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Abstract

In the current article, a retrial queuing system with working vacations, interruptions, setup time, and
perfect repair is analyzed. The scenario includes a server taking working vacations during empty periods
without a complete halt of servicing customers; however, the rates of service remain reduced. Further, a
setup time is included here, implying that if the server remains idle when a new customer enters, the
state changes to inactive plus a setup duration before restarting operation. In this phase of setup, the
setup failure happens and is replaced immediately before the server can proceed to normal operations.
In addition to this, automatic power-off to conserve energy is there when no customer comes while the
server is in vacation mode. Customers who find that the server cannot be accessed spend time waiting in
retrial orbit instead of entering a normal queue. Here they’re encouraged to try again for service after a
random time. The steady state probability generating functions for system size and retrial group size
are obtained by analyzing the system dynamics through the supplementary variable technique (SVT).
Reliability and optimization analyses will be included in what will be studied from the system. Reliability
concerns evaluating the chances of the server being available at different failure and repair sites while
in the system, while optimization looks at the best configuration of system parameters that will work
towards achieving greater efficiency and reduced delays. Explicit mathematical formulations can be
obtained under ergodicity conditions describing the system size distribution and sojourn time and state
probabilities. For a practical realization of the model, which numerically experiments would be carried
out in Python, the theoretical results were validated .Such results therefore hold information on how
direct retrials, setup times, service rates, and repair mechanisms affect overall system behavior. They
also provide strong evidence for trade-offs between energy conservation on the one hand and reliability
together with continuous service on the other. The proposed model together with practical implementation
thus produces very significant inferences relevant to real service models in which the optimization of
resources and efficiency of operation are critical.

Keywords: Retrial queue; working vacation; setup time; interruption; perfect repair ; general
retrial times.

1. Introduction

Queueing theory is a fundamental branch of applied mathematics with widespread applications in
various fields such as telecommunications, computer systems, transportation, and manufacturing.
When servers are busy, customers often enter a retrial orbit, awaiting service availability according
to predefined policies. The groundwork laid by Yang and Falin, Falin and Templeton [7], Yang et
al. Extending by Artalejo, Gomez-Corral [8] , Arrar et al [2] [3] [4]. Queueing systems, particularly
those involving retrials with vacations play a crucial role in balancing resource utilization and
service efficiency. The queueing systems with server vacations introduced by Levy and Yechiali
[14] are widely used in manufacturing systems, production systems, service systems, inventory
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systems, and other stochastic systems. In traditional scenarios, service stops when servers are on
break, many researchers have worked on vacation interruption. Notably, Keilson and Servi [11]
conducted significant research. One can refer also Li and Tian [15]. Takagi [21] contributed to
the field by studying single-server queueing models with Bernoulli vacations. However, in many
particular cases, an alternative approaches like working vacations provide service at a reduced
rate during idle times, thereby enhancing the overall performance of the system. Numerous
researchers have dedicated their efforts to develop models for queueing systems with working
vacation concepts. Pioneering work on this subject was also carried out by Servi and Finn [18]
considered an M/M/1 queue with working vacations, wherein vacation times are exponentially
distributed. Most work on queueing models with working vacations can be found in Tian et al
[19] and Chandrasekaran et al [6]. The M/M/1 retrial queue with working vacations was first
studied by Do. Subsequently, Banik et al[5] analyzed a general working vacation queueing model.
Arivudainambi et al [1] focused on analyzing a single-server retrial queue with working vacation
dynamics. Zhang and Hou [20] studied M/G/1 queueing model with vacation interruption.
And Gupta and Kumar [9] considered retrial queueing system with working vacation with
breakdown and repair. Furthermore, the integration of setup time becomes essential, especially in
the context of energy conservation. Setup time enables power-saving strategies by allowing server
deactivation during periods of inactivity. Recognizing the importance of power conservation,
several researchers have explored queueing models incorporating setup time. Phung-Duc [16]
[17], for instance, integrated the notion of setup time into retrial queueing systems. Gupta and
Kumar [10] analyzed retrial queue with feedback, setup time, working vacation perfect repair.
For further insights into related research, readers may refer to Manoharan and Jeeva [12] [13].
And Pannom Gupta. The model under investigation is an M/G/1 retrial queue with a working
vacation and setup time. This system represents a complex real-life case where customers may
encounter delays due to server unavailability, requiring them to reattempt service after a waiting
period. The setup times can significantly impact service efficiency and system performance. We
extend the results obtained by considering the general law of inter-retrial times and service times.
Our study aims to provide a detailed analysis of this type of complex system. We introduce
the Markov chain to prove the stability condition of the studied model. Using the method of
supplementary variables, we obtain the partial generating functions and the limiting distributions
that this type of model can possess. We also present some performance measures of the studied
model.

