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Abstract

A traditional mathematical technique for analyzing line-waiting delays and overcrowding is queuing
theory. It addresses the number of patrons in line as well as numerous other queue-related issues.
Developing an Erlang service model in a fuzzy environment is our study’s goal. This study aims to
investigate the anticipated number of patients in the line as well as the queuing system’s waiting time.
To achieve this, we applied the L-R strategy under triangular fuzzy numbers and the alpha-cuts method.
To measure various linguistic aspects in queuing systems, the fuzzy approach has been used. The findings
showed that waiting times are determined using recommended techniques and that the fuzzy Erlang
model is stable. Finally, we provide numerical examples to show the capabilities of the suggested method.

Keywords: Fuzzy queuing theory, α-cut method, L-R fuzzy approach,
triangular fuzzy number, Erlang service model.

1. Introduction

A probabilistic method for handling queuing systems is queuing theory. Calls and Erlang
initially presented queuing theory by focusing on the congestion issue in telephone exchanges
and introducing the foundation for both Poisson and exponential distributions. When people
wait for their turn to get services, they are essentially in a queue. Waiting is one of the processes
of most troubling situations, and queuing theory addresses it. Banks, hospitals, telecoms, medical
services, and other establishments frequently face queue issues. Long lines have a financial and
resource cost to people. It is challenging to accommodate everyone’s high needs because of the
traffic. It addresses the quantity of patrons in line as well as numerous other queue-related issues.

Queueing theory is useful for creating effective queuing systems that, while lowering client
wait times, also increase the number of customers that can be served. Two types of queues are
distinguished: fuzzy queues and crisp queues. Using a probabilistic technique, Crisp Queue
handles performance measures, and in this case, Poisson distribution is used to determine the
"service time" and "inter-arrival time." In actual situations, both the service and arrival rates
are informally assessed. Since the majority of information pertaining to statistics is collected
in a subjective manner, the fuzzy approach describes service and arrival rates in a probabilistic
manner [1, 2].
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Zadeh asserts that fuzzy queues are more realistic than crisp queues. When numerous servers
are involved, these queueing models work best when crisp queues are converted to fuzzy queues
[3]. To create the mathematical models for customer service, queuing theory is employed. Given a
probabilistic explanation of service time, the fuzzy queueing method is a more practical solution
than traditional queueing theory methods. Since the fuzzy technique’s boundary is specified with
a limited membership degree, it differs greatly from the crisp set approach [4].

Several researchers have used Zadeh’s extension concept for fuzzy queueing models [3, 5, 6,
7, 8], such as, Nagi and Lee [9] examined the α-cut method under fuzzy conditions. The fuzzy
approach to diagnostic queuing theory was introduced by Umaira Zareen and Saqlain Raza [10].
The Erlang service model was used by Narayanamoorthy et al. [11] to predict the anticipated
number of customers and their waiting time in the system. The single server queues under the
LR approach are examined by Vijaya et al. [12] utilizing trapezoidal fuzzy numbers. Lee [13]
studied the concepts of simulation and the Alpha-cut approach. Much research has been done on
fuzzy queues by Prade [14], Ritha and Menon [15], Yager [16], Mukeba Kanyinda [17], and others
[18, 19, 20]. Finding system performance measurements using the α− cuts approach is the focus
of the majority of these works. In this work, fuzzy queueing models are analyzed under the L-R
fuzzy approach using triangular fuzzy numbers. The L-R method is a novel approach that we
use to determine how many customers in a fuzzy queue along with their waiting time.

Compared to classical queueing theory, the fuzzy queueing models are more realistic than
obtaining the queue models because the service and inter-arrival times have to follow certain
distributions. However, linguistic quantifiers such as speedy, gradual, or medium are often used
to characterize the arrival and service patterns instead of probability distributions. In this study,
the alpha-cut and L-R approaches, which are helpful in determining the function’s higher and
lower bounds, handle the service rate and arrival rate as triangular fuzzy numbers. There has
been a lot of interest in the M/EC/1 vacation systems with a single unit arrival for queuing
models with single and many servers under different considerations. Researchers used the earlier
findings to solve a queuing decision problem and a machine serving problem revision of queueing
theory [5, 6, 21, 22, 23].

