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Abstract 

Statistical distributions are essential tools for describing and predicting real-world phenomena, 

though recent advancements in data collection have made it challenging to fit existing probability 

models to many practical datasets. While non-parametric models are sometimes recommended, 

parametric models retain substantial popularity due to their interpretability and flexibility. The 

quadratic rank transmutation map (QRTM) technique has been used to create new families of non-

Gaussian distributions, known as transmuted distributions, which allow for modifications in 

moments, skewness, and kurtosis, thus increasing flexibility. The transmuted Weibull distribution 

(TWD) has gained attention for applications in reliability, survival analysis, and lifetime data 

analysis. This article focuses on a Bayesian analysis of the transmuted Weibull distribution, a 

generalization of the traditional Weibull model that addresses its limitations, particularly for 

datasets exhibiting non-monotonic failure rates. Bayesian parameter estimation is performed using 

a Markov Chain Monte Carlo (MCMC) algorithm, with both non-informative and informative 

priors. We calculate Bayes estimators (BEs) and posterior risks (PRs) under different loss functions, 

including the Absolute Error Loss Function (AELF), precautionary loss function (PLF), and 

quadratic loss function (QLF). Simulation studies evaluate the Bayes estimators' performance, 

investigating the effects of various priors, sample sizes, and censoring rates on estimation accuracy 

and credible interval width. Real-world data applications highlight the practical utility of the 

Bayesian approach for the TWD, showing consistent results with increasing sample sizes and 

underscoring the robustness of the MCMC algorithm for parameter estimation. The article is 

structured as follows: the TWD’s parameters, including scale, shape, and transmutation, are 

estimated under different loss functions and priors. Bayesian credible intervals (BCIs) are also 

computed. Both uncensored and censored data environments are considered, with varying sample 

sizes and censoring rates. Posterior risks for each estimator are analyzed to assess performance, and 

two real datasets are used to illustrate the flexibility and applicability of the proposed distribution. 

This study lays a foundation for future research, such as exploring mixtures of transmuted Weibull 

distributions or conducting Bayesian analyses for record values. 

Keywords: Transmuted Weibull distribution, Markov Chain Monte Carlo, 
Bayesian credible intervals, Bayes estimators, posterior risks, absolute error loss 
function, precautionary loss function, quadratic loss function, censoring. 
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I. Introduction

Statistical distributions are essential for describing and predicting real-world phenomena. 
However, advancements in data collection methods have led to challenges in fitting existing 
probability models to many significant and practical datasets [1]. In such cases, while non-
parametric models may be recommended, parametric models continue to enjoy substantial 
popularity. The quadratic rank transmutation map (QRTM) technique has been employed to create 
new families of non-Gaussian distributions [2]. This technique modifies the moments, skewness, 
and kurtosis of a baseline distribution, resulting in what is known as a transmuted distribution. 
This family of distributions has attracted considerable attention from researchers, leading to the 
development and exploration of various new flexible distributions over the past decade. For 
instance, Al Sobhi  [3] introduced the transmuted modified Weibull distribution, while others 
presented the exponentiated transmuted Weibull distribution. More recently, a new lifetime 
distribution called the transmuted cubic Weibull distribution was constructed, and a novel 
weighted distribution known as the size-biased weighted transmuted Weibull distribution was 
introduced. The method of least squares and the method of moments have been utilized to 
estimate parameters for the transmuted Weibull distribution, with comparisons made through 
simulation studies using statistical measures like mean squared error (MSE) [4]. Researchers have 
also explored various structural properties of the transmuted Weibull distribution, including its 
mean, harmonic mean, standard deviation, moment generating function (MGF), skewness, and 
kurtosis [5][6]. Currently, transmuted distributions find applications in numerous fields, including 
reliability studies, lifetime analysis, engineering, economics, insurance, and environmental 
sciences.  

