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Abstract 

This paper focuses on the Bayesian estimation of the parameter of the inverse Ailamujia distribution, 

employing advanced prior structures and diverse loss functions. Specifically, the extended Jeffreys’ prior 

and gamma prior are utilized to derive the Bayesian estimators. Estimation is performed under various 

loss functions, including squared error, entropy, precautionary, and Linex loss functions, ensuring a 

comprehensive analysis. To demonstrate the practical applicability and comparative performance of these 

estimators, an empirical investigation is conducted using a real dataset. The findings highlight the 

adaptability and effectiveness of the proposed Bayesian approach across different estimation scenarios. 

Key words: Bayesian analysis, priors, maximum likelihood estimator, different loss 

functions.   

1. Introduction

In statistical literature, the Ailamujia distribution, introduced by Lv et al. [5], represents a novel 

probability distribution with significant versatility and practical relevance. This distribution has gained 

attention due to its ability to model various types of real-world data effectively. Its unique structural 

properties make it particularly suitable for applications in engineering and related disciplines. By 

accommodating a wide range of data patterns, the Ailamujia distribution has proven to be a valuable 

tool for analyzing reliability, survival times, and other stochastic phenomena. Its mathematical 

flexibility and applicability have inspired ongoing research into its properties, extensions, and potential 

for broader utilization across diverse fields. They have expounded its various distributional properties 

which includes moments, moment generating function, mode, median, order statistics. They have 
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derived and discussed various reliability functions. The probability density function and cumulative 

distribution function of Ailamujia distribution are respectively given as 

  𝑓(𝑦, 𝛼) = 4𝛼2 𝑦 𝑒−2𝛼𝑦 ; 𝑦 > 0 , 𝛼 > 0    

𝐹(𝑦, 𝛼) = 1 − (1 + 2𝛼𝑦)𝑒−2𝛼𝑦 , 𝛼 > 0, 𝑦 > 0 

In recent past decade authors have proposed several extensions of Ailamujia distribution. Pan et al [7] 

has worked on Ailamujia distribution for interval estimation and hypothesis testing based on small 

sample size. Long [6] has obtained its Bayesian estimation under type II censoring on the basis of 

conjugate prior, Jeffrey’s prior and no informative prior distribution. Yu et al [10] proposed a new 

method by applying Ailamujia distribution to solve the problem in the production and distribution of 

battle field injury in campaign macrocosm. Recently Ahmad et al [1] developed the inverse analogue 

of Ailamujia distribution and examine its usefulness through two real life time data sets. 

Suppose Y is a random variable follows inverse Ailamujia distribution. Then its probability density 

function (p.d.f), is given by 

𝑓(𝑦, 𝛼) = 4𝛼2 1

𝑦3 𝑒
−

2𝛼

𝑦  , 𝑦 > 0 , 𝛼 > 0 (1) 

Fig. 1: pdf plot of IAD under different values of parameters 

Figure 1, illustrates several possible shapes of the probability density function (pdf) for different 

parameter values, showcasing the flexibility and versatility of the proposed distribution. As the 

parameters vary, the shape of the pdf adapts to exhibit diverse behaviour’s such as unimodal, skewed, 

or near-uniform profiles, depending on the parameter configuration. This graphical representation 

provides insight into how the distribution can be tailored to model a wide range of real-world 

phenomena  

Figure 2, presents the cumulative distribution function (cdf) for the same parameter values as 

Figure 1, offering a complementary view of the proposed distribution. The cdf curves demonstrate the 

accumulation of probability across the range of the variable, reflecting the gradual transition from 0 to 

1 as the variable increases. This graphical representation emphasizes the smoothness and consistency 
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of the cdf, which is critical for probabilistic interpretation and applications such as reliability analysis 

and quantile estimation. 

