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Abstract

In this paper we introduce a novel expansion of Fréchet distribution from Modi family of probability
distributions. The important statistical properties like moments, stochastic ordering, and entropy are
studied in this paper. Two distinct characterizations of the proposed distribution are derived through
the hazard rate function and truncated moments. The statistical inference about the parameters of the
new distribution is studied using the method of maximum likelihood estimation. To study the flexibility
and practical utility of the distribution, two real-life data sets from the reliability sector and from the
biomedical field were analyzed. An extensive simulation study is also conducted to validate the accuracy
and consistency of the estimation techniques.

Keywords: Characterization, Entropy, Fréchet distribution, Hazard rate function, Maximum
Likelihood Estimation, Statistical modelling.

1. Introduction

The study of statistical distributions is crucial across various disciplines, like economics, engi-
neering, and particularly in reliability analysis. The reliability sector focuses on modeling and
understanding failure rates in systems, components, and products over time. These necessitating
distributions are robust and versatile to capture the inherent complexities of these processes. This
paper introduces a new distribution meticulously designed to meet these demands and to offer
enhanced adaptability for reliability analysis.

In modern industries, accurate and reliable models are essential for predicting critical sys-
tems, machinery, and equipment lifespan and failure patterns. Traditional distributions, such as
the Weibull distribution (see, [1] & [2]) and the exponential distribution (see [3]), have long been
utilized in reliability studies due to their simplicity and ease of use. However, these models often
fall short when modeling complex or non-standard failure rates. For instance, while the Weibull
distribution is well-suited for systems with increasing or decreasing failure rates, it struggles
with scenarios involving bathtub-shaped failure rates, which are common in electronic systems.
Similarly, the exponential distribution assumes a constant failure rate, making it inadequate
for mechanical systems that experience wear-out failures over time. Our proposed distribution
overcomes these limitations by providing a more flexible framework that can adapt to a broader
range of reliability scenarios, including those with non-monotonic hazard functions.

Moreover, this distribution has been applied to the biomedical field, specifically in analyz-
ing infant mortality rates, where the precise modeling of survival times and risk factors is crucial.
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Traditional statistical models can struggle with the intricacies of biomedical data, particularly
in capturing the variability and heterogeneity inherent in patient population. By offering a
more adaptable structure, our distribution enhances the accuracy and reliability of statistical
modeling in both reliability and biomedical contexts, making it a valuable tool for researchers
and practitioners alike.

René Fréchet developed the Fréchet distribution [4], recognized as the maximum value dis-
tribution, a concept further explored by Fisher and Tippet [5] and Gumbel [6]. This distribution
has become widely used and studied across various fields due to experimental research from
multiple disciplines. It is particularly significant in survival analysis and reliability studies, find-
ing applications in engineering, social, physical, environmental, and life sciences. The cumulative
distribution function (cdf) and probability density function (pdf) of Fréchet distribution are,
respectively,

Gσ,λ(x) = e−(
σ
x )

λ

, x > 0, (1)

and
gσ,λ(x) = λσλx−(λ+1)e−(

σ
x )

λ

, x > 0, (2)

where σ > 0 is the scale parameter and λ > 0 is the shape parameter.

For further reading, see Kotz and Nadarajah [7] and Mubarak [8]. The Fréchet distribution
has been extensively generalized in the literature. Recent developments are; Slash-Exponential-
Fréchet distribution by Gmez et al. [9], Cosine Fréchet Loss distribution by Abonongo et al.
[10], Marshall-Olkin exponentiated Fréchet distribution [11], the inverted Gompertz-Fréchet
distribution [12], Yun-Fréchet distribution [13], cubic transmuted Fréchet distribution [14], the
generalized odd log-logistic Fréchet distribution [15], the novel Kumaraswamy power Fréchet
distribution [16] and generalization of Fréchet distribution[17]. Harlow [18] demonstrated that
the Fréchet distribution is crucial for modeling the statistical behavior of material properties in
various engineering applications.

