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Abstract

Several lifetime distributions have been developed in literature to handle different real-world scenario.
Most of these distributions were developed to model a unimodal (symmetric or asymmetric) data. Only a
hand-full of these distributions exhibits a bimodal property. This paper explores a new family of Lindley
distributions featuring a bimodal property. We introduce five different sub-families of the T-Power
Lindley{Y} family based on the quantile function of the uniform, exponential, Frechet, log-logistic and
logistic distributions. Useful mathematical properties of the proposed T-Power Lindley{Y} family of
distributions are derived and sub-models were the random variable T follows the one-parameter Topp-
Leone, exponential, exponentiated exponential, Weibull and Gumbel distributions are introduced. From
the graphical representation of the density function of these sub-models, we observe that the shape of
the density function accommodates a decreasing (reversed-J), left-skewed, right-skewed, symmetric, as
well as a bimodal shape. In order to illustrate the usefulness and performance of the proposed T-Power
Lindley{Y} family of distributions, the Gumbel Power Lindley (GPL) distribution belonging to the
proposed family of distribution was employed to fit a bimodal data set alongside with the beta-Normal
distribution. Result obtained from the analysis revealed that the Gumbel Power Lindley (GPL) distribution
compares favourably better than the beta-Normal distribution. The density fits of the distributions for the
data set was also investigated to support the claim.

Keywords: Lindley distribution; power Lindley distribution; quantiles; bimodality.

1. Introduction

Lifetime distributions are parametric models that seeks to analyze time-to-event data. Many
lifetime models such as exponential, Weibull, gamma, beta, Gumbel distributions etc, have been
studied and applied in literature to analyze lifetime data. Obviously, to increase the flexibility of
these classical models remains the strong reason for developing new ones, thus many researchers
have proposed generalized forms of these classical lifetime distribution.

The classical one-parameter Lindley distribution introduced by [11] has its density function
defined by

f (x) =
β2

β + 1
(1 + x)e−βx, x > 0, β > 0, (1)

and cumulative distribution function as

F(x) = 1 −
(

β + 1 + βx
β + 1

)
e−βx, x > 0, β > 0. (2)
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In order to increase the flexibility of the classical one-parameter Lindley distribution in
analyzing lifetime data, [7] introduced a two parameter Power Lindley distribution by considering
the power transformation T = X

1
α , with the density function defined by

f (x) =
αβ2

(1 + β)
(1 + xα)xα−1e−βxα

, x > 0, β, α > 0, (3)

and cumulative distribution function defined by,

F(x) = 1 −
(

β + 1 + βxα

β + 1

)
e−βxα

, x > 0, α, β > 0. (4)

A competing risks model when the causes of failure follow the one-parameter Lindley
distribution was studied by [12] and was applied to a data set representing the lifetime of 194
patients with squamous cell carcinoma reported in [9]. Their result shows that the Lindley
competing risks model provides a better fit to the data set under study than the exponential
and the Weibull distributions. Nonetheless, due to the monotonic property of the one parameter
Lindley distribution, there are situations where the distribution will fail to provide good fit in
modeling lifetime data.

Several methods of generating new classes of probability distributions have been established
in literature. The Kumaraswamy Lindley distribution and the Kumaraswamy Power Lindley
distribution have been introduced, respectively, by [13] and [14] using the Kumaraswamy-G
family of distributions proposed by [4]. A wider family of distributions called the “T − X family
of distributions“ was introduced by [2]. The CDF of the T − X family of distributions is defined
as

G(x) =
∫ W(F(x))

0
r(t)dt, = R[W(F(x))], (5)

where R(t) is the CDF of the random variable T and W(F(x)) is a continuous and monotonic
function of the CDF of a random variable X. Using this framework, [10] proposed the Lindley-X
family of distribution and considered a special case of Lindley-Pareto distribution. For a random
variable T following the density function of the Lindley distribution, [16] proposed the Odd
Lindley-G family of distributions with cumulative distribution function defined as

F(x, θ, ξ) =
θ2

θ + 1

∫ G(x,ξ)
1−G(x,ξ)

0
(1 + t)e−θtdt, (6)

where G(x, ξ) is the CDF of the random variable X, depending on a parameter vector ξ.
Undoubtedly, these generalizations have addressed some major drawbacks of the classical

one-parameter Lindley distribution. However, their flexibility is limited to handling unimodal
lifetime data. The need for developing a generalized Lindley distribution which can appropriately
model bimodal lifetime data forms the motivation of this paper and the T-Power Lindley{Y}
Family of distributions is one of such. The remaining sections of this paper are organized as
follows: Section 2 defines some sub-families of the T-Power Lindley{Y} based on different
quantile functions of a random variable Y. Section 3 gives some general mathematical properties
of the T-Power Lindley{Y} distribution. In Section 4, some new distributions belonging to the
T-Power Lindley{Y} family and some of their properties are discussed. Section 5 presents an
application of the T-Power Lindley{Y} family of distributions to a bimodal data set. Finally,
Section 6 presents the conclusion.

