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Abstract

Using a pentagonal fuzzy framework, this research presents a probabilistic inventory model for
deteriorating items under an uncertain demand. Degeneration of items puts a company’s financial
ability to meet its objectives at risk. Few models have synchronized optimization over this whole scenario
with all components, according to a survey of the literature. It deals with the difficulties of inventory
control in situations where demand is represented by fuzzy sets but is not precisely known. The model
offers a clearer and more useful understanding of demand uncertainty by defuzzifying pentagonal fuzzy
numbers using the Graded Mean Integration Representation (GMIR) approach. The goal of the study is
to optimize inventory levels in order to minimize total costs, which include holding, degradation, shortage,
and purchase. These components are included into a mathematical model, and numerical scenarios are
shown to compare the both potential strategies. The sensitivity of the solution and decision variables
with respect to different inventory characteristics is examined in both crisp and fuzzy settings. Fuzzy
logic is integrated into the model to provide a strong framework for making decisions when dealing
with ambiguous demand and the complications that come with deteriorating inventory. The paper
includes numerical examples and sensitivity analyses to demonstrate the model™s effectiveness and
practical relevance. These findings provide valuable guidance for inventory managers aiming to improve
decision-making and operational efficiency in contexts with fuzzy demand and deteriorating products.
At the optimal position, the total cost is relatively inelastic to an increase in base deterioration rate and
more elastic to a decrease in it. Although the crisp example is marginally less efficient per unit cost, total
costs are lower than in the fuzzy case, which is to be expected given the fuzzy case’s potential for superior
results.

Keywords: Probabilistic Inventory Model, Deteriorating Items, Uncertain Demand, Pentagonal
Fuzzy Environment, Graded mean integration representation (GMIR).

1. Introduction

In the current situation, Showrooming and time-sensitive processes are closely related. Due to
the coronavirus incident in this case, unique protocols necessitated significant modifications to
the stock structure. The global health crisis has compelled businesses to rethink their current and
upcoming marketing strategies in order to sustain a steady stream of revenue. Short-term effort
could focus on multiple goals, such as more advanced plans or improved consumer perception.
Potential benefits could also include increased employee inspiration and an increase in in-store
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visitors. The objective is to increase revenue and get rid of excess goods. Thus, inventory
control is essential to every sophisticated, modern business. There are several benefits to having
well-managed inventories, including direct profits and devoted customers. Furthermore, the
intricate connections between these several business objectives uphold the astounding significance
of inventory management. Because of its ability to address a wide range of problems and its
mathematical methodology, the continuous review has garnered more attention than the periodic
review.

Disintegration is a character that arises from natural problems during caching and is repre-
sented by degradation, harm, decay, hurt, or other changes in item quality. Items such as batteries,
semiconductor chips, food assortments, unstable fluids, and therapeutic items such as blood
face degeneration and gradually lose potential are a few instances. Managing and remaining
cognizant of the stock framework’s decomposing goods inventories is a major concern. The aim
of inventory management is to increase business profits by reducing wasteful inventory and
deteriorating items are a hindrance to this goal. One way to think of the rate at which products
deteriorate is as a dependent variable that can be managed with protection innovation. Businesses
are aware that they have to control degradation losses to the letter. Enhancing and modernizing
storage procedures is one of the typical control strategies. Through feasible capital input along
these channels, retailers can slow down the rate at which things deteriorate, avoiding unnecessary
waste, limiting financial losses, and improving business efficiency. These degradation control
models have received a great deal of attention and are more in line with the real inventory
conditions. In today’s volatile marketplaces, precise inventory control is especially important for
perishable products. For instance, the retailer’s reputation and goodwill will suffer due to food
deterioration. Weakening increases the associations cost and therefore reduces the advantage,
which is a major cause of stock misfortune. The weakening of interactions caused by oxidation,
chemicals, and microbes frequently depends on ecological factors like environment, temperature,
and stickiness. Temperature regulation is necessary to maintain product quality as it has a
substantial impact on deterioration. Innovative protective measures, such temperature-regulating
equipment and creative bundling, can affect the rate of weakening and postpone the crumbling
cycle.

At that time, when management introduces a new product, they don’t fully understand the
market and other aspects of the product. The analysis of experts is trusted by the management.
Fuzzy principles can be used to represent demand or other elements connected to the expert
opinion when the counsel is imprecise. The resulting environment is referred to as a fuzzy
environment. This work orders a new way to improve demand forecasting, which is one of the
main challenges of a continuous review inventory model. The impact of fuzzy demand across
an infinite time horizon is further investigated in this work. For a continuous review inventory
system, the best operating strategy is looked for in order to minimize the overall layout in a fuzzy
setup. It is believed that the full-backordering method will balance the loss component during
the inventory shortage. The optimal policy is analyzed and both crisp and fuzzy examples of a
continuous review inventory system are numerically solved. The findings provided can greatly
benefit decision makers’ methods in situations of uncertain demand and lower total inventory
costs.

