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Abstract

This paper focuses on the Bayesian estimation of the parameter of the inverse Ailamujia distribution,
employing advanced prior structures and diverse loss functions. Specifically, the extended Jeffreys’ prior
and gamma prior are utilized to derive the Bayesian estimators. Estimation is performed under various
loss functions, including squared error, entropy, precautionary, and Linex loss functions, ensuring a
comprehensive analysis. To demonstrate the practical applicability and comparative performance of these
estimators, an empirical investigation is conducted using a real dataset. The findings highlight the
adaptability and effectiveness of the proposed Bayesian approach across different estimation scenarios.

Key words: Bayesian analysis, priors, maximum likelihood estimator, different loss
functions.

1. Introduction

In statistical literature, the Ailamujia distribution, introduced by Lv et al. [5], represents a novel
probability distribution with significant versatility and practical relevance. This distribution has gained
attention due to its ability to model various types of real-world data effectively. Its unique structural
properties make it particularly suitable for applications in engineering and related disciplines. By
accommodating a wide range of data patterns, the Ailamujia distribution has proven to be a valuable
tool for analyzing reliability, survival times, and other stochastic phenomena. Its mathematical
flexibility and applicability have inspired ongoing research into its properties, extensions, and potential
for broader utilization across diverse fields. They have expounded its various distributional properties

which includes moments, moment generating function, mode, median, order statistics. They have
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derived and discussed various reliability functions. The probability density function and cumulative

distribution function of Ailamujia distribution are respectively given as
f,a) =4a’ye™?;y>0,a>0
Fy,a)=1—(1+2ay)e™?® ,a>0,y>0

In recent past decade authors have proposed several extensions of Ailamujia distribution. Pan et al [7]
has worked on Ailamujia distribution for interval estimation and hypothesis testing based on small
sample size. Long [6] has obtained its Bayesian estimation under type II censoring on the basis of
conjugate prior, Jeffrey’s prior and no informative prior distribution. Yu et al [10] proposed a new
method by applying Ailamujia distribution to solve the problem in the production and distribution of
battle field injury in campaign macrocosm. Recently Ahmad et al [1] developed the inverse analogue

of Ailamujia distribution and examine its usefulness through two real life time data sets.

Suppose Y is a random variable follows inverse Ailamujia distribution. Then its probability density

function (p.d.f), is given by
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Fig. 1: pdf plot of IAD under different values of parameters

Figure 1, illustrates several possible shapes of the probability density function (pdf) for different
parameter values, showcasing the flexibility and versatility of the proposed distribution. As the
parameters vary, the shape of the pdf adapts to exhibit diverse behaviour’s such as unimodal, skewed,
or near-uniform profiles, depending on the parameter configuration. This graphical representation
provides insight into how the distribution can be tailored to model a wide range of real-world

phenomena

Figure 2, presents the cumulative distribution function (cdf) for the same parameter values as
Figure 1, offering a complementary view of the proposed distribution. The cdf curves demonstrate the
accumulation of probability across the range of the variable, reflecting the gradual transition from 0 to
1 as the variable increases. This graphical representation emphasizes the smoothness and consistency
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of the cdf, which is critical for probabilistic interpretation and applications such as reliability analysis
and quantile estimation.

The corresponding cumulative distribution function (c.d.f), is given by

2a

1%Y)=9%?Qe‘y y>0,a>0 )
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Fig. 1: pdf plot of IAD under different values of parameters

2. Maximum Likelihood Estimation

LetY;, Y, ... Y, be random samples from the inverse Ailamujia distribution. Then the likelihood function

of inverse Ailamujia distribution is given as

L= ﬁf(yl-.a)

n 1 _2a 1 1
— 1_[40(2—3 e Vi = (4a2)n 1_[_3 e—2a2i=137i
=1 i Vi

i=1""
Taking log we get log likelihood function as

n

n
1
logl = 2nlog2a—3Zlogyi—2a —
: —iYi

i=1 i

Differentiating w.r.t, we get

n

dlogl 1 1
=2n—-2 ) —
oa 2a Ly
i=1
Now equating % =0, we get
. _n
‘=25
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Where S = Y1, y; !