2. Sub-families of the T-Power Lindley{Y} Distribution Based on

different Quantile Functions

Let T, R and Y be random variables from a known probability distribution with the cumulative
distribution function defined by FT(x) = P(T ≤ x), FR(x) = P(R ≤ x), and FY(x) = P(Y ≤ x),
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respectively. Let the corresponding quantile functions be given as QT(p), QR(p) and QY(p). If
the density function exists, then we can denote them by fT(p), fR(p) and fY(p) respectively.

A unified definition of the random variables in [1] was given by [3]. The authors defined the
cumulative distribution function of a random variable X as

FX(x) =
∫ QY(FR(x))

a
fT(t)dt = P {T ≤ QY(FR(x))} = FT [QY(FR(x))], (7)

and the corresponding density function defined as

fX(x) =
fR(x)

fY {QY(FR(x))} fT {QY(FR(x))} . (8)

Table 1: Quantile Function of Some Known Distributions

Distributions Quantile Function QY(p) Support of Y
Uniform p [0, 1]

Exponential −log(1 − p) (0, ∞)

Frechet [−log(p)]−1 (0, ∞)

Log-logistic
p

1 − p
(0, ∞)

Logistic log
(

p
1 − p

)
(−∞, ∞)

If R be a random variable following the power Lindley distribution with PDF fR(x) and
CDF FR(x) defined in (3) and (4), respectively, then the sub-families of the T-Power Lindley{Y}
distribution can be generated based on different quantiles defined in Table 1.

2.1. T-Power Lindley{Uni f orm} Distribution

This family of distributions is generated by using the quantile function of the uniform distribution
in Table 1, with the support of T ∈ [0, 1]. From (7), the cumulative distribution function of the
T-Power Lindley{Uni f orm} distribution is defined by

FX(x) = FT [QY(FR(x))] = FT(FR(x)),

= FT

{
1 −

(
1 + β + βxα

1 + β

)
e−βxα

}
, (9)

and the corresponding density function is given by

fX(x) = fT(x)× fT {FR(x)} ,

=
αβ2

(1 + β)
(1 + xα)xα−1e−βxα

fT

{
1 −

(
1 + β + βxα

1 + β

)
e−βxα

}
. (10)

The Kumaraswamy Power Lindley distribution proposed by [14] and the Kumaraswamy
Lindley distribution proposed by [13] are members of this family.
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2.2. T-Power Lindley{Exponential} Distribution

This family of distributions is generated by using the quantile function of the exponential
distribution in Table 1, with the support of T ∈ (0, ∞). From (7), the cumulative distribution
function of the T-Power Lindley{exponential} distribution is defined by

FX(x) = FT [QY(FR(x))] = FT {−log(1 − FR(x))} ,

= FT

{
−log

[(
1 + β + βxα

1 + β

)
e−βxα

]}
, (11)

and the corresponding density function is given by

fX(x) =
fR(x)

1 − FR(x)
× fT {−log(1 − FR(x))} ,

=
αβ2(1 + xα)xα−1

(1 + β + βxα)
fT

{
−log

[(
1 + β + βxα

1 + β

)
e−βxα

]}
. (12)

2.3. T-Power Lindley{Frechét} Distribution

This family of distributions is generated by using the quantile function of the f rechét distribution
in Table 1, with the support of T ∈ (0, ∞). The cumulative distribution function of the T-Power
Lindley{Frechét} distribution is defined from (7) as

FX(x) = FT {QY(FR(x))} = FT

{
[− log(FR(x))]−1

}
,

= FT

{{
− log

(
1 −

(
1 + β + βxα

1 + β

)
e−βxα

)}−1
}

, (13)

and the corresponding density function is given by

fX(x) =
fR(x)