The approach is complicated by practical concerns like attenuated deterioration, demand
affected by both fuzzy base and promotional upscaling. It has been suggested that analytical
convexity be taken into account without deterioration factor approximation. Because of the
infinite Time horizon, the continuous domain for cycle length leads to continuous time duration
Variables. Given these factors, the study’s uniqueness and significance are that it contrasts an
inventory model for ongoing evaluation, it enables an inventory model to perform a thorough
exponential depreciation attenuation analysis. With a pentagonal fuzzy foundation and a term
that scales with promotion efforts, demand uncertainty is modelled in a more realistic scheme for
which the retention approach is intended.

Forecasting demand patterns is a prerequisite for the a priori planning decision-making
process for retailers and sellers. Flexibility in resource and operation management can enhance
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the arrangement’s overall performance. The first model, which follows, is a useful mathematical
prototype and employs the pure deterministic situation in which the decision-maker has access
to precise demand information. The second model, which employs a fuzzy formulation for the
imprecisely forecasted demand, goes back to the first claim of flexibility in addressing uncertainty.
When combined, the two models give the researcher a clear and succinct understanding of the
mathematical process and the financial rationale for using fuzziness to address uncertainty and
degradation, respectively.

The current article’s organization follows the following structure: Section 2 has the literature
review, which reviews past research that provides context for this work. Section 3 includes
the research question and the presumptions used to help plan the model’s layout. The utilized
notations are tallied. The modelling approach and solutions for the environments that are both
crisp and fuzzy are covered in Section 4.In the following, numerical examples are used to illustrate
how this paradigm can be applied in a real-world scenario Section 5. Section 6 contains the
administrative architecture and sensitivity analysis for the inventory systems. In Section 7, the
research’s conclusions and future directions are examined.

2. Literature review

2.1. Deterioration

Inventory management has extensively studied Deterioration. Food rotting due to oxidation or
microorganisms is a common occurrence. Storage of electronic items must take into consideration
contamination, moisture, and electrostatic discharge damage. Pervin et al. [1] established an
EOQ model for perishable commodities, taking into account time-dependent holding costs and
demand that fluctuated with stock level. Pervin et al. [2] created a multi-item inventory model
that considered constant rate of deterioration, on-demand, and trade credits. Barman et al. [3]
examined an economic production quantity (EPQ) model in a fuzzy environment with shortages
and inflation, with time-dependent demand and a fixed rate of deterioration. Roy et al. [4] created
a probabilistic system for decaying items with two warehouses, two credit levels. Roy et al. [5]
suggested a credit strategy for a deteriorating product and an imperfect production system with
a partial backlog. Khan et al. [6] examined a system that had a variable demand pattern, constant
deterioration, and delayed payment. Currently, Shah et al. [7] examined the situation where
products demand and deteriorate varies according to selling price while taking the greening
effect into account. Yadav et al. [56] optimize an inventory model for deteriorating items using
a two-warehouse system, highlighting the need to balance cost and efficiency in managing
perishable goods. Yadav, K.K., Yadav, A.S., and Bansal, S. [57] employ an interval number
technique to enhance two-warehouse inventory management while considering preservation
technology investments, demonstrating the advantages of resource allocation for cost savings and
efficiency. Yadav, A.S., Kumar, A., and Yadav, K.K. [58] present a model that incorporates carbon
emissions and time-sensitive demand in optimizing inventory for deteriorating items, focusing on
sustainable management practices. Mahata and Debnath [59] tackle a profit-maximizing problem
in single-item inventory management by considering price-dependent demand and preservation
technologies, illustrating the synergy between preservation strategies and demand dynamics to
improve profitability and efficiency.

Researchers have been interested in the difficult task of managing inventory items that are
naturally decaying for decades. Any industry that experiences Deterioration suffers financial
losses as a result of this phenomena. It is, nevertheless, a normal and inevitable procedure.
Therefore, during operations management, strategic choices to avoid the aforementioned loss
and its impact have generated a lot of attention in a variety of real-life situations. Ghare and
Schrader [8] conducted the first study using degrading objects for exponentially deteriorating
items. Subsequently, using the discounted cash flow (DCF) method, Jaggi and Aggarwal [9]
investigated the best ordering strategy for deteriorating goods while assumption trade credit.
Aggarwal and Jaggi [10] investigated the best ordering policy for deteriorating commodities
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based on the allowable payment delay. The optimum credit policies for degrading things were
recently shown by Jaggi et al. [11] under the presumptions of faulty items, rapidly expanding
demand and partial backlog. Additionally, Mandal et al. [12] postulated an inventory model
based on geometric programming that included deteriorating items. Afterwards, Panda et al. [13]
developed an inventory model for a seasonal product with ramp-type demand. Bakker et al. [14]
provides a thorough analysis of inventory models with deteriorating items. Khanna et al. [15]
have produced some excellent work on deterioration that is worthy of attention in this context.
Additionally, Jaggi et al. [16] developed the best course of action for defective and deteriorating
items while taking into account a two-warehouse situation. Controllable probabilistic deterioration
with shortages was examined by Mishra [17]. Jaggi et al. [18] also studied at price-dependent
demand and two warehouses in non-instantaneous deterioration. A replenishing scenario for a
deteriorating item was examined by Pervin et al. [19] under the presumptions of time-dependent
holding costs, time-dependent demand, and shortages. A sustainable three-tier inventory model
for decaying products was studied by Daryanto et al. [20]. Shaw et al. [21] studied an integrated
model that took into account multi-stage inspection, carbon emissions, and deterioration while
putting single setup multi delivery (SSMD) policy into practice for the delivery of high-quality
products.