2. The model

In this paper, we consider an M/G/1 unreliable retrial queue with single working vacation , setup
time. The model is described in great detail as follows:

1. The arrival of consumers follows a Poisson process with a rate λ > 0 . If a consumer arrives
and the server is idle, they begin service immediately . on the other hand, if he finds it
busy, on working vacation, on setup, or broken then the consumer leaves the service area
and enters a pool of blocked consumers called orbit in accordance with an First Come First
Served discipline. While in orbit, the consumer waits a random amount of time before
retrying. The inter-retrial times follow an arbitrary probability distribution function N(x)
with corresponding LST function N ∗(θ).

2. The server promptly initiates the normal service for the new or retrial consumers upon their
arrival while in an idle state. The normal service time distributed with general distribution
function G(x) having LST G∗(θ).

3. in the case of the orbit is empty.The server automatically begins a single working vacation,
which follow an exponential distribution with rate ω .If a consumers comes up during the
working vacation , the consumers are served at a reduced rate. when the working vacation
is finished the server resumes normal service . while the working vacation period , The
service time distributed with general distribution function Wv(x) having LST W∗

v (θ).
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4. In the final of working vacation , if no consumers are waiting for their turn , the server is
shut down directly to save power .

5. in the off-state of the server, if any client arrives he will wait for his turn in forward position
of the server until it is activated (setup time ). the setup time is assumed to follow general
distribution with probability distribution function Ts(x) with corresponding LST function
T ∗

s (θ). The customers arriving in the setup state, have to join the orbit.

5. whene the server undergoes to the set-up state , this operation may fail with probability
ᾱ = (1− α). Then the server is sent for repair and The repair time of the server has arbitrary
probability distribution function S f (x) with corresponding LST function S∗

f (θ).

2.1. Practical justifications of the suggested model

Consider a manufacturing system consisting of a paper recycling machine , a Foreman(server)
and a worker(assistant) to operate the machine . The foreman will operate the machine if the
waste paper (customer) is available and produce the products.if this last is not available due
to transport issues , then the foreman may go on vacation .During the vacation period of the
foreman, if waste paper becomes available then the worker will operate the machine , but the
production will be relatively at a slow speed (working vacation ) . When a batch of the product
is completed, then the worker will call the foreman to resume the production at a higher speed
(vacation interruption ). In another situation, if the foreman’s vacation period completes, he will
return to the production to operate the machine . If the waste paper is available then he will
manage the production at a higher speed otherwise, if the waste paper is not available, to save
power, he may turn off the machine. Again, the availability of new waste paper will initiate
the setup of the machine (setup time) and production starts again if setup occurs successfully
otherwise the machine will be sent for repair, and during this period there will be no production.

3. Steady-state analysis

Let χ1(t), χ2(t), χ3(t), χ4(t), χ5(t) be the elapsed time in retrial, time in regular service, working
vacation time , repair time and setup time sequentially at time t.
Let supose that :
N(0) = 0, N(∞) = 1, G(0) = 0, G(∞) = 1, Wv(0) = 0, Wv(∞) = 1, Ts(0) = 0, Ts(∞) = 1, S f (0) =
0, S f (∞) = 1 are continuous at x = 0.consequently, we specify the hazard rate functions
f (x), µn(x), µw(x), υ(x), δ(x), for retrial, normal service, lower rate service, delayed repair and
repair, respectively.