The corresponding cumulative distribution function (c.d.f), is given by 

𝐹(𝑌) =
(2𝛼+𝑦)

𝑦
𝑒

−
2𝛼

𝑦  , 𝑦 > 0 , 𝛼 > 0 (2) 

Fig. 1: pdf plot of IAD under different values of parameters 

2. Maximum Likelihood Estimation

Let 𝑌1, 𝑌2 … 𝑌𝑛 be random samples from the inverse Ailamujia distribution. Then the likelihood function 

of inverse Ailamujia distribution is given as 

𝑙 = ∏𝑓(𝑦𝑖 , 𝛼)

𝑛

𝑖=1

 

= ∏ 4𝛼2
1

𝑦𝑖
3

𝑛

𝑖=1

𝑒
−

2𝛼
𝑦𝑖  = (4𝛼2)𝑛 ∏

1

𝑦𝑖
3

𝑛

𝑖=1

𝑒
−2𝛼 ∑

1
𝑦𝑖

𝑛
𝑖=1  

Taking log we get log likelihood function as 

 log 𝑙 =  2𝑛 log 2𝛼 − 3∑log 𝑦𝑖

𝑛

𝑖=1

− 2𝛼 ∑
1

𝑦𝑖

𝑛

𝑖=1

Differentiating w.r.t, we get 

𝜕 log 𝑙

𝜕𝛼
= 2𝑛

1

2𝛼
− 2∑

1

𝑦𝑖

𝑛

𝑖=1

Now equating 
𝜕 log 𝑙

𝜕𝛼
= 0 , we get 

�̂� =
𝑛

2𝑆
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Where 𝑆 = ∑ 𝑦𝑖
−1𝑛

𝑖=1

3. Bayesian Estimation of Inverse Ailamujia Distribution

Bayesian estimation procedure is a remarkable way to estimate the parameters of the distribution 

model. This estimation provides a posterior distribution of an existing life time distribution by 

considering prior information. From Bayesian point of view there can’t be put the lid on selecting 

prior(s) by considering one’s prior(s) is more suitable than others. In case of meager interpretative 

information about the unknown parameter it is preferable to select non informative prior. However, if 

one has sufficient information about the parameter(s) it is better to select informative prior. The aim of 

present study is to obtain a Bayesian estimation of parameter 𝛼 of inverse Ailamujia distribution by 

using extended Jeffrey’s and gamma prior. In recent past years several research papers have been 

published in this direction. Afaq et al [2] estimation of parameters of two parameter exponentiated 

gamma distribution. Mudasir et al [9] studied the Bayesian estimation of weighted Erlang distribution. 

Raqab and Madi [8] studied Bayesian estimation for exponentiated Rayleigh distribution. Fatima Bi 

and Afaq Ahmad [4], B. Singh et al. [11], Ahmad et al. [12] and again Ahmad et al. [13] studied different 

estimations of different distribution. In this paper our goal is to find the Bayesian estimators of the 

parameters of inverse Ailamujia distribution using extended Jeffery’s prior and gamma prior under 

different loss functions.   

3.1: Bayesian Estimation of Inverse Ailamujia Distribution Under the Assumption of 

Extended Jeffery’s Prior 

We assume the prior distribution of 𝛼 to be extended Jeffrey’s prior i.e 𝑔(𝛼) ∝
1

𝛼2𝑐

Under the assumption of extended Jeffrey’s prior. The posterior distribution of 𝛼 can be obtained as 

𝜋(𝛼|𝑦) ∝ 𝑙(𝑦|𝛼)𝑔(𝛼) 

⇒ 𝜋(𝛼|𝑦) ∝  (4𝑛 ∏
1

𝑦𝑖
3

𝑛

𝑖

) 𝛼2𝑛 𝑒
−2𝛼 ∑

1
𝑦𝑖

𝑛
𝑖

1

𝛼2𝑐

⇒ 𝜋(𝛼|𝑦) = 𝑘 𝛼2(𝑛−𝑐)𝑒
−2𝛼 ∑

1
𝑦𝑖

𝑛
𝑖  

Where 𝑘 is independent of 𝛼 and 

𝑘−1 = ∫ 𝛼2(𝑛−𝑐)𝑒
−2𝛼 ∑

1
𝑦𝑖

𝑛
𝑖

∞

0

 𝑑𝛼 

𝑘−1 =
Γ(2𝑛 − 2𝑐 + 1 )