FR(x)[− log(FR(x))]2
× fT

{
[− log(FR(x))]−1

}
,

=

αβ2(1 + xα)xα−1 fT

{{
− log

(
1 −

(
1 + β + βxα

1 + β

)
e−βxα

)}−1
}

(
(1 + β)eβxα − (1 + β + βxα)

) [
log
(

1 −
(

1 + β + βxα

1 + β

)
e−βxα

)]2 . (14)

2.4. T-Power Lindley{log − logistic} Distribution

This family of distributions is generated by using the quantile function of the exponential
distribution in Table 1, with the support of T ∈ (0, ∞). From (7), the cumulative distribution
function of the T-Power Lindley{log − logistic} distribution is defined by

FX(x) = FT {QY(FR(x))} = FT

{
FR(x)

(1 − FR(x))

}
,

= FT

{
(1 + β)eβxα

(1 + β + βxα)
− 1

}
, (15)

and the corresponding density function is given by

fX(x) =
fR(x)

(1 − FR(x))2 × fT

{
FR(x)

(1 − FR(x))

}
,

=
αβ2(1 + β)(1 + xα)xα−1eβxα

(1 + β + βxα)2 fT

{
(1 + β)eβxα

(1 + β + βxα)
− 1

}
. (16)
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2.5. T-Power Lindley{logistic} Distribution

This family of distributions is generated by using the quantile function of the logistic distribution
in Table 1, with the support of T ∈ (−∞, ∞). From (7), the cumulative distribution function of
the T-Power Lindley{logistic} distribution is defined by

FX(x) = FT {QY(FR(x))} = FT

{
log
(

FR(x)
(1 − FR(x))

)}
,

= FT

{
log

(
(1 + β)eβxα

(1 + β + βxα)
− 1

)}
, (17)

and the corresponding density function is given by

fX(x) =
fR(x)

FR(x)(1 − FR(x))
× fT

{
log
(

FR(x)
(1 − FR(x))

)}
,

=

αβ2(1 + β)(1 + xα)xα−1 fT

{
log

(
(1 + β)eβxα

(1 + β + βxα)
− 1

)}
(1 + β + βxα)

[
(1 + β)− (1 + β + βxα)e−βxα] . (18)

Clearly, we observe that the support of the random variable T follows the support of Y, and
the support of the proposed random variable X follows the support of the random variable R.

3. Some Mathematical Properties of the T-Power Lindley{Y} Families of

Distributions

3.1. Transformation and Quantile Function

Lemma 1 presents a mathematical relationship between the random variable X following the
T-Power Lindley{Y} Distribution and the generator random variable T. The random variable Y
follows the Uniform, Exponential, Frechét, log-logistic and logistic distribution.
Lemma 1:

Let T be a random variable with pdf fT(x),
(a) if T is defined on the interval [0,1], then the random variable

X =

{
−1 − 1

β
− 1

β
W−1

[
− (1 − T)(1 + β)

eβ+1

]} 1
α

belongs to the T-Power Lindley{Uni f orm} Family of Distributions;
(b) if T is defined on the interval (0, ∞), then the random variable

(i)

X =

{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)

eT+β+1

]} 1
α

belongs to the T-Power Lindley{Exponential} Family of Distributions;

(ii)

X =

{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)(1 − e−T−1

)

eβ+1

]} 1
α

belongs to the T-Power Lindley{Frechét} Family of Distributions;
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(iii)

X =

{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)

(1 + T)eβ+1

]} 1
α

belongs to the T-Power Lindley{Log − logistic} Family of Distributions;

(c) if T is defined on the interval (−∞, ∞), then the random variable

X =

{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)

(1 + eT)eβ+1

]} 1
α

belongs to the T-Power Lindley{Logistic} Family of Distributions. Where W−1(.) is the negative
branch of the Lambert W function.
Proof:

The proof follows from a simple transformation between the random variables X and T
as defined in (9), (11), (13), (15) and (17), respectively. From these relationships, random sam-
ples for X can be generated by using T, that is, random samples for X following the T-Power
Lindley{Uni f orm} distribution can be generated by first generating random samples for T from
the pdf fT(x) and then compute

X =

{
−1 − 1

β
− 1

β
W−1

[
− (1 − T)(1 + β)

eβ+1

]} 1
α

, which has the cdf FX(x).