Modi et al. [19] proposed the Modi family of distributions with cdf T(x) and pdf t(x) as
follows:

T(x) =
(1 + αβ)S(x)

αβ + S(x)
, x > 0, α > 0, β > 0, (3)

t(x) =
(1 + αβ)(αβs(x))(

αβ + S(x)
)2 , x > 0, α > 0, β > 0, (4)

where S(x) is an arbitrary cdf of a continuous univariate distribution and s(x) is the corresponding
pdf. Recent contributions to this family of distributions include Modi Exponential Distribution
[19], Modi Weibull [20] and Modi Exponentiated Exponential Distribution [21]. In this paper we
introduce a new distribution developed from this family of distributions, utilizing the Fréchet dis-
tribution as the baseline distribution. Named the Modi-Fréchet Distribution, this four-parameter
distribution offers a superior fit compared to other competitive lifetime distributions.

The present paper is organized as follows: In Section 2 the model construction and basic
statistical properties such as moments, stochastic ordering, and entropy are studied. Section 3 is
devoted to characterizations of the distribution based on hazard function and truncated moments.
In Section 4 parameters of the new distribution are derived using the maximum likelihood
estimation method. A simulation study has been carried out in Section 5. The flexibility and
utility of the proposed model are studied in Section 6 and conclusions are given in Section 7.
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2. Modi Fréchet Distribution

In this section, we develop a special distribution from Modi family, based on the Fréchet distribu-
tion. The cdf and pdf of Modi Fréchet distribution (MFD) are;

F(x) =
(1 + αβ)e−( σ

x )
λ

αβ + e−( σ
x )

λ
, x > 0, α, β, σ, λ > 0. (5)

The corresponding pdf is given by;

f (x) =

(
1 + αβ

) (
λαβσλx−(λ+1)e−( σ

x )
λ
)

(
αβ + e−( σ

x )
λ
)2 , x > 0, α, β, σ, λ > 0. (6)

(a) (b)

(c) (d)

Figure 1: Plots of the pdf of the MFD for various parameter values.

Fig. 1. shows the pdf can be unimodal, approximately normal, increasing-decreasing, and
right-skewed.
The hazard function of MFD is;

h(x) =

(
1 + αβ

) (
λσλx−(λ+1)e−( σ

x )
λ
)

(
αβ + e−( σ

x )
λ
) (

1 − e−( σ
x )

λ
) , x > 0, α, β, σ, λ > 0. (7)
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(a) (b)

(c) (d)

Figure 2: Plots of the hrf of the MFD for various parameter values.

Fig 2. shows decreasing, increasing-decreasing, constant, and unimodal behaviour of hazard
function.
We derived the quantile function of MFD. The quantile function obtained using the inversion
method is given as;

F−1(y) =
σ(

log
(
1 + αβ − y

)
− log

(
yαβ

))1/λ
, yϵ[0, 1] (8)

2.1. Moments

The mean, standard deviation, variance, skewness, and kurtosis for the MFD are computed using
the raw moments. With the help of R software, we computed them using the standard definitions.
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Table 1: Moment characteristics of the MFD for various parameter values.

Parameters α → 0.6 1 2 5
β = 9 Mean 3.0120 4.2253 4.6556 4.6569
σ = 4 Variance 0.1283 1.4521 2.1379 2.1402
λ = 5 Skewness 6.8163 3.9213 3.5360 3.5351

Kurtosis 210.25 57.6110 48.1140 48.0920
β = 5.5 Mean 2.2716 2.6963 2.8949 2.9019
σ = 2.6 Variance 0.0909 0.3086 0.4320 0.4365
λ = 6.5 Skewness 4.2027 2.9117 2.5991 2.5899

Kurtosis 49.9690 24.4780 20.4440 20.3350
β = 2.5 Mean 3.1501 3.4990 3.7779 3.8626
σ = 3.3 Variance 0.6722 0.1080 1.5023 1.6292
λ = 4.8 Skewness 4.7686 4.1751 3.8589 3.7811

Kurtosis 93.3690 72.3430 62.8610 60.7000
β = 1.2 Mean 0.8987 0.9206 0.9431 0.9596
σ = 0.9 Variance 0.0143 0.0170 0.0198 0.0218
λ = 9 Skewness 2.4785 2.3161 2.1727 2.0808

Kurtosis 16.4210 14.7680 13.4440 12.6580

The calculated values are presented in Table 1. It shows that the MFD is suitable for under-
dispersed data. The skewness and kurtosis values show positive skewness and leptokurtic
behaviour. As α increases both mean and variance are increasing while skewness and kurtosis
values decreasing.

