
Ibrahim Sadok & Mourad Zribi
BAYESIAN GLM: A NON-INFORMATIVE APPROACH FOR
PARAMETER ESTIMATION IN EDRM

BAYESIAN GLM: A NON-INFORMATIVE APPROACH
FOR PARAMETER ESTIMATION IN EXPONENTIAL

DISPERSION REGRESSION MODELS

1∗Ibrahim Sadok & 2Mourad Zribi

•
1∗Department of Mathematics and Computer Science, Faculty of Exact Sciences,

University of Bechar, Algeria
2Laboratoire d’Informatique Signal et Image de la Côte d’Opale

ULCO, 50 Rue Ferdinand Buisson BP 719, 62228 Calais Cedex, France
ibrahim.sadok@univ-bechar.dz

Abstract

This paper proposes a novel Bayesian approach to parameter estimation in exponential dispersion
regression models (EDRM). By employing a non-informative prior distribution, we offer a flexible and
robust framework that avoids the need for subjective prior specification. To efficiently sample from the
posterior distribution, we develop an importance-sampling algorithm tailored to the EDRM. Through
a real-world data analysis, we demonstrate the efficacy of our proposed method in providing accurate
and reliable parameter estimates. This research contributes to the advancement of Bayesian statistical
modeling techniques and offers valuable insights for practitioners in various fields.

Keywords: Generalized linear models, Bayesian method, Multivariate exponential dispersion,
Non-informative prior distribution, Real-world data analysis

1. Introduction

Statistical modelling plays a crucial role in decision-making as it enables the representation
of relationships between variables, whether they are linear or non-linear. To establish the
connections between observed responses, yi, and corresponding covariates, xi, regression models
are initially developed. The Ordinary Least Squares (OLS) approach is frequently utilized to
estimate unknown parameters, βi, under the assumption that the response variable adheres
to a normal distribution. However, in reality, the normality assumption for residuals may be
violated, which leads to the consideration of other exponential family distributions (refer to
[25, 26]). In such cases, the use of alternative approaches becomes necessary as OLS estimates
may be inaccurate. The Generalized Linear Model (GLM), introduced by J. A. Nelder and R.W.
Weddernburn [20], accommodates non-normal distributions of response variables that adhere to
exponential family distributions including Poisson, binomial, negative binomial, inverse Gaussian,
and gamma distributions. For additional information and practical examples, refer to [13, 14, 19].

The GLM has been extensively studied by researchers for several exponential family distribu-
tions. In the health sciences, these models have diverse applications, such as predicting the effect
of animal age on dried eye lens weight [23], estimating the prevalence of renal failure based on
various parameters (see [32]), modelling lifetime data (see [21]), and addressing transportation
challenges (see [34]). As hydrological variables like rainfall and rain-off are inherently positive,
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the gamma distribution has proven to be effective in hydrology, as it can model only positive
values (as discussed in [18]).

In analytical applications, GLM is utilized to model the relationships between a large number
of responses and a single set of predictor factors, as described in ([22]). The GLM typically involves
several unknown parameters that are unique to the population. To estimate these parameters,
two statistical procedures are commonly used, as noted by W. M. Bolstad and J. M. Curran [3].
The first approach is the conventional technique that relies on all the information obtained from
the random sample. A common alternative approach to estimating unknown parameters in GLM
is the Bayesian method, which incorporates prior information along with the data from a random
sample. The posterior distribution is then derived by combining the likelihood function with
the prior distribution, as outlined in standard Bayesian methodologies (see [6], [27, 28]). The
choice of prior distribution can significantly influence the posterior estimates, particularly when
informative priors are employed. However, it is crucial to note that the use of informative priors
is subjective and can have a significant impact on the posterior distribution (see [9]). In situations
where limited or no prior knowledge about the parameters is available, non-informative priors
can be used. These priors are designed to have minimal influence on the posterior distribution,
allowing the data to primarily drive the inference. Non-informative priors, also known as vague
or weakly informative priors, are used when we aim to reflect ignorance or neutrality about the
parameters prior to observing the data (see [1]).