2. Preliminaries

We give some basic concepts and arithmetic operations of L-R fuzzy numbers in this section.

Definition 2.1. [18] A δ̃ is said L-R fuzzy number if there exists a real numbers such as, δ, s >
0, t > 0 and two positive, continuous and decreasing functions L and R such that

L(0) = R(0) = 1

L(1) = 0, L(u) > 0, lim
u→∞

L(u) = 0

R(1) = 0, R(u) > 0, lim
u→∞

R(u) = 0

λδ̃(u) =


L( δ−u

s ) i f u ∈ [δ − s, δ]

R( u−δ
t ) i f u ∈ [δ, δ + t]
0 otherwise (1)

The δ̃ =< δ, s, t >LR. δ is called the most possible value. By the definition,supp(Ã) = {u ∈
E|σÃ(u) > 0}, then

supp(δ̃) =]δ − s, δ] ∪ [δ, δ + t[=]δ − s, δ + t[.

2.1. Arithmetic operations of LR fuzzy numbers

The two L-R fuzzy numbers M =< δ, i, j > and N =< η, k, p > [24]

M̃ + Ñ =< δ + η, i + k, j + p > (2)
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M̃ − Ñ =< δ − η, i + p, j + k > (3)

M̃.Ñ ≈< δη, δk + ηi − ik, δp + η j + jp > (4)

M̃
Ñ

=
< δ, i, j >
< η, k, p >

≈<
δ

η
,

δp
η(η + p)

+
i
η
− ip

η(η + p)
,

δk
η(η − k)

+
j
η
+

jk
η(η − k)

> (5)

Definition 2.2. [11] A F̃ is said triangular fuzzy number (TFN) then there exists a real numbers
g < h < r such that:

ηF̃(u) =


L( u−g

h−g ) i f g ≤ u ≤ h
R( r−u

r−h ) i f h ≤ u ≤ r
0 otherwise

(6)

By definitions, a TFN F̃ = (g/h/r) is LR fuzzy number. In this concepts, it can be written

F̃ = (g/h/r) =< h, h − g, r − g >

for L(x) = R(x) = max(0, 1 − u).

3. Mathematical Model

In a queuing system, a customer with arrival rate V and service rate Q is received by a single-
server capacity. The C exponential phase makes up the fuzzy Erlang service rate Q̃ and the fuzzy
Poisson rate Ṽ. After establishing the system capacity and calling source to infinite, customers
are serviced using the the basis of FCFS [25, 26].

Here, the Ṽ is arrival rate and service rate Q̃ are known and can be denoted by convex fuzzy
sets. An fuzzy set F̃ is convex if and only if µF̃(ϕx1 + (1 − ϕ)x2) ≥ min{µF̃(x1), µF̃(x2)} where
µF̃ is φ ∈ [0, 1], x1, x2 ∈ X.

Let µṼ(s), µQ̃(t) are arrival rate and service rate of membership functions respectively. We
have

Ṽ = {s, µṼ(s)/s ∈ S(Ṽ)}
Q̃ = {t, µQ̃(y)/t ∈ S(Q̃)}

Where S(λ̃) and S(µ̃) are the supports [11]. Based on the extension principle proposed by
Zadeh, the performance measure’s membership function is described as

µẼ(Ṽ,Q̃)(x) = sup
s∈S,t∈T

min{µṼ(s), µQ̃(t)/x = E(s, t)}

Under the steady-state condition ρ = V
Q < 1, the number of customers in the queue,

Lq =
[
(C+1)

2C . Ṽ2

Q̃(Q̃−Ṽ)

]
The expected number of customers in the queue L̃q is

µL̃q(x) = sup
s∈S,t∈T,x<X

min
{

µṼ(s), µQ̃(t)/x =

[
(C + 1)

2C
.

Ṽ2

Q̃(Q̃ − Ṽ)

]}
(7)

We can determine how long it will take for the expected number of customers in line,

Wq =

[
(C + 1)

2C
.

