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Abstract

In this article explores two approaches for estimating the parameters of the exponentiated inverse
Rayleigh distribution (EIRD) using record values: Classical estimation and Bayesian estimation. In
classical estimation, maximum likelihood estimators (MLE’s) and the asymptotic confidence intervals
are derived based on the observed Fisher information matrix of the parameters. In Bayesian estimation,
estimators of the parameters are obtained under the square error loss function. This involves using
Tierney-Kadane’s approximation (TK) and Markov chain Monte Carlo (MCMC) methods for Bayesian
computation. Additionally, the article constructs the highest posterior credible intervals of the parameters
using the MCMC method. To evaluate the performance of these estimators, a Monte Carlo simulation
study is conducted to compare their behavior. Finally, a real data analysis is presented to illustrate the
application of the methods discussed in the article.

Keywords: :Exponentiated inverse Rayleigh distribution, Maximum likelihood estimators, Bayes
estimators, Square error loss function, MCMC, TK, Record values, and Real data.

1. Introduction

The Rayleigh distribution was introduced by Lord Rayleigh (1880) and is used in the field of
acoustics. This distribution possesses the properties of some well-known distributions, such as
Weibull, chi-square, and extreme value distribution, which makes it even more useful for different
areas of science and technology. There are several authors who have studied the application of
the Rayleigh distribution, such as Beckmann[1] study the generalization of rayleigh distribution,
Hoffman and Karst[2] mentioned that theroy and application of Rayleigh Distribution, Lee et al.[3]
estimated the scale parameters of the Rayleigh distribution. Based on censored data, Soliman et
al.[4] study the inference and application of the Rayleigh model. Let us suppose that a random
variable Z follows the Rayleigh distribution, then X = 1

Z follows the Inverse Rayleigh distribution.
The inverse Rayleigh distribution (IRD) is widely applied in reliability studies and other related
fields. For more information about Inverse Rayleigh distribution studies, see more papers such as
Voda[5],El-Helbawy and Abd-El-Monem[6],Shawky and Majdah M[7],Sindhu et al.[8],C. Tans[9].

Let us suppose X is a random variable for the Inverse Rayleigh distribution with scale param-
eters σ. Then its probability density function (pdf) and cumulative distribution function (cdf) are
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respectively given as

q(x; σ) =

{
2σ2

x3 e−( σ
x )

2
, if x > 0, σ > 0.

0, otherwise.
(1)

Q(x; σ) =

{
e−( σ

x )
2
, if x > 0, σ > 0.

0, otherwise.
(2)

There are many researchers who have suggested that the exponentiated inverse Rayleigh
distribution is a generalized case of the inverse Rayleigh distribution, such as Nadarajah and
Kotz [10] and Srinivasa et al. [11], who studied the estimation of multicomponent stress-strength
reliability from the exponentiated inverse Rayleigh distribution. The cumulative distribution
function (cdf) of the exponentiated inverse Rayleigh distribution is

F(x; α, σ) = 1 − (1 − e−( σ
x )

2
)α, x ≥ 0, α, σ > 0 (3)

and the corresponding probability density function (pdf) is

f (x, α, σ) =

{
2ασ2

x3 e−( σ
x )

2
(1 − e−( σ

x )
2
)α−1, if x ≥ 0, α, σ > 0.

0, otherwise.
(4)

In numerous real-life applications, particularly within industries and reliability studies, prod-
ucts frequently fail under stress. For instance, a wooden beam may fracture when subjected to
sufficient perpendicular force, an electronic component might cease functioning at excessively
high temperatures, or a battery could expire over time. However, the precise threshold of failure
can vary, even among identical items. Therefore, in such experiments, measurements are often
taken sequentially, with only the record values-either the lowest or highest-being observed. These
record values naturally emerge across various domains, including weather tracking, sports ana-
lytics, economic data analysis, and life-test assessments.