The Weibull distribution is a widely recognized lifetime probability distribution, commonly 
used in various domains of reliability and survival analysis [7]. Its attractiveness largely arises 
from the variety of shapes it can assume by adjusting its shape parameter. Additionally, the 
Weibull distribution is versatile, encompassing many other distributions, such as the exponential 
and Rayleigh distributions, as special cases. Despite its widespread use and applicability, the 
traditional Weibull distribution does not fully capture the range of lifetime phenomena. For 
instance, it is not suitable for datasets exhibiting a non-monotonic failure rate, prompting 
investigations into generalizations of the Weibull distribution. A notable generalization applicable 
to survival data analysis is the transmuted generalized inverse Weibull distribution, which 
discusses its mathematical properties and employs maximum likelihood methods for parameter 
estimation. Similarly, the transmuted generalized Weibull distribution has been developed, 
exploring its mathematical properties, including the quantile function, moments, entropies, mean 
deviation, Bonferroni and Lorenz curves, and the moments of order statistics, also using maximum 
likelihood for parameter estimation. Furthermore, the generalized transmuted Weibull distribution 
has been proposed, with its properties derived. This article focuses on the Bayesian analysis of the 
transmuted Weibull distribution, which serves as a generalization of the Weibull probability 
distribution. We emphasize Bayesian analysis because maximum likelihood and moment 
estimators have been used for parameter estimation of the transmuted Weibull distribution [8]. To 
facilitate this analysis, we employ a Markov Chain Monte Carlo (MCMC) algorithm to compute 
posterior summaries for the unknown parameters of the distribution, comparing the results across 
different priors, loss functions, sample sizes, and parameter sets [9]. 

The objective of this paper is to define the Transmuted Weibull distribution and introduce its 
likelihood function, followed by the derivation of posterior distribution expressions utilizing both 
non-informative and informative priors, as well as marginal posterior densities for both censored 
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and uncensored data. The study aims to explore Bayesian estimators (BEs) and their associated 
posterior risks (PRs) under various loss functions. Additionally, the paper seeks to detail the 
estimation of unknown parameters of the proposed distribution through the MCMC algorithm for 
posterior summaries, encompassing different loss functions and prior types. The work will also 
provide a mathematical and numerical discussion of Bayesian credible intervals (BCIs) and 
conclude with an analysis of a real-life dataset. 

II. Transmuted Weibull Distribution

As introduced by Alzaatreh et al. in 2013 [10], a random variable X follows a transmuted 
probability distribution if its probability density function (pdf) and cumulative distribution 
function (CDF) are given by: 

𝑓(𝑥) = 𝑔(𝑥)(1 + 𝛾 − 𝛾. 2𝐺(𝑥)) 
𝐹(𝑥) = 𝐺(𝑥)[(1 + 𝛾) − 𝛾. 𝐺(𝑥)] 

where 𝑥 > 0 and the transmutation parameter 𝛾 satisfies |𝛾| ≤ 1. Here, 𝐺(𝑥) is the CDF of the 
baseline distribution, and the functions 𝑓(𝑥) and 𝐹(𝑥) represents the pdf and CDF of the 
transmuted distribution, respectively.  

A random variable X is defined to follow a Weibull distribution characterized by parameters 
𝛼 > 0 and 𝛽 > 0 if its probability density function (PDF) is given by: 

𝑔(𝑥; 𝛼, 𝛽) =
𝛼

𝛽
(𝒙)𝛼−1𝑒𝑥𝑝 (−

𝑥𝛼

𝛽
) , 𝑥 ≥ 0 

The corresponding cumulative distribution function (CDF) for this Weibull distribution can be 
expressed as:  

𝐺(𝑥) = 1 − 𝑒𝑥𝑝 (−
𝑥𝛼

𝛽
)

To find the CDF of the transmuted Weibull distribution, we substitute 𝐺(𝑥) into the following 
formula:  

𝐹(𝑥) = (1 + 𝛾) (1 − 𝑒𝑥𝑝 (− (
𝑥

𝛽
)

𝛼

)) − 𝛾 (1 − 𝑒𝑥𝑝 (− (
𝑥

𝛽
)

𝛼

))

2

Through algebraic manipulation, we derive the CDF for the transmuted Weibull distribution 
as: 

𝐹(𝑥; 𝜃) = 𝑒𝑥𝑝 (− (
𝑥

𝛽
)

𝛼

) (1 − 𝛾 + 𝛾 𝑒𝑥𝑝 (− (
𝑥

𝛽
)

𝛼

)) 

where 𝜃 = (𝛼, 𝛽, 𝛾). To determine the PDF of the transmuted Weibull distribution, we 
differentiate this CDF with respect to 𝑥 and simplify the result. The resulting PDF is then 
expressed as: 