(2∑
1
𝑦𝑖

∞
𝑖 )

2𝑛−𝑐+1

So that   𝑘 =
(2 ∑

1

𝑦𝑖

∞
𝑖 )

2(𝑛−𝑐)+1

Γ(2𝑛−2𝑐+1 )
=

(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛−2𝑐+1 )

Where 𝑆 = ∑
1

𝑦𝑖

∞
𝑖
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Hence the posterior distribution of 𝛼 is given as 

𝜋(𝛼|𝑦) =
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
 𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼 

Where 𝑆 = ∑
1

𝑦𝑖

∞
𝑖

3.1.1: Estimation Under Squared Error Loss Function (SELF) 

The squared error loss function is defined as 𝑙(�̂�, 𝛼) = 𝑐1(�̂� − 𝛼)2 for some constantant 𝑐1 the risk

function is given as 

𝑅(�̂�, 𝛼) = 𝐸[𝐼(�̂�, 𝛼)] 

= ∫ 𝑐1(�̂� − 𝛼)2
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
 𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼𝑑𝛼

∞

0

 

 = 𝑐1

(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
[𝛼 ̂  ∫ 𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼𝑑𝛼 + ∫ 𝛼2(𝑛−𝑐)+2 𝑒−2𝑆𝛼𝑑𝛼 − 2�̂�

∞

0

∞

0

∫ 𝛼2(𝑛−𝑐)+1 𝑒−2𝑆𝛼𝑑𝛼
∞

0

] 

After solving the integral, we obtain 

 = 𝑐1

(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 𝑐 + 1 )

[

�̂�Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+1
+

(2𝑛 − 2𝑐 + 2)(2𝑛 − 2𝑐 + 1)Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+3

−
(2𝑛 − 2𝑐 + 1)Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+2 ]

𝑅(�̂�, 𝛼) = 𝑐1 [�̂�2 +
(2𝑛 − 2𝑐 + 2)(2𝑛 − 2𝑐 + 1)

(2𝑆)2
−

�̂�(2𝑛 − 2𝑐 + 1)

(2𝑆)
] 

Now solving  
𝜕𝑅(�̂�,𝛼)

𝜕�̂�
= 0, we get 

�̂�𝑠 =
(2𝑛 − 2𝑐 + 1)

4𝑆

Where 𝑠 =  ∑
1

𝑦𝑖

∞
𝑖

3.1.2: Estimation Under Entropy Loss Function 

The entropy loss function is defined as 𝐿(𝛿) = 𝑏[𝛿 − log(𝛿) − 1]; 𝑏 > 0 , 𝛿 =
�̂�

𝛼
 the risk functions given 

as 

𝑅(�̂�, 𝛼) = ∫ 𝑏[𝛿 − log(𝛿) − 1]
∞

0

(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 𝑐 + 1 )
 𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼𝑑𝛼 

 𝑅(�̂�, 𝛼) = 𝑏
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 𝑐 + 1 )
∫ [

�̂�

𝛼
− log �̂� + log 𝛼 − 1]

∞

0

𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼𝑑𝛼 
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= 𝑏
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
[�̂� ∫ 𝛼2(𝑛−𝑐)−1𝑒−2𝑆𝛼𝑑𝛼 − log �̂� ∫ 𝛼2(𝑛−𝑐)𝑒−2𝑆𝛼𝑑𝛼

∞

0

+ ∫ (log 𝛼)
∞

0

∞

0

𝛼2(𝑛−𝑐)𝑒−2𝑆𝛼𝑑𝛼

− ∫ 𝛼2(𝑛−𝑐)𝑒−2𝑆𝛼𝑑𝛼
∞

0

] 

After solving the integral, we obtain 

= 𝑏
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
[�̂�

Γ(2𝑛 − 2𝑐)

(2𝑆)2(𝑛−𝑐)
− log �̂�

Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+1
+

Γ′(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+1
 −

Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+1
] 