3. Bayesian Estimation of Inverse Ailamujia Distribution

Bayesian estimation procedure is a remarkable way to estimate the parameters of the distribution
model. This estimation provides a posterior distribution of an existing life time distribution by
considering prior information. From Bayesian point of view there can’t be put the lid on selecting
prior(s) by considering one’s prior(s) is more suitable than others. In case of meager interpretative
information about the unknown parameter it is preferable to select non informative prior. However, if
one has sufficient information about the parameter(s) it is better to select informative prior. The aim of
present study is to obtain a Bayesian estimation of parameter a of inverse Ailamujia distribution by
using extended Jeffrey’s and gamma prior. In recent past years several research papers have been
published in this direction. Afaq et al [2] estimation of parameters of two parameter exponentiated
gamma distribution. Mudasir et al [9] studied the Bayesian estimation of weighted Erlang distribution.
Raqgab and Madi [8] studied Bayesian estimation for exponentiated Rayleigh distribution. Fatima Bi
and Afaq Ahmad [4], B. Singh et al. [11], Ahmad et al. [12] and again Ahmad et al. [13] studied different
estimations of different distribution. In this paper our goal is to find the Bayesian estimators of the
parameters of inverse Ailamujia distribution using extended Jeffery’s prior and gamma prior under

different loss functions.

3.1: Bayesian Estimation of Inverse Ailamujia Distribution Under the Assumption of
Extended Jeffery’s Prior

We assume the prior distribution of a to be extended Jeffrey’s priori.e g(a) « ﬁ

Under the assumption of extended Jeffrey’s prior. The posterior distribution of a can be obtained as

m(aly) < l(yla)g(a)

n
1 —2aynl 1
= n(aly) < (4"| |F>a2"e zaz‘Yi—au
i

l

_aaynl
> n(aly) = k a?®™ e 200y,

Where k is independent of a and
o0 nl
k™t ZJ R TR
0

_F(2n—26+1)

2n—c+1
ol

(253

(ZS)Z(TL—C)+1

k—l

(2 @l)z(n—c)+1

So that k=2 =
r(2n-2c+1) r@2n-2c+1)

Where S = Z?’%
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Hence the posterior distribution of a is given as

(25)2(n—c)+1

2(n—c) e—ZSa
r2n—2c+1)

n(aly) =
Where S = Zf"%

3.1.1: Estimation Under Squared Error Loss Function (SELF)

The squared error loss function is defined as (&, @) = ¢;(@ — a)?® for some constantant ¢, the risk

function is given as
R(@,a) = E[I(&, )]

(ZS)Z(n_C)+1

2(n—c) —ZSad
rQn—2c+1) % ¢ %

= foocl(& - )?
0

[oe] [oe]

az(n—c)+2 e—ZSada _ 2&] aZ(n—c)+1 e—ZSada

(25)2(n—c)+1 [
0

— 7  \# 2(n—c) —ZSad +j
ClF(Zn—Zc+1)af0 * ¢ e

0
After solving the integral, we obtain

ar@n—2c+1) @n—-2c+2)2n—-2c+1)r@2n—-2c+1)

B (25)2(n-C)+1 (28)2(m—o)+1 + (25)2(m-0)+3
T9TZn-c+ 1) (2n —2¢ + DI(2n - 2¢ + 1)
- (25)2(m-0)+2 J
R(a,) = ¢, |a? (2n—2€+2)(2n—2c+1)_&(2n—2c+1)
’ ' (25)? (25)
Now solving aze;z,a) =0, we get
. (@n-2c+1)
Qg =—7—7—
4S8
o1
Where s = }°—
Vi

3.1.2: Estimation Under Entropy Loss Function

The entropy loss function is defined as L(6) = b[§ —log(6) —1];b > 0,8 = % the risk functions given

as

© (25)2(n—c)+1

R(@&,a) = J b[6 —log(6) — 1]

az(n—c) e—ZSada
o rCn—c+1)

(25)2(n—c)+1

R@ @) =brm =31y

“ra
f [E —loga@ +loga — 1| a2 ¢=25¢qq
0
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[oe]

(25)2(11—0)+1
B F(2n—2c+1)[

_ f a,Z(n—c)e—ZSada]
0

&f a?=0)-1g=2Sagqy — log&f
0

a?(=Ce=25aqy +f (log @) a?M=9e=25¢qdq
0 0

After solving the integral, we obtain

_, (25)2M=9+1 [ T(2n — 2c) low & rn—2c+1) I'2n—-2c+1) T@2n—-2c+1)
" r2n-2c+1) a (25)2(n=0) —loga (25)2(m=o)+1 (25)2(m=o)+1 - (25)2(n-0)+1

