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Abstract

This paper analyzes an unreliable multi-server queueing system incorporating working vacations,
Bernoulli interruptions, breakdowns with a threshold recovery policy, balking, abandonment, and
retention. During the break period, if there are customers in the queue, the servers may either resume
normal service or continue their vacation. Customers arriving while the system is saturated are rejected.
Failures occur unexpectedly but only when at least one customer is present in the system. Recovery
procedures remain in effect until the total number of customers surpasses a predefined threshold. Using
matrix-analytic methods, we derive steady-state solutions and explicit formulas for various performance
indicators. Further, we explore cost parameter optimization.

Keywords: unreliable queueing systems, threshold-based recovery policy, working vacation,
impatience

1. Introduction

With growth of communication systems and networks, manufacturing systems, transportation
systems, etc, queueing systems with breakdowns have received growing significance [14, 17, 18].

Queueing models incorporating threshold policies, specifically the N-policy and F-policy,
have garnered significant attention in recent years. The former policy dictates that a server
activates only when N (where N ≥ 1) or more customers accumulate in the system [11, 19, 5, 25].
Conversely, the latter policy restricts customer entry into the system once it reaches its capacity.
When the queue length decreases to a threshold parameter value F, the server then permits
customers to enter [9, 4, 12].

The literature on N and F policies is extensive. However, research on queueing models with
breakdowns, repairs, and a threshold-based recovery policy, where the server remains unrepaired
until the number of customers in the system reaches a predetermined threshold value, is limited.
Notable works include [22, 10, 15].
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Vacation queueing models have attracted substantial interest from researchers over the past
decades, owing to their ubiquitous applications across diverse fields. These applications span
production/manufacturing systems, telecommunication systems and computer networks. Notably,
comprehensive surveys on this subject have been conducted by [6, 7, 20, 21].

The concept of working vacations was introduced by [16], proposing a model where the server
processes jobs with varying intensities based on the incoming traffic. The primary objective is
twofold: better control of queue lengths and reduction of customer loss. Additionally, working
vacations enable servers to be strategically redirected for maintenance purposes. As a result,
these models have gained significant popularity, leading to a wealth of analytical results in the
literature, such as [26, 8, 24, 23].

In recent times, queueing systems that account for customer impatience have garnered
significant attention. These models find realistic applications in various service systems and
e-commerce domains. For a comprehensive overview of the literature on this theme, readers can
refer to studies by [13, 2, 3, 1].

In this paper, we delve into the analysis of a multi-server Markovian queue that integrates
several crucial practical features including breakdowns, threshold-based recovery policy, work-
ing vacations, Bernoulli interruption schedule, impatient customers, and retention of reneged
customers. The contributions and advantages of this paper are as follows:

1. The model. Unlike existing literature that predominantly focuses on single-server queueing
models, our study embraces a multi-server queue. By incorporating the diverse features
mentioned above, our proposed model offers greater flexibility in characterizing complex
stochastic phenomena within multi-server machining systems.

2. Methodology and results. Leveraging the Q-matrix method, we provide a detailed theoretical
analysis. We derive steady-state probabilities and various performance measures. Our
chosen method is well-suited for analyzing quasi-birth-and-death (QBD) processes in
steady-state.

3. Numerical illustrations. We develop a cost function to optimize service rates during both
working vacation and normal busy periods. Additionally, we determine the optimal number
of servers and explore threshold-based recovery policies. These insights empower system
managers and decision-makers to regulate the system economically.

The manuscript is structured concisely in the following manner: Section 2 presents the main
motivation and practical applications of the current research work. Section 3 briefly describes
the model under consideration. Section 4 comprises the analysis of the model in the stationary
state. Section 5 enlists important performance measures. Section 6 develops a cost model for the
proposed system and introduces cost optimization methods, namely, the direct search method
and the quasi-Newton method. Section 7 deals with a cost optimization problem and provides
numerical examples to illustrate the effects of different system parameters on performance
measures, total expected cost, and total expected profit. Section 8 presents the conclusions of the
study.

2. Main motivation and practical application

The motivating context for our model is analysis of automated teller machine (ATM) manufac-
turing systems. Such facilities commonly face machine failures and repairs, congestion issues,
operator unavailability, impatient customers, and more that can significantly hamper production
efficiency.

