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Abstract 

In this paper, we introduce the Marshall–Olkin extended Shanker distribution, as an 

extension of the Shanker distribution, using the Marshall-Olkin approach. Several 

important properties of the new distribution, such as the hazard rate function, moments, 

incomplete moments, mean deviations, Lorenz and Bonferroni curves, and Rényi entropy 

are explored. The estimation of the parameters is discussed with the help of the maximum 

likelihood method. The performance of the estimators is evaluated using a simulation study. 

Two real data applications are developed in order to assess the flexibility and power of the 

new distribution. The goodness of fit criteria reveal that the new model may provide a better 

fit than the Shanker distribution and other competing models that belong to the Marshall-

Olkin G family of distributions. 

Keywords: Shanker distribution, Hazard rate function, Moments, Mean 
deviations, Bonferroni and Lorenz curves, Rényi entropy, Estimation of parameter 

1. Introduction

Marshall and Olkin [17] introduced an interesting method of adding a new parameter to an existing 
distribution. Let 𝐹(𝑥) and 𝐹̅(𝑥) = 1 − 𝐹(𝑥) be the CDF and survival function of the baseline 
distribution, respectively. Then, using the above-mentioned method, the survival function of the 
new distribution takes the following form 

𝐺̅(𝑥) =
𝛼𝐹̅(𝑥)

1 − 𝛼̅𝐹̅(𝑥)
,   − ∞ < 𝑥 < ∞, 

(1) 

where 𝛼 > 0, and , 𝛼̅ = 1 − 𝛼. The corresponding PDF of (1) is given by 

𝑔(𝑥) =
𝛼𝑓(𝑥)

[1 − 𝛼̅𝐹̅(𝑥)]2
, − ∞ < 𝑥 < ∞,

(2) 

We note resulting new distribution admits an additional shape parameter, which can affect the 
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behavior of the hazard rate function of the new distribution. The PDF in (2) is called the Marshall-
Olkin extended G (MOE-G for short) distribution. Note that for 𝛼 = 1, 𝐹(𝑥) = 𝐺(𝑥) and thus the new 
family includes the baseline distribution as its special case. Marshall and Olkin [17] discussed two 
special cases of (2), which are the MOE exponential and MOE Weibull distributions. Since then many 
authors implemented the above-mentioned method to obtain a new family of distributions from an 
existing baseline distribution. For example, Ghitany et al. [10] introduced the MOE Lindley 
distribution, MirMostafaee et al. [19] proposed the MOE generalized Rayleigh distribution, and 
Benkhelifa [6] defined the MOE generalized Lindley distribution. Examples of more recent studies 
include the Marshall-Olkin inverse Maxwell distribution (Yadav et al. [24]), the Marshall-Olkin 
Sujatha distribution (Ikechukwu and Eghwerido [14]), the Marshall-Olkin two-parameter Lindley 
distribution (Gillariose and Tomy [11]), the Marshall-Olkin length biased weighted generalized 
uniform distribution (Mathew [18]), the Marshall-Olkin alpha power inverse Rayleigh distribution 
(Adegbite et al. [2]). Some general results and mathematical properties of the MOE family of 
distributions have been discussed in detail by Barreto-Souza et al. [5], and Cordeiro et al. [8]. 

Shanker [22] introduced a new lifetime distribution, called the Shanker distribution, and showed 
that the new distribution can give closer fits to lifetime data sets than both exponential and Lindley 
distributions. The Shanker distribution possesses the following probability density function (PDF) 

𝑓(𝑥, 𝜃) =
𝜃2

𝜃2 + 1
(𝜃 + 𝑥)e−𝜃𝑥,     𝑥 > 0,   𝜃 > 0. 

(3) 

The corresponding cumulative distribution function (CDF) is also given by 

𝐹(𝑥, 𝜃) = 1 −
(𝜃2 + 1) + 𝜃𝑥

𝜃2 + 1
e−𝜃𝑥 ,  𝑥 > 0,   𝜃 > 0. 

(4) 

Shanker [22] showed that the PDF of the Shanker distribution is a mixture of an exponential 
distribution and a gamma distribution, and then discussed many mathematical properties of this 
distribution. Both Shanker and Lindley distributions involve increasing hazard rate functions 
(HRFs). There are several generalizations of the Shanker distribution in the literature, for example, 
Shanker and Shukla [23] presented the power Shanker distribution, Abdollahi Nanvapisheh et al. 
[1] and Jayakumar et al. [15] introduced the exponentiated Shanker distribution, Alzoubi et al. [3]
proposed the transmuted Shanker distribution, Helal et al.  [13] worked on the weighted Shanker
distribution, and Ganaei et al. [9] suggested the weighted power Shanker distribution.

In this paper, we intend to introduce a new extension of the Shanker distribution using the 
method developed by Marshall and Olkin [17]. The new model is called the Marshall-Olkin extended 
Shaker (MOE-Sh for short) distribution. The MOE-Sh distribution involves increasing, increasing-
decreasing-increasing and decreasing-increasing HRFs so that it can be a very flexible model in 
lifetime experiments. The new distribution can work better than some other lifetime distribution in 
a fitting data problem. The rest of the paper is organized as follows: The new distribution is defined 
in Section 2. The HRF of the new distribution is discussed in Section 3. Several mathematical 
properties of the new distribution are investigated in Section 4. Section 5 is devoted to the maximum 
likelihood (ML) estimation of the parameters. A Monte Carlo simulation is developed in Section 6. 
Two real data applications are given in Section 7. The paper ends with some remarks in Section 8. 