f (x)dx =
dN(x)

1 − N(x)

µn(x)dx =
dG(x)

1 − G(x)

µw(x)dx =
dWv(x)

1 − Wv(x)

υ(x)dx =
dS f (x)

1 − S f (x)

δ(x)dx =
dTs(x)

1 − Ts(x)

The state of the system at time t can be defined by the Markov process {N(t); t ≥ 0} =
{D(t), X(t), χ1(t), χ2(t), χ3(t), χ4(t), χ5(t)t ≥ 0}, where X(t) denotes the number of customers
in the orbit at time t and
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D(t)=



0, if the server is idle in a normal period
1, if the server is idle in a working vacation period
2, if the server is busy on normal service
3, if the server is busy on working vacation period
4, if the server is on repair
5, if the server is on setup state

respectively. If D(t) = 0 and X(t) > 0, then χ1(t) represents the elapsed retrial time, if
D(t) = 2, then χ2(t) represents the elapsed service time during normal busy period at time t, if
D(t) = 3 and X(t) ≥ 0 then χ3(t) represents the elapsed working vacation time at time t and if
D(t) = 4 and X(t) ≥ 1 then χ4(t) represents the elapsed repair time at time t and if D(t) = 5
and X(t) ≥ 1 then χ5(t) represents the elapsed setup time at time t.

3.1. Stability and ergodicity Condition

Let {tn; n ∈ N} be the sequence of epochs of either service completion times or vacation termina-
tion time. The sequence of random vectors Zn = {D (tn+) , X (tn+)} form a Markov chain which
is the embedded Markov chain for our queueing system. Its state space is S = {0, 1, 2, 3, 4 and
5} × N.

Theorem 1. The embedded Markov chain {Zn; n ∈ N} is ergodic if and only if
ρ = λ

(
1

µn
+ 1

µw
+ ωW∗′

v (ω)
)
< N ∗(λ).

3.2. Equations Governing The System

For the Markov process {N(t); t ≥ 0}, we define the probability

P00(t) = {D(t) = 0, X(t) = 0}Q0(t) = {D(t) = 1, X(t) = 0}

and the probability densities

Pn(x, t)dx = {D(t) = 0, X(t) = n, x ≤ χ1(t) < x + dx} , x ≥ 0, n ≥ 1

Mn,b(x, t)dx = {D(t) = 2, X(t) = n, x ≤ χ2(t) < x + dx} , x ≥ 0, n ≥ 0

Gn,v(x, t)dx = {D(t) = 3, X(t) = n, x ≤ χ3(t) < x + dx} , x ≥ 0, n ≥ 0

Un(x, t)dx = {D(t) = 4, X(t) = n, x ≤ χ4(t) < x + dx} , x ≥ 0, n ≥ 1

Kn(x, t)dx = {D(t) = 5, X(t) = n, x ≤ χ5(t) < x + dx} , x ≥ 0, n ≥ 1

We assume that the stability condition is fulfilled in the sequel and so that we can set
P00 = limt→∞ P00(t) and Q0 = limt→∞ Q0(t) limiting densities for x > 0 and n ≥ 0

Mn,b(x) = lim
t→∞

Mn,b(x, t), Pn(x) = lim
t→∞

Pn(x, t) and Gn,v(x) = lim
t→∞

Gn,v(x, t)

and Un(x) = lim
t→∞

Un(x, t) and Kn(x) = lim
t→∞

Kn(x, t).

Based on the above assumptions and notations, our model is governed by the following set of
differential difference equations,

λP00 = ωQ0 (1)

(λ + ω)Q0 =
∫ ∞

0
M0,b(x)µn(x)dx +

∫ ∞

0
G0,v(x)µw(x)dx (2)

d
dx

Pn(x) + (λ + f (x))Pn(x) = 0, x > 0, n ≥ 1 (3)
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d
dx