_ acs) | A+F’(2n—2c’+1)
) 08 rn—2c+1)
Now solving azz;z,a) =0, we get
. n-—c
Te =—

1
Where s = f°;
i

3.1.3: Estimation Under Precautionary Loss Function

B—ar)2
The precautionary loss function is defined as (@, @) = % , the risk function is given as

© (& — a)Z (zs)z(n—c)+1

R(a, =
@ a) jo a r2n—2c+1)

az(n—c) e—ZSada

(Zs)z(n—c)+1 © (& _ a)z
R(& — 2(n-c) —ZSad
@) I‘(Zn—c+1)f0 a ¢ “

[oe]

2(n—-c)+1 o )
_ (25) [&\f az(n—c)e—ZSada _l_if az(n—c)+ze—25ada,_ Zf
0 aJy

— az(n—c)+1e—25ada]
rn—2c+1) o

After solving the integral, we obtain

(25)2m=9+t [ T2n—-2c+1) 1T2n—2c+3) T'2n-—2c+2)

= T2n—2c+1) a (25)2m—0+1 & (25)2m-o+3 - (25)2m-0)+2

R 2n—2c+2)2n—2c+1) 22n-—-2c+1)
= [“ + @ (25)2 - 25

R@a) _
aa

Now solving 0, we get

B [(m—c+1)(2n—-2c+ 1)]%
P ()

~

Where S = nyl
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3.1.4: Estimation Under Linex Loss Function

The linex loss function is defined as L(&, ) = exp{b,(@ — @)} — b; (@ — a) — 1, the risk function is given

as

(ZS)Z(n_C)+1

U&= o =27

J- {e(b1(&—a)) — b, (@ — a) — 1}a2(9) =252 gy
0

(25)2(n—c)+1 © ©
— eblaf az(n—c)e—a(b1+25‘)da _ bléf f az(n—c)e—ZSada
rn—-c+1) o o

+ blf az(n—c)+1e—25ada _J-
0 0

[ee]

az(n—c)e —ZSada]

_ (28)ron pa L@2n—2c+1) I2n-2c+1) rn—2c+2) I2n—-2c+1)
TT@Cn-2c+1 € (by + 28)2(—0)+1 —ha (25)2(m-0)+1 17 (28)2m-o)+2 - (25)2(m-0)+1
[ ba ( 28 )2(”‘C)+1 botb 2n—-2c+1)
—¢ b +2s R T
al(a,x)

Now solving =0, we get

oa

R bl + 25 2(n—c)+1
“lzb_log( 25
1

4. Bayesian Estimation of Inverse Ailamujia Distribution Under the Assumption of

Gamma Distribution

b
We assume the prior distribution of a to be gamma distribution i.e g(a) % e b1

Now under the assumption of gamma prior. The posterior distribution of @ can be obtained as

m(aly) « l(yla)g(a)

n
1 —2qyn L ab
= n(aly) « (4"“;) a?r e T, —F(b)e‘a“ ab1

i L
1
a+2 T’—)
E‘yi

= n(aly) =k a2”+b‘1e_a(

Where k is independent of a and
k-l = fwa2n+b—1e‘“(a+22?y%>da
0

r(2n + b)

1 2n+b

(a+225)

So that
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2n+b
n —
r = (a+221 yl) =(a+25)2n+b
r(2n + b) r'(2n + b)

Where S = Z?i
i
Hence the posterior distribution of « is given as

2n+b
T[((le) — ((?2-272152 ;1; a2n+b—1e—a(a+25)

1
Where S = Z’f;

4.1: Estimation Under Squared Error Loss Function

The squared error loss function is defined as (&, @) = ¢;(@ — a)?® for some constantant ¢, the risk

function is given as
R(@,a) = E[I(&, )]

(a + 285)*n+P
r(2n + b)

2n+b—1e —a(a+2S) da

= fomcl(&—a)z

(a + 25)2n+b ® 2 ,2n+b-1 a
- 777 A — —1p-a(a+25)g
¢ T@ntb) jo (@—a)a e a

After solving the integral, we obtain

RG@) = ¢, [&2 N 2n+b)2n+b+1) s (2n + b)