 = 𝑏 [
�̂�(𝑆)

(𝑛 − 𝑐)
− log �̂� +

Γ′(2𝑛 − 2𝑐 + 1 )

Γ(2𝑛 − 2𝑐 + 1)
− 1]

Now solving  
𝜕𝑅(�̂�,𝛼)

𝜕�̂�
= 0, we get 

�̂�𝑒 =
𝑛 − 𝑐

𝑆

Where 𝑠 =  ∑
1

𝑦𝑖

∞
𝑖

3.1.3: Estimation Under Precautionary Loss Function 

The precautionary loss function is defined as (�̂�, 𝛼) =
(�̂�−𝛼)2

�̂�
 , the risk function is given as 

𝑅(�̂�, 𝛼) = ∫
(�̂� − 𝛼)2

�̂�

(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼𝑑𝛼 

∞

0

𝑅(�̂�, 𝛼) =
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 𝑐 + 1 )
∫

(�̂� − 𝛼)2

�̂�

∞

0

𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼𝑑𝛼 

=
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
[𝛼 ̂ ∫ 𝛼2(𝑛−𝑐)𝑒−2𝑆𝛼𝑑𝛼 +

1

�̂�

∞

0

∫ 𝛼2(𝑛−𝑐)+2𝑒−2𝑆𝛼𝑑𝛼 − 2∫ 𝛼2(𝑛−𝑐)+1𝑒−2𝑆𝛼𝑑𝛼
∞

0

∞

0

] 

After solving the integral, we obtain 

=
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
[�̂�

Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+1
+

1

�̂�

Γ(2𝑛 − 2𝑐 + 3)

(2𝑆)2(𝑛−𝑐)+3
− 2

Γ(2𝑛 − 2𝑐 + 2)

(2𝑆)2(𝑛−𝑐)+2
] 

= [�̂� +
(2𝑛 − 2𝑐 + 2)(2𝑛 − 2𝑐 + 1)

�̂� (2𝑆)2
−

2(2𝑛 − 2𝑐 + 1)

(2𝑆)
] 

Now solving  
𝜕𝑅(�̂�,𝛼)

𝜕�̂�
= 0, we get 

�̂�𝑝 =
[(𝑛 − 𝑐 + 1)(2𝑛 − 2𝑐 + 1)]

1
2

(𝑆)

Where 𝑆 =  ∑
1

𝑦𝑖

∞
𝑖

RT&A, No 1 (82) 
Volume 20, March 2025 

625



A. Ahmad., M. A. Khanday, S. K. Powar, A. A. Rather, C. Subramanian

BAYESIAN ESTIMATION OF INVERSE AILAMUJIA …

3.1.4: Estimation Under Linex Loss Function 

The linex loss function is defined as 𝐿(�̂�, 𝛼) = 𝑒𝑥𝑝{𝑏1(�̂� − 𝛼)} − 𝑏1(�̂� − 𝛼) − 1, the risk function is given 

as 

𝑙(�̂�, 𝛼) =
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1)
∫ {𝑒(𝑏1(�̂�−𝛼))

∞

0

− 𝑏1(�̂� − 𝛼) − 1}𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼𝑑𝛼

 =
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 𝑐 + 1)
[𝑒𝑏1�̂� ∫ 𝛼2(𝑛−𝑐)𝑒−𝛼(𝑏1+2𝑆)𝑑𝛼 − 𝑏1𝛼 ̂

∞

0

∫ 𝛼2(𝑛−𝑐)𝑒−2𝑆𝛼𝑑𝛼
∞

0

+ 𝑏1 ∫ 𝛼2(𝑛−𝑐)+1𝑒−2𝑆𝛼𝑑𝛼 − ∫ 𝛼2(𝑛−𝑐)𝑒−2𝑆𝛼𝑑𝛼
∞

0

∞

0

] 

 =
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1)
[𝑒𝑏1�̂�

Γ(2𝑛 − 2𝑐 + 1)