J. O. Berger and D. Sun [2] conducted research on the types of non-informative prior distribu-
tions that could be utilized to enhance the accuracy of normal multivariate models. C. P. Robert
et, al. [24] provided a comprehensive and contemporary review of Jeffrey’s prior distribution.

A study by A. A. I. A. Iswari et, al. [14] involved a simple linear regression analysis and the
computation of credible intervals for the regression parameters based on simulated data where
the prior distribution was not known to the researchers. Additionally, an important contribution
to the field is the multivariate multiple linear regression framework, which is a combination of
modelling techniques utilizing a Jeffrey’s prior distribution [30].

In this paper, we introduce a method for characterizing the GLM using exponential dispersion
models, which we refer to as the Exponential Dispersion Regression Models (EDRM). The EDRM
represents a rich subclass of the well-known exponential family. Furthermore, we examine the
estimation of parameters in the EDRM through maximum likelihood estimation (MLE) and
non-informative Bayesian estimation.

This paper is structured as follows: Section 2 details the exponential dispersion regression
models. In Section 3, we describe the maximum likelihood estimation and non informative
Jeffrey’s prior for EDRM. Section 4 is dedicated to providing numerical illustrations, emphasizing
the practical application and demonstration of the concepts discussed in earlier sections. Finally,
in the last section, we present the conclusion and discussion.

2. Exponential Dispersion Regression Models (EDRM)

In this section, we first describe briefly the exponential dispersion models (EDM). Then, we
discuss the EDRMs in details.

2.1. Exponential dispersion models

In the upcoming section, we will delve into the essential features of Exponential Dispersion
Models (EDMs) - a noteworthy subset of the renowned exponential family of functions (see [15]).
EDMs encompass distinguished distributions such as the inverse Gaussian, gamma, and the
normal distribution, to name a few.

EDMs expand upon the concepts of Natural Exponential Families, which offer an extensive
range of possibilities, as elucidated in [13]. The probability density function for EDMs is defined
as:

f (y; µ, λ) = eλ[θy−Kν(θ)]c(y, λ), y ∈ R (1)
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where λ (dispersion parameter) and θ (canonical parameter), with domain (λ, θ) ∈ Λ × Θ ⊆
R+ × R. In (1), Kν (θ) = log

∫
R

eθxν(dx) (cumulant function) is a known function of a generating
probability measure ν and c(y, λ) is a normalizing constant that ensures (1) is a probability
function.

For EDMs we have some well-known relations, if Y ∼ f (.; µ, λ), then µ = E(Y) = K′
ν(θ)

is the expectation of (1) due to the relationship/map between θ and µ. The variance of (1)

is Var (Y) =
1
λ

V(µ) and V(µ) being the variance function which uniquely corresponds to an

exponential dispersion model. Define ψν(µ) = (K′
ν(θ))

−1 and V(µ) = K′′
ν (ψν(µ)). It can also be

shown that when the functions Kν(.) and c(., .) as well as ψν are fixed, the subfamily arising by
taking different θ consists of elements that are all Esscher-transforms of each other. A family with
Kν, c and θ fixed and varying ψν can be generated by the operation of taking sample means. For
further information, we refer the reader to [7]).

In Table 1, we present necessary details of absolutely continuous PDFs of the EDM family
specifying the normalizing constant (c(y, λ)), the cumulant function (Kν), canonical parameter (θ),
dispersion parameter (λ), mean (K′

ν), inverse function of the mean (ψν) and variance function (V)
of each distribution (see [33, 16]).

Table 1: Examples of some absolutely continuous PDF of EDMs.

Gaussian Gamma Inverse Gaussian Laplace

c(y, λ)
√

λ√
2π

e−
λy2

2
λλyλ−1

Γ(λ)

√
λ√

2π
y−

3
2 e−

λ
2y λeλy

Γ(λ)2

∫ +∞
λy e−2ttλ−1(t − λy)λ−1dt

Kν
θ2

2 − log(−θ) −
√
−2θ − log(1 − θ2)