𝑓(𝑥; 𝜃) =
𝛼

𝛽
(

𝑥

𝛽
)

𝛼−1

𝑒𝑥𝑝 (− (
𝑥

𝛽
)

𝛼

) . (1 − 𝛾 + 2𝛾 exp (− (
𝑥

𝛽
)

𝛼

)), 

𝑥 ≥ 0, 𝛼, 𝛽 > 0 𝑎𝑛𝑑 |𝛾| ≤ 1 
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Special Cases 
• When γ = 0, the Transmuted Weibull distribution simplifies to the standard

Weibull distribution. 
• If α = 1, the result is the transmuted exponential distribution. Furthermore, with

γ = 0, it becomes the standard exponential distribution. 
• Setting both α and β to 1 yields the transmuted standard exponential distribution.
• When α = 2, we obtain the transmuted Rayleigh distribution.
• If γ = 0, this corresponds to the traditional Rayleigh distribution.

III. Likelihood Functions for various Sampling Schemes

Consider a complete random sample 𝑋1, 𝑋2, … 𝑋𝑛 of size 𝑛 taken from the transmuted Weibull 
distribution. Then, the likelihood function for the complete data set is given by: 

𝐿(𝑥; 𝜃) = 𝛼𝑛𝑒𝑥𝑝 {(𝛼 − 1) ∑ 𝑙𝑜𝑔𝑥𝑖

𝑛

𝑖=1

}
1

𝛽𝑛
𝑒𝑥𝑝 {− ∑

𝑥𝑖
𝛼

𝛽

𝑛

𝑖=1

} ∏ [1 − 𝛾 + 2𝛾 exp (−
𝑥𝑖

𝛼

𝛽
)]

𝑛

𝑖=1

 

where 𝜃 = (𝛼, 𝛽, 𝛾) and 𝑥 = 𝑥1, 𝑥2, … 𝑥𝑛. In many life-testing experiments, it’s not possible to 
collect complete failure time data due to time and cost constraints. As a result, censoring plays an 
essential role in lifetime data analysis. Let𝑋 = 𝑋1, 𝑋2, … 𝑋𝑟 be a type-I censored sample of size 𝑟 
from 𝑛 items, where the lifetimes follow a transmuted Weibull distribution with parameters 
𝛼, 𝛽 & 𝛾. Consider a distribution with specific parameters. In the context of Type I censoring, it’s 
important to note that the censoring time is predetermined, while the number of observed failures 
is random. Suppose we have 𝑛 items under life testing, and we observe 𝑟 failures at times 
𝑡1, 𝑡2, … 𝑡𝑟. Here, 𝑟 is an integer between 0 and 𝑛, and (𝑛 − 𝑟) represents the number of items that 
survive or remain uncensored. According to Mendenhall and Hader (1958) [9], the likelihood 
function for censored data is given by: 

𝐿(𝑥; 𝜃) ∝ ∏ 𝑓(𝑥𝑗)

𝑟

𝑗=1

. [1 − 𝐹(𝑇)]𝑛−𝑟 

where T represents the time, r denotes the number of failures (or uncensored observations), 
and (𝑛 − 𝑟) are the censored observations. For a transmuted Weibull distribution applied to 
censored data, the likelihood function can be expressed as: 

(𝑥; 𝛳) ∝ 𝛼𝑇𝑒𝑥𝑝 (−𝛼 ∑ 𝑙𝑜𝑔
1

𝑥𝑗

𝑟

𝑗=1

)
1

𝛽𝑟
𝑒𝑥𝑝 (−

∑ 𝑥𝑗
𝛼𝑟

𝑗=1

𝛽
) × 𝑒𝑥𝑝 [∑ 𝑙𝑜𝑔 {1 − 𝛾 + 2𝛾 exp (−

𝑥𝑖
𝛼

𝛽
)}

𝑟

𝑗=1

] 

𝑒𝑥𝑝 ((𝑛 − 𝑟)𝑙𝑜𝑔 [1 − 𝑒𝑥𝑝 (−
𝑇𝛼

𝛽
) × {1 − 𝛾 + 𝛾𝑒𝑥𝑝 (−

𝑇𝛼

𝛽
)}]) 

Next, we examine the posterior distribution using Bayes’ theorem. The posterior distribution, 
g(α∣x) is given by:  

𝑔( 𝛼 ∣ 𝑥 ) =
𝐿(𝑥; 𝛼)П(𝛼)

∫ 𝐿(𝑥; 𝛼)П(𝛼)𝑑𝛼
∞

𝛼

where 𝜋(𝛼) denotes the joint prior distribution of the parameters 𝛼 = 𝛼1, 𝛼2, … 𝛼𝑘, 𝐿(𝑥; 𝛼) 
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represents the likelihood function, and 𝑔(𝛼 ∣ 𝑥) is the joint posterior distribution. 