(𝑏1 + 2𝑆)2(𝑛−𝑐)+1
− 𝑏1�̂�

Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+1
+ 𝑏1

Γ(2𝑛 − 2𝑐 + 2)

(2𝑆)2(𝑛−𝑐)+2
−

Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+1
] 

= [𝑒𝑏1�̂� (
2𝑆

𝑏1 + 2𝑆
)

2(𝑛−𝑐)+1

− 𝑏1�̂� + 𝑏1

(2𝑛 − 2𝑐 + 1)

(2𝑆)
− 1  ]

Now solving 
𝜕𝑙(�̂�,𝛼)

𝜕�̂�
= 0, we get 

𝛼�̂� =
1

𝑏1

log (
𝑏1 + 2𝑆

2𝑆
)

2(𝑛−𝑐)+1

4. Bayesian Estimation of Inverse Ailamujia Distribution Under the Assumption of

Gamma Distribution 

We assume the prior distribution of 𝛼 to be gamma distribution i.e 𝑔(𝛼) ∝
𝑎𝑏

Γ(𝑏)
𝑒−𝑎𝛼  𝛼𝑏−1 

Now under the assumption of gamma prior. The posterior distribution of 𝛼 can be obtained as 

𝜋(𝛼|𝑦) ∝ 𝑙(𝑦|𝛼)𝑔(𝛼) 

⇒ 𝜋(𝛼|𝑦) ∝  (4𝑛 ∏
1

𝑦𝑖
3

𝑛

𝑖

)𝛼2𝑛 𝑒
−2𝛼 ∑

1
𝑦𝑖

𝑛
𝑖  

𝑎𝑏

Γ(𝑏)
𝑒−𝑎𝛼  𝛼𝑏−1 

⇒ 𝜋(𝛼|𝑦) = 𝑘 𝛼2𝑛+𝑏−1𝑒
−𝛼(𝑎+2 ∑

1
𝑦𝑖

𝑛
𝑖 )

Where 𝑘 is independent of 𝛼 and 

𝑘−1 = ∫ 𝛼2𝑛+𝑏−1𝑒
−𝛼(𝑎+2∑

1
𝑦𝑖

𝑛
𝑖 )

𝑑𝛼
∞

0

 

=
Γ(2𝑛 + 𝑏)

(𝑎 + 2∑
1
𝑦𝑖

𝑛
𝑖 )

2𝑛+𝑏

So that 
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𝑘 =
(𝑎 + 2∑

1
𝑦𝑖

𝑛
𝑖 )

2𝑛+𝑏

Γ(2𝑛 + 𝑏)
=

(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)

Where 𝑆 = ∑
1

𝑦𝑖

𝑛
𝑖

Hence the posterior distribution of 𝛼 is given as 

𝜋(𝛼|𝑦) =
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
 𝛼2𝑛+𝑏−1𝑒−𝛼(𝑎+2𝑆) 

Where 𝑆 = ∑
1

𝑦𝑖

𝑛
𝑖

4.1: Estimation Under Squared Error Loss Function 

The squared error loss function is defined as 𝑙(�̂�, 𝛼) = 𝑐1(�̂� − 𝛼)2 for some constantant 𝑐1 the risk

function is given as 

𝑅(�̂�, 𝛼) = 𝐸[𝐼(�̂�, 𝛼)] 

= ∫ 𝑐1(�̂� − 𝛼)2
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
 𝛼2𝑛+𝑏−1𝑒−𝛼(𝑎+2𝑆)𝑑𝛼

∞

0

 

 = 𝑐1

(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
∫ (�̂� − 𝛼)2

∞

0

𝛼2𝑛+𝑏−1𝑒−𝛼(𝑎+2𝑆)𝑑𝛼 

After solving the integral, we obtain 

𝑅(�̂�, 𝛼) =  𝑐1 [�̂�2 +
(2𝑛 + 𝑏)(2𝑛 + 𝑏 + 1)

(𝑎 + 2𝑆)2
− 2�̂�

(2𝑛 + 𝑏)

(𝑎 + 2𝑆)
] 