Let (Xn, n ≥ 1) be a series of independent and identically distributed (i.i.d.) random variables
with distribution function F(x) and probability function f (x). An observation Xj is called an
upper record value if Xj > Xi for every j > i. Let us suppose X1, X2, ..., Xn be upper record values
and x1, x2, ..., xn be observed values of upper record values. Then the joint density function of
upper record values is given by

fX(x) = f (xn)
n−1

∏
i=1

f (xi)

1 − F(xi)
, x1 < x2 < ..., xn (5)

In recent times, utilizing record values for parameter estimation across various lifetime models has
garnered significant attention among researchers. A multitude of studies have explored employing
the MCMC and TK procedures to derive Bayes estimates in this context, such as Janss and Gerben
[12], Andrieu et al. [13], Solimanet.al[14], Hassan et al. [15], Singh et al. [16], Sana and Faizan [17].

The paper are arrange in following order: In Section 2, the maximum likelihood estimation
and asymptotic confidence intervals is presented. In Section 3, Bayesian estimation and MCMC
algorithm are presented. In section 4, TK approximation is presented. In Section 5, simulation
study is presented . In Section 6, application of real data sets. Finally, the conclusion of this paper
is discussed in section 7.

2. Maximum likelihood estimation

Let us suppose that we have m upper record values XL(1), XL(2), . . . , XL(m) from the exponentiated
inverse Rayleigh distribution with (cd f ) (3) and (pd f ) (4). The maximum likelihood function for
record values is given by Ahsanullah [18]
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f1,2,3,...,m(XL(1), XL(2), XL(3), ..., XL(m)) = f (xL(m))
m−1

∏
i=1

f (xL(i))

1 − F(xL(i))
(6)

The likelihood function based on the upper records observed from the exponentiated inverse
Rayleigh distribution is given by

L(σ, α; x) =
2ασ2

x3
m

e−( σ
xm )2

(1 − e−( σ
xm )2

)α−1
m−1

∏
i=1

2ασ2e−( σ
xi
)2
(1 − e−( σ

xi
)2
)α−1

x3
i (1 − e−( σ

xi
)2
)α

= 2mαmσ2m(1 − e−( σ
xm )2

)α
m

∏
i=1

e−( σ
xi
)2

x3
i (1 − e−( σ

xi
)2
)

= 2mαmσ2meαln(1−e−( σ
xm )2 )

m

∏
i=1

e−( σ
xi
)2

x3
i (1 − e−( σ

xi
)2
)

L(σ, α; x) = 2mαmσ2meαln(1−e−( σ
xm )2 )

m

∏
i=1

e−( σ
xi
)2

x3
i (1 − e−( σ

xi
)2
)

(7)

Now, taking the log on both sides, we get

l = ln L(σ, α; x) = m ln 2 + m ln α + 2m ln σ + α ln
(

1 − e−(
σ

xm )
2
)
−

σ2
m

∑
i=1

(
1
xi

)2
−

m

∑
i=1

ln

(
1 − e−

(
σ
xi

)2
)
+

1
∑m

i=1 ln(xi)3

(8)

Differentiating Eq. (8) with respect to α and σ and equating to zero, we get

∂

∂α
ln L(α, σ; x) =

m
α
+ ln(1 − e−( σ

xm )2
) = 0 (9)

∂

∂σ
ln L(α, σ; x) =

2m
σ

+
2ασe−( σ

xm )2

x2
m(1 − e−( σ

xm )2
)
− 2σ

m

∑
i=1

1
x2

i
−

m

∑
i=1

2σ

x2
i (1 − e−( σ

xi
)2
)
= 0. (10)

Here, equations (9) and (10) are not in exact form, so we cannot obtain the maximum likelihood
estimation easily. So the Newton-Ramphson method is used to find the maximum likelihood
estimation of α̂ and σ̂. To solve these non-linear equations, an R-package is used to find the mle
of α̂ and σ̂.