2.2. Stochastic Ordering

Stochastic ordering is a powerful tool to demonstrate the comparison of random variables in terms
of statistical functions of distribution theory. Different types of orderings can also be defined
based on the hazard rate, reverse hazard rate, or by applying transformations to the random
variables, as discussed in [22]. Let X1 and X2 be two random variables with parameters α1, β, σ, λ
and α2, β, σ, λ, their respective density functions f1(x) and f2(x), the reliability functions be F̄1(x)
and F̄2(x), then we say X1 is smaller than X2 if

• F̄1(x) ≤ F̄2(x) for all x,=⇒ X1 ≤st X2 (Stochastic order).

• f1(x)
F̄1(x) ≥

f2(x)
F̄2(x) for all x,=⇒ X1 ≤hr X2 (Hazard rate order).

• f1(x)
F1(x) ≥

f2(x)
F2(x) for all x,=⇒ X1 ≤rh X2 (Reversed hazard rate order).

• f1(x)
f2(x) is a monotonic decreasing function for all x,=⇒ X1 ≤lr X2 (Likelihood ratio order).

Suppose the densities of X1 and X2 be

f1(x) =

(
1 + α

β
1

) (
λα

β
1 σλx−(λ+1)e−( σ

x )
λ
)

(
α

β
1 + e−( σ

x )
λ
)2 , x > 0, and

f2(x) =

(
1 + α

β
2

) (
λα

β
2 σλx−(λ+1)e−( σ

x )
λ
)

(
α

β
2 + e−( σ

x )
λ
)2 , x > 0.
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respectively. Then,
case (i): When α is different.

f1(x)
f2(x)

=
α

β
1

α
β
2

(
1 + α

β
1

) (
α

β
2 + e−( σ

x )
λ
)2

(
1 + α

β
2

) (
α

β
1 + e−( σ

x )
λ
)2 .

For α1 < α2,
(

f1(x)
f2(x)

)′
< 0 which satisfies X1 ≤lr X2.

case (ii): When β is different.

f1(x)
f2(x)

=
αβ1

αβ2

(
1 + αβ1

) (
αβ2 + e−( σ

x )
λ
)2

(
1 + αβ2

) (
αβ1 + e−( σ

x )
λ
)2 .

For β1 < β2,
(

f1(x)
f2(x)

)′
< 0 which satisfies X1 ≤lr X2.

case (iii): When σ is different.

f1(x)
f2(x)

=
σλ

1

σλ
2

e−(
σ1
x )λ

e−(
σ2
x )λ

(
αβ + e−(

σ2
x )λ

)2

(
αβ + e−(

σ1
x )λ

)2 .

For σ1 < σ2,
(

f1(x)
f2(x)

)′
< 0 which satisfies X1 ≤lr X2.

case (iv): When λ is different.

f1(x)
f2(x)

=
λ1

λ2

σλ
1

σλ
2

e−( σ
x )

λ1

e−( σ
x )

λ2

(
αβ + e−( σ

x )
λ2
)2

(
αβ + e−( σ

x )
λ1
)2 .

For λ1 < λ2,
(

f1(x)
f2(x)

)′
< 0 which satisfies X1 ≤lr X2.

2.3. Entropy

Every statistical distribution inherently possesses some degree of uncertainty, and entropy serve
as a quantifiable measure of this uncertainty. In modern statistical analysis, information measures
like entropy plays a crucial role in addressing and understanding such uncertainties, making
them vital tools for statisticians.

If X is a non-negative continuous random variable with pdf f (x), and cdf F(x) then the Renyi
Entropy is defined by,

Hθ(x) =
1

1 − θ
log

∫ ∞

0
[ f (x)]θ dx. (9)

The Shannon entropy of X is defined as

S(x) = −
∫ ∞

0
f (x)ln [ f (x)] dx. (10)

Using the pdf of MFD, we can write;

[ f (x)]θ =
(

1 + αβ
)θ (

λαβσλ
)θ

(
x−(λ+1)e−( σ

x )
λ
)θ

(
αβ + e−( σ

x )
λ
)2θ

. (11)
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Varentropy, the variance of Shannon information associated with a random variable X, was intro-
duced by Song [23] as a measure of distribution shape, offering an alternative to kurtosis. This
concept captures the variability of information content, also known as information varentropy,
as discussed by Bobkov and Madiman [24]. Varentropy is significant in fields like information
theory, computer science, and statistics, providing valuable insights into how information is
distributed around the entropy of X.