Ṽ
Q̃(Q̃ − Ṽ)

]
The waiting time of W̃q is in the queue

µW̃q(x) = sup
s∈S,t∈T,y<Y

min
{

µṼ(s), µQ̃(t)/x =

[
(C + 1)

2C
.

Ṽ
Q̃(Q̃ − Ṽ)

]}
(8)
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4. The Method for Solving the Problem

An approach to constructing the µP̃(Ṽ,Q̃) is basis of deriving α-cuts of µP̃(Ṽ,Q̃). Denote α-cuts of Ṽ
and Q̃ as [25, 26]:

Ṽα = [sL
α , sU

α ] = [min
s∈S

{s/µṼ(s) ≥ α}, max
s∈S

{s/µṼ(s) ≥ α}] (9)

Q̃α = [tL
α , tU

α ] = [min
t∈T

{t/µQ̃(t) ≥ α}, max
t∈T

{t/µQ̃(y) ≥ α}] (10)

Consequently, the FM/FEC/1 queue can be reduced to crisp M/EC/1 queues with various levels
of α sets {Ṽα < α ≤ 1}[].

By the convexity, the intervals are functions of α is

sL
α = min µ−1

Ṽ (α) and sU
α = max µ−1

Ṽ (α)

tL
α = min µ−1

Q̃
(α) and tU

α = max µ−1
Q̃

(α)

We need either µṼ(s) = α and µQ̃(t) ≥ α (or) µṼ(s) ≥ α and µQ̃(t) = α such that x =[
(C+1)

2C . Ṽ2

Q̃(Q̃−Ṽ)

]
to satisfy µL̃q(x) = α. To find theµL̃q(x) we have to obtain the lower value

of xL
α and the upper value of xU

α of µL̃q(x). Since µṼ(s) = α is denoted by s = sL
α (or) s = sU

α this
formulated as the constraint of s = ϕ1sL

α + (1 − ϕ1)sU
α , where ϕ1 = 0 (or) 1. Similarly µQ̃(t) = α

is formulated as the constraint t = ϕ2tL
α + (1 − ϕ2)tU

α , where ϕ2 = 0 (or) 1 [].

Let ˜(Lq)
L
α = { ˜(Lq)

L1
α , ˜(Lq)

L2
α } and ˜(Lq)

U
α = { ˜(Lq)

U1
α , ˜(Lq)

U2
α } respectively. where

˜(Lq)
L1
α = min

s,t∈R
s < t

[
(C + 1)

2C
.

Ṽ2

Q̃(Q̃ − Ṽ)

]
(11)

such that s = a1sL
α + (1 − a1)sU

α , tL
α ≤ t ≤ tU

α and a1 = 0 (or) 1.

˜(Lq)
L2
α = min

s,t∈R
s < t

[
(C + 1)

2C
.

Ṽ2

Q̃(Q̃ − Ṽ)

]
(12)

such that t = a2tL
α + (1 − a2)tU

α , sL
α ≤ sU

α and a2 = 0 (or) 1.

Similarly, we can obtain the upper values of Lq and where sL
α < tL

α . Then, α-cuts of L̃q can
be obtain by solving above equations.

If both ˜(Lq)
L
α and ˜(Lq)

U
α are invertible, then a left shape function LO(x) = ((L̃q)L

α)
−1 a

right shape function can be obtained. From LO(x) and RO(x), the membership function µL̃q is
constructed as

µL̃q(x) =


Lo(x), (Lq)L

α = 0 ≤ x ≤ (Lq)L
α = 1

1, (Lq)L
α = 1 ≤ x ≤ (Lq)U

α = 1
Ro(x), (Lq)U

α = 1 ≤ x ≤ (Lq)U
α = 0 (13)

5. Numerical Example

In a hospital clinic, a doctor examines each patient who is brought in for a routine checkup. While
the time spent on each part of the checkup is roughly exponentially distributed, the doctor spends
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an average of fifty minutes on each phase. Given that every patient undergoes a four-phase
examination and that the typical patient arrives at the doctor’s clinic at a rate of 20 per hour.
Calculate

∙ How many patients are anticipated to be in line?