2.1. Asymptotic confidence intervals

The MLE’s of unknown parameter cannot be obtained in closed from, it is not easy to derive the
exact distribution of the MLE’s. Therefore, we obtain the asymptotic confidence intervalof the
parameter based on observed Fisher information matrix. Let (α̂,σ̂) be the MLE’s of (α,σ). The
observed Fisher information matrix is given by

I(α̂, σ̂) = −
[

∂2l
∂α2

∂2l
∂α∂σ

∂2l
∂σ∂α

∂2l
∂σ2

]
(α̂,σ̂)

where,

∂2l
∂α2 = − m

α2 , ∂2l
∂ασ = ∂2l

∂σα =
e−( σ

xm )2 ·2
(

σ

x2
m

)
(1−e−( σ

xm )2 )2
,
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∂2l
∂σ2 = α

 e−(
σ

xm )
2
(

2
x2

m
−e−(

σ
xm )

2
2σ

x2
m

2σ

x2
m

)

1−e−(
σ

xm )
2 −

e−(
σ

xm )
2

2σ

x2
m

e−(
σ

xm )
2

2σ

x2
m

(1−e−(
σ

xm )
2
)2

− 2 ∑m
i=1

1
x2

i

− ∑m
i=1

 e
−
(

σ
xi

)2(
2

x2
i
−e

−
(

σ
xi

)2
2σ

x2
i

2σ

x2
i

)

1−e
−
(

σ
xi

)2 −
e
−
(

σ
xi

)2
2σ

x2
i

e
−
(

σ
xi

)2
2σ

x2
i

(1−e
−
(

σ
xi

)2

)2


Thus, the observed variance-covariance matrix becomes I−1(α̂, σ̂). To obtain the asymptotic

confidence interval of the unknown parameters the MLE’s estimate follow a bivariate normal
distribution with mean (α, σ) and variance- covariance matrix is I−1(α̂, σ̂). The asymptotic
normality of the MLE’s can be used to compute approximate 100(1 − η)% confidence intervals
for the parameters α and σ, as follows:
α̂ ± zη/2

√
var(α̂) and σ̂ ± zη/2

√
var(σ̂) ; where zη/2 is the upper (η/2) point of standard normal

distribution.

3. Bayes estimation

In this portion, we explore the Bayesian estimation to derive parameter estimates for the
EIRD based on upper record values. In the Bayesian estimation framework, decisions regarding
the prior distribution and the loss function are of the utmost importance. In the existing literature,
various prior distributions have been proposed for the unknown parameters of a particular
distribution of interest. For example,Kizilaslan and Nadar[19] consider the gamma prior for
generalized exponential distribution,Doostparast et al. [20] consider the normal prior, Fan[21]
consider non informative prior, Singh and Tripathi [22] considered the conditional prior for the
lognormal distribution. Hu and Ren[23] considered conditional prior for the Inverse Weibull
distribution. However, Arnold and Press [24] stated that it’s evident that no definitive method
exists to determine the superiority of one prior over another. In the context of the preceding
discussions, we consider non informative prior g1(α) =

1
α and gamma priors of the EIRD such

that

g2(σ|a, b) =
baσa−1e−bσ

Γa
, α, σ > 0; a, b > 0.

Now the joint prior distribution of α and σ is,

g(α, σ) = g1(α)× g2(σ|a, b) =
baσa−1e−bσ

αΓa
. (11)

Here a,b show the hyperparameter, and Γ is the gamma function.

To demonstrate the versatility of our findings and to encompass a wide spectrum of real-world
scenarios, we introduce both symmetric and asymmetric loss functions. The inclusion of a
symmetric loss function is motivated by its equitable penalization of both underestimation and
overestimation, proving advantageous in many instances. However, practical situations often
involve scenarios where positive loss holds greater severity than negative loss, and vice versa.
In such cases, the need for asymmetric loss functions arises. In our study, we encompass one
symmetric option, namely the squared error loss function (SELF).
The mathematical expressions for these loss functions and their corresponding Bayes estimators
are given as:
The square error loss function is defined as

L1(α̂, α) = (α̂ − α)2, α > 0.

where α̂ is the estimate of parameter α.The Bayes estimator under sqare error loss function is
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posterior mean (α̂SEL).
Now, the joint posterior distribution, obtained using equations (7) and (11), is given as

π(α, σ|x) ∝ αm−1σ2m+a−1e−bσeαln(1−e−( σ
xm )2 )

m

∏
i=1

e−( σ
xi
)2

x3
i (1 − e−( σ

xi
)2
)2

(12)

We observe that the joint posterior distribution given in equation (12) cannot be simplified
into a closed form expression. So by making use of some approximation methods, we can
derive explicit expressions for these estimators. To tackle this situation, two widely applicable
approximation methods, i.e., the Tierney-Kadane approximation and the Markov chain Monte
Carlo method, are applied. In the existing literature, Lindley’s method [25] has been extensively
taken into account for such situations. However, this method requires third derivatives of the
log-likelihood function. Instead, we consider another approximation method proposed by Tierney
and Kadane (TK) [26], in which derivatives only up to second order are required to compute the
desired Bayes estimates.