Consider X as a continuous random variable with a density function f (x). The Shannon
varentropy of X is then defined as follows:

V = V(X) := Var[h(X)] =
∫

S
f (x) [ln f (x)]2 dx −

[∫
S

f (x)ln f (x)dx
]2

(12)

The calculated entropy values presented in Table 2 provide a detailed comparison of Shannon
entropy, Rényi entropy, and varentropy across different parameter settings. As shown in the
table, the Shannon entropy values are consistently negative, indicating the uncertainty associated
with each parameter set. In contrast, Rényi entropy exhibits both positive and negative values,
reflecting the variation in the information content under different parameter configurations.
Varentropy values, which measure the dispersion of information content around the entropy, are
consistently positive, with the magnitude decreasing as the parameter shape parameters β and λ
increase. This comprehensive comparison highlights how each entropy measure captures distinct
aspects of the information content and its variability.

Table 2: Entropy measures for different parameters

Parameters Shannon Entropy Renyi Entropy Varentropy

β 0.3 0.9 2.5 0.3 0.9 2.5 0.3 0.9 2.5
λ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

α = 0.9,
σ = 0.2

-44.2040 -12.9194 -7.8138 37.8881 25.5873 20.5589 40.1693 8.5762 4.3618

α = 1.2,
σ = 0.8

-45.2709 -13.9355 -9.3877 -19.0633 -13.1722 -11.1970 40.6525 8.7924 4.5635

α = 3,
σ = 1.2

-48.6200 -16.6447 -11.7576 -1.9420 -1.4060 -1.2323 42.0571 9.2918 4.7959

3. Characterization Results

Accurately characterizing probability distributions is pivotal across diverse fields, as it facilitates
profound insights into complex phenomena. The characterization of continuous probability
distributions has been extensively investigated, with seminal contributions from researchers
including Glänzel [25, 26] and Hamedani [27], who have pioneered various techniques. In
this section, we have rigorously established the characterizations of the MFD by examining its
truncated moments and hazard function.

3.1. Characterization based on truncated moments

The characterization of the probability distributions through truncated moments was initially pio-
neered by Galambos and Kotz [28]. Building on this foundational work, numerous scholars have
made significant contributions to the field. Among the most notable are Kotz and Shanbag [29],
as well as Glänzel et al. [30] with further advancements by Glänzel [25, 31]. The characterization
of the MFD using truncated moments is an extension of these efforts, specifically developed in
accordance with Theorem 3.1 from [25] which is stated as follows,

Theorem 3.1. Let (Ω, Σ, P) be a given probability space, and let D = [α, β] be an interval for some a < b
(α = ∞, β = −∞ might as well be allowed). Let X : Ω → D be a continuous random variable with
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distribution function G(x) and let κ1 and κ2 be two real functions defined on D such that

E[κ1(X)|X ≥ x] = E[κ2(X)|X ≥ x]ζ(x), x ∈ D

is defined with some real function ζ. Assume that κ1, κ2 ∈ C1(D), ζ ∈ C2(D), and G(x) is a twice
continuously differentiable and strictly monotone function on the set D. Finally, assume that the equation
κ2ζ = κ1 has no real solution in the interior of D. Then G is uniquely determined by the functions κ1, κ2
and ζ. In particular,

G(x) =
∫ x

a
C

∣∣∣∣∣ ζ
′
(ν)

ζ(u)κ2(u)− κ1(u)

∣∣∣∣∣ e−τ(ν)

where the function τ is a solution of the differential equation τ′ = ζ ′κ2
ζκ2−κ1

and C is a constant chosen to
make

∫
D dG = 1.

The above theorem has the advantage that the cdf G is not required to have a closed form
and is given in terms of an integral whose integrand depends on the solution of a first-order
differential equation, which can serve as a bridge between probability and differential equation.

