −0.47

𝑆𝐸(𝛼ො) = 0.002 
𝑆𝐸൫𝛽መ൯ = 0.203

𝑆𝐸(𝜆)෢ = 0.344 

Base Model 
𝛼𝛽(𝛼𝑥)ఉିଵ

(1 + (𝛼𝑥)ఉ)ଶ

𝛼ො = 0.01

𝛽መ = 1.52

𝑆𝐸(𝛼ො) = 0.002

𝑆𝐸൫𝛽መ൯ = 0.196

Table 6: Goodness of fit measures for models fitted to data set I 

Model − 𝐥𝐨𝐠 𝑳 AIC AICC BIC 
KS 

Distance 
KS 

𝒑-value 
LR 

Statistic 
GLLD 371.1943 748.3887 748.8331 754.5700 0.15548 0.1211 

5.01905 
LLD 373.7039 751.4077 751.6259 755.5286 0.26802 0.0004 

The GLLD and LLD plots fitted to the survival times of the 58 patients suffering from head and 
neck cancer disease are illustrated through Figure 5. The graphical overview of the empirical and 
theoretical (GLLD) CDFs and survival functions for data set I is illustrated through Figures 6 and 7 
respectively. 

Fig. 5: Curve fitting GLLD vz LLD for data set I 

6.53 7 10.42 14.48 16.10 22.70 34 41.55 42 45.28 49.40 53.62 
63 64 83 84 91 108 112 129 133 133 139 140 
140 146 149 154 157 160 160 165 146 149 154 157 
160 160 165 173 176 218 225 241 248 273 277 297 
405 417 420 440 523 583 594 1101 1146 1417 
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Data Set II: The data set reported by Lawless [11] is analyzed for carrying out comparisons 
between three-parameter GLLD and LLD. Lawlessreported the data set in which the observations 
represent the number of cycles to failure for 25-100 cm specimens of yarn tested at a particular 
strain level. The data set is given in Table 7. 

Table 7: Cycles to failure for 25-100 cm specimens of yarn at a specific strain level 
15 20 38 42 61 76 86 98 121 146 
149 157 175 176 180 180 198 220 224 251 
175 176 180 180 198 653 

Fig. 6: Empirical and Theoritical CDF 
for data set I 

Fig. 7:Empirical and Theoretical Survival 
Function for data set I 

The MLEs, model functions alongside the standard errors based on the above data set are 
tabulated in Table 8 below: 

Table 8: MLEs with standard errors of parameters for GLLD and LLD for data set II 

From the table 9, it is evident that the AIC, AICC and BIC values for the transmuted model (GLLD) 
are better as compared to the base model (LLD), thereby suggesting that the new model is a better 
performer. Furthermore, the KS 𝑝-value>0.05 for GLLD as such reiterating the statistical 
significance of the new transmuted model over the base model. In other words, GLLD is a better fit 
for data given in Table 7 as compared to LLD. 

Model Model function MLEs Standard Error 

Transmuted 
Model 

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ

𝛼ො = 0.01

𝛽መ = 1.89

𝜆መ = −0.56

𝑆𝐸(𝛼ො) = 0.004

𝑆𝐸൫𝛽መ൯ = 0.450

𝑆𝐸(𝜆መ) = 0.491

Base Model 
𝛼𝛽(𝛼𝑥)ఉିଵ

(1 + (𝛼𝑥)ఉ)ଶ

𝛼ො = 0.01

𝛽መ = 1.85

𝑆𝐸(𝛼ො) = 0.003

𝑆𝐸൫𝛽መ൯ = 0.423
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Table 9: Goodness of fit measures for models fitted to data set II 

Model − 𝐥𝐨𝐠 𝑳 AIC AICC BIC 
KS 

Distance 
KS 

𝒑-value 
LR 

Statistic 
GLLD 154.2395 314.4790 315.6219 318.1356 0.18704 0.346 

3.440033 
LLD 155.9595 315.9191 316.4645 318.3568 0.30815 0.01734 

The GLLD and LLD plots fitted to the number of cycles to failure for 25 100-cm specimens of yarn 
tested at a particular strain level are illustrated through Figure 8.The graphical overview of the 
empirical and theoretical (GLLD) CDFs and survival functions for data set II is illustrated through 
Figures 9 and 10 respectively. 

Fig. 8: Curve fitting GLLD vz LLD for data set I 

Fig. 9: Empirical and Theoritical CDF 
for data set II 

Fig. 10:Empirical and Theoretical Survival Function 
for data set II 
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6. Concluding Remarks

A new three parameter transmuted probability model namely is introduced by using the quadratic 
rank transmutation map technique. Comprehensive description of the statistical properties of the 
newly introduced model are introduced. Robust measures of skewness and kurtosis of the 
proposed model have also been derived along with the moment generating function, characteristic 
function, reliability function and hazard rate function of the said model. The estimation of the 
model parameters is performed by maximum likelihood method followed by a Monte Carlo 
simulation procedure. The applicability of this distribution to modeling real life data is illustrated 
by two real life examples and the results of comparison to base distribution in modeling the data 
are also exhibited. 
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