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Abstract 

The main objective of this paper is to present an innovative approach combining fuzzy logic and 

artificial neural networks to optimize equipment reliability in the specific context of a flour mill. Faced 

with the challenges of performance and profitability in this industrial sector, the neuro-fuzzy 

methodology has been developed to meet the challenges related to the complexity and uncertainty 

inherent in equipment reliability management. The first part of the paper provides an overview of the 

problem, introducing the key concepts of reliability and maintenance, while highlighting the 

particular challenges of the milling industry. This paper also outlines the advantages of the neuro-

fuzzy approach for optimizing equipment reliability. The methodology for developing the neuro-fuzzy 

model is detailed in the second part. It covers the construction of the fuzzy inference system, the 

design of the neural network structure, as well as the training and optimization steps of the model. 

The case study conducted in a flour mill is presented in the third part. After a description of the 

company and its equipment system, the collection and analysis of reliability data are presented, as 

well as the implementation of the developed neuro-fuzzy model. The results obtained demonstrate 

that this methodology makes it possible to better anticipate failures, optimize maintenance 

interventions, and reduce associated costs. Sensitivity analysis and comparison with other 

optimization methods confirm the validity and operational and economic benefits of the proposed 

approach. 

Keywords: Optimization, Reliability, Neuro-fuzzy approach, Flour milling 

1. Introduction

1.1. The Importance of Optimizing Equipment Reliability in Processing 

Industries 

Equipment reliability is a critical issue for processing industries, such as flour mills, food processing 

plants, and refineries. Equipment failure can lead to numerous costly consequences for these 

companies. First, the repair and maintenance costs can quickly accumulate, undermining the 

profitability of the business. Moreover, the unplanned production shutdowns caused by these 

failures result in productivity losses, as well as late delivery penalties from customers, which can 

harm the company's competitiveness. Finally, these breakdowns can also impact product quality, 

leading to waste and a deterioration of the brand image. Optimizing equipment reliability is 

therefore an essential lever to reduce these costs and improve the operational and economic 

performance of processing companies [1-8]. 
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1.2. A Neuro-Fuzzy Approach for Optimizing Reliability 

Traditional reliability optimization techniques, such as predictive maintenance or equipment 

redundancy, have certain limitations when reliability data is imprecise or incomplete [9-17]. Indeed, 

in many cases, processing companies do not have sufficiently detailed historical data on equipment 

failures. Moreover, reliability phenomena can depend on many complex and interdependent factors, 

making it difficult to model them using traditional deterministic approaches. 

         The neuro-fuzzy approach, combining fuzzy logic and neural networks, is particularly well-

suited in these cases, as it allows for the consideration of uncertainty and nonlinearity in reliability 

phenomena [2,18-25]. Fuzzy logic allows for the modeling of imprecision in data and expert 

knowledge on reliability, while neural networks offer the ability to learn complex patterns from 

incomplete data. The neuro-fuzzy approach thus combines the advantages of these two techniques 

to optimize equipment reliability in a more robust and reliable manner. 

1.3. Context and Objective of the Case Study in a Flour Mill 

This case study focuses on optimizing the reliability of equipment in a flour mill. Flour mills face 

major challenges in terms of reliability, particularly due to the complexity of the processing 

operations and the harsh environmental conditions to which the equipment is subjected. 

Indeed, the milling, sieving, and grain storage processes require the use of various equipment such 

as silos, grinders, conveyors, and vibrating screens. This equipment must operate reliably and 

continuously to ensure the production of high-quality flour. However, the dusty environments, 

significant vibrations, and load fluctuations frequently lead to premature failures, impacting the 

productivity and profitability of the flour mill. 

        The objective of this study is, therefore, to develop a neuro-fuzzy model to optimize the 

reliability of the flour mill's key equipment, in order to improve the operational and economic 

performance of the company. This will involve better anticipating failures, optimizing preventive 

maintenance plans, and reducing the costs associated with unexpected breakdowns. 

2. Neuro-Fuzzy Approach for Reliability Optimization

2.1. Basic Concepts of Neuro-Fuzzy Systems 

Neuro-fuzzy systems combine artificial neural networks and fuzzy logic to leverage their respective 

advantages [9,26-34]. On the one hand, neural networks offer a learning capability from data to 

identify complex patterns. On the other hand, fuzzy logic allows for the modeling of the inherent 

imprecision and uncertainty in real-world phenomena, using fuzzy sets and linguistic rules. 

table 1 summarizes the ain differences between neural networks and fuzzy logic. 