Proposition 3.1. Let X : Ω → (0, ∞) be a continuous random variable, and let

κ2(x) =
(

αβ + e−(
σ
x )

λ
)2

and κ1(x) = κ2(x)e−(
σ
x )

λ

for x > 0. The pdf of X is Eq.6 if and only if the

function ζ defined in Theorem 3.1 has the form

ζ(x) =
1
2

e−(
σ
x )

λ

, x > 0. (13)

Proof. Let X have pdf Eq.6, then

(1 − G(x))E[κ2(X)|X ≥ x] =
(

1 + αβ
)

αβe−(
σ
x )

λ

, x > 0,

(1 − G(x))E[κ2(X)|X ≥ x] =
(
1 + αβ

)
αβ

2
e−2( σ

x )
λ

, x > 0,

and then

ζ(x)κ2(x)− κ1(x) = − 1
2

e−(
σ
x )

λ
(

αβ + e−(
σ
x )

λ
)2

< 0, f or x > 0.

Conversely, if ζ is given as Eq.12, then

τ′(x) =
ζ ′(x)κ2(x)

ζ(x)κ2(x)− κ1(x)
= −λσλx−(λ+1), x > 0,

and hence,

τ(x) =
(σ

x

)λ

or

e−τ(x) = e−(
σ
x )

λ

.

Now, using Theorem 3.1, X has the pdf Eq.6. ■
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3.2. Characterization based on hazard function

The hrf h(x) of a twice differentiable distribution function F(x) and its corresponding pdf f (x)
satisfy the first-order differential equation:

f ′(x)
f (x)

=
h′(x)
h(x)

− h(x). (14)

For many univariate continuous distributions, this is the sole characterization expressible in terms
of the hazard function. Hamedani and Ahsanullah [32] provided characterizations of certain
widely recognized distributions grounded in the hazard function. The following characterization
introduces a non-trivial distintion for the MFD when β = 1, diverging from the aforementioned
trivial form.

Proposition 3.2. Let X : Ω → (0, ∞) be a continuous random variable. The pdf of X is Eq.6 if and only
if its hazard function h(x) satisfies the differential equation

xλ+1h′(x) + (λ + 1)xλh(x) =
d

dx

 (1 + α)λσλe−(
σ
x )

λ

(α + e−(
σ
x )

λ

)(1 − e−(
σ
x )

λ

)

 . (15)

Proof. When β = 1, the pdf f (x) and hrf h(x) of X are respectively

f (x) =
(1 + α)

(
λασλx−(λ+1)e−( σ

x )
λ
)

(
α + e−( σ

x )
λ
)2 , x > 0, α, σ, λ > 0. (16)

and

h(x) =
(1 + α)

(
λσλx−(λ+1)e−( σ

x )
λ
)

(
α + e−( σ

x )
λ
) (

1 − e−( σ
x )

λ
) , x > 0, α, σ, λ > 0. (17)

Then we have

f ′(x)
f (x)

= − (λ + 1)
x

+ λσλx−(λ+1) − 2λσλx−(λ+1)e−( σ
x )

λ(
α + e−( σ

x )
λ
) . (18)

Using Eq.14 we can write,

h′(x) + h(x)
(λ + 1)

x
=

(1 + α)λ2σ2λx−2(λ+1)e−( σ
x )

λ(
α + e−( σ

x )
λ
) (

1 − e−( σ
x )

λ
) +

(1 + α)2λ2σ2λx−2(λ+1)e−( σ
x )

λ(
α + e−( σ

x )
λ
)2 (

1 − e−( σ
x )

λ
)2

−
2(1 + α)λ2σ2λx−2(λ+1)

(
e−( σ

x )
λ
)2

(
α + e−( σ

x )
λ
)2 (

1 − e−( σ
x )

λ
) ,

which implies,

xλ+1h′(x) + (λ + 1)xλh(x) =
(1 + α)λ2σ2λx−(λ+1)e−( σ

x )
λ(

α + e−( σ
x )

λ
) (

1 − e−( σ
x )

λ
) +

(1 + α)λ2σ2λx−(λ+1)
(

e−( σ
x )

λ
)2

(
α + e−( σ

x )
λ
) (

1 − e−( σ
x )

λ
)2

−
(1 + α)λ2σ2λx−(λ+1)

(
e−( σ

x )
λ
)2

(
α + e−( σ

x )
λ
)2 (

1 − e−( σ
x )

λ
) .
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Now, Eq.15 holds, then

d
dx

[
xλ+1h(x)

]
=

d
dx

 (1 + α) λσλe−( σ
x )

λ(
α + e−( σ

x )
λ
) (

1 − e−( σ
x )