IV. Posterior Distribution using Uniform Prior (UP)

In Bayesian estimation, to determine unknown parameters, we specify a prior for each parameter 
that isn't explicitly defined by the model itself. Unlike the frequentist approach, the Bayesian 
method incorporates both prior knowledge about the parameters and the observed data. When 
prior information about the parameters is lacking, a non-informative prior can be used in Bayesian 
analysis. This type of prior conveys minimal information about the parameters, reflecting a lack of 
strong prior beliefs. 

As introduced by Yousaf et al. in 2020 [11], to estimate the unknown parameters of the 
transmuted Weibull distribution, we assume the following prior distributions: 𝛼 ∝ 1, ∀𝛼 ∈

(0, ∞), 𝛽 ∝ 1, ∀𝛽 ∈ (0, ∞) and 𝛾 ∝ 1, ∀𝜆 ∈ (−1,1). With the assumption that these parameters are 
independent, the joint prior distribution for 𝛼, 𝛽 𝑎𝑛𝑑 𝜆 is: 𝜋1(𝛼, 𝛽, 𝛾) ∝ 1, where 𝛼, 𝛽 > 0 and |𝛾| ≤

1. Using Bayes’ theorem, the joint posterior distribution of parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 , given data 𝑥,
with a uniform prior is: 
𝑔(𝜃|𝑥) =

𝐿(𝑥;𝜃)𝜋(𝜃)

∫ ∫ ∫ 𝐿(𝑥;𝜃)𝜋(𝜃)𝑑𝛾𝑑𝛽𝑑𝛼
1

−1
∞

0
∞

0

 where 𝐿(𝑥; 𝜃) is the likelihood function and 𝜋(𝜃) represents the 

uniform prior over the parameters 𝛼, 𝛽, 𝛾. 

𝑔(𝜃|𝑥) =
𝛼𝐴01−1exp (−𝛼𝐴11)

1
𝛽𝑛 exp (−

𝐴21

𝛽
) exp (𝐴31)

∫ ∫ ∫ 𝛼𝐴01−1exp (−𝛼𝐴11)
1

𝛽𝑛 exp (−
𝐴21

𝛽
) exp (𝐴31)𝑑𝛾𝑑𝛽𝑑𝛼

1

−1

∞

0

∞

0

where 𝐴01 = 1 + 𝑛, 𝐴11=∑ 𝑙𝑜𝑔
1

𝑥𝑖

𝑛
𝑖=1 , 𝐴21=∑ 𝑥𝑖

𝛼𝑛
𝑖=1 and 𝐴31=∑ 𝑙𝑜𝑔 {1 − 𝜸 + 2𝜸 exp (−

𝑥𝑖
𝛼

𝛽
)}𝑛

𝑖=1 . 

Likewise, for censored data, the posterior distribution is given by: 

𝑔(𝜃|𝑥) =
𝛼𝐵01−1exp (−𝛼𝐵11)

1

𝛽𝑟exp (−
𝐵21

𝛽
)exp (𝐵31)

∫ ∫ ∫ 𝛼𝐵01−1exp (−𝛼𝐵11)
1

𝛽𝑟exp (−
𝐵21

𝛽
)exp (𝐵31)𝑑𝛾𝑑𝛽𝑑𝛼

1
−1

∞
0

∞
0

 (1) 

where 𝐵01 = 1 + 𝑟, 𝐵11=∑ 𝑙𝑜𝑔
1

𝑥𝑗

𝑟
𝑗=1 , 𝐵21=∑ 𝑥𝑗

𝛼𝑟
𝑗=1 and 𝐵31=∑ 𝑙𝑜𝑔 {1 − 𝜸 + 2𝜸 exp (−

𝑥𝑖
𝛼

𝛽
)} +𝑟

𝑗=1

(𝑛 − 𝑟)𝑙𝑜𝑔 [1 − 𝑒𝑥𝑝 (−
𝑇𝛼

𝛽
) × {1 − 𝛾 + 𝛾𝑒𝑥𝑝 (−

𝑇𝛼

𝛽
)}]. 