Specifically, we consider a production system with c parallel machines and finite finished
goods capacity. Upon arrival of failed parts/subassemblies for repair, they immediately occupy
any available operator. Otherwise failed units wait in queue for a random duration. Once all
repairs are completed, operators take group vacations, relying on substitutes with slower service
rates, and may have their breaks interrupted if failures resume.
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Moreover, operators undergo their own failures following a breakdown process. Repairs only
initiate after M failed machines have accumulated via a threshold policy. Newly arriving failures
may balk from the repair queue or later renege after prolonged waits.

All such issues–breakdowns, vacations, congestion, balking and reneging–are commonly
faced by real ATM manufacturers. By mathematically capturing these dynamics in a closed-form
queueing model, we aim to evaluate the complex tradeoffs between maintainability, throughput,
and customer impatience. The model can help optimize the number of machines, the threshold-
based recovery policy, and service rates, to control costs in ATM production systems through
resilience to inevitable disruptions.

3. Model description

Consider an Automated Manufacturing System modeled as an unreliable M/M/c/L queue-
ing system. The model formulation necessitates several distinct assumptions, which can be
summarized as follows:

(i) Arrival process: Customers arrive following Poisson process with parameter α.

(ii) Service and working vacation processes:

(a) Upon arrival, customers are served if any servers are available.

(b) After serving all existing customers, servers synchronously switch to a vacation period.

(c) Upon returning from vacation, if the system remains empty, servers immediately begin
another synchronous vacation.

(d) The vacation duration follows an exponential distribution with parameter τ.

(e) During vacation, substitute servers take over from the main servers to serve new
customers.

(f) Service times during regular busy periods (RBP) and vacations follow exponential
distributions with parameters µ and ν, respectively. We assume that ν < µ.

(g) If a customer arrives and finds any of the c servers free (during busy or working
vacation), they immediately occupy that server. If all servers are busy, the customer
joins the end of the queue in the buffer and is served later according to the First-Come-
First-Served (FCFS) discipline.

(iii) Bernoulli interruption scheme:

(a) During the working vacation period (WVP), the server operates under the Bernoulli
rule. Specifically, at the instant of service completion during this period, if there are
customers in the system:

• With probability β, the server interrupts the vacation and switches to the regular
working period.

• With probability β′ = 1 − β, the server continues the vacation.

(b) Notably, the service during WVP is applied only to the first customer who arrives
during this period.

Then, we can write
δn = nβν12≤n≤c−1 + cβν1c≤L.

(iv) Breakdown process: The system is susceptible to unreliability at any given time. During
regular busy periods, servers are vulnerable to breakdowns. Specifically, a server break
down only if there is at least one customer in the system. The occurrence of breakdowns
follows a stationary Poisson process with parameter φ. Importantly, during repair periods
(RP), customers cannot be served.
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(v) The threshold-based recovery policy and repair process: The recovery can be performed
when M (1 ≤ M ≤ c − 1) or more customers are present. The repair period has exponential
distribution with parameter γ. Customers arriving during the repair time are ignored by
the system.

(vi) Balking: When a customer arrives, their actions depend on server availability:

• - If some servers are working and others are free, the customer is directly served.
• - Otherwise, during working vacation, regular busy, or repair periods:

(a) The customer may join the queue with probability θn.
(b) Customers faced with joining a queue have an alternative: they may balk, choosing

not to enter. The balking probability is denoted as: θ′n = 1 − θn, where in the case
of working vacation/regular busy period, we have : 0 ≤ θn+1 ≤ θn ≤ 1. Consider
the following scenarios:

i. For working vacation/regular busy period case, we have:
– 0 ≤ θn+1 ≤ θn ≤ 1 for c ≤ n ≤ L − 1;
– θ0 = 1, . . . , θc−1 = 1.

ii. For repair period, we observe:
– 0 ≤ θn+1 ≤ θn ≤ 1 for 1 ≤ n ≤ L − 1.
– θ0 = 1 (no balking when the system is empty).

iii. In both cases, we have: θL = 0 (no entering when the system is at full capacity).

Shortly, we have for working vacation and regular normal busy:

αn = α1n<c + θnα1c≤n≤L,

and for breakdown period: αn = θnα, 1 ≤ n ≤ L.

(vii) Reneging and retention:

(a) Upon arrival, customers exhibit different behaviors based on the server status:
- If servers are in regular working mode or working vacation period:

– The customer activates an impatience timer T1 (for regular working) or T0 (for
working vacation). If the customer’s service is not completed before the timer
expires, they may abandon the system.