2.2. Probabilistic demand

Given the current state of the market, it is becoming more difficult to precisely estimate client
preferences for a product; therefore, a probabilistic demand method is a better fit for handling
uncertainty. Shah, Nita H. [22] developed a probabilistic inventory model with allowable payment
delays, thereby spearheading the development of such models. On the basis of this, Shah, Nita H.,
and Y. K. Shah. [23] Expanded the model to include trade credit policy and declining products
over a specific time interval. Several scholars, such as Shah, Nita H. [24] and Shah, Nita H.
[25], developed inventory models that included trade credit finance, probabilistic demand, and
shortages. Federgruen, Awi and Aliza Heching [26] Looked into simultaneous inventory and
pricing decisions under probabilistic demand. Petruzzi, Nicholas C. and Maqbool Dada [27]
developed a price-sensitive inventory model and perishable goods into account to determine
the best pricing in the newsvendor scenario. Chen, Xin, and David Simchi-Levi [28] examined
a periodic review model for an infinite planning horizon in order to determine the best pricing
and inventory strategies with probabilistic demand. Under probabilistic demand, Khedlekar
et.al. [29] Examined the optimal replenishment choices taking into account pricing, promotion
tactics, and inventory. Chao, Xiuli, Baimei Yang, and Yifan Xu [30] to maximize pricing, a
capacitated probabilistic inventory system was proposed. Maihami, Reza, and Behrooz Karimi
[31] developed an optimal replenishment plan that takes into account promotional efforts for
non-instantaneously deteriorating products with price-sensitive probabilistic demand. Inventory
control methods under probabilistic demand were provided by Roy et al. [32] and AlDurgam et
al. [33] with a range of parameters and assumptions. Probability distributions are typically used
to reflect demand uncertainty. With price-sensitive probabilistic demand and non-instantaneous
deteriorating products, they created an inventory model for profit maximization that took additive
promotional activities into account. The bulk of research is done on probabilistic demand functions
that are sensitive to price. Shah, Nita H., et al. [34] for a full view, consider a demand rate that is
uniformly distributed and is influenced by price, inventory level, and advertisement.

2.3. Pentagonal Fuzzy Number

There are several varieties of polygon fuzzy numbers in classical fuzzy theory, including trape-
zoidal, pentagonal, and triangular fuzzy numbers, among others. Srinivasan [35] provided a
method for solving TP using generalized pentagonal and hexagonal fuzzy numbers throughout
the literature. Additionally, Karthikeyan [36] provided a method for using pentagonal fuzzy
numbers to solve transportation problems (TP). Maheswari and Ganesan [37] provide a technique
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that uses pentagonal fuzzy numbers to solve completely fuzzy TP. Chakraborty [38] has investi-
gated representations of pentagonal fuzzy numbers. Barazandeh and Ghazanfari have tackled
the ranking approach for generalized fuzzy numbers [39]. Membership functions for symmetric
and asymmetric hexagonal fuzzy numbers: an overview was extended to non-linear membership
functions by Khan and Mondal [40]. Mondal [41] used the average technique to find arithmetic
operations and provided representations for a variety of non-linear membership functions. Arora,
Aparna, Rashmi Gupta, and Ratnesh Rajan Saxena [42] Asymmetric Pentagonal Fuzzy Numbers
as a representation of costs (APFN).

2.4. Fuzzy modeling of uncertainty

Demand uncertainty arises from several unknown components of inventory models, aside from
preservation technologies, deteriorating commodities, and promotional efforts. However, in prac-
tical circumstances, the uncertain parameters such as lead time, preservation cost, demand, and
other pertinent expenses may be more likely to deviate from the exact value, which could result
in a situation where the uncertain parameters are not distributed according to any probability.
Originally, the fuzzy set concept was developed by Zadeh [43]. Following that, a number of
trailblazing scholars developed several fuzzy inventory models to capture the impreciseness,
including Yao et al. [44], Glock et al. [45], and Shah and Soni [46]. By taking into account
trapezoidal fuzzy numbers, the model examined by Garai et al. [47] had holding costs that scaled
with price-dependent and time demand. Shah and Patel [48] created an inventory model and
employed preservation technologies to lower the rate of spoiling under a cloud hazy prescription.
In a fuzzy setting, Yadav et al. [49] examined a flexible manufacturing system with a changeable
pollution control. De and Mahata [50] used a learning environment for dense fuzzy demand
when there was an order overlap with rework batches. Kumar and Paikray [51] modelled the
time-varying demand for decaying commodities using crisp and fuzzy formulations with three
distinct scenarios under total backlog. To effectively address a fuzzy inflationary model, Sarkar et
al. [52] used a multithreaded neural network. Fuzzy logic, specifically graded mean integration-
representation distance, is used by this similarity function (GMIR). We can incorporate more
flexible data agglomeration strategies thanks to fuzzy logic [53]. This model used a pentagonal
fuzzy number with the GMIR difuzyfication method.