2. The New Distribution

If we let 𝐹̅(𝑥, 𝜃) =
(𝜃2+1)+𝜃𝑥

𝜃2+1
e−𝜃𝑥, 𝑥 > 0, i.e. the survival function (SF) of the Shanker distribution, in 
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equation (1), we arrive at the following SF 

𝐺̅(𝑥, 𝛼, 𝜃) =
𝛼(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥

𝜃2 + 1 − 𝛼̅(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥
,    𝑥 > 0,   𝛼, 𝜃 > 0,   𝛼̅ = 1 − 𝛼, 

(5) 

which is the SF of the MOE-Sh distribution. If a random variable 𝑋 possesses the SF (5) with 
parameters 𝛼 and 𝜃, then we write 𝑋 ~ MOE-Sh(𝛼, 𝜃).  The PDF of the MOE-Sh distribution with 
parameters 𝛼 and 𝜃 is given by 

𝑔(𝑥, 𝛼, 𝜃) =
𝛼𝜃2(𝜃 + 𝑥)(𝜃2 + 1)e−𝜃𝑥

(𝜃2 + 1 − 𝛼̅(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥)2
 , 𝑥 > 0,   𝛼, 𝜃 > 0,   𝛼̅ = 1 − 𝛼. 

(6) 

The graphs of the PDF of the MOE-Sh distribution for selected values of 𝛼 and 𝜃 are given in Figure 
1. 

Figure 1: PDFs of MOE-Sh(𝛼, 𝜃) distribution for selected values of 𝛼 and 𝜃. 

From Figure 1, we observe that the PDF of the MOE-Sh distribution can be decreasing or unimodal 
depending on the values of parameters. 

The CDF of  𝑋 ~ MOE-Sh(𝛼, 𝜃) is also given by 
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𝐺(𝑥, 𝛼, 𝜃) =
𝜃2 + 1 − (𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥

𝜃2 + 1 − 𝛼̅(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥
,    𝑥 > 0,   𝛼, 𝜃 > 0,   𝛼̅ = 1 − 𝛼. 

(7) 

3. Hazard Rate Function

The HRF of the MOE-Sh distribution with parameters 𝛼 and 𝜃 is given by 

ℎ(𝑥) =
𝜃3(𝜃2 + 1 + 𝜃𝑥) + 𝜃2𝑥

(𝜃2 + 1 + 𝜃𝑥)[𝜃2 + 1 − 𝛼̅(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥]
. 

We see that 

ℎ(0) =
𝜃3

𝛼(𝜃2 + 1)
,  and lim

𝑥→∞
ℎ(𝑥) = 𝜃. 

Therefore, the HRF of the MOE-Sh distribution is bounded. The graphs of the HRF of MOE-Sh 
distribution for selected values of 𝛼 and 𝜃 are displayed in Figure 2. From Figure 2, we observe that 
the HRF of the new distribution can be increasing, decreasing-increasing, or increasing-decreasing-
increasing depending on the values of parameters. Note that for example for the case when 𝛼 =0.5 
and 𝜃 =3, we see that the HRF decreases and then increases very slowly after it attains its minimum. 

Figure 2. HRFs of MOE-Sh(𝛼, 𝜃) distribution for selected values of 𝛼 and 𝜃.
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4. Several Mathematical Properties of the New Distribution

In this section, we discuss some mathematical properties of the new distribution such as the moment 
generating function, moments, incomplete moment, the mean deviation from the mean and the 
mean deviation from the median, Bonferroni and Lorenz curves, and Rényi entropy. First, we obtain 
an expansion for the density of the new distribution, which will be used to obtain general properties 
of this distribution in the next discussions.  

For |𝑧|  <  1 and 𝜌 >  0, we have 

(1 − 𝑧)−𝜌 = ∑
Γ(𝜌 + 𝑗)

Γ(𝜌)𝑗!
𝑧𝑗 ,

∞

𝑗=0

 (8) 

where Γ(. ) is the gamma function. Applying (8) to (6), for 0 < 𝛼 < 1, gives 

𝑔(𝑥, 𝛼, 𝜃) =
𝛼𝜃2(𝜃 + 𝑥)e−𝜃𝑥

𝜃2 + 1
∑

Γ(2 + 𝑗)

Γ(2)𝑗!
(1 − 𝛼)𝑗 [(1 +

𝜃𝑥

𝜃2 + 1
) e−𝜃𝑥]

𝑗∞

𝑗=0

. (9) 

Upon applying the binomial expansion to (9), for 𝑥, 𝜃 > 0 and 0 < 𝛼 < 1, we get 

𝑔(𝑥, 𝛼, 𝜃) = ∑ ∑ 𝛼(𝑗 + 1)(1 − 𝛼)𝑗 (
𝑗

𝑚
)

𝜃2+𝑚(𝜃 + 𝑥)

(𝜃2 + 1)𝑚+1
𝑥𝑚e−(𝑗+1)𝜃𝑥

𝑗

𝑚=0

∞

𝑗=0

. (10) 