3.1. MCMC Algorithm.

In this specific section, we employ the Markov Chain Monte Carlo (MCMC) methodology to
obtain an estimated Bayesian approximation for the parameters α and σ under the square error
loss function. With the help of posterior densities, the MCMC method can be used to generate a
random sample of unknown quantities.The generated sample is used to obtain the Bayes estimator
for the loss functions. The marginal densities of α and σ are given as

π(α|σ, x) ∝ Gamma
(

m, 1

ln(1−e−( σ
xm )2 )

)
π(σ|α, x) ∝ σ2m+a−1e−bσeαln(1−e−( σ

xm )2 ) ∏m
i=1

e
−( σ

xi
)2

x3
i (1−e

−( σ
xi

)2
)2

The marginal posterior density of α, a closed form of which follows the Gamma distribution,
So,the Gibbs sampling [27] method is used to generate the sample of α. The marginal posterior
density of σ is not an exact form of any distribution, so we used the M-H algorithm to generate a
sample of σ. For more information on the algorithm, methods and steps are given in [28]. This
algorithm combines the Metropolis-Hastings scheme with the Gibbs sampling scheme under the
Gaussian proposal distribution.
The steps in which the M-H approach performs to simulate the posterior sample are as follows:
Step 1: Take some initial guess values for the parameters α and σ be (α0,σ0).
Step 2: Set t=1.
Step 3: Generate σ(t) from π(σ|α(t), a, b) using the M-H algorithm with the proposal that the
distribution is normal distribution.
Step 4: Generate α(t) from π(α|σ(t−1), a, b).
Step 5: Set t=t+1.
Step 6: Repeat steps 2–5 up to N times and obtain the posterior sample (αt,σt) for t=1,2,. . . ,N.
Using the posterior sample, we obtain the Bayesian estimates for the parameters α and σ under
the squared error function, given by,

α̂SELF =
1

N − M

N

∑
t=M+1

αt

σ̂SELF =
1

N − M

N

∑
t=M+1

σt

where M is the burn period of MCMC.
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4. Tierney-Kadane Approximation

The TK approximation method was first proposed by Tierney and Kadane in 1986 [26] as a way
to estimate the posterior expectation that involves the ratio of two integrals. The process of
applying the TK technique is simple and straight-forward. This section deals with the use of TK’s
method to approximate the Bayes estimates. Suppose our objective is to estimate the expression
E(u(α, σ)|x) using the TK method. Then,we first consider the following functions:

I(x) = E[u(α, σ|x)] =
∫ ∞

0

∫ ∞
0 u(α, σ)e[L(α,σ|x)+ρ(α,σ|x)]dαdσ∫ ∞
0

∫ ∞
0 e[L(α,σ|x)+ρ(α,σ|x)]dαdσ

.

where u(α,σ) is a function of α and σ, L(α,σ) can defined in equation (8).
ρ(α, σ) is logarithm of joint prior distribution which is given in equation (11) and defined as :
ρ(α, σ) = ln(g(α, σ)) = aln(b) + (a − 1)ln(σ)− bσ − ln(Γa)− ln(α).

We can approximate the function I(x) into an explicit expression by applying the TK approxi-
mation method. We first consider the following function:

δ(α, σ) =
L(α, σ|x) + ρ(α, σ|x)

n
,

and

δθ
∗(α, σ) = δ(α, σ) +

lnu(α, σ)

n
,

Now, we assume that (α̂δ, σ̂δ) and ( ˆαδ∗ , σ̂δ∗ ) maximize the function δ(α, σ) and δθ
∗(α, σ) ,respec-

tively.
We then approximate I(x) as

I(x) =

√
|Σθ

∗|
|Σ| e[n(δθ

∗( ˆαδ∗ , ˆσδ∗ ))−δ(α̂δ ,σ̂δ)],

Here,|Σθ | and |Σ∗
θ | are the negative Inverse of Hessian matrices of δ(α, σ)and δθ