M0,b(x) + (λ + µn(x)) M0,b(x) = 0, x > 0 (4)

d
dx

Mn,b(x) + (λ + µn(x)) Mn,b(x) = λMn−1,b(x), x > 0, n ≥ 1 (5)

d
dx

G0,v(x) + (λ + ω + µw(x)) G0,v(x) = 0, x > 0 (6)

d
dx

Gn,v(x) + (λ + ω + µw(x)) Gn,v(x) = λGn−1,v(x), x > 0, n ≥ 1 (7)

d
dx

U0(x) + (λ + υ(x))U0(x) = 0, x > 0 (8)

d
dx

Un(x) + (λ + υ(x))Un(x) = λUn−1(x), x > 0, n ≥ 1 (9)

d
dx

K0(x) + (λ + δ(x))K0(x) = 0, x > 0 (10)

d
dx

Kn(x) + (λ + δ(x))Kn(x) = λKn−1(x), x > 0, n ≥ 1 (11)

The boundary conditions at x = 0 include Pn(0), M0,b(0), Mn,b(0), G0,v(0), U0(0), Un(0), K0(0).
The description of these terms at x = 0 are described as follows:

Pn(0) =
∫ ∞

0
Gn,v(x)µw(x)dx +

∫ ∞

0
Mn,b(x)µn(x)dx, n ≥ 1 (12)

M0,b(0) = α
∫ ∞

0
K0(x)δ(x)dx +

∫ ∞

0
P1(x) f (x)dx

+ ω
∫ ∞

0
G0,v(x)dx +

∫ ∞

0
U0(x)υ(x)dx (13)

Mn,b(0) = α
∫ ∞

0
Kn(x)δ(x)dx +

∫ ∞

0
Pn+1(x) f (x)dx + ω

∫ ∞

0
Gn,v(x)dx

+ λ
∫ ∞

0
Pn(x)dx +

∫ ∞

0
Un(x)υ(x)dx, n ≥ 1 (14)

G0,v(0) = λQ0 (15)

Gn,v(0) = 0, n ≥ 1 (16)

K0(0) = λP00 (17)

Kn(0) = 0, n ≥ 1 (18)

U0(0) = ᾱ
∫ ∞

0
K0(x)δ(x)dx (19)

Un(0) = ᾱ
∫ ∞

0
Kn(x)δ(x)dx, n ≥ 1 (20)

The normalization condition is given by

P00 + Q0 +
∞

∑
n=1

∫ ∞

0
Pn(x)dx +

∞

∑
n=0

∫ ∞

0
Mn,b(x)dx +

∞

∑
n=0

∫ ∞

0
Gn,v(x)dx

+
∞

∑
n=0

∫ ∞

0
Un(x)dx +

∞

∑
n=0

∫ ∞

0
Kn(x)dx = 1

In order to solve the above set of equations we define the generating functions as, P(x, z) =

∑∞
n=1 znPn(x) for |z| ≤ 1 and x > 0, P(0, z) = ∑∞

n=1 znPn(0) for |z| ≤ 1, Mb(x, z) = ∑∞
n=0 zn Mn,b(x)

for |z| ≤ 1 and x > 0, Mb(0, z) = ∑∞
n=0 zn Mn,b(0), Gv(x, z) = ∑∞

n=0 znGn,v(x) for |z| ≤ 1 and x >
0, Gv(0, z) = ∑∞

n=0 znGn,v(0), U(x, z) = ∑∞
n=0 znUn(x) for |z| ≤ 1 and U(0, z) = ∑∞

n=0 znUn(0)
for |z| ≤ 1 , K(x, z) = ∑∞

n=0 znKn(x) for |z| ≤ 1 and K(0, z) = ∑∞
n=0 znKn(0) for |z| ≤ 1.