K
′
ν θ − 1

θ (−2θ)−1/2 2θ
1−θ2

ψν µ − 1
µ − 1

2µ2

∣∣∣√1+µ2−1
∣∣∣

µ

V 1 µ2 µ3

∣∣∣√1+µ2−1
∣∣∣

µ2
√

1+µ2

2.2. Description of EDRM

J. A. Nelder and R. W. Wedderburn [20] introduced Generalized Linear Models (GLMs) as a
unified framework for handling a variety of commonly used statistical models, including multiple
linear regression and log-linear models, for both normally and non-normally distributed data.
GLMs are highly versatile, making them suitable for a wide range of models in actuarial statistics,
while being structured in a way that allows a single algorithm to be used for maximum likelihood
estimation across all of these models (see [19]). GLMs are more helpful in actuarial statistics
than ordinary multiple regression, since apart from normal distributions, GLMs explicitly allow
Poisson, binomial, gamma and some other useful error distributions. Also, GLMs allow linearity
on other scales than the identity scale (logarithmic, logit, probit, reciprocal and others).

The GLMs are described by a link and variance functions further with the selection of a
response variable and a collection of explanatory variables. The link function transforms the
mean µ = (µ1, ..., µN)

⊤ of the response variable Y = (y1, ..., yN)
⊤ into a scale where the model is

linear. In fact, each response variable yi is assumed to follow its own regression model, so that

yi = β0 +
q

∑
j=1

β jxi,j + εi i = 1, ..., N, (2)

where xi = (xi1, xi2, ..., xiq)
⊤ be a vector of predictors or covariates, and β = (β1, β2, ..., βq) is a

vector of unknown parameters of adjacent regression coefficients, and εi is a random variables
with mean zero and variance σ2.
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In a GLM, we assume that the response variable follows a distribution from the EDMS,
satisfying:

ψ(µi) = β0 + β1xi1 + ... + βqxiq, i = 1, ..., N (3)

where ψ denotes the link function. For simplicity, equation (3) may be also written as ψ(µi) =
x⊤i β = ηi. In what follows, we analyse a data set, (yi; xi) i = 1, ..., N with each yi follows the
density function f (.; µ, λ) described in equation (1) with mean and variance as follows

E (log yi) = µi = K′
ν(x⊤i β) = ψ−1

ν (x⊤i β)

Var (log yi) =
1
λ

K′′
ν (x⊤i β) =

1
λ

V(µi)

The multivariate extension relies on the deviance residual, denoted as r(y, µ) = ±
√

d(y, µ),
where ± = sgn(y − µ) and the function d is assumed to be a unit deviance with the property
d(µ, µ) = 0 for µ ∈ Ω (an interval), and d(y, µ) > 0 for y = µ. It is assumed throughout that d(, µ)
is continuous and strictly monotone on each side of µ, implying that r(, µ) is strictly increasing
for each µ ∈ Ω.

Let us consider the vector of deviance residuals as r(y, µ) = [r(y1, µ1), ..., r(yN , µN)]
⊤, where

yi and µi denote the elements of the N-vectors y and µ, respectively. Given a symmetric positive-
definite N × N matrix Σ, the scaled deviance is defined as the following quadratic form in the
vector of deviance residuals:

D(y, µ, Σ) = r⊤(y, µ)Σ−1r(y, µ) = tr
[
Σ−1r(Y, µ)r⊤(Y, µ)

]
.

Following the approach of Jorgensen (1999) and Jorgensen and Lauritzen (2000), a multivariate
dispersion model is defined as:

f (y; µ, Σ) = a(y, Σ) exp
[
−1

2
D(y, µ, Σ)

]
for y ∈ RN (4)

where a(y, Σ) is a suitable function ensuring that (4) is a probability density function on RN .

3. Parameter estimation of EDRM

3.1. Maximum likelihood estimation

Two types of estimation procedures are known. One is the point estimation and another is
interval estimation or confidence interval [29]. Here we mainly focus on point estimation of the
parameters associated with a distribution function. This refers to point estimation, where the goal
is to approximate an unknown parameter using sample data. Let us consider a random sample
Y = (y1, y2, ..., yN) follows f (., µ, λ), where µ and λ are known. In most cases, there are two
different approaches for obtaining a point estimator for unknown parameter. Namely classical
method and decision theoretic approach. In this section, we focus the estimation of parameter
β by the method of maximum likelihood. To estimate this parameter, we fix an underlying
exponential dispersion model and common dispersion parameter λ > 0, but allow each sample
yi its own natural parameter θi = K′−1(µi). Our goal is to estimate the means µi = E(yi) for
i = 1, ..., N by the maximum likelihood method. Thus we can first estimate the coefficients β,
and then use these estimates to argue that µi = ψ−1