- During the reparation period:
– A new arrival activates its own timer T2. If service is unavailable before the

expiration of the impatience timer, the customer may give up.
(b) The impatience time Tj follows an exponentially distributed random variable with

rates ς j > 0 (where j = 0, 1, 2).
(c) Impatient customers have two options:

• They may quit the system without receiving service with probability κ.
• Alternatively, they may be kept in the system with probability κ′ = 1 − κ.

Then, we can put:
ϵn,j = nκς01j=0 + nκς11j=1 + nκς21j=2,

υn = (nµ + ϵn,1)11≤n≤c−1 + (cµ + ϵn,1)1c≤n≤L

and
ζn = (ν + ϵ1,0)1n=1 + (nβ′ν + ϵn,0)12≤n≤c−1 + (cβ′ν + ϵn,0)1c≤n≤L.

The customers timers are independent and identically distributed (i.i.d.) random variables
and independent of the number of customers currently waiting.

(viii) The various stochastic processes within the system are assumed to be mutually independent.
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4. Equilibrium probability analysis

We employ the Markov process approach, utilizing the Q-matrix, to establish the steady-state
distribution for our proposed queueing model. Our primary focus lies in deriving the steady-state
probabilities of the system, specifically as a function of the probability π1,1, rather than relying on
π0,j or πL,j for j = 0, 1, 2.

The system under consideration can be modeled as a continuous-time Markov process,
denoted by {X(t),Y(t); t ≥ 0}, where X(t) represents the number of customers present in the
system at time t, and Y(t) characterizes the operational state of the servers at time t. The possible
states for Y(t) are as follows:

Y(t) =


0, Servers are in a WVP
1, Servers are in a RBP
2, Servers are in a RP

Let πn,j denote the steady-state probability that the system has n customers and the servers are in
state j, such that: πn,j = lim

t→∞
P{X(t) = n,Y(t) = j}, where

(n, j) ∈ {{(n, 0) : n = 0, 1, ..., L} ∪ {(n, 1) : n = 1, 2, ..., L} ∪ {(n, 2) : n = 1, 2, ..., L}}.The state tran-
sition rate diagram is depicted in Figure 1.
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Figure 1: State transition diagram for the proposed model
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4.1. Governing equations

The steady-state balance equations that govern our system are expressed as follows:

απ0,0 = (µ + κς1)π1,1 + (ν + κς0)π1,0, n = 0,

(α + n(ν + κς0) + τ)πn,0 = απn−1,0 + (n + 1)(β′ν + κς0)πn+1,0,

1 ≤ n ≤ c − 1,

(αθn + cν + nκς0 + τ)πn,0 = απn−1,0 + (cβ′ν + (n + 1)κς0)πn+1,0,

n = c,

(αθn + cν + nκς0 + τ)πn,0 = αθn−1πn−1,0 + (cβ′ν + (n + 1)κς0)πn+1,0,

c + 1 ≤ n ≤ L − 1,

(τ + cν + Lκς0)πL,0 = αθL−1πn−1,0, n = L,

(α + µ + κς1 + φ)π1,1 = τπ1,0 + 2βνπ2,0 + 2(µ + κς1)π2,1, n = 1,

(α + n(µ + κς1) + φ)πn,1 = απn−1,1 + (n + 1)βνπn+1,0 + (n + 1)(µ + κς1)πn+1,1

+τπn,0, 2 ≤ n ≤ M − 1,

(α + n(µ + κς1) + φ)πn,1 = απn−1,1 + (n + 1)βνπn+1,0 + (n + 1)(µ + κς1)πn+1,1

+τπn,0 + γπn,2, M ≤ n ≤ c − 1,

(θnα + n(µ + κς1) + φ)πn,1 = απn−1,1 + cβνπn+1,0 + (cµ + (n + 1)κς1)πn+1,1

+τπn,0 + γπn,2, n = c,

(αθn + n(µ + κς1) + φ)πn,1 = αθn−1πn−1,1 + cβνπn+1,0 + (cµ + (n + 1)κς1)πn+1,1

+τπn,0 + γπn,2, c + 1 ≤ n ≤ L − 1,

(cµ + Lκς1 + φ)πL,1 = αθL−1πL−1,1 + τπL,0 + γπL,2, n = L,

θ1απ1,2 = φπ1,1 + 2κς2π2,2, n = 1,

(αθn + nκς2)πn,2 = αθn−1πn−1,2 + (n + 1)κς2πn+1,2 + φπn,1,

2 ≤ n ≤ M − 1,

(αθn + nκς2 + γ)πn,2 = αθn−1πn−1,2 + (n + 1)κς2πn+1,2 + φπn,1,

M ≤ n ≤ L − 1,

(Lκς2 + γ)πL,2 = αθL−1πL−1,2 + φπL,1, n = L.