∙ How long does it typically take a patient to wait in line?

∙ Determine the maximum values for the anticipated patient volume and line wait time.

Solution
The classical queueing theory cannot be used to investigate this issue because the rates are given
in fuzzy information. FM/FEC/1 is a simple queue with fuzzy rates. Assume that te rates
are fuzzy triangular numbers provided by Ṽ = [10, 20, 30] and Q̃ = [40, 50, 60]. The approach
described in the paragraph allows us to analyze queue characteristics specified in equations since
these parameters are L-R fuzzy integers.

α-cuts method:

The confidence interval at α are [10α + 10, 30 − 10α] and [10α + 40, 60 − 10α]

˜(Lq)
L
α =

[
5α2 + 10α + 5

16α2 − 136α + 240

]
˜(Lq)

L
α is invertible

α =
(136x − 10)±

√
3136x2 + 2400x

(32x − 10)

α ≥ 0, (136x − 10)±
√

3136x2 + 2400x ≥ 0

x = 0.0208(or)0.3125

α ≤ 1,
(136x − 10)±

√
3136x2 + 2400x

(32x − 10)
≤ 1

x = 0.3125 (or) 0

˜(Lq)
L
α =

(136x − 10)±
√

3136x2 + 2400x
(32x − 10)

0 ≤ x ≤ 0.0208

Now,

˜(Lq)
U
α =

[
5α2 − 30α + 45

16α2 + 72α + 32

]
˜(Lq)

U
α is invertible

α =
−(72x + 30)±

√
3136x2 + 7840x

(32x − 10)

α ≥ 0,−(72x + 30)±
√

3136x2 + 7840x ≥ 0

x = 0.3125(or)1.4062

α ≤ 1,
−(72x + 30)±

√
3136x2 + 7840x

(32x − 10)
≤ 1

x = 2.5(or)0.3125

˜(Lq)
U
α =

−(72x + 30)±
√

3136x2 + 7840x
(32x − 10)

1.4062 ≤ x ≤ 2.5
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From the inverse function of ˜(Lq)
L
α and ˜(Lq)

U
α of L̃q is described as:

µL̃q(x) =


(136x−10)±

√
3136x2+7840x

(32x−10) , 0 ≤ x ≤ 0.0208
1, 0.3125 ≤ x ≤ 0.3125

−(72x+30)±66
√

3136x2+7840x
(32x−10) , 1.4062 ≤ x ≤ 2.5

Then,

˜(Wq)
L
α =

(α + 1)
32α2 − 272α + 480

˜(Wq)
L
α is invertible

α =
(272x + 1)±

√
12544x2 + 672x + 1
64x

α ≥ 0, (272x + 1)±
√

12544x2 + 672x + 1 ≥ 0

x = 0.00208(or)0

α ≤ 1,
(272x + 1)±

√
12544x2 + 672x + 1
64x

≤ 1

x = 0.0022(or)0

˜(Wq)
L
α =

(272x + 1)±
√

12544x2 + 672x + 1
64x

0.00208 ≤ x ≤ 0.0022

Now,

˜(Wq)
U
α =

(3 − α)

32α2 + 144α + 64

˜(Wq)
U
α is invertible

α =
−(144x + 1)±

√
12544x2 + 672x + 1

64x
α ≥ 0,−(144x + 1)±

√
12544x2 + 672x + 1 ≥ 0

x = 0(or)0.0468

α ≤ 1,
−(144x + 1)±

√
12544x2 + 672x + 1

64x
≤ 1

x = 0.0937(or)0

˜(Wq)
U
α =

−(144x + 1)±
√

12544x2 + 672x + 1
64x

0.0468 ≤ x ≤ 0.0937

From the inverse function of ˜(Wq)
L
α and ˜(Wq)

U
α the waiting time of W̃q is defined as follows:

µW̃q(x) =


(272x+1)±

√
12544x2+672x+1
64x , 0.00208 ≤ x ≤ 0.0022
1, 0 ≤ x ≤ 0

−(144x+1)±
√

12544x2+672x+1
64x , 0.0468 ≤ x ≤ 0.0938
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We computed L̃q and W̃q for the provided values using fuzzy numbers. Substituting the
values of α in the formula above yields tabular results, with a graphical depiction provided below.
Finally, the results formulation are obtained by α-cut method: the Lq in the queue is approximately