Now solving 
𝜕𝑅(�̂�,𝛼)

𝜕�̂�
= 0, we get 

�̂�𝑠 =
2𝑛 + 𝑏

𝑎 + 2𝑆

Where 𝑆 = ∑
1

𝑦𝑖

𝑛
𝑖

4.2: Estimation Under Entropy Loss Function 

The entropy loss function is defined as 𝐿(𝛿) = 𝑏[𝛿 − log(𝛿) − 1]; 𝑏 > 0 , 𝛿 =
�̂�

𝛼
 the risk functions given 

as 

 𝑅(�̂�, 𝛼) = ∫ 𝑏[𝛿 − log(𝛿) − 1]
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
 𝛼2𝑛+𝑏−1𝑒−𝛼(𝑎+2𝑆)

∞

0

𝑑𝛼 

 = 𝑏
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
∫ [

�̂�

𝛼
− log �̂� + log 𝛼 − 1]

∞

0

𝛼2𝑛+𝑏−1𝑒−𝛼(𝑎+2𝑆)𝑑𝛼 

After solving the integral, we obtain 
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𝑅(�̂�, 𝛼) = 𝑏 [�̂�
(𝑎 + 2𝑆)

(2𝑛 + 𝑏 − 1)
− log �̂� +

Γ′(2𝑛 + 𝑏)

Γ(2𝑛 + 𝑏)
− 1]

Now solving  
𝜕𝑅(�̂�,𝛼)

𝜕�̂�
= 0, we get 

�̂�𝑒 =
2𝑛 + 𝑏 − 1

𝑎 + 2𝑆

Where 𝑆 = ∑
1

𝑦𝑖

𝑛
𝑖

4.3: Estimation Under Precautionary Loss Function 

The precautionary loss function is defined as𝑙(�̂�, 𝛼) =
(�̂�−𝛼)2

�̂�
 , the risk function is given as 

 𝑅(�̂�, 𝛼) =
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
∫

(�̂� − 𝛼)2

�̂�
𝛼2𝑛+𝑏−1𝑒−𝛼(𝑎+2𝑆)𝑑𝛼 

∞

0

After solving the integral, we get 

 = [�̂� +
(2𝑛 + 𝑏)(2𝑛 + 𝑏 − 1)

�̂�(𝑎 + 2𝑆)2
− 2

(2𝑛 + 𝑏)

(𝑎 + 2𝑆)
] 

Now solving  
𝜕𝑅(�̂�,𝛼)

𝜕�̂�
= 0, we get 

�̂�𝑝 =
[(2𝑛 + 𝑏)(2𝑛 + 𝑏 − 1)]

1
2

(𝑎 + 2𝑆)

Where 𝑆 = ∑
1

𝑦𝑖

𝑛
𝑖

4.4: Estimation Under Linex Loss Function 

The linex loss function is defined as 𝐿(�̂�, 𝛼) = 𝑒𝑥𝑝{𝑏1(�̂� − 𝛼)} − 𝑏1(�̂� − 𝛼) − 1, the risk function is given 

as 

𝑅(�̂�, 𝛼) =
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
∫ {𝑒(𝑏1(�̂�−𝛼))

∞

0

− 𝑏1(�̂� − 𝛼) − 1}𝛼2𝑛+𝑏−1 𝑒−𝛼(𝑎+2𝑆)𝑑𝛼

=
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
[𝑒𝑏1�̂� ∫ 𝛼2𝑛+𝑏−1 𝑒−𝛼(𝑎+𝑏1+2𝑆)𝑑𝛼

∞

0

− 𝑏1�̂�  ∫ 𝛼2𝑛+𝑏−1 𝑒−𝛼(𝑎+2𝑆)𝑑𝛼 + 𝑏1 ∫ 𝛼2𝑛+𝑏 𝑒−𝛼(𝑎+2𝑆)𝑑𝛼 − ∫ 𝛼2𝑛+𝑏−1 𝑒−𝛼(𝑎+2𝑆)𝑑𝛼
∞