Figure 1: Inventory Model with backorder and deterioration
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3. Assumptions and notations

3.1. Assumptions

1. The inventory system is examined using a single item.

2. An infinite planning horizon is taken into consideration.

3. Additive price-sensitive probabilistic demand D = D0 + ϵ where D0 is fixed base demand
while ϵ continuous random variable with expected value µ.

4. Shortages are allowed, and lead time is zero.

5. The rate of production exceeding the rate of demand.

3.2. Notations

Table 1: Symbols and Description

Symbol Description

S Order quantity per unit time
D Rate of demand per unit of time
A Ordering cost per order ($)
K Holding cost per order ($)
L Deteriorating cost per order ($)
m Shortage cost per order ($)
α0 constant rate of inventory item deterioration (0 < α0 < 1)
α Effective deterioration rate, dampened by use of (α = α0e−µ)
µ Expected value of Continuous random variable ϵ
M Maximum positive inventory level´ at time t = 0
I(t) Inventory level at the time
τα The duration of time it takes for inventory to zero following replenishing
τβ Order backlog occurs in the interval between having zero inventory and replenishing it (represented by negative inventory level)
TAC(τα , τβ) Total average cost of inventory (Model-1)($/per unit time)
T̃AC(τα , τβ) Total average cost for fuzzy environment (Model-2)($/per unit time)

4. Mathematical Model

This section lays out the models and their approach for solving them. The total cost function is
obtained by setting up and solving the governing differential equations. This objective function is
subjected to necessary and sufficient criteria for convexity and global optimality. When fuzzy
parameters are utilized, defuzzification is applied.

4.1. A model for continuous review inventory that has constant deterioration
rate and crisp demand (Model-1)

A continual evaluation Based on the aforementioned presumptions, the EOQ setup is created. An
immediate restocking initially the cycle at t = 0 and the inventory level surges to its highest point,
M = I(0). I(t) decreases in time interval [0, τα] as certain components are lost to degradation and
others are consumed according to demand. Every unit has been utilized at t = τα So I(τα) = 0.
Backorders are maintained for the duration of [τα, τβ+α] this must be satisfied from the upcoming
replenishment due to their complete backlogged. These presumptions allow the differential
equations controlling the subsequent cases to be determined:

Case 1 (0 ≤ t ≤ τα) :Inventory is depleted by loss from degradation and consumption brought
on by demand; consequently, the inventory level equation I(t) :

dI(t)
dt

+ αI(t) = −D; 0 ≤ t ≤ τα (1)
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The deterioration term α(t) is in parallel to the current inventory that is on hand and α = α0 is
constant in Model 1. On the differential equation (1), the boundary condition I(α0) = 0is used to
determine the inventory level.

dI(t)
dt

=
D
α0

(eα0(τα−t) − 1); 0 ≤ t ≤ τα (2)

Using equation (2) the topest inventory level M is at t = 0 in the following manner:

M = I(0) =
D
α0

(eα0τα − 1) (3)

Now, equation (3) is distinct from the absence of deterioration where M = Dτα. The difference
between the two provides the amount of inventory lost as a result of deterioration, in the buyer’s
inventory model that was examined in Wee et al. [54], given by

M − Dτα =
D
α0

(eα0τα − α0τα − 1) (4)

Case 2 (τα ≤ t ≤ τα + τβ) : Backorders resulting from a negative inventory level I(t), as well as
shortages during the period, should be taken into account. There is only one term, as orders are
wholly backlogged, which is due to demand. Consequently, the differential equations that follow

dI(t)
dt

= −D; τα ≤ t ≤ τα + τβ (5)

Now, applying boundary condition I(τα) = 0; equation (5) results in the following inventory level
expression:

I(t) = −D(t − τα); τα ≤ t ≤ τα + τβ (6)

In fact, this negative inventory level suggests that the backorder at that point in time t in
(τα ≤ t ≤ τα + τβ) is D(t − τα). Here I(τα + τβ) = −Dτβ is called lowest inventory level and the
maximum backorder is Dτβ. The maximum inventory level is provided by the leftover inventory
after ordered amount S completes this backorder first.