Lemma 2:
The quantile function for the (i) T-Power Lindley{Uni f orm}, (ii) T-Power Lindley{Exponential},

(iii) T-Power Lindley{Frechét}, (iv) T-Power Lindley{Log − logistic}, and (v) T-Power Lindley{Logistic}
families of distribution are, respectively, given by

(i) QX(p) =
{
−1 − 1

β
− 1

β
W−1

[
− (1 − QT(p))(1 + β)

eβ+1

]} 1
α

,

(ii) QX(p) =
{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)

eQT(p)+β+1

]} 1
α

,

(iii) QX(p) =

{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)(1 − e−[QT(p)]−1

)

eβ+1

]} 1
α

,

(iv) QX(p) =
{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)

(1 + eQT(p))eβ+1

]} 1
α

,

(v) QX(p) =
{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)

(1 + QT(p))eβ+1

]} 1
α

.

Proof:
The proofs follow directly by solving FX(QX(p)) = p, for QX(p), Where FX(.) is the cdf given

by (9), (11), (13), (15) and (17), respectively.

3.2. The Mode(s) of T-Power Lindley{Y} families of distribution

Lemma 3:
The mode(s) of the (i) T-Power Lindley{Uni f orm}, (ii) T-Power Lindley{Exponential}, (iii) T-

Power Lindley{Frechét}, (iv) T-Power Lindley{Log − logistic}, and (v) T-Power Lindley{Logistic}
distributions, respectively, are the solutions of (19), (20), (21), (22), and (23).

Ψ(x) =
− f

′
T [FR(x)]F̄R(x)

fT [FR(x)]
, (19)
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Ψ(x) =
− f

′
T [P1(x)]

fT [P1(x)]
− 1, (20)

Ψ(x) =
F̄R(x)

FR(x)[log FR(x)]

{
f
′
T [P2(x)]

fT [P2(x)]
P2(x) + log FR(x) + 2

}
, (21)

Ψ(x) =
− f

′
T [P3(x)]

F̄R(x) fT [P3(x)]
− 2, (22)

Ψ(x) =
1

FR(x)

{
− f

′
T [P4(x)]

fT [P4(x)]
− 2FR(x) + 1

}
, (23)

where P1(x) = {− log(1 − FR(x))} , P2(x) = {− log FR(x)}−1 ,

P3(x) =
FR(x)

(1 − FR(x))
, P4(x) = log

{
FR(x)

(1 − FR(x))

}
, and

Ψ(x) =
{
(1 + {(1 + xα)β)}−1)(−1 + (α − 1)(αβxα)−1 + (1 + xα)β)

}
Proof:

We need to first show that the first derivative of the density of the Power Lindley Distribution
is expressed as

f
′
R(x) = Ψ(x)

f 2
R(x)

F̄R(x)
(24)

where F̄R(x) =
{1 + (1 + xα)β}

1 + β
e−βxα

is the survival function of the Power Lindley distribution.

Also, the derivative of (10) can be expressed as

f
′
X(x) = f 2

R(x) f
′
T {FR(x)}+ f

′
R(x) {FR(x)} . (25)

Substituting (24) into (25), we have

f
′
X(x) = f 2

R(x)m(x), (26)

where m(x) = f
′
T {FR(x)}+ fT {FR(x)}

F̄R(x)
Ψ(x).

Solving the system of equation m(x) = 0, gives the result in (19). The results in (20)-(23)
follow using similar approach.

4. some new distribution arising from the T-Power Lindley{Y} family of

distributions

In this Section, we present some distribution belonging to the T-Power Lindley{Y} family of
distributions with different T-distribution. Details of the T-distribution is given in Table 2.
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Table 2: Some Known Distributions

Distributions PDF CDF

Topp Leone, T ∈ [0, 1] 2α(1 − t)
[
1 − (1 − t)2]α−1 [

1 − (1 − t)2]α

Exponentiated
exponential, T ∈ (0, ∞)

θ
λ

{
1 − exp

(
− t

λ

)}θ−1 exp
(
− t

λ

) {
1 − exp

(
− t

λ

)}θ

Exponential, T ∈ (0, ∞) 1
λ exp

(
− t

λ

)
1 − exp

(
− t

λ

)
Weibull, T ∈ (0, ∞) θ

λ

( t
λ

)θ−1 exp
{
−
( t

λ

)θ
}

1 − exp
{
−
( t

λ

)θ
}

Gumbel, T ∈ (−∞, ∞) γ
σ exp

(
− t

σ

)
exp

{
−γexp

(
− t

σ

)}
exp

{
−γexp

(
− t

σ

)}
4.1. Topp Leone Power Lindley{Uni f orm} Distribution (TLPLD)