0

∞

0

∞

0

] 

After solving the integrals, we obtain 

𝑅(�̂�, 𝛼) =
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
[𝑒𝑏1�̂�

Γ(2𝑛 + 𝑏)

(𝑎 + 𝑏1 + 2𝑆)2𝑛+𝑏
− 𝑏1�̂�

Γ(2𝑛 + 𝑏)

(𝑎 + 2𝑆)2𝑛+𝑏
+ 𝑏1

Γ(2𝑛 + 𝑏 + 1)

(𝑎 + 2𝑆)2𝑛+𝑏+1
 −

Γ(2𝑛 + 𝑏)

(𝑎 + 2𝑆)2𝑛+𝑏
] 

= [𝑒𝑏1�̂� (
𝑎 + 2𝑆

𝑎 + 𝑏1 + 2𝑆
)

2𝑛+𝑏

− 𝑏1�̂� + 𝑏1

(2𝑛 + 𝑏)

(𝑎 + 2𝑆)
− 1]
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Now solving  
𝜕𝑅(�̂�,𝛼)

𝜕�̂�
= 0, we get 

�̂�𝑙 =
1

𝑏1

log (
𝑎 + 𝑏1 + 2𝑆

𝑎 + 2𝑆
)

2𝑛+𝑏

Where 𝑆 = ∑
1

𝑦𝑖

𝑛
𝑖

5. Application

In this section we provide an application through which the performance of the estimators and 

posterior risk of different loss function has been obtained. The data set are follows:  

Data set 1: The data set represents the survival times (in days) of 72 guinea pigs infected with virulent 

tubercle bacilli, observed and reported by Bekker et al. [3]. The data are follows 

0.1, 0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 0.74, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 

1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.68, 1.71, 

1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 

 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55, 2.54, 0.77. 

By using different loss functions, the Bayes estimates and posterior risks of the posterior distribution 

through both priors are as follows where posterior risk are in parenthesis. 

Table 1: Bayes Estimation and Posterior Risks Using Jeffery’s Prior 

   �̂� = MLE,   �̂�𝑆 = Estimation under SELF,  �̂�𝐸 = Estimation under Entropy, 

 �̂�𝑃 = Estimation under Precautionary, �̂�𝐿 = Estimation under LINEX 

𝛼 C �̂� �̂�𝑆 �̂�𝐸 �̂�𝑃 �̂�𝐿 

𝑏1 = 0.01 𝑏1 = 0.05 

1.0 0.5 0.5583 0.5583 

(1.260) 

1.109 

(4.862) 

2.241 

(17.97) 

1.116 

(0.0111) 

1.116 

(0.0558) 

1.0 0.5583 0.5545 

(1.247) 

1.101 

(4.862) 

2.225 

(17.85) 

1.108 

( 0.0110) 

1.108 

(0.0554) 

1.5 0.5583 0.5506 

(1.234) 

1.093 

(4.862) 

2.210 

(17.73) 

1.1012 

(0.0110) 

1.1010 

(0.0550) 

2.0 0.5 0.5583 0.5583 

(1.260) 

1.1090 

(4.862) 

2.2413 

(17.97) 

1.1167 

(0.0111) 

1.1165 

(0.0558) 

1.0 0.5583 0.5545 

(1.247) 

1.1012 

(4.862) 

2.2258 

(17.85) 

1.1089 

(0.0110) 

1.1088 

(0.0554) 

1.5 0.5583 0.5506 

(1.234) 

1.093 

(4.862) 

2.2102 

(17.73) 

1.1012 

( 0.0110) 

1.1010 

(0.0550) 

3.0 0.5 0.5583 0.5583 

(1.260) 

1.1090 

(4.862) 

2.2413 

(17.97) 

1.1167 

(0.0111) 

1.1165 

(0.0558) 

1.0 0.5583 0.5545 

(1.247) 

1.1012 

(4.862) 

2.2258 

(17.85) 

1.1089 

(0.0110) 

1.1088 

(0.0554) 

1.5 0.5583 0.5506 

(1.234) 

1.0935 

(4.862) 

2.2102 

(17.73) 

1.1012 

(0.0110) 

1.1010 

(05506) 
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Table 2: Bayes Estimation and Posterior Risks Using Gamma Prior 

Among other loss functions, it is evident from Table 1 and Table 2. That   the Linex loss function shows 

smaller Bayes posterior risk under the both assumptions (extended Jeffery’s prior and gamma prior). 