ν (x⊤i β) and the hypothesis of the components
independence of response variable yi, the likelihood function is given by

L(β, λ) =
N

∏
i=1

c(yi, λ)eλ[yi(x⊤i β)i−Kν((x⊤i β)i)]. (5)

The log-likelihood function is written as

L(β, λ) =
N

∑
i=1

{
λ
[
yi(x⊤i β)i − Kν((x⊤i β)i)

]
+ log c(yi, λ)

}
=

N

∑
i=1

li(β, λ) (6)
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where li(β, λ) =
{

λ
[
yi(x⊤i β)i − Kν((x⊤i β)i)

]
+ log c(yi, λ)

}
. It should be to note that β 7→ L(β, λ)

is a strictly concave function. Therefore, to obtain the maximum likelihood estimator (MLE) of β,
we derive the log-likelihood with respect to different components of the vector β = (β0, ..., βq)
and we need to solve the likelihood equations

∂L
∂β j

(β, λ) =
N

∑
i=1

∂li
∂β j

(β, λ) = 0, j = 1, ..., q.

Since
dηi
dµi

= ψ′(µi),
dθi
dµi

= 1/V(µi) and by the chain rule for differentiation with respect to β j,

we have

∂li
∂β j

=
dli
dηi

∂ηi
∂β j

=
dli
dθi

dθi
dµi

dµi
dηi

∂ηi
∂β j

=
dli
dθi

(
dµi
dθi

)−1 ( dηi
dµi

)−1 ∂ηi
∂β j

= λ
(
yi − K′(θi)

) (
K′′(θi)

)−1 (
ψ′(µi)

)−1 xij

=
λ (yi − µi) xij

V(µi)ψ′(µi)
.

Thus the likelihood equations we have to solve for the MLE of β are

N

∑
i=1

λ (yi − µi) xij

V(µi)ψ′(µi)
= 0 j = 1, ..., q. (7)

where µ is the mean vector with N components.
Note that the derivative of the log-likelihood with respect to β does not depend on the

dispersion parameter λ.

Remark 1. When the response variable yi is normally distributed with mean µi and dispersion
parameter λ, we have ψ(µi) = µi = x⊤i β. Hence, ψ′(µi) = dψ(µi)

dµi
= 1; also V(µi) = 1 and

λ = 1/σ2. Therefore, the equation (7) becomes

1
σ2

N

∑
i=1

(
yi − x⊤i β

)
xij = 0.

By ignoring the factor 1/σ2, the equation reduce to the Normal equation of least squares

X⊤ (Y − Xβ) = 0 or quivalently β̂ =
(

X⊤X
)−1

X⊤Y. (8)

3.2. Non-informative Bayesian estimation

In this section, we treat the prior of the dispersion parameter λ as known constant. In practice, it
is unknown for most cases and it is necessary for us to specify reasonable values. Now, let us
focus on specifying the value of λ. In the exponential family, for some distributions, λ is constant,
for example, Poisson, Exponential, Bernoulli, Binomial, and Negative Binomial distributions; for
other distributions, like Poisson and binomial with over-dispersion, or Normal, gamma, inverse
Gaussian, λ is unknown and one may proceed as before with λ replaced by an estimate λ̂.

Jeffrey’s prior based on the observed Fisher information matrix. Because it is locally uniform,
it is a non-informative prior. It is a useful prior because it does not change much over the region
in which the likelihood is significant and does not have large values outside that range the
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local uniformity property. The Jeffrey’s prior is justified on the grounds of its invariance under
parametrization according to S. K. Sinha [31].