Since the posterior distributions for both censored and uncensored data are not available in 
closed form, the marginal posterior densities of the parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝜸 for both censored and 
uncensored data are obtained by integrating out the nuisance parameters, i.e., 𝑔(𝛼|𝑥) =

∫ ∫ 𝑔(𝛼, 𝛽, 𝜸|𝑥)
𝜆𝛽

𝑑𝛽𝑑𝜸 and vice versa. Therefore, we use the MCMC technique to obtain the 

posterior summaries. 

V. Posterior Distribution using Informative Prior (IP)

An informative prior offers specific, well-defined information about parameters through a 
probability distribution. In this study, we assume that the prior distributions of 𝛼, 𝛽 𝑎𝑛𝑑 𝜸 are 
independent. Specifically, we assume 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) for 𝛼, 𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(𝑐, 𝑑) for 𝛽 and 
𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑙1, 𝑙2) for 𝜸 . The joint prior distribution of parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝜸 is: 

𝑔(𝜃) ∝ 𝛼𝑎−1𝑒−𝑏𝛼
1

𝛽𝑐+1
𝑒

−
𝑑
𝛽

1

𝑙2 − 𝑙1
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The joint posterior distribution of the parameters 𝛼, 𝛽 & 𝛾 and assuming an informative prior 
(IP) for the complete data, is: 

𝑔(𝜃|𝑥) =
𝛼𝐶11−1exp (−𝛼𝐷11)

1

𝛽𝐶21−1exp (−
𝐷21

𝛽
)exp (𝐷31)

∫ ∫ ∫ 𝛼𝐶11−1exp (−𝛼𝐷11)
1

𝛽𝐶21−1exp (−
𝐷21

𝛽
)exp (𝐷31)𝑑𝛾𝑑𝛼𝑑𝛽

1
−1

∞
0

∞
0

 𝛼, 𝛽 > 0 and |𝛾| ≤ 1 

Where 𝐶11 = 𝑎 + 𝑛, 𝐷11 = 𝑏 + 𝑙𝑜𝑔
1

𝑥𝑖
, 𝐶21 = 𝑛 + 𝑐, 𝐷21 = 𝑑 + ∑ 𝑥𝑖

𝛼  𝑙𝑜𝑔
1

𝑥𝑖
and 𝐷31=∑ 𝑙𝑜𝑔 {1 −𝑛

𝑖=1

𝜸 + 2𝜸 exp (−
𝑥𝑖

𝛼

𝛽
)}. For censored data, the joint posterior distribution of 𝛼, 𝛽 𝑎𝑛𝑑 𝜸 given the data, 

is: 

𝑔(𝜃|𝑥) =
𝛼𝐶11−1exp (−𝛼𝐷12)

1

𝛽𝐶21−1exp (−
𝐷22

𝛽
)exp (𝐷32)

∫ ∫ ∫ 𝛼𝐶11−1exp (−𝛼𝐷12)
1

𝛽𝐶21−1exp (−
𝐷22

𝛽
)exp (𝐷32)𝑑𝛾𝑑𝛼𝑑𝛽

1
−1

∞
0

∞
0

 𝛼, 𝛽 > 0 and |𝛾| ≤ 1            (2) 

Where 𝐶12 = 𝑎 + 𝑟, 𝐷12 = 𝑏 + ∑ 𝑙𝑜𝑔
1

𝑥𝑗
, 𝐶22 = 𝑐 + 𝑟, 𝐷22 = 𝑑 + ∑ 𝑥𝑗

𝛼 and 𝐷32=∑ 𝑙𝑜𝑔 {1 − 𝜸 +𝑛
𝑗=1

2𝜸 exp (−
𝑥𝑖

𝛼

𝛽
)} + (𝑛 − 𝑟)𝑙𝑜𝑔 [1 − 𝑒𝑥𝑝 (−

𝑇𝛼

𝛽
) {1 − 𝜸 + 𝜸𝑒𝑥𝑝 (−

𝑇𝛼

𝛽
)}]. The marginal posterior densities 

of the parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝜸 for both uncensored and censored data are obtained by integrating 
out the nuisance parameters, that is, 𝑔(𝛼|𝑥) = ∫ ∫ 𝑔(𝛼, 𝛽, 𝜸|𝑥)

 

𝜸

 

𝛽
𝑑𝛽𝑑𝜸 and vice versa. 