The normalizing condition is expressed as:

L

∑
n=0

πn,0 +
L

∑
n=1

πn,1 +
L

∑
n=1

πn,2 = 1. (1)

Let’s introduce the necessary notations for the subsequent sections of the paper:

ζ̇n =

{
nν + ϵn,0, 1 ≤ n ≤ c − 1,
cν + ϵn,0, c ≤ n ≤ L,

ϱn =


−(α + υn + φ), 1 ≤ n ≤ c − 1,
−(αc + υn + φ), n = c,
−(αn + υn + φ), c + 1 ≤ n ≤ L − 1,
−(υL + φ), n = L,

ϑn =


−(α + ζ̇n + τ), 1 ≤ n ≤ c − 1,
−(αc + ζ̇n + τ), n = c,
−(αn + ζ̇n + τ), c + 1 ≤ n ≤ L − 1,
−(ζ̇L + τ), n = L,
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σn =


−α1, n = 1,
−(αn + ϵn,2), 2 ≤ n ≤ M − 1,
−(αn + ϵn,2 + γ), M ≤ n ≤ L − 1,
−(ϵL,2 + γ), n = L.

4.2. Matrix solution

To obtain the steady-state solution, let the steady-state probability vector of the infinitesimal gen-
erator Q be denoted as P = (π0, π1, π2), where π0 = (π0,0, π1,0, ..., πL,0), π1 = (π1,1, π2,1, ..., πL,1),
and π2 = (π1,2, π2,2, ..., πL,2). The steady-state equations PQ = 0 must be satisfied by P along
with the normalization condition Pe = 1, where 0 is a zero row vector, and e = (e0, e1, e2) is a
(3L + 1) column vector of ones, with e0 being an (L + 1) column vector and e1 and e2 being L
column vectors. The block structure of the infinitesimal generator Q is as follows:

Q =

 A1 A2 A3
E1 E2 E3
D1 D2 D3

 ,

where

A1 =



−α α
ζ1 ϑ1 α

ζ2 ϑ2 α
. . . . . . . . .

ζc−1 ϑc−1 α
ζc ϑc αc

. . . . . . . . .
ζL−1 ϑL−1 αL−1

0 ζL ϑL


,

A2 =


0 0 ... ... 0
τ 0 ... ... 0
0 τ ... ... 0
...

...
...

0 0 ... ... τ

 ,

E2 =



ϱ1 α
υ2 ϱ2 α

υ3 ϱ3 α
. . . . . . . . .

υc−1 ϱc−1 α
υc ϱc αc

. . . . . . . . .
υL−1 ϱL−1 αL−1

0 υL ϱL


,

D3 =



σ1 α1
ϵ2,2 σ2 α2

ϵ3,2 σ3 α3
. . . . . . . . .

ϵL−1,2 σL−1 αL−1
0 ϵL,2 σL


,
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E1 =


υ1

0
. . .

0

 , E3 =

φ
. . .

φ

 , and D2 =



0
. . .

0
γ

. . .
γ


.

Note that A1 and A2 are matrices of dimensions (L + 1)× (L + 1) and (L + 1)× L, respectively.
A3 is a zero matrix with dimensions (L + 1)× L. E1 is an L × (L + 1) matrix. E2, E3, D2, and D3
are square matrices of order L × L. Additionally, D1 is a zero matrix with dimensions L × (L + 1).

4.3. System state probabilities

We present the steady state equations PQ = 0 and the normalization condition Pe = 1, as
π0A1 + π1E1 + π2D1 = 0,
π0A2 + π1E2 + π2D2 = 0,
π0A3 + π1E3 + π2D3 = 0,
π0e1 + π1e2 + π2e3 = 1.