S − Dτβ = M ⇒ S = Dτβ +
D
α0

(eα0τα − 1) (7)

In equation (7), the order quantity is higher than in the traditional backorder approach and does
not deterioration D(τα + τβ), since it must meet demand in addition to replacing products lost to
deterioration. Consequently, the components of the total inventory cost are as follows:

Ordering Cost (OC)
OC = A

Holding Cost (HC):

HC =
∫ τα

0

DK
α0

(eα0(τα−t) − 1)dt =
DK
α2

0
(eα0τα − α0τα − 1)

Shortage Cost (SC):

SC =
∫ τα+τβ

τα

(−I(t))sdt =
∫ τα+τβ

τα

D(t − τα)sdt =
τ2

β Dm

2

Cost as a result of the deteriorated goods (w is the cost of deterioration per unit) (DC):

DC = (M − Dτα)w =
DL
α0

(eα0τα − α0τα − 1)

As a result, the total inventory cost every cycle, taking into account expenditures associated with
deterioration but not preservation, is as follows:
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TAC(τα, τβ) =
1

τβ + τα
[OC + HC + SC + DC]

TAC(τα, τβ) =
1

τβ + τα

[
A +

DK
α2

0
(eα0τα − α0τα − 1) +

τ2
β Dm

2
+

DL
α0

(eα0τα − α0τα − 1)

]

TAC(τα, τβ) =
A

τβ + τα
+

D(K + α0L)(eα0τα − α0τα − 1)
α2

0(τβ + τα)
+

τ2
β Dm

2(τβ + τα)
(8)

5. Optimization methodology

The decision variable values are obtained at the lowest total cost per cycle ($) through the classical
optimization process. There are two components to the computational process.

Step 1: Obtain critical point (τ∗
α , τ∗

β ) satisfying ∂TAC
∂τα

= 0 and ∂TAC
∂τβ

= 0.

Step 2: Verify the convexity of TAC(τα, τβ) by proving that (in the feasible region)

∂2TAC
∂τ2

β

> 0

and
∂2TAC

∂τ2
α

.
∂2TAC

∂τ2
β

−
[

∂2TAC
∂τα∂τβ

]2

> 0

The factors that do not contain the decision variables in equation (8) are gathered and catego-
rized for the sake of algebraic efficiency.

TAC(τα, τβ) =
A1

τβ + τα
+

B1τ2
β

(τβ + τα)
+

C1(eα0τα − α0τα − 1)
(τβ + τα)

(9)

where, A1 = A, B1 = Dm
2 , C1 = D(K+θ0L)

α2
0

The positive inventory time τα and negative inventory

time τβ cause a continuous fluctuation in the total cost per time unit. The decision variables τα

and τβ are employed to minimize this objective function. The first-order partial derivatives of
TAC(τα, τβ) are determined by equation (9).

∂TAC
∂τα

=
α0C1(eα0τα − 1)

(τβ + τα)
− TAC

τβ + τα
(10)

∂TAC
∂τβ

=
2B1τβ

(τβ + τα)
− TAC

τβ + τα
(11)

The second-order partial derivatives of TAC(τα, τβ) are

∂2TAC
∂τ2

α
=

2TAC
(τβ + τα)2 − 2α0C1(eα0τα − 1)

(τβ + τα)2 +
α2

0C1eα0τα

τβ + τα
(12)

∂2TAC
∂τατβ

=
2TAC

(τβ + τα)2 − θ0C1(eα0τα − 1)
(τβ + τα)2 −

2β1τβ

(τβ + τα)2 (13)

∂2TAC
∂τ2

β

=
2TAC

(τβ + τα)2 −
4B1τβ

(τβ + τα)2 +
2B1

τβ + τα
(14)
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As eα0τα − α0τα − 1 > 0 ∀ α0τα > 0,
Hence equation (9) gives

TAC(τα, τβ) >
B1τ2

β

τβ + τα
∀ α0τα > 0

Using this inequality in equation (14), which becomes

∂2TAC
∂τ2

β

>
2B1τ2

β

(τβ + τα)3 +
2B1(τα − τβ)

(τβ + τα)2 =
2B1τ2

α

(τβ + τα)3 > 0 ∀ α0τα > 0 (15)

To be necessary for the objective function to achieve minimum cost, the first order partial derivative
must be zero (Step-1above). The optimal solution is achieved by setting these partial derivatives
to zero when the sufficient conditions (Step-2 above) are satisfied.

∂TAC
∂τα

= 0

and
∂TAC

∂τβ
= 0

Additionally, sufficient circumstances must be fulfilled for certain optimality. From now on, the
equivalent fundamental minors ought to be in the positive definite. The Hessian determinant is

H(τα, τβ) =
∂2TAC

∂τ2
α

.
∂2TAC

∂τ2
β

−
[

∂2TAC
∂τα∂τβ

]2

From equations (12), (13) and (14), we get

(τβ + τα)
4H(τα, τβ) = 2A1(2B1 + C1α2

0eα0τα) + 2C1B1(eα0τα(1 − α0τα)
2 + eα0τα − 2)

+ α2
0C2

1(e
2α0τα − 2α0ταeα0τα − 1) (16)

simplifying eα0τα(1 − α0τα)2 + eα0τα − 2 and e2α0τα − 2α0ταeα0τα − 1.