According to decision rule of less Bayes posterior risk, we accomplish that Linex loss function is more 

useful than others. 

6. Conclusion

In this study, we derived the Bayes posterior distribution and parameter estimation for the inverse 

Ailamujia distribution using both informative and non-informative priors. We explored various loss 

functions to assess their impact on the estimation process, with a specific focus on the Linex loss 

function. The results, presented in Table 1 and Table 2, clearly demonstrate that the Linex loss function 

yields the smallest Bayes posterior risk under both the extended Jeffery’s prior and the gamma prior 

assumptions. This comparative analysis highlights the superior performance of the Linex loss function, 

indicating its effectiveness in minimizing the Bayes posterior risk. 

By applying the decision rule of minimizing the Bayes posterior risk, we conclude that the Linex loss 

function is the most useful among the considered alternatives. The performance of the estimators was 

evaluated through practical applications, and the results underscore the flexibility and robustness of 

the inverse Ailamujia distribution in Bayesian estimation. The findings also emphasize the utility of the 

Linex loss function in enhancing the precision of parameter estimation across various contexts. This 

work contributes to the growing body of literature on Bayesian methods, offering valuable insights into 

the application of different loss functions for parameter estimation. It provides a clear advantage of 

using the Linex loss function in terms of minimizing posterior risk, which can be applied to diverse 

statistical modelling scenarios. The study reinforces the importance of selecting appropriate loss 

functions for effective Bayesian estimation, ensuring better model performance and more reliable 

results. 

𝛼 a b �̂� �̂�𝑆 �̂�𝐸 �̂�𝑃 �̂�𝐿 

𝑏1 = 0.01 𝑏1 = 0.05 

1.0 0.5 0.5 0.5583 1.1163 

(0.0086) 

1.1240 

(4.8667) 

1.1124 

(1.1085) 

1.1162 

(0.0111) 

1.1161 

(0.0558) 

0.5 1.0 0.5583 1.1201 

(0.0086) 

1.1279 

(4.8666) 

1.1163 

(1.1124) 

1.1201 

(0.0112) 

1.1199 

(0.0560) 

1.0 0.5 0.5583 1.1120 

(0.0085) 

1.119 

(4.8705) 

1.1081 

(1.1043) 

1.1119 

(0.0111) 

1.1118 

(0.0556) 

2.0 0.5 0.5 0.5583 1.1163 

(0.0086) 

1.1240 

(4.8667) 

1.1124 

(1.1085) 

1.1162 

(0.0111) 

1.1161 

(0.0558) 

0.5 1.0 0.5583 1.1201 

(0.0086) 

1.1279 

(4.8666) 

1.1163 

(1.1124) 

1.1201 

(0.0112) 

1.1199 

( 0.0560) 

1.0 0.5 0.5583 1.1120 

(0.0085) 

1.1197 

(4.8705) 

1.1081 

(1.1043) 

1.1119 

(0.0111) 

1.1118 

(0.0556) 

3.0 0.5 0.5 0.5583 1.1163 

(0.0086) 

1.1240 

(4.8667) 

1.1124 

(1.1085) 

1.1162 

(0.0111) 

1.1161 

(0.0558) 

0.5 1.0 0.5583 1.1201 

(0.0086) 

1.1279 

(4.8666) 

1.1163 

(1.1124) 

1.1201 

(0.0112) 

1.1199 

(0.05600) 

1.0 0.5 0.5583 1.1120 

(0.0085) 

1.1197 

(4.8705) 

1.1081 

(1.1043) 

1.1119 

(0.0111) 

1.1118 

(0.0556) 
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