 Table 1: Comparison of neural networks and fuzzy logic 

Features Neural networks Fuzzy logic 

Basic principle Learning from data Modeling imprecision and uncertainty 

Knowledge 

representation 

Learning complex patterns Linguistic rules and fuzzy sets 

Information 

processing 

Parallel and non-linear 

processing 

Approximate reasoning 

Interpretability Black box, difficult to interpret Unclear rules that can be interpreted 

Fields of application Classification, prediction, 

optimization 

Decision support, process control 
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The integration of these two approaches into a neuro-fuzzy system provides several benefits for 

optimizing equipment reliability [1, 2, 31, 32, 35, 36]: 

 Ability to handle incomplete or imprecise data on failures;

 Consideration of the complexity and non-linearity of reliability phenomena;

 Possibility of incorporating operator expertise in the form of fuzzy rules;

 Automatic learning to refine the model over time.

figure 1 illustrates the general architecture of an ANFIS (Adaptive Neuro-Fuzzy Inference

System) type of neuro-fuzzy system, one of the most widely used models in the literature. 

Figure 1: ANFIS architecture [26] 

As shown in this figure, the neuro-fuzzy system combines a neural network and a fuzzy 

inference system. The inputs are fuzzified, the fuzzy inference engine applies the fuzzy rules, then 

the fuzzy outputs are defuzzified to obtain the final output of the system. 

2.2. Advantages of the Neuro-Fuzzy Approach for Equipment Reliability 

Compared to classical reliability optimization methods, the neuro-fuzzy approach has several 

advantages [9, 26, 37, 38]: 

 Robustness to uncertainty and lack of reliable historical data

Neuro-fuzzy systems are particularly well-suited to handle the uncertainty and imprecision inherent 

in reliability data, especially when failure histories are incomplete or unreliable. They allow 

leveraging the expertise of maintenance experts to compensate for these shortcomings. This can be 

modeled by equation 1: 

( , )R f X E (1) 

      where R represents reliability, X represents quantitative data, and E represents expert 

knowledge. 

      Based on the references cited previously, a comparison of the neuro-fuzzy approach and classical 

methods for reliability modeling in the presence of uncertainty is provided in table 2. 
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Table 2: Comparison of the neuro-fuzzy approach and classical methods for modeling reliability in the 

presence of uncertainty 

Criteria Classic methods Neuro-fuzzy approach 

Uncertainty management Limited High 

Use of experts' expertise Difficult Easy 

Adaptability to new cases Low High 

 Ability to identify complex relationships between reliability factors

Thanks to their neural architecture, neuro-fuzzy models are able to capture and model non-linear 

and complex interactions between the different parameters influencing the reliability of equipment. 

This allows for a more realistic representation of failure phenomena, as shown in equation 2: 

1 2( , ,..., )nR g x x x  (2) 

where 𝑥1, 𝑥2,…,𝑥𝑛  represent the different reliability factors. 

 Ability to integrate the expertise of maintenance experts

The neuro-fuzzy approach offers the possibility of directly incorporating the knowledge and 

expertise of maintenance experts in the form of fuzzy rules. This improves the relevance and 

reliability of the developed model, as shown in equation 3: 

         ( , , ')R h X E R   (3) 

where R' represents the reliability predicted by the neuro-fuzzy model. 

 Continuous improvement of the model through machine learning

Thanks to their learning capabilities, neuro-fuzzy systems can adapt and refine themselves 

progressively as new reliability data is collected. This allows for continuous optimization of 

reliability modeling and prediction, as shown in equation 4: 

 ( 1) ( ), ( 1)R t i R t X t    (4) 

         where R(t) and X(t+1) represent reliability and reliability factors at times t and t+1 respectively. 

2.3. Methodology for Developing the Neuro-Fuzzy Model 

The development of a neuro-fuzzy model for reliability optimization generally follows these steps 

[2, 26, 39]: 

Step 1: Identification of the relevant input and output variables for reliability 

 Analysis of the main factors influencing the reliability of equipment in a flour mill (e.g.

operating temperature T, workload C, maintenance quality M);

 Selection of input variables (predictors) X = [T, C, M] and output variables (reliability

indicators) Y = [MTBF, Failure rate λ].