λ
)


from which we obtain

h(x) =
(1 + α)

(
λσλx−(λ+1)e−( σ

x )
λ
)

(
α + e−( σ

x )
λ
) (

1 − e−( σ
x )

λ
) ,

which is the hrf of MFD when β = 1. ■

4. Maximum Likelihood Estimation

This section provides the parameter estimates for the MFD derived through the maximum
likelihood method. This method is widely recognized as the predominant approach in statistical
inference. The log-likelihood for θ = (α, β, σ, λ)T based on a given sample is given by;

logL(α, β, λ, σ) =nlog(1 + αβ) + nlog(λ) + nβlog(α) + nλlog(σ)−

(λ + 1)
n

∑
i=1

log(xi)−
n

∑
i=1

(
σ

xi

)λ

− 2
n

∑
i=1

log
[

αβ + e−( σ
xi
)λ
]

. (19)

To obtain the maximum likelihood estimators (MLE) of the MFD, we maximize the log-likelihood
function. This is accomplished by taking the first derivative of the Eq.19 with respect to parame-
ters α, β, λ and σ.

∂ log L(α, β, λ, σ)

∂α
=

nβαβ−1

1 + αβ
+

nβ

α
− 2

n

∑
i=1

 βαβ−1

αβ + e−
(

σ
xi

)λ

,

∂ log L(α, β, λ, σ)

∂β
=

nαβ logα

1 + αβ
+ nlogα − 2

n

∑
i=1

 αβ logα

αβ + e−
(

σ
xi

)λ

,

∂ log L(α, β, λ, σ)

∂σ
=

n
λ
+ nlogσ −

n

∑
i=1

logxi −
n

∑
i=1

(
λ

σ

)(
σ

xi

)λ

−

2
(

λ

σ

) n

∑
i=1


(

σ
xi

)λ
e−

(
σ
xi

)λ

log
(

σ
xi

)
αβ + e−

(
σ
xi

)λ

.

and

∂ log L(α, β, λ, σ)

∂λ
=

nλ

σ
+

n

∑
i=1

(
λ

σ

)(
σ

xi

)λ

− 2
(

λ

σ

) n

∑
i=1


(

σ
xi

)λ
e−

(
σ
xi
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(
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,

MLE θ̂ = (α̂, β̂, σ̂, λ̂) of θ = (α, β, σ, λ) can be obtained by solving simultaneously the following
normal equations.

∂logL
∂α

= 0;
∂logL

∂β
= 0;

∂logL
∂σ

= 0;
∂logL

∂λ
= 0.
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Table 3: Simulation results.

True value n Average Value MSE Bias
50 10.0852 1041.897 -4.0852

100 8.4113 188.1615 -2.4113
α = 6 200 7.1525 52.4647 -1.1525

300 6.8824 42.855 -0.8824
500 6.4090 6.5330 -0.4090
50 3.4438 18.3209 -0.4438

100 3.4103 10.7163 -0.4103
β = 3 200 3.5286 30.133 -0.5286

300 3.4228 10.4221 -0.4228
500 3.3492 5.8894 -0.3492
50 1.7126 4.7213 -0.7126

100 1.3902 1.7355 -0.3902
σ = 1 200 1.2486 0.6024 -0.2486

300 1.1863 0.3508 -0.1863
500 1.1088 0.1051 -0.1088
50 0.9450 0.0316 0.0550

100 0.9521 0.0186 0.0479
λ = 1 200 0.9621 0.0113 0.0379

300 0.9654 0.0082 0.0346
500 0.9777 0.0043 0.0223

5. Simulation Study

In this section, we assess the accuracy of parametric estimation through Monte Carlo simulation.
Using the quantile function of MFD given in Eq.8, we generate samples of observations for
sizes n = 50, 100, 200, 300 and 500 with N = 1000 replications. Two sets of parameter values are
considered; α = 6, β = 3, σ = 1, λ = 1 and α = 1.2, β = 2.5, σ = 0.2, λ = 0.5.

The numerical outcomes are evaluated using the R statistical programming language, lever-
aging the widely used optimization package ’optim’. The Average Value, Mean Square Error
(MSE), and Average Bias are computed and displayed in Tables 3 and 4. The results indicate that
as the sample size increases, the MSE decreases and the Average Value of each parameter con-
verges to the initial parameter values. These findings demonstrate the accuracy and consistency
of the estimation methods.