In this step, we assess Jeffrey’s prior regression for the GLM class and the associated prior
and posterior distribution characteristics. Our key subject is the case where λ is unknown. The
Jeffrey’s prior can be an enticing one for the normal linear regression model as it corresponds
to tractable posterior distributions. See G. E. Box and G. C. Tiao [4] for more details about the
usage of the Jeffrey’s prior in this model. In addition, D. M. Eaves [8] assumed Jeffrey’s prior to a
non-linear phenomenon and obtained tractable posteriors through linearisation of the non-linear
model. However, Jeffrey’s prior can indicate that it leads to proper posteriors in many GLMs. The
two theorems 1 and 2 are given by [13] below that help to evaluate and establish the propriety
of the posterior distribution under Jeffrey’s prior by giving (i) sufficient and (ii) necessary and
sufficient conditions for the propriety of the posterior and prior distributions, respectively. The
two theorems 1 and 2 discuss also the existence of joint moments.

Theorem 1. Suppose the likelihood and Jeffrey’s prior for β are as above. Additionally, assume
that X is of full rank and the likelihood of β is bounded above. Then, a sufficient condition for
the existence of the posterior moment generating function of β for any GLM is that the integral

∫
S

eψνθ−1(r)+ϕ−1w(yr−Kν(r))
(

d2Kν(r)
dr2

) 1
2

dr (9)

is finite, where λ(ϕ) = ϕ
w and for ψν in some open neighbourhood about 0. Here S denotes the

parameter space for the canonical parameter θ.

Theorem 2. A necessary and sufficient condition for existence of moment generating function of
Jeffrey’s prior for any GLM is that the integral

∫
S

eψνθ−1(r)
(

d2Kν(r)
dr2

) 1
2

dr (10)

is finite for ψν in some open neighbourhood about 0.

It should be to note that tractable posteriors for GLM’s with Jeffrey’s prior are valid for certain
examples only in very particular cases, and closed type outcomes in general are not available. Let
us assume now y1, ..., yN are independent observations from a GLM. Jeffrey’s joint prior for (λ, β)

is given by π(λ, β) = |I(λ, β)|
1
2 , where I(λ, β) is the Fisher information matrix of (λ, β). From

equation (1), it is obvious that I(λ, β) is diagonal block in λ and β, with the form(
−∑N

i=1
2K′

ν(θi)θi−Kν(θi)
λ3 + E(c̈(yi, λ)) 0

0 X⊤V(β)∆2(β)X
λ

)
,

where c̈(yi, λ) = ∂2c(yi ,λ)
∂λ2 , V(β) and ∆(β) are N × N diagonal matrices defined as V(β) =

Diag
(
K′′

ν

(
ψ(x⊤1 β)

)
, ..., K′′

ν

(
ψ(x⊤N β)

))
and ∆(β) = Diag

(
ψ′(x⊤1 β), ..., ψ′(x⊤N β)

)
. Therefore, Jef-

frey’s prior for (λ, β) is driven as follows

π(λ, β) ∝

(
−

N

∑
i=1

2K′
ν(θi)θi − Kν(θi)

λ3 + E(c̈(yi, λ))

) 1
2

λ− q
2

∣∣∣X⊤V(β)∆2(β)X
∣∣∣ 1

2 . (11)

We can see from equation (11) that in fact, λ and β under Jeffrey’s prior are not independent.

In the normal linear model of regression: π(λ, β) ∝ λ− (q+2)
2 and in this case, λ and β are

independent. On the contrary, for the gamma model λ and β are not. In fact, Jeffreys joint prior
for λ and β may be quite difficult to analyse for many GLMs, as well as the gamma model, which
may not be feasible for number calculation. Conversely, we can find the following joint prior to
(λ, β): suppose that λ and β are independent, choose a (possibly informative) Jeffrey’s prior to λ
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and X⊤V(β)∆2(β)X
λ as Jeffrey’s prior to β. This is one method for choosing an analytically feasible

joint prior (λ, β), which simultaneously enhances Jeffrey’s prior.
Maximum a-posteriori probability (MAP) estimate, like the maximum likelihood method, is a

method that can be used to estimate a number of unknown parameters, such as the parameters
of a probability density, related to a sample given. This method is closely linked to the maximum
likelihood but differs from it however by the possibility of taking into account a non-informative
a prior on the parameters to be estimated.