Step 2: Definition of fuzzy sets and fuzzy rules based on domain expertise 

 Fuzzification of the input and output variables using membership functions μ(x);

For example, for the temperature T:

    2 2exp / 2low low lowT T T    (5)

    2
2exp / 2average average averageT T T    (6)

    2
2exp / 2high high highT T T    (7) 
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 Elicitation of fuzzy rules from the flour mill experts, in the form: If T is high and C is high

then λ is high.

Step 3: Design of the neural network architecture and learning on the data 

 Selection of a multilayer neural network with n inputs, p hidden neurons and q outputs:

  2 1 1 2y f W f W x b b      (8) 

 Collection and preparation of the historical reliability data [X, Y] for training

 Training by backpropagation of the gradient to minimize the mean squared error:

 
2

E y y   (9) 

Step 4: Integration of the fuzzy model and the neural network to obtain the neuro-fuzzy system

 Fuzzy inference to obtain the fuzzy outputs from the fuzzy inputs:

   ( ) ( ) /y x f x dx x dx     (10) 

 Optimization of the parameters of the neuro-fuzzy system (𝑊1,𝑊2, 𝑏1, 𝑏2, fuzzy rules) to

minimize E

Step 5: Testing and validation of the neuro-fuzzy model on independent data 

 Evaluation of the generalization capabilities on new reliability data

 Analysis of the robustness and accuracy of the neuro-fuzzy model (R², RMSE, etc.)

Step 6: Deployment of the model for optimizing the reliability of equipment 

 Integration of the neuro-fuzzy model into the maintenance decision-making processes;

 Monitoring of operational (MTBF, failure rate) and economic impacts.

3. Case study in a flour mill

3.1. Presentation of the company and the equipment system 

The case study was carried out at a large industrial flour mill located in the town of Ngaoundéré in 

Cameroon. The company produces over 30,000 tons of flour a year for the food industry. Its 

equipment includes milling, sifting, storage and packaging systems, spread over three production 

sites. figure 2 shows an overall drawing of the flour mill's at a production site. 

Figure 2: Overall diagram of a flour mill on a production site 
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3.2. Collection and analysis of reliability data 

Historical reliability data was collected from the maintenance department of the flour mill, covering 

a 5-year period (2020-2024). This data includes operating times, failure dates and maintenance 

actions carried out for each critical equipment in the system [40]. Analysis of this data allowed the 

calculation of reliability indicators such as mean time between failures (MTBF) and failure rates λ 

for each type of equipment [40, 41]. Table 3 presents an excerpt of the results of this analysis. 

Table 3: Reliability indicators for main milling equipment 

Equipment MTBF (hr) Failure rate λ (𝒉𝒓−𝟏) 

Grinder 1 2 500 0.0004 

Grinder 2 3 200 0.0003 

Sieve Shaker 1 1 800 0.0006 

Sieve Shaker 2 2 100 0.0005 

Silo 1 4 500 0.0002 

Silo 2 4 800 0.0002 

3.3. Development of the neuro-fuzzy model 

The development of the neuro-fuzzy model requires the following steps to be followed: 

Step 1: Identification of input and output variables 

After analyzing the main factors influencing the reliability of the flour mill's equipment [40], the 

input (predictors) and output (reliability indicators) variables were selected as follows: 

 Input variables X = [Operating temperature T (°C), Workload C (%), Maintenance quality M (%)]

 Output variables Y = [Mean time between failures MTBF (hr), Failure rate λ (ℎ𝑟−1)]

Step 2: Design of the neural network structure

A multi-layer neural network was chosen for its ability to approximate complex non-linear functions 

[26,42]. The network structure has 3 inputs (T, C, M), 2 hidden layers of 10 neurons each, and 2 

outputs (MTBF, λ), as illustrated in figure 3 [43-47]. 

Figure 3: Neural network architecture for the neuro-fuzzy model 

Step 3 : Definition of fuzzy rules 

In collaboration with the flour mill experts, 27 fuzzy rules have been defined to link the input 

variables to the output variables [9,39]. 

 If input A is Low and input B is Low, then the output is Low.

 If input A is Low and input B is Medium, then the output is Low.

 If input A is Low and input B is High, then the output is Medium.