VI. Bayes Estimators and Posterior Risks for different Loss Functions

To estimate an unknown parameter in Bayesian analysis, a loss function must be specified. The 
choice depends on the specific problem, though there are no strict rules for selecting one. Loss 
functions can be symmetric (equal weighting to over- and underestimation) or asymmetric. For a 
decision 𝑑, a loss function 𝐿(𝛽, 𝑑) ≥ 0 represents the incurred loss when estimating unknown 
parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝜸, and by decisions 𝑑1, 𝑑2 𝑎𝑛𝑑 𝑑2. The expected loss, or posterior risk, denoted 
by 𝑅(𝑑̂), is given by: 

𝑅(𝑑̂) = 𝐸𝜃|𝑥{𝐿(𝛽, 𝑑̂)} = ∫ 𝐿(𝛽, 𝑑̂)𝑝(𝛽|𝑥) 𝑑𝛽 

Bayes estimators and their respective posterior risks are computed under the Absolute Error 
Loss Function (AELF), precautionary loss function (PLF), and quadratic loss function (QLF). Table 
1 presents the expressions of Bayes estimators under various loss functions, along with their 
corresponding posterior risks. 

Table 1: BEs and PRs for Various Loss Functions 
Loss 

Function 
AELF PLF QLF 

Expression 𝐿(𝛽, 𝑑) = (𝛽 − 𝑑)2 𝐿(𝛽, 𝑑) =
(𝛽 − 𝑑)

𝑑

2

𝐿(𝛽, 𝑑) =
(𝛽 − 𝑑)

𝛽2

2

BEs 𝑑̂ = 𝐸𝛽|𝑥(𝛽) 𝑑̂ = √𝐸(𝛽2|𝑥)  𝑑̂ =
𝐸(𝛽−1|𝑥)

𝐸(𝛽−2|𝑥)

 

PRs 𝑅(𝑑̂)

= 𝐸(𝛽2|𝑥) − {𝐸(𝛽|𝑥)}2 
𝑅(𝑑̂) = 2 [√𝐸(𝛽2|𝑥) − 𝐸(𝛽|𝑥)] 𝑅(𝑑̂) =

{𝐸(𝛽−1|𝑥)}

𝐸(𝛽−2|𝑥)

 2
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VII. Posterior Estimates using Markov Chain Monte Carlo

From Equation (2), we observe that the posterior density is in an intractable form, requiring a 
numerical technique to solve it. Since the posterior summaries are challenging to obtain directly, a 
Markov Chain Monte Carlo (MCMC) technique is applied, as demonstrated by Carrera B and 
Papaioannou I, 2024 [12]. To implement MCMC, the posterior densities using both uniform and 
informative priors are expressed as: 

𝑔𝑈𝑃(𝜃|𝑥) ∝ 𝑓𝛼 (𝑛 + 1, ∑ 𝑙𝑜𝑔
1

𝑥𝑖

𝑛

𝑖=1
) 𝑓𝛽|𝛼 (𝑛

+ 1, ∑ 𝑥𝑖
𝛼

𝑛

𝑖=1
) 𝑓𝛾 (𝑒𝑥𝑝 (∑ 𝑙𝑜𝑔 {1 − 𝛾 + 2𝛾 exp (

𝑥𝑖
𝛼

𝛽
)}

𝑛

𝑖=1
)) 

𝑔𝐼𝑃(𝜃|𝑥) ∝ 𝑓𝛼 (𝑛 + 𝑎, ∑ 𝑙𝑜𝑔
1

𝑥𝑖

𝑛

𝑖=1
) 𝑓𝛽|𝛼 (𝑛 + 𝑏, ∑ 𝑥𝑖

𝛼
𝑛

𝑖=1
) 𝑓𝛾 (𝑒

+ 𝑒𝑥𝑝 (∑ 𝑙𝑜𝑔 {1 − 𝛾 + 2𝛾 exp (
𝑥𝑖

𝛼

𝛽
)}

𝑛

𝑖=1
)) 