(a + 25)2 “a+29)
Now solving 6R(&&,a) =0, we get
. _2n+b
T avas

Where S = nyi
4.2: Estimation Under Entropy Loss Function
The entropy loss function is defined as L(§) = b[§ —log(6) —1];b > 0,5 = % the risk functions given

as

e (a + 25)2n+b

R(@& a) = J b[6 —log(s) — 1]

2n+b—1e—a(a+25) da
0 r'(2n + b)

3 (a+25)2n+b

era
Z logd +1 — 1| g?n+b-1g-ala+28) g4
FZn+b) fo [a ogd + loga a e a

After solving the integral, we obtain
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(a+25) I'(2n + b)
R@a)=b|@—F—<—logd +———<—
@) =bl@m =7y ~losd + T 0y
. oR(@,a) _
Now solving —== = 0, we get

. _2n+b-1
%= ¥25

Where S = Z?yi
4.3: Estimation Under Precautionary Loss Function

a—a)2
The precautionary loss function is defined asl(@, a) = @ ;) , the risk function is given as

(a + 25)2n+b o (& _ a)z

a2n+b—1e—a(a+zs)da
rn+b) J, a

R(@,a) =

After solving the integral, we get

. 2n+b)2n+b-1) (2n + b)
- [a a(a+25?  “(a+25

oR(@,@) _
aa

Now solving 0, we get

[n+b)2n+b— 1)]%

%= (a+295)

1
Where S = ny—l

4.4: Estimation Under Linex Loss Function

The linex loss function is defined as L(&, a) = exp{b,(@ — @)} — b; (@ — a) — 1, the risk function is given

as

(a +25)2n+h

MO Ty

f {e(bl(a—a)) _ b1 (& _ a) _ 1}a2n+b—1 e_“(a"'zs)da
0

_(a+t 28)n+b

(o)
by @ q2n+b-1 e—a(a+b1+25)da
r2n + b) J;

[oe] (oo}

_ bla f a2n+b—1e—a(a+25)da + le a2n+b e—a(a+25)da _j a2n+b—1 e—rx(a+2$)da]
0 0 0

After solving the integrals, we obtain

(a+285)>+b[ r'(2n + b) r'(2n + b) rn+b+1) r(2n +b)
R(@,a) = eh1@ - b,a 1 -
' (2n + b) (@ + by + 25)77+0 (@ +25)2n+b 71 (q + 28)2#b+ (g + 28)2n+b
_oa+25 \*tP (2n+b)
— bia — A I
[e <a+b1+25) )
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dR(a,a)
Joa

Now solving =0, we get

1

~ a+ by +25\*"*?
a, = b—llog (—)

a+2S

1
Where S = Z?y—l

5. Application

In this section we provide an application through which the performance of the estimators and

posterior risk of different loss function has been obtained. The data set are follows:

Data set 1: The data set represents the survival times (in days) of 72 guinea pigs infected with virulent

tubercle bacilli, observed and reported by Bekker et al. [3]. The data are follows

0.1, 0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 0.74, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09,
1.12,1.13,1.15,1.16,1.2,1.21, 1.22,1.22,1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.68, 1.71,
1.72,1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16,
2.22,2.3,231,2.4,245,251,2.53,2.54,2.78,293,3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55, 2.54, 0.77.

By using different loss functions, the Bayes estimates and posterior risks of the posterior distribution
through both priors are as follows where posterior risk are in parenthesis.

Table 1: Bayes Estimation and Posterior Risks Using Jeffery’s Prior

A~

~

~

~

a C a Qg ag ap a
b, = 0.01 b, = 0.05
1.0 0.5 | 0.5583 | 0.5583 1.109 2.241 1.116 1.116
(1.260) (4.862) (17.97) (0.0111) (0.0558)
1.0 | 0.5583 | 0.5545 1.101 2.225 1.108 1.108
(1.247) (4.862) (17.85) (0.0110) (0.0554)
1.5 | 0.5583 | 0.5506 1.093 2.210 1.1012 1.1010
(1.234) (4.862) (17.73) (0.0110) (0.0550)
2.0 0.5 | 0.5583 | 0.5583 1.1090 2.2413 1.1167 1.1165
(1.260) (4.862) (17.97) (0.0111) (0.0558)
1.0 | 0.5583 | 0.5545 1.1012 2.2258 1.1089 1.1088
(1.247) (4.862) (17.85) (0.0110) (0.0554)
1.5 | 0.5583 | 0.5506 1.093 2.2102 1.1012 1.1010
(1.234) (4.862) (17.73) (0.0110) (0.0550)
3.0 0.5 | 0.5583 | 0.5583 1.1090 2.2413 1.1167 1.1165
(1.260) (4.862) (17.97) (0.0111) (0.0558)
1.0 | 0.5583 | 0.5545 1.1012 2.2258 1.1089 1.1088
(1.247) (4.862) (17.85) (0.0110) (0.0554)
1.5 | 0.5583 | 0.5506 1.0935 2.2102 1.1012 1.1010
(1.234) (4.862) (17.73) (0.0110) (05506)

