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Abstract

With the ultimate goal of increasing parameter estimate accuracy, this study will examine and assess
a number of estimating techniques used with the Lindley distribution in the context of fuzzy data. Gibbs
sampling, Bootstrapping Sampling, MCMC, MH, and a unique hybrid methodology that combines these
approaches via Bayesian model averaging were also studied. The research looks at several sample sizes
ranging from 15 to 100 and repeats the estimate method 10,000 times for each size. Fuzzy data are created
using established fuzzy systems, and the performance of each approach is measured using average values
(AV), mean squared errors (MSE), coverage probabilities, and confidence interval lengths. The findings
show that the hybrid technique consistently produces estimates closer to the genuine parameter value of
one across all sample sizes, with smaller mean squared errors than individual methods. Furthermore, the
hybrid method’s confidence intervals preserve coverage probabilities that are consistent with the targeted
confidence level, demonstrating the method’s trustworthiness in statistical inference. Overall, the results
show that the hybrid technique improves estimate accuracy and reliability, providing a strong foundation
for parameter estimation in the Lindley distribution framework using fuzzy data.

Keywords: MCMC, MH, lindley distribution, gibbs Sampling, bootstrap sampling, bayesian
model average technique.

1. Introduction

The Lindley distribution was first presented by [1] as a novel distribution has been developed to
simplify lifespan data analysis, particularly in applications that include modeling the depend-
ability of stress strength. Various authors have utilized complete and censored samples to tackle
inferential challenges related to the Lindley distribution parameter. For example, a rigorous math-
ematical methodology to examine the Lindley distribution’s properties used by [2] . In addition,
through the use of a numerical example, they proved that modeling with the Lindley distribution
beats modeling with the exponential distribution in terms of efficiency. The primary subjects of
discussion were the estimation of reliability using an expanding type II right censored sample
along with the Lindley distribution by [3] . When the Lindley distribution is used to spread the
causes of failure, a rival risk model investigated by [4]. The Lindley distribution assumption
states that, both traditional and Bayesian techniques to examine the hybrid censored lifespan
data by [5]. Recently, numerous research has been published regarding the use of traditional
statistical methods for analyzing fuzzy data. Bayesian estimation is used to examine lifetime
data [6] in situations that lack clarity. Fuzzy random variable theory was examined in hindsight
by Gil, Lopez-Diaz, and Ralescu, focusing on its modeling, interpretation, along with resulting
implications. The use of traditional statistical inference techniques to univariate fuzzy data was
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investigated by [7]. Regarding complete and refined datasets, investigated the use of ambiguous
set theory in Bayesian failure rate along with mean time to failure estimate investigated by [8].
The Lindley distribution is characterized by its probability density function.

f (x; β) =
β2

(1 + β)
(1 + x)e−β x; x > 0; β > 0,

In this study, we examine several approaches for estimating the Lindley distribution parameter
in cases where fuzzy numbers are used to characterize the experimental data. First, how fuzzy
data are created from imprecise observations is explained, and then the method for calculating
the greatest probability estimate of the parameter β is discussed. When working with fuzzy data,
the maximum likelihood estimate can be obtained using the MCMC, MH, Gibbs, and bootstrap
methods because the MLE lacks a closed form. Furthermore, the estimated confidence interval
of the unknown parameter is calculated using the asymptotic distribution of the maximum
likelihood estimators (MLEs). We also look at the Lindley distribution’s parameter using the
Bayesian average model. Since the Bayes estimate cannot be obtained directly, we Estimate it
using several techniques such as Gibbs sampling, Bootstrapping Sampling, Markov Chain Monte
Carlo (MCMC), and Metropolis-Hastings (MH). The highest posterior density (HPD) credible
interval of the parameter is also calculated using similar approaches.