Table 1: The results obtained by α-cut approach

α xL
α xU

α yL
α yU

α
˜(Lq)

L
α

˜(Lq)
U
α

˜(Wq)
L
α

˜(Wq)
U
α

0.0 10.0 30.0 40.0 60.0 0.0208 1.4062 0.0020 0.0468
0.1 11.1 29.9 41.1 59.9 0.0267 1.0683 0.0024 0.0368
0.2 12.2 28.8 42.2 58.8 0.0337 0.8333 0.0028 0.0297
0.3 13.3 27.7 43.3 57.7 0.0421 0.6622 0.0032 0.0245
0.4 14.4 26.6 44.4 56.6 0.0520 0.5334 0.0037 0.0205
0.5 15.5 25.5 45.5 55.5 0.0639 0.4340 0.0042 0.0173
0.6 16.6 24.4 46.6 54.4 0.0779 0.3557 0.0048 0.0148
0.7 17.7 23.3 47.7 53.3 0.0946 0.2931 0.0055 0.0127
0.8 18.8 22.2 48.8 52.2 0.1145 0.2423 0.0063 0.0110
0.9 19.9 21.1 49.9 51.1 0.1382 0.2008 0.0072 0.0095
1.0 20.0 20.0 50.0 50.0 0.1666 0.1666 0.0083 0.0083

between 0.0208 and 1.4062. The Wq is lies between 0.0020 and 0.0468.
The L-R approach:
We determine L-R representations of fuzzy numbers Ṽ and Q̃, which are Ṽ =< 20, 10, 20 >LR
and Q̃ =< 50, 10, 20 >LR

L̃q =

[
(C + 1)Ṽ
2(Q̃ − Ṽ)

− (C + 1)Ṽ
2Q̃

]
1
C

=
1
4

[
5 < 20, 10, 20 >

2[< 50, 10, 20 > − < 20, 10, 20 >]
− 5 < 20, 10, 20 >

2 < 50, 10, 20 >

]
˜(Lq)LR = < 0.0625, 0.5913, 1.0982 >LR

W̃q =

[
C + 1

2C
× Ṽ

Q̃(Q̃ − Ṽ)

]

=

[
5
8
× < 20, 10, 20 >

< 50, 10, 20 > [< 50, 10, 20 > − < 20, 10, 20 >]

]
˜(Wq)LR = < 0.0083, 0.0068, 0.0083 >LR

The support of L̃q varies between 0.0208 and 0.1666, indicating that the anticipated quantity
of patients is uncertain. Its values can never be lower than 0.0208 or more than 0.1666. The
mean value of L̃q is precisely 1, which is the maximum value that can be found in that situation.
Likewise, a patient’s waiting time in the queue is between 0.0020 (about one minute) and 0.0468
(approximately three minutes). It shows that there will never be a wait time in the line longer
than 3 or shorter than 1. The queue’s maximum waiting time is 0.0083 (around one minute).
These results of Lq and Wq are shown in the figures 1 and 2.
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Figure 1: The results of Lq

Figure 2: The results of Wq

6. Conclusion

The α-cut approach and the L-R method are used in this work to compute the predicted number
of clients and mean waiting time of patients of the FM/FEC/1 sequence. With the α-cut approach,
the maximum number of patients is precisely 0.0625, while the predicted number of patients
falls between 0.0208 and 1.4062. Similarly, the maximum value is precisely 0.0083, and the mean
waiting time for patients falls between 0.0020 and 0.0468. The two spreads help deduce the upper
and lower boundaries of the fuzzy measure. The approximation of the greatest explanatory
outcomes, brevity, convenience, and flexibility are the three primary advantages of this innovative
approach. Future research in this field will undoubtedly benefit from the L-R method to address
several outstanding problems, such as evaluating fuzzy queueing systems’ performance metrics
with the Erlang service model.
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