Suppose the random variable T follows the one-parameter Topp-Leone distribution with bounded
support [0, 1] reported in [17], then the density function of the Topp-Leone Power Lindley
distribution is define as

f (x) =
2λαβ2

(1 + β)
(1 + xα)xα−1e−βxα {

Ḡ(x)
} {

1 − (Ḡ(x))2
}λ−1

, x > 0, α, β, λ > 0, (27)

and the corresponding cumulative distribution function is given by

F(x) =
{

1 − (Ḡ(x))2
}λ

, x > 0, α, β, λ > 0, (28)

where Ḡ(x) =
(

1 + β + βxα

1 + β

)
e−βxα

is the survival function of the Power Lindley distribution.

Other useful mathematical properties of this TLPL distribution has been studied in [15].
Figure 1 displays the plots of the density function of the Topp-Leone Power Lindley distribution
(TLPLD) at various choices of the parameters. The plots indicates that the TLPLD can be left
skewed, right skewed, monotonically decreasing (reversed J-shape), and symmetric.

Figure 1: Density function of the TLPLD for different choices of the parameters

4.2. Exponentiated Exponential Power Lindley{Exponential} Distribution

Let the random variable T follows the Exponentiated Exponential distribution introduced by [8],
then the density function of the Exponentiated Exponential Power Lindley distribution (EEPLD)
is define as
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f (x) =
θαβ2(1 + xα)xα−1

λ(1 + β + βxα)

{
1 − (Ḡ(x))

1
λ

}θ−1 {
Ḡ(x)

} 1
λ , x > 0, θ, α, β, λ > 0, (29)

and the corresponding cumulative distribution function is given by

F(x) =
{

1 − (Ḡ(x))
1
λ

}θ

, x > 0, θ, α, β, λ > 0. (30)

The plots of the probability density function of the Exponentiated Exponential Power Lindley
distribution (EEPLD) for different values of the parameters is shown in Figure 2. It shows that
the shape of the EEPLD can be left skewed, right skewed, monotonically decreasing (reversed
J-shape), and symmetric.

Figure 2: Density function of the EEPLD for different values of the parameters

4.3. Exponential Power Lindley{Frechét} Distribution (EPLD)

Let the random variable T follows the exponential distribution, then the density function of the
Exponential Power Lindley distribution is define as

f (x) =
αβ2(1 + xα)xα−1exp

{
{θ log (G(x))}−1

}
{

θ(1 + β)eβxα − (1 + β + βxα)
}
[log (G(x))]2

, x > 0, θ, α, β > 0, (31)

and the corresponding cumulative distribution function is given by

F(x) = 1 − exp {θ log (G(x))}−1 , x > 0, θ, α, β > 0. (32)

The plots of the probability density function of the Exponential Power Lindley distribution
(EPLD) for different values of the parameters is shown in Figure 3. It indicates that the shape of
the EPLD can be left skewed, right skewed, monotonically decreasing (reversed J-shape), modified
unimodal.

Figure 3: Density function of the EPLD for different values of the parameters
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4.4. Weibull Power Lindley{log − logistic} Distribution (WPLD)

Let the random variable T follows the Weibull distribution, then the density function of the
Weibull Power Lindley distribution is define as

f (x) =
αθβ2(1 + β)(1 + xα)xα−1

λ(1 + β + βxα)2

{
φ(x)

λ

}θ−1

exp

{
βxα −

{
φ(x)

λ

}θ
}

, (33)

and the corresponding cumulative distribution function is given by

F(x) = 1 − exp

{
−
{

φ(x)
λ

}θ
}

, x > 0, θ, α, β, λ > 0, (34)

where φ(x) =
1
λ (1 + β)eβxα

(1 + β + βxα)
− 1.

Figure 4 gives the graph of the density function of the Weibull Power Lindley distribution
(WPLD) for different values of the parameters. Figure 4 clearly shows that the shape of the
density function of WPLD can be monotonically decreasing (reversed J-shape), left skewed, right
skewed, symmetric and bimodal.