∗(α, σ)respectively.

|Σ| = [ ∂2δ
∂α2

∂2δ
∂σ2 − ∂2δ

∂α∂σ
∂2δ

∂σ∂α ]
−1 and |Σθ

∗| = [ ∂2δθ
∗

∂α2
∂2δθ

∗

∂σ2 − ∂2δθ
∗

∂α∂σ
∂2δθ

∗

∂σ∂α ]
−1 Now,

The prior information is

ρ(α, σ|x) = alnb + (a − 1)lnσ − bσ − lnΓa − lnα.

The likelihood function is
lnL(σ, α; x) = mln2 + mlnα + 2mlnσ + αln(1 − e−( σ

xm )2
) − σ2 ∑m

i=1(
1
xi
)2 − ∑m

i=1 ln(1 − e−( σ
xi
)2
)+

1
∑m

i=1 ln(xi)3 .

Now,

δ(α, σ) =
L(α, σ|x) + ρ(α, σ|x)

n

= 1
n [mln2+ mlnα + 2mlnσ + αln(1− e−( σ

xm )2
)− σ2 ∑m

i=1(
1
xi
)2 − ∑m

i=1 ln(1− e−( σ
xi
)2
) + 1

∑m
i=1 ln(xi)3 +

alnb + (a − 1)lnσ − bσ − lnΓa − lnα].
It’s important to observe that

∂δ

∂α
=

1
n
[m

α
+ ln(1 − e−( σ

xm )2
)− 1

α

]
and

∂2δ

∂α2 =
1
n
[
− m

α2 +
1
α2

]
,
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∂δ2

δαδσ
=

∂δ2

δσδα
=

2e−( σ
xm ) σ

xm

n(1 − e−( σ
xm )2

)
,

∂δ

∂σ
=

2m
σ

+
2σαe−( σ

xm )2

xm(1 − e−( σ
xm )2

)
− 2σ

m

∑
i=1

1
x2

i
−

m

∑
i=1

2σe−(σ/xi)

xi(1 − e−(σ/xi)2
)
+

(a − 1)
σ

− b.

Further, we use the derived quantities to obtain the Bayes estimators under the square error loss
functions. It is evident that quantities except δ(α, σ) and its derivatives are common in each form
of Bayes estimators. The δ∗θ (α, σ) quantity is given as the square error loss function:

(i) If u(α, σ) = α, then

α̂SEL =

√
|Σ∗

αSEL |
|Σ| e[n(δ

∗
αSEL

( ˆαδ∗ , ˆσδ∗ ))−δ(α̂δ ,σ̂δ)],

In order to compute |Σ∗
αSEL|, we first obtain the following expression:

δ∗αSEL
= δ(α, σ) +

1
n

ln(α)

∂δ∗

∂α
=

∂δ

∂α
+

1
nα

,

∂δ∗

∂α2 =
∂2δ

∂α2 − 1
nα2 ,

∂2δ∗

∂σ2 =
∂2δ

∂σ2 ,

∂2δ∗

∂α∂σ
=

∂2δ

∂α∂σ
.

(ii) If u(α, σ) = σ then

σ̂SEL =

√
|Σ∗

σSEL|
|Σ| e[n(δ

∗
σSEL( ˆαδ∗ , ˆσδ∗ ))−δ(α̂δ ,σ̂δ)],

In order to compute |Σ∗
σSEL

|, we first obtain the following expression.

δ∗σSEL
= δ(α, σ) +

1
n

ln(σ),

∂δ∗

∂α
=

∂δ

∂α
,

∂δ∗

∂α2 =
∂2δ

∂α2 ,

∂2δ∗

∂σ2 =
∂2δ

∂σ2 − 1
nσ2 ,

∂2δ∗

∂α∂σ
=

∂2δ

∂α∂σ
.
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5. Simulation

In this section, we present the simulation result comparing the performance of the MLE’s estima-
tor and Bayes estimator for the parameters of the EIRD using upper record values. We consider
the two sets of parameter values (2, 1) and (1,1) of the EIRD , generate the random sample using
the inverse CDF method, and select the record values (6,7,8,9) from the generated sample for each
parameter value.