Figure 2: Convexity objective function (Model-1)
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(τβ + τα)
4H(τα, τβ) > 2A1(2B1 + C1α2

0eα0τα) + C1B1(α0τα)
4 +

C2
1α2

0(α0τα)4

4

→ H(τα, τβ) > 0∀α0τα > 0 (17)

The Hessian implied by equations (15) and (17) is positive definite. Consequently, the cost
function TAC(τα, τβ) is convex and Figure 2 provides more dramatic evidence of this tendency.
From equation (10) and (11), within the feasible region, it possesses a unique global minima. at
(τ∗

α , τ∗
β ) fulfilling (Critical point)

∂TAC
∂τα

=
α0C1(eα0τα − 1)

(τβ + τα)
− TAC

τβ + τα
= 0 (18)

∂TAC
∂τβ

=
2B1τβ

(τβ + τα)
− TAC

τβ + τα
= 0 (19)

equation (18) and (19)
TAC(τ∗

α , τ∗
β ) = α0C1(eα0τ∗α − 1) = 2B1τ∗

β (20)

Hence, equations (9) and (20) give

2B1τ∗
β =

A1

τ∗
β + τ∗

α
+

2B1τ2∗
β

τ∗
β + τ∗

α
+

C1(eα0τ∗α − α0τ∗
α − 1)

τ∗
β + τ∗

α
(21)

Simplifying equation (21), one can get

τ∗
β =

√
τ∗2

α +
A1 + C1(eα0τ∗α − α0τ∗

α − 1)
B1

− τ∗
α (22)

Equation (20) implies

τ∗
α =

1
α0

log
{2B1τ∗

β

α0C1
+ 1

}
(23)

Equations (22) and (23) are numerically solved iteratively to produce the appropriate values of τ∗
β

and τ∗
α for optimization.The economic order quantity and the minimum total cost per unit time

are found using equations (20) and (7).

TAC(τ∗
α , τ∗

β ) = 2B1τ∗
β , S∗ = Dτ∗

β +
D(eα0τ∗α − α0τ∗

α − 1)
α0

(24)

Equation (4) yields the effective rate of loss, which is the average deterioration per unit of time

across a cycle.= D(eα0τ∗α −α0τ∗α −1)
α0(τβ+τα)

= S∗
τβ+τα

− D.

6. A continuous review inventory model with fuzzy environment

(Model-2)

Demand has been taken in the form D = D0 + ϵ. This subsection examines fuzzy demand where
D0 a pentagonal fuzzy number, i.e. D̃0 = (D0 − δ2, D0 − δ1, D

′
0, D0 + v1, D0 + v2). This improves

the modelling of real-world scenarios’ flexibility.
The function principle in this article and Graded Mean Integration Representation (GMIR) method
are considered. Currently, the membership function of D̃0 is the following:
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ηD̃0
(x) =



0 f or x < D0 − δ1, a5 ≤ x
x−(D0−δ1)

(D0−δ2)−(D0−δ1)
f or D0 − δ1 ≤ x ≤ D0 − δ2

1 f or D0 − δ2 ≤ x ≤ D
′
0

(D0+v1)−x
(D0+v1)−D′

0
f or D

′
0 ≤ x ≤ D0 + v1

(D0+v2)−x
(D0+v2)−(D0+v1)

f or D0 + v1 ≤ x ≤ D0 + v2

(25)

This fuzzy demand changes equation (8) to

T̃AC(τα, τβ) =
A

τβ + τα
+

D̃0

(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
(26)

Next, using the function principle (Mahata and Goswami [55]), given that the demand’s basic
value is PeFN. The total cost per unit time becomes a PeFN, as seen in Figure, according to the
preceding expression.

Real valued functions themselves make up this PeFN’s parameters. Regarding any feasible
values of (τα, τβ) the following is true:

TACδ1(τα, τβ) ≤ TACδ2(τα, τβ) ≤ TACD̃0
(τα, τβ) ≤ TACv1(τα, τβ) ≤ TACv2(τα, τβ)

T̃AC(τα, τβ) = PeFN
(

TACδ1, TACδ2, TACD̃0
, TACv1, TACv2

)
where

TACδ1(τα, τβ) =
A

τβ + τα
+

D0 − δ1

(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]

TACδ2(τα, τβ) =
A

τβ + τα
+

D0 − δ2

(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]

TACD̃0
(τα, τβ) =

A
τβ + τα

+
D̃0

(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]

TACv1(τα, τβ) =
A

τβ + τα
+

D0 − v
(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]

TACv2(τα, τβ) =
A

τβ + τα
+

D0 − v2

(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
The total cost per unit time in Model-2 is estimated by using the median calculation.