We can rewrite (2) as follows 

𝑔(𝑥) =
𝑓(𝑥)

𝛼 (1 −
(𝛼 − 1)

𝛼
𝐹(𝑥))

2. 
(11) 

Therefore, using (8) and (11), and then using the binomial expansion for two times, we arrive at the 
following expansion for the density when 𝛼 > 1 

𝑔(𝑥, 𝛼, 𝜃) = ∑ ∑ ∑ (
𝑗

𝑚
) (

𝑚

𝑘
)

1

𝛼
(1 −

1

𝛼
)

𝑗

(𝑗 + 1)(−1)𝑚
𝜃2+𝑘(𝜃 + 𝑥)

(𝜃2 + 1)𝑘+1
𝑥𝑘e−𝜃(𝑚+1)𝑥

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

. (12) 

4.1. Moment Generating Function 

Using (10), the moment generating function of the MOE-Sh distribution with parameters 𝛼 and 𝜃, 

denoted by  𝑀𝑋(𝑡), for 0 < 𝛼 < 1 is given by 

𝑀𝑋(𝑡) = ∑ ∑ (
𝑗

𝑚
)

𝛼(1 − 𝛼)𝑗(𝑗 + 1)𝜃2+𝑚Γ(𝑚 + 1)

(𝜃2 + 1)𝑚+1(𝜃(𝑗 + 1) − 𝑡)𝑚+2

𝑗

𝑚=0

∞

𝑗=0

(𝜃((𝑗 + 1)𝜃 − 𝑡) + 𝑚 + 1),  𝑡 < 𝜃. 

For  α > 1, using (12), we find 

𝑀𝑋(𝑡) = ∑ ∑ ∑ (
𝑗

𝑚
) (

𝑚

𝑘
)

1

𝛼
(1 −

1

𝛼
)

𝑗 (𝑗 + 1)(−1)𝑚𝜃2+𝑘Γ(𝑘 + 1)

(𝜃2 + 1)𝑘+1(𝜃(𝑚 + 1) − 𝑡)𝑘+2
(𝜃(𝜃(𝑚 + 1) − 𝑡) + 𝑘 + 1)

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

,  𝑡 < 𝜃. 
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4.2. Moments and Related Measures 

Some of the most important features and characteristics of a distribution can be studied through its 
moments. Using (10), the r-th moment of  𝑋 ~ MOE-Sh(𝛼, 𝜃) for 𝛼 ∈ (0, 1) has been obtained as 

𝜇𝑟 = ∑ ∑ 𝛼(1 − 𝛼)𝑗 (
𝑗

𝑚
)

Γ(𝑟 + 𝑚 + 1)

(𝜃2 + 1)𝑚+1(𝑗 + 1)𝑟+𝑚𝜃𝑟
(𝜃2 +

𝑟 + 𝑚 + 1

𝑗 + 1
) .

𝑗

𝑚=0

∞

𝑗=0

 

Besides, using (12), the r-th moment of  𝑋 ~ MOE-Sh(𝛼, 𝜃) for 𝛼 > 1 is given by 

𝜇𝑟 = ∑ ∑ ∑ (
𝑗

𝑚
) (

𝑚

𝑘
)

1

𝛼
(1 −

1

𝛼
)

𝑗 (𝑗 + 1)(−1)𝑚Γ(𝑟 + 𝑘 + 1)

(𝜃2 + 1)𝑘+1(𝑚 + 1)𝑟+𝑘+1𝜃𝑟
(𝜃2 +

𝑟 + 𝑘 + 1

𝑚 + 1
)

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

. 

Thus, the mean of the new distribution for 0 < 𝛼 < 1 can be expressed as 

𝜇 = 𝜇1 = 𝐸(𝑋) = ∑ ∑ 𝛼(1 − 𝛼)𝑗 (
𝑗

𝑚
)

(𝑚 + 1)!

(𝜃2 + 1)𝑚+1(𝑗 + 1)𝑚+1𝜃
(𝜃2 +

𝑚 + 2

𝑗 + 1
) .

𝑗

𝑚=0

∞

𝑗=0

 

Moreover, the mean of the new model for 𝛼 > 1 is given by 

𝜇 = 𝜇1 = 𝐸(𝑋) = ∑ ∑ ∑ (
𝑗

𝑚
) (

𝑚

𝑘
)

1

𝛼
(1 −

1

𝛼
)

𝑗 (𝑗 + 1)(−1)𝑚(𝑘 + 1)!

(𝜃2 + 1)𝑘+1(𝑚 + 1)𝑘+2𝜃
(𝜃2 +

𝑘 + 2

𝑚 + 1
)

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

. 

Now, the skewness and kurtosis of the new distribution can be obtained with the help of the 
following equations, respectively 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝐸([𝑋 − 𝐸(𝑋)]3)

(𝐸([𝑋 − 𝐸(𝑋)]2))
3/2

=
𝜇3 − 3𝜇1𝜇2 + 2𝜇1

3

[𝜇2 − 𝜇1
2]3/2

, 

and 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝐸([𝑋 − 𝐸(𝑋)]4)

(𝐸([𝑋 − 𝐸(𝑋)]2))
2 =

𝜇4 − 4𝜇1𝜇3 + 6𝜇1
2𝜇2 − 3𝜇1

4

[𝜇2 − 𝜇1
2]2

, 

where 𝜇𝑟 denotes the r-th moment of  𝑋 ~ MOE-Sh(𝛼, 𝜃). 
Next, we work on finding an expression for the incomplete moment of  𝑋 ~ MOE-Sh(𝛼, 𝜃). 