(2)

As A3 and D1 are null matrices, then Equation (2) can be rewritten as

π0A1 + π1E1 = 0, (3)

π0A2 + π1E2 + π2D2 = 0, (4)

π1E3 + π2D3 = 0, (5)

π0e1 + π1e2 + π2e3 = 1. (6)

Next, put A2 =

(
O1
τ IL

)
, E1 =

(
υ1 O1
O2 O3

)
, E3 = (φIn) , D2 =

(
O4
Ȯ4 γIL−M+1

)
,

with IL denotes the identity matrix. Further, O1 is a 1 × L matrix. O2 and O3 are both of
order (L − 1)× 1 and (L − 1)× L, respectively. O4 has dimensions (M − 1)× L. Ȯ4 is of order
(L − M + 1)× (M − 1). IL−M+1 represents the identity matrix of order L − M + 1.

Let A1−1 and D3−1 denote the inverse matrices of A1 and D3, respectively. By referring to
Eq. (3), we obtain the following result:

π0 = −π1E1A−1
1

= −π1

(
υ1o
O5

)
= −π1,1υ1o,

(7)

where o = (o0, õ), such that õ = (o1, ..., oL) be an L row vector of the matrix A−1
1 , and O5 is

(L − 1)× (L + 1). From Eq. (5), we have

π2 = −π1E3D−1
3 = −π1 φD−1

3 . (8)

Substituting Eqs. (7) and (8) into Eq. (4), obtain

−π1,1υ1õτ + π1(E2 − φD−1
3 D2) = 0. (9)

As E2 and D−1
3 are both square matrices of order L, we can affirm the existence of the matrix:

Ẽ = (E2 − φD−1
3 D2)

−1.

Thus
π1 = (υ1õτẼ)π1,1. (10)

RT&A, No 1 (82) 
Volume 20, March 2025 

988



Hayat Ramdani, Amina Angelika Bouchentouf and Lahcene Yahiaoui
MULTI-SERVER REPAIR SYSTEM.....

Consequently, we can deduce easily

π2 = −(υ1õτẼφD−1
3 )π1,1. (11)

Then, using Eqs. (7)–(11), we get:

πn,0 = −υ1onπ1,1,

πn,1 = (υ1τ
L

∑
i=1

oi+1ψ̃in)π1,1,

πn,2 = −
(

υ1τφ
L

∑
j=1

L

∑
i=1

oi+1ψ̃ijω̃jn

)
π1,1,

where ω̃ij are the elements of matrix D̃ = D−1
3 , and ψ̃ij are the elements of the matrix Ẽ =

(E2 − φD−1
3 D2)

−1. Finally, to determine π1,1, we apply the normalizing condition (as described
in Equation (1)):

π1,1 =

(
−υ1

L

∑
n=0

on + υ1τ
L

∑
n=1

L

∑
i=1

oi+1ψ̃in − υ1τφ
L

∑
n=1

L

∑
j=1

L

∑
i=1

oi+1ψ̃ijω̃jn

)−1

.

5. Performance measures

In this section, we delve into the derivation of crucial system indices, leveraging the probabilities
associated with the system distribution.

Result 1: The servers are in busy period with probability

Pbusy =
L

∑
n=1

πn,1 = υ1τ
L

∑
n=1

L

∑
i=1

oi+1ψ̃inπ1,1. (12)

Result 2: The servers are in working vacation period with probability

Pwv =
L

∑
n=1

πn,0 = −
(

υ1

L

∑
n=0

on

)
π1,1. (13)

Result 3: The servers are in breakdown period with probability

Pbp =
L

∑
n=1

πn,2 = −υ1τφ

(
L

∑
n=1

L

∑
j=1

L

∑
i=1

oi+1ψ̃ijω̃jn

)
π1,1. (14)

Result 3: The probability of system reliability

Pre = 1 − πpb.

Result 4: The mean system size is

Es =
L

∑
n=1

n(πn,0 + πn,1 + πn,2) (15)

= υ1

(
−

L

∑
n=1

non + τ
L

∑
n=1

L

∑
i=1

noi+1ψ̃in − τφ
L

∑
n=1

L

∑
j=1

L

∑
i=1

noi+1ψ̃ijω̃jn

)
π1,1.

Result 5: The effective arrival rate

α′ = απ0,0 +
L

∑
n=1

αnπn,0 +
L

∑
n=1

αnπn,1 +
L

∑
n=1

αnπn,2.
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Result 6: The mean waiting time of customers in the system

Ws = Es/α
′
.