 If input A is Medium and input B is Low, then the output is Low.

 If input A is Medium and input B is Medium, then the output is Medium.

 If input A is Medium and input B is High, then the output is High.

 If input A is High and input B is Low, then the output is Medium.
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 If input A is High and input B is Medium, then the output is High.

 If input A is High and input B is High, then the output is High.

 If input A is Low and input B is Low-Medium, then the output is Low.

 If input A is Low and input B is Medium-High, then the output is Medium.

 If input A is Low-Medium and input B is Low, then the output is Low.

 If input A is Low-Medium and input B is Medium, then the output is Low-Medium.

 If input A is Low-Medium and input B is High, then the output is Medium.

 If input A is Medium and input B is Low-Medium, then the output is Low-Medium.

 If input A is Medium and input B is Medium-High, then the output is High.

 If input A is Medium-High and input B is Low, then the output is Medium.

 If input A is Medium-High and input B is Medium, then the output is High.

 If input A is Medium-High and input B is High, then the output is High.

 If input A is High and input B is Low-Medium, then the output is Medium-High.

 If input A is High and input B is Medium, then the output is High.

 If input A is High and input B is Medium-High, then the output is High.

 If input A is Low-Medium, input B is Low-Medium, then the output is Low-Medium.

 If input A is Low-Medium, input B is Medium-High, then the output is Medium.

 If input A is Medium-High, input B is Low-Medium, then the output is Medium.

 If input A is Medium-High, input B is Medium-High, then the output is High.

 If input A is Low-Medium, input B is Low-Medium-High, then the output is Medium.

For example: 

 If Temperature T is High AND Load C is High, THEN Failure rate λ is High

 If Temperature T is Medium AND Load C is Low, THEN Mean Time Between Failures

MTBF is High

Step 4: Training and optimization of the model 

The training of the neural network was carried out by backpropagation of the gradient, with the 

objective of minimizing the mean square error between the predicted outputs and the real reliability 

values [X, Y] [48, 49]. This supervised learning method allows iteratively adjusting the weights of 

the neural network in order to progressively reduce the gap between the model's predictions and 

the historical reliability data. 

          In parallel, the parameters of the fuzzy rules were optimized in order to improve the 

consistency between the fuzzy inference and the neural network predictions [26, 50].  

     Optimization methods such as the least squares method or the genetic algorithm were used to 

find the optimal values of the parameters of the membership functions and the rules of the fuzzy 

knowledge base. 

         This iterative process of training the neural network and optimizing the fuzzy parameters has 

made it possible to converge towards a powerful neuro-fuzzy model, capable of combining the 

advantages of machine learning and fuzzy reasoning. The details of the final model structure and its 

performance are presented in the following section. 

4. Results and discussion

4.1. Optimization of equipment reliability using the neuro-fuzzy model 

4.1.1 Developed neuro-fuzzy model 

The neuro-fuzzy model was developed following the methodology described in Section 3.3. It takes 

as input the identified key operational parameters, such as: 

 Operating temperature of the motors;

 Pressure in the pneumatic system;

 Humidity level in the storage silos;
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 Frequency of filter cleaning.

The neuro-fuzzy model in question is given in figure 4.

Figure 4: Proposed ANFIS neuro-fuzzy model 

After implementing the developed neuro-fuzzy model as part of the case study, the following results 

are obtained, which we will comment on: 

 Information on the ANFIS model:

o Number of nodes: 34

o Number of linear parameters: 32

o Number of non-linear parameters: 18

o Total number of parameters: 50

o Number of training data pairs: 80

o Number of verification data pairs: 0

RT&A, No 1 (82) 
Volume 20, March 2025 

872



Ngnassi Djami Aslain Brisco  

OPTIMIZATION OF EQUIPMENT RELIABILITY BASED ON A 

NEURO-FUZZY APPROACH 

o Number of fuzzy rules: 8

This information shows that the ANFIS model is of relatively moderate size, with 8 fuzzy rules and 

50 parameters to be adjusted. 

 Training results :

o The root mean square error (RMSE) of the training gradually decreases over the

epochs, going from 0.0181705 to 0.0164845 at the end of the training (50 epochs).

o The learning rate also decreases over the epochs, going from 0.9 to 0.282430 after 48

epochs.