Using (10), for 0 < 𝛼 < 1, the incomplete moment of  𝑋 is given by  

∫ 𝑥𝑔(𝑥, 𝛼, 𝜃)d𝑥
𝑧

0

= ∑ ∑
( 𝑗

𝑚
)𝛼(1 − 𝛼)𝑗

𝜃(𝜃2 + 1)𝑚+1(𝑗 + 1)𝑚+1 (𝜃2Γ(𝑚 + 2 , (𝑗 + 1)𝜃𝑧) +
Γ(𝑚 + 3 , (𝑗 + 1)𝜃𝑧)

𝑗 + 1
)

𝑗

𝑚=0

∞

𝑗=0

, (13) 

where Γ(𝑎 , 𝑧) = ∫ 𝑥𝑎−1e−𝑥d𝑥
𝑧

0
 is the incomplete gamma function. 

Besides, using (12), for 𝛼 > 1, the incomplete moment of  𝑋 is obtained to be 

∫ 𝑥𝑔(𝑥, 𝛼, 𝜃)d𝑥
𝑧

0

= ∑ ∑ ∑
(1 −

1
𝛼

)
𝑗

( 𝑗
𝑚

)(𝑚
𝑘

)(𝑗 + 1)(−1)𝑚 (𝜃2Γ(𝑘 + 2 , 𝜃(𝑚 + 1)𝑧) +
Γ(𝑘 + 3 , 𝜃(𝑚 + 1)𝑧)

𝑚 + 1
)

𝛼𝜃(𝜃2 + 1)𝑘+1(𝑚 + 1)𝑘+2

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

. (14)
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4.3. Mean Deviations and Bonferroni and Lorenz Curves 

The mean deviations from the mean and the mean deviation from the median are defined as 

𝛿1(𝑋) = ∫ |𝑥 − 𝜇|𝑓(𝑥)d𝑥,
∞

0
      and     𝛿2(𝑋) = ∫ |𝑥 − 𝑀|𝑓(𝑥)d𝑥,

∞

0
 

respectively, where 𝑓(𝑥) is the density of 𝑋, µ = 𝐸 (𝑋) and 𝑀 denotes the median of 𝑋. 
The measures 𝛿1(𝑋) and 𝛿2(𝑋) can be computed using the following expressions 

𝛿1(𝑋) = 2𝜇𝐹(𝜇) − 2 ∫ 𝑥𝑓(𝑥)d𝑥
𝜇

0

, 
(15) 

and 

𝛿2(𝑋) = 𝜇 − 2 ∫ 𝑥𝑓(𝑥)d𝑥

𝑀

0

, (16) 

respectively, where 𝐹(𝑥) is the CDF of 𝑋. 
Let of  𝑋 ~ MOE-Sh(𝛼, 𝜃). Then, for 0 < 𝛼 < 1, from (7), (13) and (15), the mean deviation from 

the mean becomes 

𝛿1(𝑋) =
2𝜇(𝜃2 + 1 − (𝜃2 + 1 + 𝜃𝑥)e−𝜃𝜇)

𝜃2 + 1 − 𝛼̅(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝜇

− 2 ∑ ∑
( 𝑗

𝑚
)𝛼(1 − 𝛼)𝑗

𝜃(𝜃2 + 1)𝑚+1(𝑗 + 1)𝑚+1 (𝜃2Γ(𝑚 + 2 , (𝑗 + 1)𝜃𝜇) +
Γ(𝑚 + 3 , (𝑗 + 1)𝜃𝜇)

𝑗 + 1
)

𝑗

𝑚=0

.

∞

𝑗=0

 

Besides, for 𝛼 > 1, from (7), (14) and (15), the mean deviation from the mean is given by 

𝛿1(𝑋)

=
2𝜇(𝜃2 + 1 − (𝜃2 + 1 + 𝜃𝑥)e−𝜃𝜇)

𝜃2 + 1 − 𝛼̅(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝜇

− 2 ∑ ∑ ∑
(1 −

1
𝛼

)
𝑗

( 𝑗
𝑚

)(𝑚
𝑘

)(𝑗 + 1)(−1)𝑚 (𝜃2Γ(𝑘 + 2 , 𝜃(𝑚 + 1)𝜇) +
Γ(𝑘 + 3 , 𝜃(𝑚 + 1)𝜇)

𝑚 + 1
)

𝛼𝜃(𝜃2 + 1)𝑘+1(𝑚 + 1)𝑘+2

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

. 

Moreover, for 0 < 𝛼 < 1, from (13) and (16), the mean deviation from the median becomes 

𝛿2(𝑋) = 𝜇 − 2 ∑ ∑
( 𝑗

𝑚
)𝛼(1 − 𝛼)𝑗

𝜃(𝜃2 + 1)𝑚+1(𝑗 + 1)𝑚+1
(𝜃2Γ(𝑚 + 2 , (𝑗 + 1)𝜃𝑀) +

Γ(𝑚 + 3 , (𝑗 + 1)𝜃𝑀)

𝑗 + 1
)

𝑗

𝑚=0

.