Result 7: The average balking rate

Rbalk = α − α
′
. (16)

Result 8: The average reneging rate

Rren = κς0

L

∑
n=1

nπn,0 + κς1

L

∑
n=1

nπn,1 + κς2

L

∑
n=2

nπn,2 (17)

= υ1κ

(
−ς0

L

∑
n=1

non + τς1

L

∑
n=1

L

∑
i=1

noi+1ψ̃in − τφς2

L

∑
n=2

L

∑
j=1

L

∑
i=1

noi+1ψ̃ijω̃jn

)
π1,1.

Result 9: The average retention rate

Rret = κ
′
ς0

L

∑
n=1

nπn,0 + κ
′
ς1

L

∑
n=1

nπn,1 + κ
′
ς2

L

∑
n=2

nπn,2 (18)

= υ1κ
′
(
−ς0

L

∑
n=1

non + τς1

L

∑
n=1

L

∑
i=1

noi+1ψ̃in − τφς2

L

∑
n=2

L

∑
j=1

L

∑
i=1

noi+1ψ̃ijω̃jn

)
π1,1.

Result 10: The mean number of customers served per unit time

Cs = ν
L

∑
n=1

nπn,0 + µ
L

∑
n=1

nπn,1.

6. Cost model and optimization

For our queueing model, we consider he cost components as outlined below:

1. Cbusy: unit time cost for system being in busy period.

2. Cwv: unit time cost for system being is in working vacation.

3. Cbreak: unit time cost for system being in breakdown period.

4. Csq: Holding unit time cost when a customer enters the queue.

5. Cs1 : Cost per service per unit time in regular working period.

6. Cs2 : Cost per service per unit time in working vacation period.

7. Cl : unit time cost when a customer is lost.

8. Ct: unit time cost when the system retains a customer.

9. C f : Fixed purchase cost of the server per unit.

The formulation of the cost per unit time function for the queueing system is as follows:

Tc = CbusyPbusy + CwvPwv + CbreakPpb + CsqEs + Cl(Rren + Rbalk) (19)

+CtRret + c(µCs1 + νCs2) + cC f .

Expressing the expected cost function Tc explicitly by substituting Equations (12)-(18) into
(19) would result in an extremely complex formulation. Consequently, studying the analytical
behavior of Tc becomes a big challenge. Furthermore, due to the nonlinearity and intricacy of the
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expected cost function, deriving the optimal solution (c∗, M∗, µ∗, ν∗) in closed form would be an
arduous task.

To circumvent these difficulties and perform the optimization analysis, we employ direct
search and Newton’s methods as numerical optimization techniques to search for the optimal
solution (c∗, M∗, µ∗, ν∗). Initially, the direct search method is utilized to determine the optimal
values of the variables (c∗, M∗). Subsequently, with these variables fixed, Newton’s method is
applied to find the optimal values of the variables (µ∗, ν∗).

6.1. Numerical cost optimum parameter

We consider a practical problem concerning the automated teller machine (ATM) production
facility mentioned in Section 2. In the context of the considered practical example, the system
parameters are delineated as follows: failed machines arrive according to a Poisson process
with α = 7. The system capacity is considered finite with L = 20. If the system is in operation,
the failure occurs in which the breakdown times are exponential distribution with φ = 0.1.
The service and repair times of the machines obey exponential distributions with parameters
µ = 3.0, ν = 0.9, and γ = 0.3, respectively. Once the system gets empty, it goes on vacation
period, the vacation period follows exceptional distribution with parameter τ = 0.4. The failed
machines during both period may get impatient and leave the system with being served. The
impatience timers follow exponential distribution with ς0 = 0.5, ς1 = 0.3, ς2 = 0.9. Further,
during working vacation period, the failed machines service may be continue their service during
working vacation period with probability β′ = 0.6, and they can leave the system with probability
κ = 0.7. The joining probability is taken as θn = 1 − n

L .
An efficient algorithm based on the direct search method is employed to determine the

optimal discrete values (c∗, M∗) that optimize the expected cost function. The effectiveness
of this approach hinges on the convexity (or unimodality) of the cost function. Throughout
the numerical analysis, the following cost elements are considered: Cbusy = $20, Cwv = $20,
Cbp = $50, Csq = $10, Cs1 = $5, Cs2 = $5, Cl = $30, Ct = $25, C f = $1 and R = 50.