Here, and 𝑓𝛼 and 𝑓𝛽|𝛼 represent the probability density functions of the gamma and inverse 
gamma distributions, respectively, 𝑓𝜸 while denotes the probability density function of the 
transmuted parameter. To obtain Bayes estimates, corresponding posterior risks, and Bayesian 
Credible Intervals (BCI), we proceed as follows: First, a random sample is generated from the 
transmuted Weibull distribution using the inverse integral transformation, i.e., 

𝑢𝑖 = (1 − 𝑒
− 

𝑥𝑖
𝛼

𝛽 ) (1 − 𝜸 + 𝜸𝑒
−

𝑥𝑖
𝛼

𝛽 ). After simplification, we obtain: 

𝑥𝑖 = [−𝛽𝑙𝑛 {1 − (
1 + 𝛾 − √(1 + 𝛾)2 − 4𝑢𝑖𝛾

2𝛾
)}]

1
𝛼

where 𝑢𝑖~𝑈(0,1) and 𝑖 = 1,2, … , 𝑛. By specifying parameter values, a desired random sample 
can be generated. To produce censored data, a censoring time 𝑇 is set, and units with values less 
than or equal to 𝑇 are recorded. Units with values greater than 𝑇 are considered censored 
observations. To implement the MCMC for obtaining posterior summaries, we proceed with the 
Gibbs sampling steps combined with a Metropolis-Hastings step, as stated by Faucett et al. [13]. 

VIII. Implementation using Real Life data

The dataset contains remission times for 116 patients diagnosed with acute leukemia. The 
remission durations (in months) are as follows: 1.08, 0.09, 1.48, 3.87, 13.94, 8.66, 6.11, 23.63, 0.20, 
2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 9.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 
7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 3.81, 0.62, 2.82, 5.32, 7.32, 14.06, 
10.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.78, 5.34, 7.59, 0.66, 15.96, 36.66, 1.05, 
2.69, 4.23, 5.41, 7.62, 10.75, 43.01, 1.19, 2.75, 4.26, 5.41, 7.13, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 
11.25, 17.14, 16.62, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.45, 3.02, 4.34, 5.71, 11.93, 7.79, 18.10, 
1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 2.02, 12.02, 3.31, 4.51, 6.54, 8.53 and 
22.69. 

To estimate the unknown parameters, we applied the methodology from previous sections, 
utilizing different loss functions and prior distributions. A chi-square test was conducted to verify 
if the data follow the transmuted Weibull distribution, yielding a p-value of 0.226, indicating a 
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good fit at the 5% significance level [14]. The Bayesian estimates (BEs), posterior risks (PRs) and 
Bayesian credible intervals for the parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝜸 of the transmuted Weibull distribution 
were calculated using uninformative (UP) and informative (IP) priors under AELF, PLF, and QLF 
loss functions [15]. These results are presented in Tables 2 and 3. 

Table 2: BEs and PRs of TWD with hyper parameters a=0.6, b=1.2, c=1.2 & d=1.5 

Data 
condition 

Loss function Size 
𝑛 UP IP 

Complete AELF 𝛼 = 2.1 1.653 (0.0021) 1.584 (0.0023) 
𝛽 = 1.3 1.209 (0.0045) 1.278 (0.0047) 
𝛾 = 0.7 0.715 (0.0298) 0.703 (0.0312) 

PLF 𝛼 = 2.1 1.664 (0.0052) 1.589 (0.0055) 
𝛽 = 1.3 1.229 (0.0038) 1.298 (0.0039) 
𝛾 = 0.7 0.733 (0.0755) 0.719 (0.0786) 

QLF 𝛼 = 2.1 1.645 (0.0076) 1.593 (0.0079) 
𝛽 = 1.3 1.215 (0.0029) 1.276 (0.0031) 
𝛾 = 0.7 0.710 (0.0662) 0.695 (0.0693) 

20% 
Censoring 

AELF 𝛼 = 2.1 1.719 (0.0061) 1.623 (0.0064) 

𝛽 = 1.3 1.107 (0.0028) 1.216 (0.0030) 
𝛾 = 0.7 0.641 (0.0516) 0.624 (0.0549) 