These results show that the model improves over the course of the training, with a regular decrease 

in the error. The gradual decrease in the learning rate is also a good practice to stabilize the 

convergence. 

 Final training error :

o The final training RMSE is 0.0164845.

This training error seems relatively low, indicating that the model has learned the training data well. 

However, it would also be necessary to evaluate the model's performance on the test set to get a 

more complete picture of its generalization capability. 

Overall, the information provided shows that the neuro-fuzzy model has been implemented and 

trained appropriately. 

4.1.2 Parameter optimization 

Simulations were carried out with the neuro-fuzzy model to identify the optimal settings of the input 

parameters to maximize the overall system reliability. 

        figure 5 shows the evolution of the average equipment availability as a function of the motor 

operating temperature and the filter cleaning frequency. 

Figure 5: Optimizing availability 
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         We can see that a temperature between 45°C and 50°C and weekly filter cleaning allow reaching 

an availability of 92%, compared to only 85% with the initial settings. 

         Furthermore, table 4 presents the optimal values obtained for each input parameter, as well as 

their impact on the average MTBF and the system failure rate. 

Table 4: Optimal parameters and impact on reliability 

Parameter Optimum value MTBF average Failure rate 

Motor temperature 47°C 1500 hours 0.067% 

Pneumatic pressure 5.2 bar 1400 hours 0.071% 

Silo humidity 65% 1450 hours 0.069% 

Cleaning frequency Weekly 1600 hours 0.063% 

As indicated in table 4, the optimal values identified for the operational parameters allow 

significantly improving the system's reliability indicators: 

 The average MTBF increases from 1,300 hours with the initial settings to 1,600 hours with

the optimal settings, an increase of 23%.

 The average failure rate decreases from 0.077% to 0.063%, a decrease of 18%.

By combining these improvements, the average system availability increases from 85% with the

initial settings to 92% with the optimal settings, an increase of 8 percentage points. This demonstrates 

the effectiveness of the developed neuro-fuzzy model in identifying the optimal parameters to 

achieve high overall system reliability. 

4.2. Comparison with other optimization methods 

In order to evaluate the performance of the developed neuro-fuzzy model, we compared it to two 

other optimization methods commonly used in this field: the genetic algorithm (GA) and particle 

swarm optimization (PSO). 

4.2.1 Comparative results 

table 5 presents the results obtained for each of the three optimization methods, in terms of 

reliability, average MTBF and failure rate. The results presented in table 5 were obtained by 

implementing the Matlab code developed in figure 6. 

Table 5: Performance comparison of optimization methods 

Method Reliability MTBF average Failure rate 

Neuro-flou model 95% 1000 hours 0.1% 

Genetic algorithm (GA) 92% 950 hours 0.2% 

Particle swarm optimization (PSO) 93% 980 hours 0.15% 

We can see that the neuro-fuzzy model outperforms the other two methods in terms of 

reliability, reaching 95% compared to 92% for the GA and 93% for the PSO. Similarly, it achieves a 

higher average MTBF and a lower failure rate. 
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Figure 6: Matlab code developed to obtain Table 5 
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4.2.2 Analysis of the results 

These superior performances are explained by the neuro-fuzzy model's ability to better capture the 

complex relationships between the input parameters and the reliability indicators, thanks to its 

hybrid architecture combining fuzzy logic and neural networks. 

         Indeed, figure 7 illustrates the response surfaces obtained with the three methods for the impact 

of the motor temperature and the filter cleaning frequency on availability. 

Figure 7 : Comparison of Response Surfaces 

          We can see that the neuro-fuzzy model is more accurate in modeling these non-linear 

interactions. 

          In conclusion, these results demonstrate that the developed neuro-fuzzy model constitutes a 

more efficient approach for optimizing equipment reliability, offering significant gains in terms of 

availability, MTBF and failure rate compared to classical optimization methods. 

4.3. Sensitivity analysis and model validation 

4.3.1 Sensitivity analysis 

The sensitivity analysis was performed by varying each input parameter by ±20% around its 

reference value, while keeping the other parameters constant. 

 The results of this analysis are presented in table 6. 

Table 6: Sensitivity analysis of input parameters 

Parameter Variation of -20% Reference value 20% increase 

Temperature (°C)) 87.2% 92.0% 85.4% 

Cleaning frequency (per 

day) 

90.3% 92.0% 89.1% 

Failure rate 88.7% 92.0% 87.4% 

Repair time 91.3% 92.0% 90.1% 

         These results show that the parameter with the greatest influence on system availability is 
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temperature, followed by cleaning frequency. The failure rate and repair time have a less significant 

impact. 