6. Applications

In this section, we fit the MFD model to a reliability data set to check the model’s flexibility.
The MFD was compared to that of Modi Exponentiated distribution (MED) by [19], Modi
Exponentiated Exponential distribution (MEED) by [21] and Modi Weibull distribution (MWD)
by [20]. The maximum likelihood method is employed to estimate the parameters for the
candidate models. We evaluated different goodness-of-fit measures to illustrate the flexibility of
the model. Specifically, −logL(negative log-likelihood function), W (Cramér-von Mises Statistic),
A (Anderson-Darling Statistic) KıS (Kolmogorov“Smirnov Statistic), AIC (Akaike Information
Criterion), CAIC (Akaike Information Criterion with correction), BIC (Bayesian Information
Criterion) and HQIC (Hannan“Quinn Information Criterion).
Where
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Table 4: Simulation results.

True value n Average Value MSE Bias
50 4.2749 84.5601 -3.0749

100 3.6350 69.6801 -2.4350
α = 1.2 200 2.9488 58.9493 -1.7480

300 2.8059 100.5479 -1.6059
500 2.2570 19.7147 -1.0570
50 5.9501 103.8486 -3.4501

100 4.8420 37.1668 -2.3420
β = 2.5 200 4.2936 36.3745 -1.7936

300 3.9396 19.2506 -1.4396
500 3.5822 10.1569 -1.0822
50 1.3159 45.1542 -1.1159

100 0.8870 12.4818 -0.6870
σ = 0.2 200 0.5636 6.9543 -0.3636

300 0.3382 0.4328 -0.1382
500 0.3496 1.0409 -0.1496
50 0.5014 0.0112 -0.0014

100 0.4897 0.0086 0.0103
λ = 0.5 200 0.4960 0.0056 0.0039

300 0.4972 0.0039 0.0028
500 0.4971 0.0034 0.0029

AIC =− 2logL + 2k,

CAIC =− 2logL +
2kn

(n − k − 1)
,

BIC =− 2logL + klog(n),

HQIC =− 2logL + 2klog(log(n))

where L is the likelihood function, k is the number of parameters of the model and n is the
sample size. By respecting the standards in the field, the best model corresponds to smaller
−logL, KıS, AIC, CAIC, BIC, HQIC, and greater p-value. Here, we used the “AdequacyModel”
package in R programming language to obtain the MLEs and goodness-of-fit tests of the given
data sets.

Data Set I: This data represents the total time on test plot analysis for mechanical compo-
nents of the RSG-GAS reactor [33]

2.160 0.746 0.402 0.954 0.491 6.560 4.992 0.347 0.150 0.358 0.101 1.359 3.465 1.060 0.614 1.921 4.082
0.199 0.605 0.273 0.070 0.062 5.320.

Data Set II: data set is the information of the infant mortality rate per 1,000 live births for a few cho-
sen nations in 2021, as reported by https://data.worldbank.org/indicator/SP.DYN.IMRT.IN

56 10 22 3 69 6 7 11 4 4 19 13 7 27 12 3 4 11 84 27 25 6 35 14 11 12 6
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Table 5: Basic statistical description of the dataset.

Size (n) Min. Max. Mean Median SD Skewness Kurtosis
23 0.06 6.56 1.58 0.61 1.93 1.36 3.54
27 3 84 18.81 11 20.51 1.95 3.05

Table 5 displays basic descriptive statistics of the datasets. Here, the distribution of the dataset
shows a positive skewness and leptokurtic behaviour, which goes with the moment properties of
this distribution. Figure 3 shows the boxplots and Figure 4 shows the TTT plots of the data set
and it goes with the features of hrf of MFD.

Figure 3: The box plots of the first data set (left) and the second data set(right).

Figure 4: The TTT plots of the first data set (left) and the second data set(right).
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Table 6: The MLEs of the first data set.

Model MLEs -log L
MFD α̂ = 3.1367, β̂ = 5.9797, σ̂ = 0.8032, λ̂ = 0.3838 33.0133
MWD α̂ = 3.3513, β̂ = 0.9966, σ̂ = 0.7085, λ̂ = 0.9824 34.2910
MEED α̂ = 4.4807, β̂ = 3.2477, σ̂ = 0.4016, λ̂ = 0.5374 33.4931
MED α̂ = 5.8525, σ̂ = 9.6862, λ̂ = 0.8800 34.8765

Table 7: The goodness of fit statistics for the first data set.