Multiplying equations (2)-(11) by suitable powers of z and summing over n, we obtain the
following set of partial differential equations :

∂P(x, z)
∂x

+ (λ + f (x))P(x, z) = 0, (21)
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∂Mb(x, z)
∂x

+ (λ − λz + µn(x)) Mb(x, z) = 0, (22)

∂Gv(x, z)
∂x

+ (λ − λz + ω + µw(x)) Gv(x, z) = 0, (23)

∂U(x, z)
∂x

+ (λ − λz + υ(x))U(x, z) = 0, (24)

∂K(x, z)
∂x

+ (λ − λz + δ(x))K(x, z) = 0. (25)

Solving the above partial differential equations (22) to (26)

P(x, z) = P(0, z)[1 − N(x)]e−λx, (26)

Mb(x, z) = Mb(0, z) [1 − G(x)] e−I(z)x, (27)

Gv(x, z) = Gv(0, z) [1 − Wv(x)] e−(I(z)+η)x, (28)

U(x, z) = U(0, z)
[
1 − S f (x)

]
e−I(z)·x, (29)

K(x, z) = K(0, z) [1 − Ts(x)] e−I(z)·x. (30)

where I(z) = λ(1 − z)
Multiplying equation (12) by suitable powers of z, summing over n from 1 to ∞ and using
equations (1) and (2) after some algebraic manipulations, we get

P(0, z) =
∫ ∞

0
Gv(x, z)µw(x)dx +

∫ ∞

0
Mb(x, z)µn(x)dx −

(
λ + ω

ω

)
λP00 (31)

Similarly, multiplying equations (14)-(21) by suitable powers of z, summing over n and after some
algebraic manipulations, we obtain

Mb(0, z) =
α

z

∫ ∞

0
K(x, z)δ(x)dx + λ

∫ ∞

0
P(x, z)dx +

1
z

∫ +∞

0
P(x, z) f (x)dx

+ ω
∫ +∞

0
Gv(x, z)dx +

∫ +∞

0
U(x, z)υ(x)dx, (32)

Gv(0, z) = G0,v(0), (33)

U(0, z) = ᾱ
∫ ∞

0
K(x, z)δ(x)dx, (34)

K(0, z) = K0(0). (35)

inserting equations 28-29 in 32 we get :

P(0, z) = Gv(0, z)W∗
v (I(z) + η) + Mb(0, z)G∗(I(z))−

(
λ + ω

ω

)
λP00 (36)

in similary way inserting equations 27-31 in 33 we get :

Mb(0, z) =
1
z

P(0, z)N ∗(λ) + αT ∗
s (I(z))K(0, z) + V(z)Gv(0, z) + P(0, z)(1 −N ∗(λ))

+U(0, z)S∗
f (I(z)) (37)

where V(z) = ω
I(z)+ω

(1 −W∗
v (I(z) + ω)) using equations 16 and 1 :

Gv(0, z) =
λ2

ω
P00 (38)

using equation 18 :

K(0, z) = λP00 (39)
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using equation 31 in 35 :

U(0, z) = αT ∗
s (I(z))K(0, z) (40)

using equation 40 in 41 :

U(0, z) = αλP00T ∗
s (I(z)) (41)

using equations 39 40 and 42 in 37 and 38 we get

P(0, z) =
Nr(z)
Dr(z)

(42)

Where Nr(z) = λP00zG∗(I(z))T ∗
s (I(z))[(α − 1)ωS∗

f (I(z))− αω] + ω

− λG∗(I(z))V(z)− λ(W∗
v (I(z) + ω)− 1)

Dr(z) = ωG∗(I(z))[z(1 −N ∗(λ)) +N ∗(λ)]− z

Mb(0, z) =
−λP00

Dr(z)


(

ωz
(
−αS∗

f (I(z)) + α + S∗
f (I(z))

)
T ∗

s (I(z))
))

+λzV(z) + z (N ∗(λ)− 1) (ω − λW∗
v (I(z) + ω) + λ)

− (ω − λW∗
v (I(z) + ω) + λ)N ∗(λ)

 (43)

Substituting equations (39-44) in 27-31 .