Median(T̃AC(τα, τβ)) =
1
5

[
TACδ1(τα, τβ)+TACδ2(τα, τβ)+TACD̃0

(τα, τβ)+TACv1(τα, τβ)+TACv2(τα, τβ)

]

Median(T̃AC(τα, τβ)) =
A

τβ + τα
+

D0

4(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]

+

(
D

′
0

(τβ + τα)
+

(v1 − δ1 + v2 − δ2)

5(τβ + τα)

)[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
(27)
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Figure 3: Demand parameter and objective function

As a result, the total of the two components is the median estimate of the total cost per unit time
for the fuzzy demand model. The first term is the same as Model’s total cost per unit time (crisp
demand).

Median(T̃AC(τα, τβ)) = TAC(τα, τβ) + FC(τα, τβ)

Where

FC(τα, τβ) =
(v1 − δ1 + v2 − δ2)

5(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
(28)

7. Optimization methodology

The convexity of FC(τα, τβ) as it is defined by equation (28) is examined.
The first-order partial derivatives of FC(τα, τβ) with respect to τα and τβ are as follows:

∂FC
∂τα

=
−(v1 − δ1 + v2 − δ2)

5(τβ + τα)2

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
+

(v1 − δ1 + v2 − δ2)

5(τβ + τα)

[
(K + α0L)(eα0τα − 1)

α0

]

∂FC
∂τβ

=
−(v1 − δ1 + v2 − δ2)

5(τβ + τα)2

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
+

2τβm(v1 − δ1 + v2 − δ2)

5(τβ + τα)

The second-order partial derivatives of FC(τα, τβ) with respect to τα and τβ are as follows:

∂2FC
∂τ2

α
=

2(v1 − δ1 + v2 − δ2)

5(τβ + τα)3

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
− 3(v1 − δ1 + v2 − δ2)

5(τβ + τα)2

[
(K + α0L)(eα0τα − 1)

α0

]
− (v1 − δ1 + v2 − δ2)

5(τβ + τα)2

[
(K + α0L)(eα0τα − 1)

α0

]
(29)
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∂2FC
∂τα∂τβ

=
2(v1 − δ1 + v2 − δ2)

5(τβ + τα)3

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
− (v1 − δ1 + v2 − δ2)

5(τβ + τα)2

[
(K + α0L)(eα0τα − 1)

α0
+ τβm

]
(30)

∂2FC
∂τ2

β

=
2(v1 − δ1 + v2 − δ2)

5(τβ + τα)3

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
+

m(v1 − δ1 + v2 − δ2)

5(τβ + τα)

[
2τβ −

τβ

(τβ + τα)
+ 1

]
(31)

The ineqality (eα0τα − α0τα − 1) > 0 ∀ α0τα > 0 gives
So equation (31)

∂2FC(τα, τβ)

∂τ2
β

>
2(v1 − δ1 + v2 − δ2)

5(τβ + τα)3

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
> 0 (32)

The Hessian determinant of FC(τα, τβ) is H(τα, τβ) =

(
∂2FC(τα ,τβ)

∂τ2
α

)
.
(

∂2FC(τα ,τβ)

∂τ2
β

)
−
(

∂2FC(τα ,τβ)

∂τα∂τβ

)2

Substituting the values for the second order partial derivatives from equations (29), (30), and (31)

(τβ + τα)
6H(τα, τβ) = 2(e2α0τα + α2

0τ2
α + 1− 2α0ταeα0τα + α0τα − 2eα0τα)− (e2α0τα − 2eα0τα + 1) (33)

The iteration scheme for optimization of Median(T̃AC(τα, τβ)) is as follows, derived from these
three equations:

τf α =
1
θ f

log
{

θ f τf βm
K + Lθ f

+ 1
}

(34)

τf β =

[
τ2

f α +
10A

m(5D + (v1 − δ1 + v2 − δ2))
+

2(K + α f L)(eα f τf α − α f τf α − 1)

mα2
f

] 1
2

− τf α (35)

The Model-2 optimal outcomes. The optimal TAC and S for Model-2 are

S∗
f =

(
D +

(v1 − δ1 + v2 − δ2)

4

)[
τ∗

f β +
(eα∗f τ∗f − 1)

α∗f

]
(36)

Median(T̃AC
∗
f ) = mτ∗

f β

(
D +

(v1 − δ1 + v2 − δ2)

4

)
(37)

8. Numerical Analysis

The models built are demonstrated with a numerical example. By examining the outcomes, a
decision-maker can gain insightful information. The parameters’ numerical values are given
below: A = 75, K == 0.4, D0 = 950, ϵ = 10, L = 5.5, m = 3, δ1 = 100,δ2 = 75, v1 = 150,
v2 = 200 and α0 = 0.16. The deterioration rate as (α = α0e−µ) where the positive parameter µ
is an Expected value of Continuous random variable ϵ. And value of µ = 0.03 in this article.
The decision variables’ values include the amount of time it takes for inventory to reach zero
following replenishment τα, the interval between having no inventory and having a fully back-
logged replenishment τβfor Model-1 and Model-2 and table 2 tabulates the corresponding order
quantity and total cost at the optimal position. The column S∗