The Monte Carlo simulation study compares various estimators using different sample sizes
and true parameter values. Here are the key points summarized from the result:

1: Two sets of parameter values are used as (2,1), (1,1) and two pairs of hyperparameter values
(0.2,0.2),(0.5,0.5).
2: There are four different sample sizes (6,7,8,9) considered in the simulation.
3: There are two methods of estimation: one is the classical method, such as MLE’s, and the other
is the Bayesian estimation (MCMC,TK) method.
4: Here we consider the square error loss function, which is used to compute the Bayes estimate.
5: We generate 10000 posterior samples with a burn period of 2000 sample are used.
6: Confidence interval based on observed Fisher information matrix and Highest Posterior Density
(HPD) credible interval are computed for 95 %.

Table 1: Estimate of MLE’s and MSE (in parenthesis) for α ,σ along with confidence interval when α = 2, σ=1

m α̂MLE σ̂MLE CIα̂ LCIα̂ CIσ̂ LCIσ̂

6 2.3136(7.3692) 0.8780 (0.8532) (0.3515,7.1391) 6.7875 (0.4649,2.4442) 1.9793
7 1.9778 (5.0171) 0.7579 (0.7859) (0.1058,6.0209) 5.9151 (0.4580,2.3812) 1.9232
8 1.8063 (3.4510) 0.7925 (0.7225) (0.3828,5.2598 ) 4.8770 (0.4475,2.3299) 1.8824
9 1.7981 (2.4550) 0.7931(0.6868) (0.5546,4.7534) 4.1988 (0.4396,2.2933) 1.8537

Table 2: Estimate of MLE and MSE (in parenthesis) for α, σ along with confidence interval when α = 1 and σ = 1

m α̂MLE σ̂MLE CIα̂ LCIα̂ CIσ̂ LCIσ̂

6 1.2427(1.9978) 0.9327 (4.3135) (0.0464,3.1658) 3.1194 (0.1935,3.7162) 3.5227
7 0.8527 (1.1597) 0.7835 (4.0323) (0.2089,2.6796) 2.4707 (0.1698,3.6325) 3.4627
8 0.9565 (0.7039) 0.8269 (3.8289) (0.3002,2.3759 ) 2.0757 (0.1467,3.5706) 3.4239
9 0.9590(0.4689) 0.8293(3.6965) (0.3552,2.1821) 1.8269 (0.1303,3.5289) 3.3986

Table 3: MSE’s(in parentheses) of TK and MCMC Bayes estimates of parameter values based on record values for
prior (0.2,0.2) at (1,1).

TK MCMC HPD Interval HPD Interval
m α̂ σ̂ α̂ σ̂ α̂ Length σ̂ Length
6 1.1039(5.6130) 0.7300(1.5430) 1.7841(1.0749) 1.1316(0.1894) (0.5900,3.1165) 2.5265 (0.3773,1.9681) 1.5908
7 0.7510(1.9584) 0.5738(1.4414) 1.1619(0.1904) 0.9902(0.1598) (0.4396,2.9633) 2.5237 (0.2812,1.7995) 1.5183
8 0.8711(0.6620) 0.6420(1.3094) 1.2595(0.2350) 0.9966(0.1554) (0.5422,2.0560) 1.5138 (0.2486,1.7505) 1.5019
9 0.8762(0.3964) 0.6482(1.2667) 1.2064(0.1860) 0.9843(0.1860) (0.4841,1.9342) 1.4501 (0.2622,1.6971) 1.4349
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Table 4: MSE’s(in parentheses) of TK and MCMC Bayes estimates of paramter values based on record values for prior
(0.5,0.5) at (1,1).