4. Steady state results

If the system is in steady state condition ρ < N ∗(λ), the PGFs are as follows:
(I) the number of customers in the orbit when the server is idle;

P(z) =
∫ ∞

0
P(x, z)dx =

P(0, z)(1 −N ∗(λ))

λ
(44)

(II) the number of customers in the orbit when the server is regularly busy;

Mb(z) =
∫ ∞

0
Mb(x, z)dx =

Mb(0, z)(1 − G∗(I(z))
I(z)

(45)

(III) the number of customers in the orbit when the server is at a lower speed service;

Gv(z) =
∫ ∞

0
Gv(x, z)dx =

Gv(0, z)(1 −W∗
v (I(z) + ω)

I(z) + ω
(46)

(IV) the number of customers in the orbit when the server is at repair time;

U(z) =
∫ ∞

0
U(x, z)dx =

U(0, z)(1 − S∗
f (I(z))

I(z)
(47)

(V) the number of customers in the orbit when the server is at setup time;

K(z) =
∫ ∞

0
K(x, z)dx =

K(0, z)(1 − T ∗
s (I(z))

I(z)
(48)

From the above equations, the only unknown is P00 which can be obtained by using the normal-
ization condition P00 + Q0 + P(1) + Mb(1) + Gv(1) + U(1) + K(1) = 1 as

P00 =
ω2(A∗(λ)− λE (G))

ω2
(

λ
(

E(S f ) (1 − α) + E(Ts)
)
+N ∗(λ)

))
+ω

(
λ2

{
2W∗′

v (ω) (λE(Nb)−N ∗(λ) + 1)− E(Nb)W∗
v (ω)

})
+λN ∗(λ) + λ2 (1 −W∗

v (ω))


(49)
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Corollary 1. If the system satisfies the steady state condition, The PGF of the number of customers
in the system (Ks(z)) is obtained using

Ks(z) = P00 + Q0 + P(z) + zMb(z) + zGv(z) + U(z) + K(z). (50)

The PGF of the number of customers in the orbit (K0(z)) is obtained using

Ko(z) = P00 + Q0 + P(z) + Mb(z) + Gv(z) + U(z) + K(z). (51)

5. System performance measures

Our analysis is based on the following system characteristics of the retrial queueing system.

5.1. System state probabilities

1. The steady state probability that the server is idle during the retrial time is given by

I = P(1)

=
−λP00 (N ∗(λ)− 1)

ω2(N ∗(λ)− λE (Nb))

 ω
(
−E(Nb)λ (W∗

v (ω)− 1) + ω
(
−αE(S f ) + E(Nb) + E(Ts)

))
+ωE(S f ) + λωW∗′

v (ω) + λ
(

ωW∗′
v (ω)−W∗

v (ω) + 1
) 

2. The steady state probability that the server is busy on normal service period is given by

U = Mb(1) =
λP00E(Nb)

ω2(N ∗(λ)− λE (Nb))


ω2

(
−αE(S f )λ + E(Ts)λ + E(S f )λ +N ∗(λ)

))
+ω

(
2λ2W∗′

v (ω)− λW∗
v (ω)N ∗(λ) + λN ∗(λ)

)
−λ2W∗

v (ω) + λ2


3. The steady state probability that the server is busy on working vacation period is given by

V = Gv(1) =
λ2P00 · (1 −W∗

v (ω))

ω2

4. The steady state probability that the server is under repair time is given by

S = U(1) = E(S f )λP00 · (1 − α)

5.The steady state probability that the server is under setup time is given by

K = K(1) = E(Ts)λP00

5.2. Mean system size and orbit size

(i) The expected number of customers in the orbit
(

Lq
)

is obtained by differentiating equation 52
with respect to z and evaluating at z = 1

Lq = K′
o(1) = lim

z→1

d
dz

Ko(z)

(ii) The expected number of customers in the system (Ls) is obtained by differentiating equation
51 with respect to z and evaluating at z = 1

Ls = K′
s(1) = lim

z→1

d
dz

Ks(z)

(iii) The average time a customer spends in the system (Ws) and the average time a customer
spends in the queue

(
Wq

)
are found using Little’s formula

Ws =
Ls

λ
and Wq =

Lq

λ
.
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6. Reliability Measures

In the retrial queueing system with unreliable server, the reliability measures provide the infor-
mation, which is required for the improvement of the system.
(i) The steady state availability Av, which is the probability that the server is either working for a
positive customer or in an idle period such that the steady state availability of the server is given by