∞

𝑗=0

 

Besides, for 𝛼 > 1, from (14) and (16), the mean deviation from the median is given by 

𝛿2(𝑋) = 𝜇 − 2 ∑ ∑ ∑
(1 −

1
𝛼

)
𝑗

( 𝑗

𝑚
)(𝑚

𝑘
)(𝑗 + 1)(−1)𝑚 (𝜃2Γ(𝑘 + 2 , 𝜃(𝑚 + 1)𝑀) +

Γ(𝑘 + 3 , 𝜃(𝑚 + 1)𝑀)
𝑚 + 1

)

𝛼𝜃(𝜃2 + 1)𝑘+1(𝑚 + 1)𝑘+2

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

. 

Next, we focus on the formulas of the Bonferroni and Lorenz curves, which are important tools in 
various fields such as economics, reliability, medicine and insurance. The Bonferroni and Lorenz 
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curves are defined as 

𝐵𝐹(𝐹(𝑥)) =
1

𝜇𝐹(𝑥)
∫ 𝑢𝑓(𝑢)d𝑢

𝑥

0

, 
(17) 

and 

𝐿𝐹(𝐹(𝑥)) = 𝐹(𝑥)𝐵𝐹(𝐹(𝑥)) =
1

𝜇
∫ 𝑢𝑓(𝑢)d𝑢

𝑥

0

, 
(18) 

respectively, where 𝐹(𝑥) is the CDF of 𝑋, 𝑓(𝑥) is the density of 𝑋,  and µ = 𝐸 (𝑋). 
Let of  𝑋 ~ MOE-Sh(𝛼, 𝜃). Then, for 0 < 𝛼 < 1, from (7), (13), (17) and (18), the Bonferroni and 

Lorenz curves are given by 

𝐵𝐹(𝐹(𝑥)) =
𝜃2 + 1 − 𝛼̅(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥

𝜇(𝜃2 + 1 − (𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥)
∑ ∑

( 𝑗
𝑚

)𝛼(1 − 𝛼)𝑗

𝜃(𝜃2 + 1)𝑚+1(𝑗 + 1)𝑚+1 (𝜃2Γ(𝑚 + 2 , (𝑗 + 1)𝜃𝑥)

𝑗

𝑚=0

∞

𝑗=0

+
Γ(𝑚 + 3 , (𝑗 + 1)𝜃𝑥)

𝑗 + 1
), 

and 

𝐿𝐹(𝐹(𝑥)) =
1

𝜇
∑ ∑

( 𝑗

𝑚
)𝛼(1 − 𝛼)𝑗

𝜃(𝜃2 + 1)𝑚+1(𝑗 + 1)𝑚+1
(𝜃2Γ(𝑚 + 2 , (𝑗 + 1)𝜃𝑥) +

Γ(𝑚 + 3 , (𝑗 + 1)𝜃𝑥)

𝑗 + 1
)

𝑗

𝑚=0

∞

𝑗=0

, 

respectively. 
Besides, for 𝛼 > 1, from (7), (14), (17) and (18), the Bonferroni and Lorenz curves are given by 

𝐵𝐹(𝐹(𝑥))

=
𝜃2 + 1 − 𝛼(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥

𝜇(𝜃2 + 1 − (𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥)
∑ ∑ ∑

(1 −
1
𝛼

)
𝑗

( 𝑗
𝑚

)(𝑚
𝑘

)(𝑗 + 1)(−1)𝑚 (𝜃2Γ(𝑘 + 2 , 𝜃(𝑚 + 1)𝑥) +
Γ(𝑘 + 3 , 𝜃(𝑚 + 1)𝑥)

𝑚 + 1
)

𝛼𝜃(𝜃2 + 1)𝑘+1(𝑚 + 1)𝑘+2

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

,

and 

𝐿𝐹(𝐹(𝑥))

=
1

𝜇
∑ ∑ ∑

(1 −
1
𝛼

)
𝑗

( 𝑗

𝑚
)(𝑚

𝑘
)(𝑗 + 1)(−1)𝑚 (𝜃2Γ(𝑘 + 2 , 𝜃(𝑚 + 1)𝑥) +

Γ(𝑘 + 3 , 𝜃(𝑚 + 1)𝑥)
𝑚 + 1

)

𝛼𝜃(𝜃2 + 1)𝑘+1(𝑚 + 1)𝑘+2

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

, 

respectively. 

4.4. Rényi Entropy 

The entropy of a random variable 𝑋 is the measure of variation of uncertainty. If 𝑋 is a continuous 
random variable having PDF 𝑓(𝑥), then the Rényi entropy is defined as 

𝑇𝑅(𝑞) =
1

1 − 𝑞
log {∫ 𝑓𝑞(𝑥)d𝑥}, 

(19) 

where 𝑞 > 0 and 𝑞 ≠ 1. 
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Let of  𝑋 ~ MOE-Sh(𝛼, 𝜃). Then, from (6) and (8) and using the binomial expansion, for 0 < 𝛼 <

1, we have  

𝑔(𝑥, 𝛼, 𝜃)𝑞 = ∑ ∑
Γ(2𝑞 + 𝑗)

Γ(2𝑞)𝑗!
𝛼𝑞(1 − 𝛼)𝑗 (

𝑗

𝑚
)

𝜃2𝑞+𝑚(𝜃 + 𝑥)𝑞

(𝜃2 + 1)𝑚+𝑞
𝑥𝑚e−𝜃(𝑞+𝑗)𝑥

𝑗

𝑚=0

.