TK MCMC HPD Interval HPD Interval
m α̂ σ̂ α̂ σ̂ α̂ Length σ̂ Length
6 1.1430(3.9937) 0.7701(0.8875) 1.7934(1.0677) 1.1166(0.1723) (0.6164,3.0766) 2.4602 (0.3224,1.8573) 1.5349
7 0.7953(1.4146) 0.6489(0.8168) 1.1442(0.1622) 0.9646(0.1494) (0.4872,2.8896) 2.4024 (0.2576,1.7041) 1.4465
8 0.8985(0.5799) 0.6943(0.7549) 1.2675(0.2363) 1.0064(0.1492) (0.5259,2.0663) 1.5404 (0.2751,1.7057) 1.4306
9 0.8984(0.3504) 0.6963(0.7253) 1.2220(0.1992) 1.0021(0.1420) (0.5107,1.9473) 1.4366 (0.2617,1.6775) 1.4158

Table 5: MSE’s(in parentheses) of TK and MCMC Bayes estimates of paramter values based on record values for prior
(0.2,0.2) at (2,1).

TK MCMC HPD Interval HPD Interval
m α̂ σ̂ α̂ σ̂ α̂ Length σ̂ Length
6 2.1127(6.8287) 0.7480(0.4823) 2.5948(0.7996) 1.0486(0.0960) (1.2007,6.6411) 5.4404 (0.4850,1.6617) 1.1767
7 1.9563(4.4619) 0.6261(0.4425) 2.1602(0.6114) 0.8843(0.09384) (0.8237,4.6751) 3.8514 (0.3691,1.4662) 1.0971
8 1.6683(3.0084) 0.6797(0.4030) 2.4131(0.8801) 0.9173(0.0931) (0.8816,4.0792) 3.1976 (0.3311,1.4743) 1.1432
9 1.6834(2.0903) 0.6862(0.3803) 2.2680(0.6123) 0.9261(0.0916) (0.9144,3.7480) 2.8336 (0.3390,1.320) 0.9810

Table 6: MSEs(in parentheses) of TK and MCMC Bayes estimates of paramter values based on record values for prior
(0.5,0.5) at (2,1).

TK MCMC HPD Interval HPD Interval
m α̂ σ̂ α̂ σ̂ α̂ Length σ̂ Length
6 2.1524(6.5179) 0.7685(0.4027) 2.1645(5.1493) 1.0567(0.0959) (0.9770,6.7309) 5.7539 (0.4583,1.6389) 1.1806
7 1.4706(4.2555) 0.6536(0.3725) 2.1839(0.9530) 0.8829(0.0951) (0.8348,3.7032) 2.8684 (0.3062,1.4533) 1.1471
8 1.6937(2.8772) 0.7007(0.3397) 2.1308(0.8968) 0.9114(0.0949) (0.8590,3.0922) 2.2332 (0.3320,1.4685) 1.1365
9 1.7044(1.9899) 0.7054(0.3215) 2.1052(0.8002) 0.9261(0.0674) (0.9150,2.8668) 1.9518 (0.3858,1.4851) 1.0993

From Tables 1, 2, 3, 4, 5 , and 6 the following conclusions are given as:
In cases where the sample size increases, the mean square error of the maximum likelihood
decreases, and the length of the asymptotic confidence interval also decreases in all cases. Bayes
estimates are better than the maximum likelihood function as compared to MSEs. In the case of
Bayesian estimation, MCMC methods are better than T-K approximation methods. The length of
HPD intervals also decreases as the sample size increases.

Therefore, in situations where prior knowledge about parameters is known or where non-
informative priors are being used, we advise utilizing the Bayes estimators. In other circumstances,
ML estimators could be utilized to get an immediate outcome.

6. Application

ALAF Industry, a part of the Safal Group, is a leading producer of steel roofing in Tanzania. The
Safal Group is renowned for its trusted steel roofing brand and operates in 11 countries across
Eastern and Southern Africa. The group has introduced advanced coating technology to Africa,
with four coating mills located in Kenya, Uganda, Tanzania, and South Africa. ALAF Industry, as
one of Safal Group’s coating mills, focuses on enhancing the quality of steel roofing.