Model W A AIC BIC CAIC HQIC K-S p value
MFD 0.0471 0.3874 74.0266 78.5686 76.2488 75.1689 0.0971 0.9670
MWD 0.0544 0.3702 76.5819 81.1239 78.8041 77.7242 0.1827 0.3799
MEED 0.0864 0.5451 75.7530 79.1595 77.0161 76.6097 0.1700 0.4687
MED 0.0795 0.5052 74.9862 79.5282 77.2085 76.1285 0.1374 0.7273

Table 6 shows the results of the MLEs and negative log-likelihood values. From Table 7 we can
conclude that MFD provides the lowest W, A, AIC, BIC, CAIC, HQIC, K-S values, and the largest
p-value. Therefore, MFD is chosen as the best fit for the data.

(a) (b)

Figure 5: Fitted pdf (a) and cdf (b) of distributions to the first data set.

Figure 5 illustrates the fitted pdfs overlaid on the histogram and the corresponding cdfs for the
dataset. The histogram indicates that the data distribution is unimodal and exhibits a pronounced
positive skewness. The comparison of theoretical and empirical cdfs reveals that the MFD
provides the closest fit to the empirical cdf, outperforming other distributions in terms of accuracy.
To verify that the log-likelihood function behaves properly and that a distinct optimum has been
attained, we plot the profiles of the log-likelihood function for the MF distribution under the first
dataset and displayed in Figure 6.
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Figure 6: Fitted profile of the log-likelihood function for the MLEs from the MFD based on the first data set.

The performance of MFD for the second data was also compared to that of MWD, MEED and
MED. The MLEs and goodness-of-fit statistics for the second data set are presented in Tables 8
and 9.

Table 8: The MLEs of the second data set.

Model MLEs -log L
MFD α̂ = 2.3680, β̂ = 9.4772, σ̂ = 1.2422, λ̂ = 8.0659 102.7194
MWD α̂ = 5.5851, β̂ = 11.4085, σ̂ = 1.1231, λ̂ = 12.9991 109.7501
MEED α̂ = 1.5881, β̂ = 0.7937, σ̂ = 0.0544, λ̂ = 1.5894 104.7283
MED α̂ = 9.4307, σ̂ = 16.8944, λ̂ = 0.0642 106.7475
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Table 9: The goodness of fit statistics for the second data set.

Model W A AIC BIC CAIC HQIC K-S p value
MFD 0.0459 0.3064 213.4387 218.6221 215.2569 214.9800 0.0992 0.9532
MWD 0.1477 0.9498 227.5002 232.6835 229.3183 229.0414 0.1752 0.3783
MEED 0.1274 0.8277 217.4565 222.6399 219.2747 218.9978 0.1706 0.4121
MED 0.1273 0.8277 219.4949 223.3825 220.5384 220.6509 0.1752 0.3790

(a) (b)

Figure 7: Fitted pdf (a) and cdf (b) of distributions to the second data set.

Figure 7 presents the fitted pdfs and corresponding cdfs for the second dataset. The histogram
reveals a unimodal distribution with notable positive skewness. The plot exhibits that the cdf of
MFD is very closer to the empirical cdf than others. To further validate the model, we examine the
behavior of the log-likelihood function for the MFD. The profiles of the log-likelihood function
are plotted for the second dataset, (see Fig.8) confirming the proper behavior of the function and
the attainment of a distinct optimum.
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Figure 8: Fitted profile of the log-likelihood function for the MLEs from the MFD based on the second data set.

7. Conclusion

In this article, we proposed a new distribution based on the Modi family, namely MFD. Several
statistical properties of the proposed distribution, such as moments, skewness, kurtosis, stochastic
ordering, and entropy are evaluated. Two characterizations of the distribution are obtained using
the hazard rate function and truncated moments. The simulation study showed the accuracy
and consistency of the maximum likelihood estimation method. Two real-world data sets one
from the reliability sector and the other from biomedical sector were used to demonstrate the
flexibility of the proposed model. The MFD provided the best fit for the data compared to other
sub-models in the family.
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