Av = 1 − U(1) = 1 − E(S f )λP00 · (1 − α) (52)

(ii) Let Ff be the steady state probability of server failure,

Ff = αK(1) = αE(Ts)λP00

Theorem 2. Let E(Tb) and E(Tc) be the expected length of busy period and busy cycle under the
steady state conditions, we have

E(Tb) =
1

ω2(A∗(λ)− λE (Nb))


ω2

(
−αE(S f ) + E(Nb) + E(Ts) + E(S f )

))
ω
(
−E(Nb)λW∗

v (ω) + 2λW∗′
v (ω) (E(Nb)λ −N ∗(λ) + 1)

+N ∗(λ)− λW∗
v (ω) + λ


(53)

E(Tc) =
1

ω2λ(N ∗(λ)− λE (Nb))


ω2

(
λ
(

E(S f ) (1 − α) + E(Ts)
)
+N ∗(λ)

))
+ω

(
λ2

{
2W∗′

v (ω) (λE(Nb)−N ∗(λ) + 1)
})

−λ2ωE(Nb)W∗
v (ω) + λN ∗(λ) + λ2 (1 −W∗

v (ω))

 (54)

Proof. The result follows directly by applying the argument of an alternating renewal process
which leads to

P00 =
E (T0)

E (Tb) + E (T0)
; E (Tb) =

1
λ

(
1

P00
− 1

)
and E (Tc) = E (T0) + E (Tb) (55)

where T0 is the time length that the system in empty state. Since the inter-arrival time between
two customers follows exponential distribution with parameter λ, we have that E (T0) = (1/λ).
Inserting equation 50 into 56 and by direct calculations, we can get 54 and 55.

7. Cost model

In practice, queue managers aim to minimize the operating cost per unit time. In this section of
the paper, we begin by formulating a steady-state expected cost function per unit time, where
the service rate µn is the decision variable. Our objective is to find the optimal value of µn to
minimize the expected cost function. To reach this, We need to define cost elements as follows:
- C1 : is the cost of each consomer in the system per unit of time.
- C2 : represents the cost per unit time to leave the server functioning
- C3 : Cost per service per unit time.
- C4 : represents the cost per unit time needed to prepar starting up the server.
Let - Tc be the total expected cost per unit time of the system:

Tc = C1Ls + C2(1 − P00) + C3µn + C4P00.

7.1. Quadratic Fit Search Method

This part considers the cost optimization problem under a given cost structure via quadratic fit
search method (QFSM), This method uses a 3-point pattern to fit a quadratic function that ensures
a unique optimal solution., see [22] . So, We aim to optimize the service rate µn in various cases
to minimize the expected cost function Tc denoted in this part by H. Assume that all system
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parameters have fixed values, and the only controlled parameter is the service rate µn. Thus, The
optimization problem can be mathematically expressed as:

Minimize : H(µn) = C1Ls + C2(1 − P00) + C3µn + C4P00.

As it has been mentioned in Laxmi et al [23], given a 3-point pattern, we may fit a quadratic
function via corresponding functional values that has a unique minimum, xq, for the given
objective function H(x). the quadratic fit improves the current 3-point pattern by replacing one
of its points with the optimum xq , using this approximation. The unique optimum xq of the

quadratic function agreeing with H(x) at 3-point operation
(

xl , xm, xu
)

is given as

xq ∼=
1
2

H
(

xl
) (

(xm)2 − (xu)2
)
+ H (xm)

(
(xu)2 −

(
xl
)2

)
+ H (xu)

((
xl
)2

− (xm)2
)

H
(
xl
)
(xm − xu) + H (xm)

(
xu − xl

)
+ H (xu)

(
xl − xm

)
 .

For the whole analysis in this numerical part, we fixe C1 = 10, C2 = 350, C3 = 20, C4 = 120, .

7.2. Optimization analysis

To conduct the numerical analysis for parameter optimization in the queueing system under
consideration, we use the following default values for the parameters: α = 0.7, λ = 2, δ = 8, µw =
2, s = 5, r = 4 and ξ = 8, and the tolerance of QFSM is ϵ = 10−6.