Figure 2 illustrates the behavior of the expected cost function Tc(c∗, M∗) for varying values of
c and M. The plotted curve exhibits a convex shape, indicating the existence of a single relative
minimum. Consulting Table 1, it is evident that the minimum expected cost per unit time, which
amounts to 182.5710, is attained when c∗ = 6 and M∗ = 1.
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Figure 2: The expected cost Tc for different values of c and M.
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Table 1: c and M vs. Tc(c, M)

c / M 1 2 3 4 5 6 7 8

2 271.9823 - - - - - - -
3 216.2269 216.2388 - - - - - -
4 193.3445 193.3762 193.3707 - - - - -
5 184.5919 184.6346 184.6462 184.7100 - - - -
6 182.5710 182.6202 182.6410 182.7123 182.8470 - - -
7 183.9711 184.0241 184.0501 184.1262 184.2599 184.4512 - -
8 187.1491 187.2043 187.2331 187.3123 187.4466 187.6304 187.8610 -
9 191.2406 191.2970 191.3274 191.4083 191.5437 191.7250 191.9432 192.1971

Once the optimal values (c∗, M∗) are determined, Newton’s method is employed to locate
the minimum value of Tc(c∗, M∗, µ∗, ν∗) by iteratively optimizing the continuous variables µ and
ν. Newton’s method is an efficient iterative technique for finding the optimum of a nonlinear
function by computing the search direction at each iteration.

The Quasi-Newton method, a variant of Newton’s method, is utilized to numerically determine
µ∗ and ν∗. Numerical results obtained through this optimization process are presented in Tables
2-7 for various system parameter settings.

Table 2: Tc(M∗, c∗, µ∗, ν∗) and (M∗, c∗, µ∗, ν∗) while adjusting τ and α (ς0 = 0.5, ς1 = 0.3, ς2 = 0.9,
L = 20, κ = 0.7, β′ = 0.6, φ = 0.1, γ = 0.3)

( τ , α ) (2,5) (2,8) (2.5,5) (2.5,8) (3.0,5) (3.0,8)

(M∗ ,c∗) (1,2) (4,7) (1,2) (4,7) (1,2) (4,7)
µ∗ 3.3953 1.4294 3.5066 1.4697 3.5893 1.4991
ν∗ 1.7352 0.4679 1.3760 0.3242 1.0157 0.1853
Tc(M∗, c∗, µ∗, ν∗) 125.1117 182.8660 124.4980 180.6144 123.3919 177.7679

Table 3: Tc(M∗, c∗, µ∗, ν∗) and (M∗, c∗, µ∗, ν∗) while adjusting β′ (ς0 = 0.5, ς1 = 0.3, ς2 = 0.9 ,L = 20 ,
κ = 0.7, α = 7, φ = 0.1, τ = 0.4, γ = 0.3)

β′ 0.75 0.8 0.85 0.9 0.95

(M∗ , c∗) (3,4) (4,5) (4,6) (5,7) (6,8)
µ∗ 1.6362 1.3007 1.0810 0.9233 0.8065
ν∗ 1.5967 1.2149 0.9672 0.7970 0.6748
Tc(M∗, c∗, µ∗, ν∗) 147.4804 150.3079 153.4443 156.8410 160.5053

Table 4: Tc(M∗, c∗, µ∗, ν∗) and (M∗, c∗, µ∗, ν∗) while adjusting L and κ (ς0 = 0.5, ς1 = 0.3, ς2 = 0.9,
α = 7, τ = 0.4 , β′ = 0.6, φ = 0.1 γ = 0.3)

(L,κ) (10,0.6) (40,0.6) (10,0.7) ((40,0.7) (10,0.9) (40,0.9)

(c∗ ,M∗) (7,1) (7,4) (7,1) (7,4) (7,1) (7,4)
µ∗ 0.9190 1.0397 0.8876 0.9821 0.8333 0.8757
ν∗ 0.9180 0.8733 0.8866 0.8594 0.8323 0.8333
Tc(M∗, c∗, µ∗, ν∗) 167.7709 167.6681 165.5115 165.0619 161.7871 160.6461
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Table 5: Tc(M∗, c∗, µ∗, ν∗) and (M∗, c∗, µ∗, ν∗) while adjusting φ and γ (ς0 = 0.5, ς1 = 0.3, ς2 = 0.9,
κ = 0.7,β′ = 0.6, τ = 0.4, α = 7 ,L = 20)

(φ , γ) (0.4 1) (0.4 5) (0.6 1) (0.6 5) (0.8 1) (0.8 5)