PLF 𝛼 = 2.1 1.732 (0.0075) 1.629 (0.0078) 
𝛽 = 1.3 1.139 (0.0042) 1.226 (0.0045) 
𝛾 = 0.7 0.629 (0.0843) 0.615 (0.0884) 

QLF 𝛼 = 2.1 1.708 (0.0091) 1.621 (0.0094) 
𝛽 = 1.3 1.105 (0.0026) 1.222 (0.0028) 
𝛾 = 0.7 0.598 (0.0694) 0.581 (0.0727) 

40% 
Censoring 

AELF 𝛼 = 2.1 1.911 (0.0109) 1.823 (0.0113) 

𝛽 = 1.3 1.095 (0.0082) 1.200 (0.0085) 
𝛾 = 0.7 0.594 (0.0581) 0.573 (0.0618) 

PLF 𝛼 = 2.1 1.928 (0.0121) 1.837 (0.0125) 
𝛽 = 1.3 1.098 (0.0065) 1.215 (0.0068) 
𝛾 = 0.7 0.621 (0.0821) 0.605 (0.0863) 

QLF 𝛼 = 2.1 1.898 (0.0144) 1.810 (0.0149) 
𝛽 = 1.3 1.082 (0.0038) 1.204 (0.0042) 
𝛾 = 0.7 0.576(0.0741) 0.556(0.0782) 

From Table 2, it is evident that the BEs under both UP and IP have lower posterior risks for 
uncensored data compared to censored data, due to the information loss associated with censoring. 
Additionally, the credible intervals for uncensored data were narrower than those for censored 
data. 

Table 3:  95% Bayesian Credible Intervals of TWD using UP and IP with Hyperparameters parameters a=0.6, b=1.2, 

c=1.2 & d=0.5 

Data Parameters 
UP Lower 

Limit 
UP Upper 

Limit 
IP Lower 

Limit 
IP Upper 

Limit 
Complete 𝛼 = 2.1 0.6234 2.9483 0.6257 2.9461 

𝛽 = 1.3 0.1402 1.3871 0.1415 1.3381 

𝛾 = 0.7 0.6543 1.1102 0.6401 1.1655 
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20% Censoring 𝛼 = 2.1 0.7483 3.1879 0.7491 3.1904 

𝛽 = 1.3 0.1521 1.4632 0.1578 1.3463 

𝛾 = 0.7 0.6798 1.1387 0.5964 1.2476 

40% Censoring 𝛼 = 2.1 0.9145 3.5529 0.9170 3.5224 

𝛽 = 1.3 0.2283 1.5874 0.2305 1.3812 

𝛾 = 0.7 0.7205 1.1618 0.5960 1.2393 

The table 3 presents 95% Bayesian credible intervals for the parameters 
𝛼 = 2.1, 𝛽 = 1.3 and 𝛾 = 0.7 of the transmuted Weibull distribution under both uninformative 
prior (UP) and informative prior (IP) approaches. Increased censoring rates (20% to 40%) lead to 
wider credible intervals, indicating greater uncertainty in parameter estimates due to loss of 
information. The IP generally results in narrower intervals compared to the UP, suggesting the 
benefit of incorporating prior information. Overall, Bayesian credible intervals provide precise 
estimates for uncensored data, and even with censoring, the intervals remain reasonable. This 
analysis underscores the effectiveness of Bayesian methods for parameter estimation in incomplete 
data scenarios, balancing precision and uncertainty. 

IX. Discussion

This article presents a Bayesian analysis of the transmuted Weibull distribution, utilizing both 
uniform and informative gamma priors under the AELF, PLF, and QLF loss functions. Real-world 
studies were conducted to evaluate the performance of the Bayes estimators, along with strategies 
for selecting suitable priors and loss functions across varying sample sizes and test termination 
times, under both complete and censored data settings. Specifically, two censoring rates—20% and 
40%—were examined. Tables 2 and 3 show that the Bayes estimates demonstrated consistency, 
approaching the true parameter values as sample sizes grew. Posterior risks (PRs) were higher for 
censored data than for uncensored data, and 95% credible intervals became narrower with larger 
sample sizes. These findings were consistent in practical applications, supporting the effectiveness 
of the proposed MCMC algorithm for Bayesian parameter estimation. Future research could 
expand this work by studying mixtures of transmuted Weibull distributions or applying Bayesian 
analysis to record values with the transmuted Weibull distribution. 
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