Figure 4: Density function of the WPLD for different values of the parameters

4.5. Gumbel Power Lindley{logistic} Distribution

Let the random variable T follows the Gumbel distribution, then the density function of the
Gumbel Power Lindley distribution (GPLD) is define as

f (x) =
αγβ2(1 + β)(1 + xα)xα−1 {φ(x)}−

1
σ exp

{
−γ {φ(x)}−

1
σ

}
σ(1 + β + βxα)

[
1 + β − (1 + β + βxα)e−βxα] , (35)

with the cumulative distribution function given by

F(x) = exp
{
−γ {φ(x)}−

1
σ

}
, x > 0, α, β, σ > 0, γ = e

µ
σ . (36)

Figure 5 shows the plots of the density function of the Gumbel Power Lindley distribution
for various choices of the parameters. The plots indicate that the GPLD exhibits a monotonically
decreasing (reversed J-shape), left skewed, right skewed, symmetric and bimodal shape.
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Figure 5: Density function of the GPLD for different values of the parameters

5. Application of the T-Power Lindley{Y} family of distributions to a

bimodal data set

To illustrate the flexibility of the T-Power Lindley{Y} family of distributions in fitting real world
data, we employ the Gumbel Power Lindley Distribution belonging to the T-Power Lindley{Y}
family of distributions to fit the egg size distribution data set reported in [5]. The data set consists
of 88 asteroid species divided into three types; 35 planktotrophic larvae, 36 lecithotrophic larvae
and 17 brooding larvae. [6] considered the logarithm of the asteroid data set which exhibits a
bimodal shape and applied it to the beta-normal distribution. The descriptive statistics of the
asteroid data is shown in Table 3, while Figure 6 provides the total time on test (TTT) and boxplot
plot of the asteroid data.

Table 3: Descriptive Statistics of the Asteroid Data

Min. 1st Qu. Median 3rd Qu. Mean Skewness Kurtosis
4.605 5.134 6.126 6.869 6.070 0.1378 1.8217
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Figure 6: TTT plot and Boxplot for the Asteroid Data

Table 3 indicates that the data set is skewed to the right, whereas, Figure 6 shows that the data
set exhibits an increasing hazard rate property.

Here, we apply the proposed Gumbel-Power Lindley distribution (GPLD) alongside with
the beta-normal distribution (Beta-Norm) due to [6] to fit the bimodal data set. For the purpose
of model comparison, the fits of the distributions were compared based on the maximized
log-likelihood (Log-Lik), Aikaike Information Criterion (AIC), Corrected Aikaike Information
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Criterion (AICc) and Bayesian Information Criterion (BIC), and Hannan-Quinn Information
Criterion (HQIC).

Table 4: Summary Statistics for the Asteroid Data

Distributions Estimates Log-lik AIC AICc BIC HQIC
GPLD α = 0.0046 -109.1930 226.3861 226.8680 236.2954 230.3782

β = 0.0026
λ = 5.7755
θ = 0.0465

*Beta-Norm α = 0.0126 -109.5108 227.0215 227.5034 236.9309 231.0138
β = 0.0064
µ = 5.7109
σ = 0.0651

The Estimates and log-lik value of (*) were obtained from [6]

Figure 7 shows the graphical illustration of the density fit of the distributions for the Asteroid
data set.

Figure 7: Density Fit for the Asteroid Data

5.1. Discussion of Result

A suitable model for analyzing lifetime data set can be investigated among several distributions by
examining the model with the maximized log-likelihood value and the least value in terms of AIC,
AICc, BIC, and HQIC. Table 4 reveals that the Gumbel-Power Lindley distribution which belongs
to the T-Power Lindley{Y} family of Distributions outperformed the beta-normal distribution
in analyzing the data set and thus, can be employed as a better alternative to the beta-normal
distribution in fitting real-life data exhibiting a bimodal property. This is evidently clear as the
Gumbel-Power Lindley distribution has the maximized log-likelihood value and the least value
in terms of the AIC, AICc, BIC, and HQIC as shown in Table 4.

6. Conclusion

A new class of generalized Lindley family of distributions with bimodal property is introduced.
Sub-families of the T-Power Lindley{Y} family based on the quantile function of the uniform,
expenential, frechet, log-logistic and logistic distributions as well as some mathematical prop-
erties were derived. A bimodal data set was used to illustrate the applicability of the T-Power
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Lindley{Y} family of distributions and result obtained revealed that the GPL distribution from
the proposed T-Power Lindley{Y} family of distributions can be used as an alternative model to
other existing distributions in modelling lifetime data sets.
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