(7,3)
µ∗ 0.9571 0.9275 0.9299 0.8955 0.9691 0.9342
ν∗ 0.8955 0.8907 0.9178 0.8945 0.9075 0.9030
Tc(M∗, c∗, µ∗, ν∗) 170.3847 162.9654 172.9348 163.4767 177.8815 165.2887

Table 6: Tc(M∗, c∗, µ∗, ν∗) and (M∗, c∗, µ∗, ν∗) while adjusting ς0 , ς1 and ς2 = 1.9 (κ = 0.7,L = 20 ,
α = 7, τ = 0.4,φ = 0.1, β′ = 0.6,γ = 0.3)

(ς1 ς0) (0.2,0.6) (0.4,0.6) (0.2,0.8) (0.4,0.8) (0.2,1.0) (0.4,1.0)

(c∗ ,M∗) (8,2) (8,4) (8,2) (8,3) (8,5) (8,7)
µ∗ 0.8287 0.7616 0.8079 0.7640 0.8041 0.7644
ν∗ 0.7697 0.7606 0.8056 0.7630 0.8031 0.7634
Tc(M∗, c∗, µ∗, ν∗) 171.4859 172.4115 179.1606 180.3308 186.5172 188.2080

Table 7: Tc(M∗, c∗, µ∗, ν∗) and (M∗, c∗, µ∗, ν∗) while adjusting ς0 , ς1 and ς2 = 3.1 (κ = 0.7,L = 20 ,
α = 7, τ = 0.4,φ = 0.1, β′ = 0.6,γ = 0.3)

(ς1 ς0) (0.2,0.6) (0.4,0.6) (0.2,0.8) (0.4,0.8) (0.2,1.0) (0.4,1.0)

(c∗ ,M∗) (8,2) (8,4) (8,2) (8,3) (8,5) (8,7)
µ∗ 0.8211 0.7583 0.8032 0.7607 0.8006 0.7621
ν∗ 0.7712 0.7573 0.8022 0.7597 0.7996 0.7611
Tc(M∗, c∗, µ∗, ν∗) 170.7178 171.7406 178.4237 179.6992 185.8408 187.5095

Tables 2-7 illustrate the relationships between various system parameters and the optimal
service rates (µ∗, ν∗) that minimize the expected cost Tc(M∗, c∗, µ∗, ν∗) :

• As the arrival rate of failed machines (α) increases, the expected cost Tc(M∗, c∗, µ∗, ν∗)
rises substantially. Similarity for β′. This is understandable, as a higher influx of failures
naturally strains the service system, leading to longer queues, more congestion, and
ultimately increased costs.

• Conversely, higher operator vacation rate (τ) and greater customer non-retention proba-
bility (κ) decrease the expected cost. Obviously, more frequent vacations provide more
opportunities to serve customers during vacation periods, alleviating congestion. Likewise,
allowing more customers to renege without service reduces the queue length and wait
times.

• The positive effect of operator breakdown rate (φ) on expected cost is expected, since more
breakdowns directly degrade service capability and capacity. In contrast and as anticipated,
faster operator repair rate (γ) significantly improves system performance and reduces costs
by restoring capacity quicker after failures.

• Larger system capacity (L) and impatience rates (ς j, j = 0, 1, 2) increase service aban-
donments, lowering congestion and Tc(M∗, c∗, µ∗, ν∗). However, excessive abandonments
negatively impact customer service. An optimal balance is required.
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7. Conclusion

In this paper, based on the characteristics of the repair machine, we presented a M/M/c/L
queue with breakdowns, repairs, threshold-based recovery policy, working vacation, Bernoulli
interruption, balking, reneging, and retention. We established the steady-state solution of the
system using Q-matrix. Then, we studied important system characteristics based on the steady-
state probabilities. Finally, we presented the sensitivity and cost optimization analysis; we
discussed an economic analysis as well as the optimal threshold, the optimal number of servers
as well as the service rates µ and ν under a given cost assumption because determining these
parameters to achieve the minimum cost is very important in queueing theory. As further
potential future study, we can generalize this queueing model with to some different cases, as
follows:

• (i) Considering the feedback phenomenon within the queueing systems, it is pertinent to
examine the scenario involving feedback customers in the proposed queueing model.

• (ii) It will be interesting to incorporate retrial policy and preemptive resume priority,
this makes the system closer to real-life congestion scenarios and the study can provide
potentially practical application in flexible manufacturing systems, transportation system,
telecommunication systems, and so on.

• (iii) One could also extend the present study by considering multi-optional services.
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