In MAP estimation, the model parameters are obtained by solving

θ̂MAP = argmax
θ

L(θ) + log π(θ) (12)

where θ = (λ, β). Our goal is to solve the maximization in (12) when Jeffrey’s prior is considered.
According to Jeffrey’s prior, the probability of the prior is proportional to the square root of the
determinant of the Fisher information matrix I:

π(θ) ∝
√

det I(λ, β) (13)

Substituting (11) into (12) and removing terms which are independent of θ, we obtain

θ̂ = argmax
θ

L(θ) + 1
2

log

(
−

N

∑
i=1

2K′
ν(θi)θi − Kν(θi)

λ3 + E(c̈(yi, λ))

)
− q

2
log(λ) (14)

+
1
2

log
∣∣∣X⊤V(β)∆2(β)X

∣∣∣ (15)

Proposition 1. The coefficients regression estimates under Jeffrey’s prior can be presented as

β̂(l+1) = β̂(l) + λ(l)X⊤(Y − µ) +
X⊤ψ′′(X⊤β(l))X⊤X

X⊤ψ′(X⊤β(l))X

λ̂(l+1) = λ̂(l) +
N

∑
i=1

1
c(yi, λ(l))

∂c(yi, λ(l))

∂λ
+

N

∑
i=1

yi(x⊤i β(l))i − Kν(x⊤i β(l))− q + 2
2λ

where λ represents the dispersion parameter.

Proof.
In order to estimate the coefficients regression, we adopt the Gradient ascent approach (see

[5]). Then, the coefficients regression and the dispersion parameter can be calculated respectively,
as

β̂(l+1) =β̂(l) +
∂ log L(β(l), λ(l))

∂β

λ̂(l+1) =λ̂(l) +
∂ log L(β(l), λ(l))

∂λ

According to (14), the derivative of log l(θ) is

d log l(θ)
dθ

=
dL(θ)

dθ
+

d log π(θ)

dθ

where the derivative of log l(θ) with respect to β and λ
is obtained as follows

dL(θ)
dβ

= λX⊤(Y − µ) (16)

dL(θ)
dλ

=
N

∑
i=1

1
c(yi, λ)

∂c(yi, λ)

∂λ
+

N

∑
i=1

yi(x⊤i β)i − Kν(x⊤i β) (17)
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The derivative of log π(θ) with respect to β and λ is given by

∂ log π(θ)

∂β
=

∂

∂β
log

X⊤V(β)∆2(β)X
λ

=
X⊤ψ′′(X⊤β)X⊤X

X⊤ψ′(X⊤β)X
∂ log π(θ)

∂λ
=

∂

∂λ
log λ− (q+2)

2 = − q + 2
2λ

From equations (16), (17) and the derivative of log π(θ), the specific update for estimating
β̂(l+1) and λ̂(l+1) in linear regression can be expressed as

β̂(l+1) = β̂(l) + λ(l)X⊤(Y − µ) +
X⊤ψ′′(X⊤β(l))X⊤X

X⊤ψ′(X⊤β(l))X

λ̂(l+1) = λ̂(l) +
N

∑
i=1

1
c(yi, λ(l))

∂c(yi, λ(l))

∂λ
+

N

∑
i=1

yi(x⊤i β(l))− Kν(x⊤i β(l))− q + 2
2λ(l)

■

Remark 2. In order to estimate the coefficients regression and dispersion parameter, we proposed
an iterative algorithm based on the Gibbs-sampling one. The Gibbs sampling algorithm was
introduced by S. Geman and D. Geman [10]. We start by setting the coefficients regression and
dispersion parameter to its initial values β(0) and λ(0), respectively. This process continues until

”convergence” (i.e;
∣∣∣β(l+1) − β(l)

∣∣∣ < ϵβ and
∣∣∣λ(l+1) − λ(l)

∣∣∣ < ϵλ) for ϵβ and ϵλ are small enough.

3.3. Application

The Bayesian approach is employed to estimate a multivariate multiple regression model using a
non-informative Jeffrey’s prior. The dataset consists of 100 synthetically generated observations,
created from a multivariate normal distribution using Matlab software.