One crucial process in improving steel roofing quality is the coating process, where ALAF
Industry utilizes aluminum-zinc galvanization technology. Two datasets were analyzed to demon-
strate the effectiveness of the coating process. The first dataset comprises 72 observations on
coating weight using chemical methods on the top center side (Tcs), while the second dataset
consists of 72 observations on coating weight using chemical methods on the bottom center side
(Bcs), the two Data sets are given as:
Data set1(Tcs):36.8 47.2 35.6 36.7 55.8 58.7 42.3 37.8 55.4 45.2 31.8 48.3 45.3 48.5 52.8 45.4 49.8 48.2
54.5 50.1 48.4 44.2 41.2 47.2 39.1 40.7 40.3 41.2 30.4 42.8 38.9 34.0 33.2 56.8 52.6 40.5 40.6 45.8 58.9
28.7 37.3 36.8 40.2 58.2 59.2 42.8 46.3 61.2 58.4 38.5 34.2 41.3 42.6 43.1 42.3 54.2 44.9 42.8 47.1 38.9
42.8 29.4 32.7 40.1 33.2 31.6 36.2 33.6 32.9 34.5 33.7 39.9.
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Data Set2(Bcs):45.5 37.5 44.3 43.6 47.1 52.9 53.6 42.9 40.6 34.1 42.6 38.9 35.2 40.8 41.8 49.3 38.2 48.2
44.0 30.4 62.3 39.5 39.6 32.8 48.1 56.0 47.9 39.6 44.0 30.9 36.6 40.2 50.3 34.3 54.6 52.7 44.2 38.9 31.5
39.6 43.9 41.8 42.8 33.8 40.2 41.8 39.6 24.8 28.9 54.1 44.1 52.7 51.5 54.2 53.1 43.9 40.8 55.9 57.2 58.9
40.8 44.7 52.4 43.8 44.2 40.7 44.0 46.3 41.9 43.6 44.9 53.6
To check whether the data set follows the EIRD, the K-S test, emperical cdf, and P-P plot are
applied to the test. Data set I supports the EIRD for alpha and beta, with a K-S distance of 0.0523
and p values of 0.8325. Similarly, data set II also supports the EIRD determination with a K-S
distance of 0.0731 and p-value of 0.7602. Furthermore, the empirical and theoretical CDFs, as
well as the P-P plot (probability-probability plot) displayed in Figure 1, confirm that the EIRD
provides a good fit for both the data sets.
Overall, based on the statistical analysis and visual inspection of the data, it can be concluded
that the EIRD is suitable for analyzing the both the Data sets. Now the upper record values
generated from the data sets I and II are (36.8,47.2,55.8,58.7,58.9,59.2,61.2) and (45.5,52.9,53.6,62.3),
respectively.
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Figure 1. The emperical and theoratical CDF plot and P-P plot for the real data set.
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The article describes obtaining maximum likelihood (ML) estimates and Bayesian estimates
using a square error loss function, following the procedure outlined earlier. The results are
presented in Table 7. Additionally, trace plots and posterior density plots for the parameters α
and σ are depicted in Figures 2 .
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Figure 2. The iteration plot and posterior sample plot of Data set I and Data set II.

Table 7: MLE’s, MCMC and TK approximation methods to estimates of parameters for real data set.

MLE MCMC TK
Data α̂ σ̂ α̂ σ̂ α̂ σ̂

Data set I 64.5901 92.3745 52.8539 81.9270 58.3177, 83.6670
Data set II 42.7885 97.2838 49.3734 84.84805 52.4409 93.4215

From these Figure 2, it’s concluded that the Markov Chain Monte Carlo (MCMC) samples
exhibit good mixing, indicating effective exploration of the parameter space. Moreover, the
skewed posterior density suggests a preference for higher parameter values. This observation
supports the conclusion that the MCMC chain is stationary, meaning that it has reached a stable
distribution.

7. Conclusions

In this study, we have examined the EIRD in a situation where the data are available as upper
record values. We follow on the task of estimating the unknown parameter of the EIRD distribu-
tion and obtain the maximum likelihood estimators and corresponding confidence intervals for
the distribution parameters. In the simulation study, we noticed that the behaviour of estimations
in terms of mean square error improved with an increase in the sample size of record values.
Additionally, the true value and estimate values are contained in the asymptotic confidence
interval. Next, we discussed the problems of computing Bayes estimates under the square error
loss function using the TK and MCMC methods in Bayesian estimation. We discovered that the
MCMC approach performs better than TK in our simulation study. Still, HPD interval estimates
were computed with the help of the MCMC approach.We have used real data sets to demonstrate
each of the suggested estimation techniques.
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