@ =MLE, &g = Estimation under SELF, &; = Estimation under Entropy,

@p = Estimation under Precautionary, &; = Estimation under LINEX
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Table 2: Bayes Estimation and Posterior Risks Using Gamma Prior

a |a b a as ar ap a,

b, = 0.01 b, = 0.05
10 |05 |05 | 05583 [1.1163 | 11240 [1.1124 | 1.1162 1.1161
(0.0086) | (4.8667) | (1.1085) | (0.0111) (0.0558)
05 | 1.0 05583 | 1.1201 11279 | 11163 | 1.1201 1.1199
(0.0086) | (4.8666) | (1.1124) | (0.0112) (0.0560)
1.0 |05 [ 05583 | 11120 | 1.119 1.1081 1.1119 1.1118
(0.0085) | (4.8705) | (1.1043) | (0.0111) (0.0556)
20 |05 |05 | 05583 |1.1163 |1.1240 |1.1124 | 1.1162 1.1161
(0.0086) | (4.8667) | (1.1085) | (0.0111) (0.0558)
05 | 1.0 05583 | 1.1201 11279 | 11163 | 1.1201 1.1199
(0.0086) | (4.8666) | (1.1124) | (0.0112) (0.0560)
10 |05 [ 05583 |1.1120 |1.1197 | 1.1081 1.1119 1.1118
(0.0085) | (4.8705) | (1.1043) | (0.0111) (0.0556)
30 |05 |05 | 05583 |1.1163 |1.1240 |1.1124 | 1.1162 1.1161
(0.0086) | (4.8667) | (1.1085) | (0.0111) (0.0558)
05 | 1.0 | 05583 | 1.1201 11279 | 11163 | 1.1201 1.1199
(0.0086) | (4.8666) | (1.1124) | (0.0112) (0.05600)
10 |05 [ 05583 |1.1120 |1.1197 | 1.1081 1.1119 1.1118
(0.0085) | (4.8705) | (1.1043) | (0.0111) (0.0556)

Among other loss functions, it is evident from Table 1 and Table 2. That the Linex loss function shows
smaller Bayes posterior risk under the both assumptions (extended Jeffery’s prior and gamma prior).
According to decision rule of less Bayes posterior risk, we accomplish that Linex loss function is more
useful than others.

6. Conclusion

In this study, we derived the Bayes posterior distribution and parameter estimation for the inverse
Ailamujia distribution using both informative and non-informative priors. We explored various loss
functions to assess their impact on the estimation process, with a specific focus on the Linex loss
function. The results, presented in Table 1 and Table 2, clearly demonstrate that the Linex loss function
yields the smallest Bayes posterior risk under both the extended Jeffery’s prior and the gamma prior
assumptions. This comparative analysis highlights the superior performance of the Linex loss function,
indicating its effectiveness in minimizing the Bayes posterior risk.

By applying the decision rule of minimizing the Bayes posterior risk, we conclude that the Linex loss
function is the most useful among the considered alternatives. The performance of the estimators was
evaluated through practical applications, and the results underscore the flexibility and robustness of
the inverse Ailamujia distribution in Bayesian estimation. The findings also emphasize the utility of the
Linex loss function in enhancing the precision of parameter estimation across various contexts. This
work contributes to the growing body of literature on Bayesian methods, offering valuable insights into
the application of different loss functions for parameter estimation. It provides a clear advantage of
using the Linex loss function in terms of minimizing posterior risk, which can be applied to diverse
statistical modelling scenarios. The study reinforces the importance of selecting appropriate loss
functions for effective Bayesian estimation, ensuring better model performance and more reliable
results.
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