Table 2: Parameter estimation

Parameter Mean Credible Interval

MLE
β̂0 1.1319 (0.5497 1.7141)
β̂1 -0.9689 (−1.1301 − 0.8077)
β̂2 0.69819 (0.4964 0.9000)
λ̂ 2.8041 (−1.0375 6.6457)

AIC = 212.8195 BIC= 220.2481

Jeffrey’s
prior

β̂0 1.0462 (0.4899 1.6025)
β̂1 -0.9507 (−1.1102 − 0.7912)
β̂2 0.7129 (0.5167 0.9091)
λ̂ 2.7965 (−1.0451 6.6381)

AIC =212.8161 BIC= 220.0107

The parameter estimates are presented in Table 2, along with their 95% credible intervals.

It is important to note that this analysis is based on a single simulated dataset. While both
the Bayesian approach with Jeffrey’s prior and the classical method yield similar results in
this case, drawing strong conclusions from a single dataset is limited. A more rigorous com-
parison would require a complete Monte Carlo simulation study, where multiple datasets are
generated and analysed to account for the variability introduced by the random generation of data.
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Conducting such a simulation study, with several iterations, would provide a more compre-
hensive evaluation of the performance of both methods. Additionally, we observe that Jeffrey’s
prior has some advantages in terms of model fit, with slightly lower AIC and BIC values, and
may offer more stable estimates when there is limited prior knowledge or small sample sizes.
However, further validation through a more extensive simulation study is necessary to confirm
these findings.

4. Numerical Illustration

Universal processes of rainfall involve data collection, data preprocessing and data selection,building
a model using regression, and at the last validity check. The areal rainfall estimated by the rain
gauges presents a great uncertainty where the network of rain gauges is sparse. From this ap-
proach, we can predict the rainfall of any future year using climatic factors. In our study, we have
chosen an application concerning daily climatic data for the studied regions of northwestern Alge-
ria. These data were extracted from the National Office of Meteorology (https://www.meteo.dz)
and TuTiempo (https://en.tutiempo.net/climate), 2021.

For all existing rainfall stations (more than 10 climatic stations), the annual rainfall averages
are available for a period varying from 35 to 40 complete years, from 1981 to 2021. Most of the
stations are located in the plains and on the coasts, the number of stations decreases towards the
south and in mountainous regions (more than 600m). The main available factors that depend on
precipitation are temperature values, wind speed, station elevation, and station coordinates such
as latitude and longitude (see Table 3).

Table 3: Data of the topographic parameters at the study rainfall stations.

Rainfall
stations

Rainfall Temperature Wind speed Elevation Latitude Longitude
(mm) (°C) (m/s) (m) (°) (°)

Ain Sefra 0.5546 16.5686 5.4929 1200.55 32,76 -0.6
El-Bayadh 0.6944 15.4328 6.1949 1220.02 33,66 1
Mascara 1.4003 17.2871 5.2274 591.71 35.21 0.15
Mostaganem 1.2537 18.5080 5.2992 254.48 35,88 0.11
Oran 1.1661 18.6619 5.7160 127.31 35.63 -0.6
Relizene 1.3584 18.2210 5.2587 367.72 35.73 0.55
Saida 1.2480 15.9214 5.4670 928.27 34.86 0.15
Sidi Bel Abbes 1.3186 17.6557 5.3304 458.05 35.19 -0.64
Tiaret 1.4860 15.6170 5.6113 904.3 35.35 1.43
Tlemcen 1.2399 18.0853 5.3669 355.91 35.01 -1.46

In the present investigation, we have applied a multiple regression model, which has been
elaborately described in Section 2.2, to the data set at hand. The purpose of this exercise is to
unearth a predictable equation that can establish a link between rainfall and various climatic
factors. In order to accomplish this goal, we have meticulously constructed a regression equation
comprising five independent variables as follows:

yi = β0 + β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4 + β5xi,5 + εi, i = 1, ..., 10

where yi is the response (predicted rainfall station), β0, β1, β2, β3, β4, β5 are the regression
coefficients, x1 (Temperature), x2 (Wind speed), x3 (Elevation), x4 (Latitude), x5 (Longitude) are
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the highly correlated climate indices (predictors); and ε is the residual term of the model.