∞

𝑗=0

 

Therefore, the Rényi entropy is given by 

𝑇𝑅(𝑞) =
1

1 − 𝑞
log {∑ ∑ ∑

Γ(2𝑞 + 𝑗)

Γ(2𝑞)𝑗!
(

𝑗

𝑚
) (

𝑚

𝑘
)

𝛼𝑞(1 − 𝛼)𝑗(−1)𝑚−𝑘e𝜃2(𝑞+𝑗)𝛾 (𝑞 + 𝑘 + 1, 𝜃2(𝑞 + 𝑗))

𝜃2𝑘+1−𝑞−2𝑚
(𝜃2 + 1)

𝑚+𝑞
(𝑗 + 𝑞)

𝑞+𝑘+1

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

}, 

where 𝛾(𝑎 , 𝑧) = ∫ 𝑥𝑎−1e−𝑥d𝑥 = Γ(𝑎) − Γ(𝑎 , 𝑧)
∞

𝑧
. 

From (6) and (8) and using the binomial expansion for two times, for 𝛼 > 1, we have 

𝑔(𝑥, 𝛼, 𝜃)𝑞 = ∑ ∑ ∑
Γ(2𝑞 + 𝑗)

𝛼𝑞Γ(2𝑞)𝑗!
(

𝑗

𝑚
) (

𝑚

𝑘
) (1 −

1

𝛼
)

𝑗

(−1)𝑚
𝜃𝑘+2𝑞(𝜃 + 𝑥)𝑞

(𝜃2 + 1)𝑞+𝑘
𝑥𝑘e−𝜃(𝑞+𝑚)𝑥

𝑚

𝑘=0

.

𝑗

𝑚=0

∞

𝑗=0

 

Thus, the Rényi entropy becomes 

𝑇𝑅(𝑞)

=
1

1 − 𝑞
log {∑ ∑ ∑ ∑

Γ(2𝑞 + 𝑗)

𝛼𝑞Γ(2𝑞)𝑗!
(

𝑗

𝑚
) (

𝑚

𝑘
) (

𝑘

𝑖
)

(1 −
1
𝛼

)
𝑗

(−1)𝑚+𝑘−𝑖e𝜃2(𝑞+𝑚)𝛾(𝑞 + 𝑖 + 1, 𝜃2(𝑞 + 𝑚))

𝜃2𝑖+1−𝑞−2𝑘(𝜃2 + 1)𝑞+𝑘(𝑞 + 𝑚)𝑞+𝑖+1

𝑘

𝑖=0

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

}. 

5. Maximum Likelihood Estimation

Let 𝒙 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) be an observed random sample of size 𝑛 from the MOE-Sh distribution with 
parameters 𝛼 and 𝜃. Then, the likelihood function of the parameters given 𝒙 is given by 

ℒ(𝛼, 𝜃|𝒙) =
𝛼𝑛𝜃2𝑛(𝜃2 + 1)𝑛e−𝜃 ∑ 𝑥𝑖

𝑛
𝑖=1 ∏ (𝜃 + 𝑥𝑖)

𝑛
𝑖=1

∏ (𝜃2 + 1 − 𝛼̅(𝜃2 + 1 + 𝜃𝑥𝑖)e−𝜃𝑥𝑖)2𝑛
𝑖=1

. 

Thus, the log-likelihood function takes the following form 

ℓ(𝛼, 𝜃|𝒙) = 𝑛ln𝛼 + 2𝑛ln𝜃 + 𝑛ln(𝜃2 + 1) + ∑ ln (𝜃 + 𝑥𝑖)

𝑛

𝑖=1

− 𝜃 ∑ 𝑥𝑖

𝑛

𝑖=1

− 2 ∑ ln(𝜃2 + 1 − 𝛼̅(𝜃2 + 1 + 𝜃𝑥𝑖)e−𝜃𝑥𝑖).

𝑛

𝑖=1

Upon taking the derivatives from the log-likelihood function with respect to (w.r.t.) the parameters, 
we obtain the following equations that might help us to find the ML estimates of the unknown 
parameters 

𝜕ln𝐿

𝜕𝛼
=

𝑛

𝛼
− 2 ∑

(𝜃2 + 1 + 𝜃𝑥𝑖)e−𝜃𝑥𝑖

𝜃2 + 1 − 𝛼̅(𝜃2 + 1 + 𝜃𝑥𝑖)e−𝜃𝑥𝑖

𝑛

𝑖=1

= 0, 

𝜕ln𝐿

𝜕𝜃
=

2𝑛

𝜃
+

2𝑛𝜃

𝜃2 + 1
+ ∑

1

𝜃 + 𝑥𝑖

𝑛

𝑖=1

− ∑ 𝑥𝑖

𝑛

𝑖=1

− 2𝜃 ∑
2 − 𝛼̅(2 − 𝑥𝑖

2 − 𝜃𝑥𝑖)e−𝜃𝑥𝑖

𝜃2 + 1 − 𝛼̅(𝜃2 + 1 + 𝜃𝑥𝑖)e−𝜃𝑥𝑖
= 0.