τ∗α +τ∗β
− D provides the effective rate

of deterioration as the number of units lost per unit time across a cycle. The cost per unit and
time per unit at the optimal point are shown in Table 3 is TAC∗

S∗ = 0.886, 0.723 for Models-1 and
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2, respectively. This demonstrates that, although having a little higher TAC∗ than model-1, the
fuzzy formulation (Model-3) is the most efficient on a per unit basis.
Figure 4 represents the variation in TAC∗ for numerous cycle lengths τ∗

α + τ∗
β . It displays two

separate stages. For very short cycle durations in the first phase, the influence of deterioration
is not significant, and the findings produced by both models are comparable. The effects of
deterioration and the economics of preservation become evident as cycle length grows. In the
second stage, Model-1’s overall cost increases much over its global minimum at (τ∗

α + τ∗
β = 0.52)

but at longer cycle lengths around (τ∗
α + τ∗

β = 0.71) the other model it achieves lower global
optimal costs. As cycle length increases, the change in TAC∗ Model-2 is much more gradual.

Figure 4: Objective function convexity (Model-2)

Table 2: Optimal solutions of Model-1 and Model-2.

Model τ∗
α τ∗

β S∗ S∗
τ∗α +τ∗β

− D TAC(τ∗
α , τ∗

β )

Model-1 0.36 0.15 520.87 61.31 516.38
Model-2 0.61 0.14 705.56 33.74 451.37

9. Sensitivity analysis

1. Effect of unit shortage cost (m): With a decrease in shortage cost m, the backorder
phase τα lasts longer and TAC is slightly reduced. Maintaining a larger optimal backorder
during a cycle becomes advantageous. The movement of the crisp values is mirrored by the
fuzzy values. A slight rise in EOQ balances out the fuzziness of demand without having a
significant effect on TAC.

2. Impact of unit holding cost (k): A holding cost decrease has a proportionately bigger effect
compared to an increase of the same magnitude. Since this τα time is more influenced, K
complement m in the sensitivity computation. A displacement that is consistent with the
decision-sharp maker’s bounds is shown by the median fuzzy output.
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3. Impact of the cost of unit deterioration (l): In order to benefit from decreased and even
greater item loss, both the positive inventory time and the EOQ grow. The TAC is reduced
in Model-1. Model-2 is somewhat less affected in this situation than Model-1.

4. Ordering cost impact (A): In both models, the ordering cost A consistently has an effect. The
change in positive inventory time and EOQ has increased little but significantly, whereas the
change in backorder time τβ and TAC has decreased. Both these movements are marginally
less in Model-2.

5. Effect of constant deterioration rate (α0): The TAC rises with increasing but falls more
sharply with decreasing this parameter. In Model-1, higher EOQ and τα are optimal for
minimal deterioration, and greater backorders are recommended when deterioration grows.

Figure 5: Variation optimum total cost with cycle length.

10. Conclusion

This study improved upon earlier EOQ models and techniques for managing deteriorating
inventory levels. The expected total average cost was minimized while the per unit time cost was
assessed with the length of time with stock-out condition and the duration of on-hand inventory
in a reorder sequence to determine the proper reorder size and cycle length. Deterioration
caused parts to be lost, which raised the total cost. Expanded to produce Model-2 by providing
modelling uncertainty in demand. The optimal parameters for the reorder procedure were found
by the development of a helpful formulation. Decision-makers were able to calculate the optimal
investment for this aim by using this model, which demonstrated the impact of controlling
spoiling. The Graded mean integration representation (GMIR) was used to defuzzify the fuzzy
cost function in the model with uncertain demand. . From the analytical results of Model-2, an
algorithm was developed to determine the optimal solutions.
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The created models were validated using a numerical setup, and their sensitivity to important
parameters was examined to ascertain the precise impact on the model. According to the
traditional inventory model, holding costs and shortages had a connected impact on positive
inventory duration and shortfall time, respectively. The total cost was more sensitive to a decline
in the rate of degradation than to an increase in it. The following aspects can be expanded
for future work. Numerous opportunities exist to further this research, such as time-limited
replenishment, reworking or substituting damaged goods, uncertainty and randomization in
other aspects, an expiration date-dependent deterioration rate a multi-item inventory and learning
effects. An alternative model to recover part of the impact of degradation could be offered by the
theory that uses animal fat waste as degraded goods to produce renewable energy .

11. Future Work

This model can be expanded to take policies like carbon caps and CO2 quotas that aim to minimize
emissions. The amount of carbon emissions may have a sensitive effect on some of the cost
parameters. With such additions, it is possible to research how environmental deterioration affects
ecosystems and conservation methods for sustainable supply chains. Some potential expansions
of the models described include the analysis of the implications of time-dependent and non-linear
operating costs, incomplete goods, prepayments, trade credit, and inflation in economic policy.
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