From Figure 1, The curves clearly show convexity, which means , the existence of a specific
service rate µn that minimizes the total expected cost function for the given set of model
parameters. By adopting QFSM and choosing the initial 3point pattern as

(
µl

n, µm
n , µu

n

)
=

(3.05, 3.5, 3.75) , and after finite iterations, we observe that the minimum expected operating cost
per unit time converges to the solution H = 372.29 at µ∗

n = 3.282,

Figure 1: The optimum service rate µ∗
n

Moreover, we examine the behavior of the expected cost function under different values of the
cost parameters. System parameters are fixed as follows: α = 0.7, λ = 2, δ = 8, µv = 2, s = 5, r = 4
and ξ = 8; Tables 1-3 illustrate the effects of (C1, C2) , (C2, C4) and (C4, C3) on the expected cost
function, respectively. It can be see that the expected cost function shows a linearly increasing
trend with increasing cost parameters.
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Table 1: Effects of (C4, C3) on the expected cost function Tc with C1 = 10 and C2 = 350

(C4, C3) (100,10) (200,10) (200,15) (120,5) (120,20)

Tc 272.4873 313.8563 323.8563 270.7611 300.7611

Table 2: Effects of (C2, C4) on the expected cost function Tc

(C2, C4) (350,150) (350,200) (250,200) (150,120) (100,120)

Tc 293.1718 313.8563 255.2253 163.4991 134.1836

Table 3: Effects of (C4, C3) on the expected cost function Tc

(C4, C3) (100,10) (200,10) (200,15) (120,5) (120,20)

Tc 272.4873 313.8563 323.8563 270.7611 300.7611

8. Sensitivity Analysis and Numerical Examples

In this section, we provide numerical examples using Python to illustrate how different parameters
affect system performance measures. We assume that retrial times, service times, lower-speed
service times, vacation times, setup times, and repair times all follow exponential distributions.
The parameter values are chosen to satisfy the system’s stability conditions. The following tables
present computed values for various model characteristics, such as the probability that the server
is idle (P00), the mean orbit size

(
Lq

)
, probability that server in working vacation , probability

that server in setup time, and probability that server in repair time . The exponential distribution
is k(x) = ve−vx, x > 0.
In Figure 2 , we examine the behavior of the idle probability (P00) increases for increasing the
value of the lower service rate (µn) and regular service rate (µw).
In Figure 3 , we examine the behavior of the mean orbit size (Lq) décreases for increasing the
value of lower speed service rate µw and retrial rate ξ.

Figure 2: Variation in P00 with µn and µw
Figure 3: (Lq) versus ξ and µw

In Figure 4 , we see that the behavior of the mean orbit size (Lq) decreases as the values of
the lower service rate µw and regular service rate µn increase.
In Figure 5 , we examine the behavior of the idle probability (P00) increases with an increase in
the setup rate, for a fixed value of repair rate.
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Figure 4: (Lq) versus µn and µw Figure 5: P00 versus setup rate and repair rate

Figure 6 depicts that with an increase in repair rate, the probability of the server being in
repair state decreases.
Figure 7 depicts that with an increase in service rate µn , the probability of the server being in
setup state increases ;this is due to faster activation of server with reduced setup time.

Figure 6: Effect of repair rate on repair state probability
of server

Figure 7: Probability of server in set up versus µn

We observe from Figure 8 that the probability of the server being in vacation state decreases
with an increase in the rate of working vacation. The reason behind the observation is a decrease
in the duration of vacation with an increase in the vacation rate.

Figure 8: Probability of server in vacation versus vacation rate µw
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9. Conclusion

In this article, we analyzed an Unreliable single-server retrial queue model with general retrial
time, working vacation and setup time. if certain required and sufficient conditions are satisfied
the system can be stabilized .Using he supplementary variable approach and the Probability
Generating Function (PGF) approach to determine The PGF of the no. of clients in the system
and its orbit . The performance of the model is illustrated using PYTHON . The operating cost of
the queuing system is optimized by adjusting the service rate of the server.
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