𝑛

𝑖=1

 

Numerical procedures such as the Newton-Raphson may be implemented to solve the above 
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nonlinear equations. 

6. A Simulation Study

In this section, we evaluate the performance of the ML estimators of the parameters of the MOE-Sh 
distribution by means of a simulation study. The inverse transform algorithm is used to generate 
random data from the MOE-Sh distribution. We generated 𝑁 =  10000 samples of sizes 𝑛 = 50, 150, 
300 from the MOE-Sh distribution with the parameter combinations: (𝛼, 𝜃) =  (0.5, 0.5),   (0.5, 4), (3, 
2), and (2, 0.5). The performance of the ML estimators is assessed by means of the estimated bias 
(bias for short), the estimated mean squared error (EMSE), and the estimated mean relative error 
(EMRE). Let 𝛼̂ be the ML estimator of α and 𝛼𝑖̂ be the ML estimator of α that is obtained in the i-th 
iteration, then the estimated bias, EMSE, and EMRE of 𝛼̂ can be obtained using the following 
equations

𝑏𝑖𝑎𝑠(𝛼̂) =
1

𝑁
∑(𝛼𝑖̂ − 𝛼)

𝑁

𝑖=1

,  𝐸𝑀𝑆𝐸(𝛼̂) =
1

𝑁
∑(𝛼𝑖̂ − 𝛼)2

𝑁

𝑖=1

,  and  𝐸𝑀𝑅𝐸(𝛼̂) =
1

𝑁
∑ (

𝛼𝑖̂

𝛼
)

𝑁

𝑖=1

, 

respectively. We can obtain the estimated bias, MSE, and MRE of 𝜃̂ (the ML estimator of θ) similarly. 
The numerical results of the simulation are given in Table 1. It is clear from Table 1 that the estimated 
biases and estimated MSEs decrease when the sample size 𝑛 increases. Besides, the estimated MREs 
of all parameters are close to one and approach this nominal value when the sample size increases. 

7. Applications

In this section, we provide two real data applications in order to demonstrate the flexibility of the 
MOE-Sh distribution. We check how well the MOESH distribution fits the data compared to several 
other lifetime distributions which are 

1. The Shanker distribution with the following PDF

𝑓(𝑥; 𝜃) =
𝜃2

𝜃2 + 1
(𝜃 + 𝑥)e−𝜃𝑥 ,    𝑥 > 0,   𝜃 > 0. 

2. The Marshall-Olkin Sujatha (MOS) [14] distribution with the following PDF

𝑓(𝑥; 𝛼, 𝜃) =
𝛼 𝜃3e−𝜃𝑥(𝜃2 + 𝜃 + 2)(1 + 𝑥 + 𝑥2)

[(𝜃2 + 𝜃 + 2) − (1 − 𝛼)((𝜃2 + 𝜃 + 2) + 𝜃𝑥(𝜃𝑥 + 𝜃 + 2))e−𝜃𝑥]2
, 𝑥 > 0, 𝛼, 𝜃 > 0. 

3. The Marshall-Olkin extended Lindley (MOE-L) [10] distribution with the following PDF

𝑓(𝑥; 𝛼, 𝜃) =
𝛼 𝜃2(𝜃 + 1)(1 + 𝑥)e−𝜃𝑥

[𝜃 + 1 − (1 − 𝛼)(𝜃 + 1 + 𝜃𝑥)e−𝜃𝑥]2
,    𝑥 > 0,    𝛼, 𝜃 > 0. 

The fitness performance of the considered distributions is investigated using the Akaike 
information criteria (AIC), Bayesian information criteria (BIC), and Kolmogorov-Smirnov (K-S) 
along with its p-value. The distribution with the smallest K-S, AIC and BIC values and the highest 
p-value is considered to possess the best fit to the data sets.

The first real data set, denoted by D I, reported by Chinedu et al. [7] is related to the infant 
mortality rate per 1000 live births for a few selected nations in 2021, see 
https://data.worldbank.org/indicator/SP.DYN.IMRT.IN (accessed on 2021). The data are 

56,  10,  22,  3,  69,  6,  7,  11,  4,  4,  19,  13,  7,  27,  12,  3,  4,  11,  84,  27,  25,  6,  35,  14,  11,  12,  6  
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Table 1: The simulation results 