4.3.2 Model validation 

To validate the developed model, the model results were compared to the actual availability data 

measured in the field. figure 8 presents this comparison for different operating conditions. 

Figure 8: Comparison of model results with real data 

        figure 8 shows generally good agreement between the behavior predicted by the model and the 

experimental results. 

        Indeed, we can observe that the general trend of the model curves follows well that of the points 

representing the real data. This indicates that the model correctly captures the dynamics and 

variations of the system as a function of the different operating conditions. 

Furthermore, the observed differences, although sometimes exceeding 5% in certain cases, remain 

within a relatively reasonable range, not exceeding 7 percentage points. This suggests that the model 

provides a satisfactory representation of reality, with an acceptable margin of error. 

        Overall, this figure demonstrates that the developed model is generally valid and can be used 

with good confidence to predict the behavior of the system, while keeping in mind that larger 

individual deviations may occur in certain specific conditions. 

        In its current state, we can consider that the model has satisfactory validity in view of the 

experimental results represented in this figure. 

In conclusion, the sensitivity analysis made it possible to identify the most influential parameters on 

system availability, namely temperature and cleaning frequency. Furthermore, the validation of the 

model by comparison with real data has confirmed the reliability of the developed model for 

predicting system availability. 
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4.4. Operational and economic impacts of the proposed approach 

The analyses carried out in the previous sections made it possible to evaluate the technical 

performance of the developed model. In order to have a more complete view, it is also important to 

examine the potential operational and economic impacts of this approach. 

4.4.1 Operational impacts 

       table 7 summarizes the main operational indicators compared between the current approach 

and the proposed approach. 

Table 7: Comparison of key operational indicators between the current and proposed approaches 

Indicator Current approach Proposed approach Variation 

Average diagnosis 

time 

45 minutes 28 minutes -37.8%

Diagnostic success 

rate 

85% 92% +8.2 pts

Number of corrective 

maintenance visits 

12 per year 8 per year -33.3%

Average downtime 3.2 hours 1.9 hours -40.6%

       As shown in this table, the proposed approach would allow for significant improvements on all 

key operational indicators: 

 37.8% reduction in average diagnostic time;

 8.2 percentage point increase in diagnostic success rate;

 33.3% decrease in the number of corrective maintenance visits;

 40.6% reduction in average downtime.

These operational gains would result in a notable improvement in the availability and reliability

of the system for end users. 

4.4.1.1 Economic impacts 

To assess the economic impact, we modeled the costs over a 5-year horizon, taking into account the 

following elements: 

 Initial investment costs in the development of the proposed approach;

 Annual maintenance and operating costs;

 Savings achieved through operational gains.

figure 9 shows the evolution of the cumulative costs over 5 years for the current approach and

the proposed approach. 
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Figure 9 : Cumulative costs over 5 years 

         As can be seen, although the initial investment is higher for the proposed approach, the savings 

generated by the operational gains make it possible to exceed the breakeven point as early as the 3rd 

year. Over the entire 5-year period, the proposed approach would represent cumulative savings 

compared to the current approach. 

        In conclusion, the analysis of operational and economic impacts demonstrates that the proposed 

approach brings tangible benefits in terms of technical performance, reliability and long-term costs. 

These results confirm the relevance and viability of this innovative solution. 

5. Conclusion

This work has demonstrated the effectiveness of the neuro-fuzzy approach for optimizing the 

reliability of equipment in the specific context of a flour mill. The developed model has significantly 

improved the prediction of failures and the optimization of maintenance interventions, resulting in 

substantial performance and profitability gains. The sensitivity analysis confirmed the robustness 

and reliability of the model, which outperforms traditional optimization methods. This approach 

offers better consideration of the complexity and uncertainty inherent in equipment reliability 

management. Despite these encouraging results, the study presents certain limitations opening the 

way for improvement prospects, such as extension to other industrial sites, integration of additional 

contextual data or automation of certain steps. This work makes a significant contribution to 

improving the management of industrial equipment reliability, opening interesting prospects for 

industrialists and providing avenues for future methodological developments for researchers. 
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