Let us now proceed to the multiple regression analysis with the full climatic factors consid-
ered above and compare it with different types of model estimation using maximum likelihood
and Jeffrey’s prior estimations. Table 4 shows the regression comparison with the five inde-
pendent variables. The main features of interest are the parameters estimates as well as their
corresponding standard errors (SE Coeff) and the criteria of fitness (t-Stat and p-Value). the
standard error of the regression coefficient is calculated as SE Coeff = s.e.R

sx
√

N−1
, where s.e.R is

the standard deviation of the regression, sx is the standard deviation of x, and N is the sample size.

Moreover, the estimates are significantly similar and its associated standard error are close to
zero, which justifies the very smaller over variation. Since the associated p-value is < 0.001, we
reject the hypothesis in favour of the alternative hypothesis that at least one of the coefficients is
not zero.

Table 4: Multiple regression analysis with MLE and Jeffrey’s prior approaches.

Predictor Coeff β̂ SE Coeff β̂ t-Stat p-Value

MLE

Intercept 5.14787 × 10−15 0.03227271 1.59511 × 10−13 0.99999999
Temperature -2.82471635 0.42179987 -6.69681646 0.00258658
Wind speed -0.81015953 0.10066482 -8.04808997 0.00129405
Elevation -4.06167602 0.77057323 -5.27097985 0.00620801
Latitude -1.22618013 0.44892198 -2.73138802 0.05236798
Longitude 0.58214495 0.15687036 3.71099388 0.02063610

RMSE= 0.102 R2 =0.995 R2(adj) = 0.99 AIC=-14.42894643

Jeffrey’s
prior

Intercept 5.59885 × 10−15 0.03227271 1.73485 × 10−13 0.99999999
Temperature -2.82465611 0.42179987 -6.69667364 0.00258679
Wind speed -0.81014627 0.10066482 -8.0479583 0.00129413
Elevation -4.06156466 0.77057324 -5.27083533 0.00620862
Latitude -1.22611567 0.44892198 -2.73124443 0.05237573
Longitude 0.58212371 0.15687036 3.71085846 0.02063855

RMSE= 0.10205529 R2 =0.99536930 R2(adj) = 0.98958092 AIC=-14.42894637

Upon examination of Table 4, we observe that the estimated values of βi are strikingly alike
and the associated standard deviations are nearly zero, which validates the incredibly low vari-
ance of the model. With a p-value greater than 0.001, we reject the null hypothesis and favour the
alternative hypothesis that at least one of the coefficients is not zero.

Additionally, Table 4 displays the Root Mean Squared Errors (RMSE) for the variance of the
residuals, calculated by both MLE and Jeffrey’s prior estimation methods. This metric evaluates
absolute fit of the model to the data, indicating the proximity of the observed data points to
predicted values of the model. Interpreted as the standard deviation of the unexplained variance,
the RMSE is expressed in the same units as the response variable. Lower RMSE values for both
MLE and Jeffrey’s prior estimation methods indicate better fit, supporting the equivalence of
the two approaches. The RMSE serves as a reliable measure of the model’s predictive accuracy,
making it the most critical criterion for fit if the primary goal is prediction.

Table 4 indicates that other fitness criteria, such as R2, R2(adj), and AIC, are reasonably similar
for both MLE and Jeffrey’s prior regression models. Figure 1 presents the estimates for each of
the βi coefficients of the regressions with five independent variables using both MLE and Jeffrey’s
prior regression models. It is evident that all the parameters converge rapidly to the MLE method
as the number of iterations increases.
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Figure 1: Relationship between regression coefficient estimation and iteration number vs MLE method

5. Conclusion and Discussion

In this paper, we apply the Bayesian estimation of EDRM parameters using Jeffrey’s prior. We
demonstrated that the maximum likelihood method can be used to accurately estimate this
parameter. Additionally, we devised an iterative algorithm based on Jeffrey’s prior to estimate the
regression coefficients. The significance of rainfall on agriculture and global economies cannot
be overstated, and accurate predictions of rainfall are essential for successful farming practices.
While this model is currently the only one capable of predicting rain, it is not entirely precise
due to the fluctuation of climatic variables. Although our study includes certain elements, other
factors may also impact rainfall amounts. Nevertheless, our proposed technique shows promise,
particularly when utilizing Jeffrey’s prior. The results we obtained were comparable to those of
the MLE method, validating the effectiveness of our approach.
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