𝛼 = 0.5  and  𝜃 = 4 

𝑛 Parameters bias EMSE EMRE 

50 𝛼 
𝜃 

0.135 
0.485 

0.148 
2.449 

1.269 
1.121 

150 𝛼 
𝜃 

0.041 
0.153 

0.032 
0.664 

1.083 
1.038 

300 𝛼 
𝜃 

0.019 
0.072 

0.014 
0.311 

1.039 
1.018 

𝛼 = 3  and  𝜃 = 2 

𝑛 Parameters bias EMSE EMRE 

50 𝛼 
𝜃 

0.726 
0.079 

5.057 
0.143 

1.242 
1.039 

150 𝛼 
𝜃 

0.211 
0.025 

1.012 
0.042 

1.070 
1.012 

300 𝛼 
𝜃 

0.105 
0.012 

0.447 
0.021 

1.035 
1.006 

𝛼 = 0.5  and  𝜃 = 0.5 

𝑛 Parameters bias EMSE EMRE 

50 𝛼 
𝜃 

0.270 
0.038 

0.543 
0.040 

1.540 
1.077 

150 𝛼 
𝜃 

0.079 
0.014 

0.088 
0.011 

1.159 
1.029 

300 𝛼 
𝜃 

0.039 
0.007 

0.036 
0.005 

1.077 
1.014 

𝛼 = 2  and  𝜃 = 0.5 

𝑛 Parameters bias EMSE EMRE 

50 𝛼 
𝜃 

0.678 
0.021 

4.143 
0.012 

1.339 
1.042 

150 𝛼 
𝜃 

0.189 
0.006 

0.685 
0.004 

1.094 
1.013 

300 𝛼 
𝜃 

0.084 
0.003 

0.287 
0.002 

1.042 
1.005 

The second data set, denoted by D II, was originally taken from Aydin [4]. This data set is 
related to the average daily wind speed collected in 2015 from meteorological Turkish services, see 
also Salahuddin et al. [21]. The data are 

2.8,  1.8,  3.2,  5.0,  2.4,  4.8,  2.9,  2.9,  2.3,  3.2,  2.3,  2.0,  1.9,  3.3,  4.4,  6.7, 

4.3,  1.9,  2.2,  3.3,  2.1,  4.0,  2.0,  3.1,  3.8,  3.1,  3.2,  3.4,  2.8,  2.1,  3.1 

We compute the ML estimates of the parameters for the considered distributions. We also use 
the Kolmogorov-Smirnov (K-S) test, the Akaike information criterion (AIC), and the Bayesian 
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information criterion (BIC) for the purpose of comparing the fits of the distributions. We know that 
ties should not be present for the K-S test, when we analyze continuous data. However, ties may 
arise due to rounding numbers. Here, to avoid this problem, we added (and also subtracted when 
there are 3 equal numbers) a too small number, which is z = 10−14, to one of the equal numbers, 
when we want to calculate K-S test statistics. For example, D II has been changed to the following 
data in this regard 

2.8,  1.8,  3.2−z,  5.0,  2.4,  4.8,  2.9+z,  2.9,  2.3+z,  3.2,  2.3,  2.0+z,  1.9,  3.3,  4.4,  6.7,   

4.3,  1.9+z,  2.2,  3.3+z,  2.1+z,  4.0,  2.0,  3.1+z,  3.8,  3.1,  3.2+z,  3.4,  2.8+z,  2.1,  3.1−z 

The computed ML estimates, K-S test statistics along with their corresponding p-values, and 
the values of AIC and BIC for both data sets are given in Table 2. We note that the smaller values of 
AIC, BIC and K-S test statistics (and equivalently the larger p-values) indicate a better fit to a data 
set. Table 2 reveals that the MOE-Sh distribution possesses the best fits for both data sets among the 
considered distributions. Figures 3 and 4 include the probability-probability (P-P) plots for D I and 
D II, respectively. From Figures 3 and 4, we might conclude the superiority of the MOE-Sh 
distribution over the other considered models.   

Table 2: The ML estimates of the parameters, K-S test statistics along with their corresponding p-values, and the values 

of AIC and BIC for D I and D II

Data set Models α θ AIC BIC K-S p-value

D I 

Shanker 0.10577 217.2489 218.5447 0.22721 0.1046 

MOS 0.04691 0.06489 214.1856 216.7773 0.13897 0.6245 

MOE-L 0.08771 0.03662 211.8659 214.4576 0.09468 0.9500 

MOE-Sh 0.07497 0.03690 210.8241 213.4158 0.08978 0.9678 

D II 

Shanker 0.54730 120.4348 121.8688 0.34356 0.0009 

MOS 68.37348 2.13868 95.0517 97.9196 0.12053 0.7139 

MOE-L 100.0365 1.90636 94.4033 97.2713 0.11641 0.7518 

MOE-Sh 123.2082 1.88271 94.2711 97.1391 0.11478 0.7666 

12. Concluding Remarks

In this paper, we follow the Marshall-Olkin strategy of developing more flexible models to introduce 
a new two-parameter lifetime distribution, called the Marshall-Olkin extended Shanker (MOE-Sh) 
distribution. Several useful properties of the new distribution are discussed. A simulation study has 
been conducted to examine the performance of the ML estimators of the proposed MOE-Sh 
distribution. Two real data applications have been analyzed to illustrate the flexibility of the new 
distribution in comparison with several competitive distributions. The data analyses indicate that  

the MOE-Sh has the potential power to model real data quite well and it can be useful in the study 
of real-life phenomena. Still, there exist some other characteristics of the new distribution such as 
the reliability parameter, stochastic ordering, order statistics and so on that have not been 
investigated in this paper. Moreover, some inferential subjects for the new distribution such as the 
Bayesian estimation of the parameters, prediction of future observations and so on may be 
considered to be studied in the future.  
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Figure 3. P-P plots for D I.

Figure 4. P-P plots for D II.

All the computations of the paper were performed using the statistical software R (R Core Team 
 [20]) and the packages nleqslv (Hasselman [12]) and AdequacyModel (Marinho et al. [16]) therein. 
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