2. Literature Review

A variety of techniques for model selection and parameter estimation utilizing fuzzy and stochas-
tic data from various distributions are presented in the reviewed literature. Many research
concentrate on distributions such as Weibull, Rayleigh, Lindley, and Inverse Lindley, and Maxi-
mum Likelihood (ML) and Bayesian techniques are frequently used. For the Weibull distribution,
Bayesian and machine learning techniques with Newton-Raphson and Expectation-Maximization
algorithms by [9] however, it does not compare with other fuzzy data estimate techniques.
Although there are still issues with practical implementation, fuzzy Kullback Leibler (f-KL)
divergence, which offers flexibility in parameter estimation presented by [10]. For the Rayleigh
distribution, fuzzy parameter estimation but it doesn’t outline the estimate process addressed
by [11], which restricts its use. In order to accommodate stochastic and fuzzy data, generalized
estimators are presented in [12] for a variety of lifespan distributions. This introduces a unique
technique that requires additional performance assessment versus current approaches. Although
there are little information on network construction, neural networks and compares neural-based
estimators for the Weibull distribution with classical approaches examines by [13]. In many
research, Bayesian methods are widely used, particularly in Lindley and Generalized Lindley
distributions. With innovations like squared error loss functions and novel estimators, respec-
tively, studies [14] and [15] use Bayesian and machine learning techniques to achieve competitive
results, however they are limited to particular data circumstances. Maximum Product Spacing
(MPS) is presented for the Inverse Lindley distribution in [16]. It works well but has a narrow
application. While acknowledging the higher computing requirements, the Bayesian technique
to Lindley distributions for hypothesis testing expanded by [17]. Model selection is the primary
focus of [18]. Bayesian approaches help identify the best-fitting models for fuzzy data under the
Lindley distribution when proper prior selection is used. A hybrid Bayesian-Bootstrap method in
[19] enhances the generation of confidence intervals but increases computing costs. For certain
fuzzy data situations, the Lindley distribution’s benefit is demonstrated by comparative Bayesian
analyses in [20], while an Empirical Bayes technique in [21], provides a computationally effective
substitute. Further refinements in Bayesian methods include the use of informative priors [22] for
improved model selection and parameter estimation in Lindley distributions. Finally, fuzzy logic
and Bayesian techniques are combined in [23] for classification problems. This approach shows
potential but needs more extensive validation on real-world datasets. Each method presents
unique strengths and challenges, with limitations often centered on computational efficiency,
distribution-specific applications, and the need for extensive comparison across methodologies.
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2.1. Research gap

The literature on parameter estimation with fuzzy data lacks comprehensive comparison and
integration of methodologies across different distributions. The hybrid Bayesian average model
addresses this gap by integrating Bayesian inference with bootstrap resampling, providing
robust parameter estimation and confidence interval construction. This model improves coverage
probabilities, adaptability to various distributions, and mitigates computational cost by combining
Bayesian inference with bootstrap resampling. It is more feasible for practical applications,
especially when dealing with large datasets or complex models. The hybrid Bayesian average
model offers improved accuracy, reliability, and computational efficiency compared to existing
methods, making it a valuable solution for parameter estimation in fuzzy data analysis.

3. Simulation and Comparison Studies

3.1. Bayesian Average Modelling

This study used the average model to estimate the parameters. Updating previous knowledge
based on observed data and combining it coherently is made possible by the Bayesian framework.
When working with sparse or ambiguous data, the Bayesian average model comes in handy
because it provides reliable parameter estimates.

Let M = (M1, . . . , MK) represent the set of models being studied. A model can be charac-
terized by various attributes, such as the form of the error variance or the specific collection of
explanatory factors that are part of the model. The posterior distribution of ∆, which represents
the quantity of interest (such as a future observable or a model parameter), is determined by data
Z. Additionally, it is as follows.

p(∆|Z) =
K

∑
i=1

p(∆|Z, Mk)p(Mk|Z)

This is the average posterior predictive distribution value for ∆ across all considered models,
considering the likelihood of the associated posterior model. The posterior probability is the
likelihood of model Mk based on the data that is already available.

p(Mk|Z) =
p(Z|Mk)p(Mk)

∑K
i=1 p(Z|Mi)p(Mi)

where,
p(Z|Mk) =

∫
· · ·

∫
p(Z|θk, Mk)p(θk|Mk)dθk

is Model Mk’s parameter vector, θk represents the integrated likelihood of the model; p(θk|Mk)
represents the prior density of parameters of Mk; p(Z|θk, Mk) p(Mk) stands for the previous
probability of Mk™s genuineness, and reflects the likelihood. The collection of all models that
are taken into consideration, M implicitly depends on each probability.

Applying the above discussed concepts simply results in parameter estimates and other
quantities of interest. A parameter θ may be estimated using the Bayesian model averaging (BMA)
method is,

θBMA =
K

∑
k=1

θ̂k(Mk|Z)

where, θ̂k represents model k’s posterior mean. There may also be accessible alternative amounts
and variances of these estimations.

Bayesian model averaging (BMA) presents many issues. These tasks encompass determining
the prior model probabilities p(Mk), computing for numerous models, and evaluating the
integrals that are frequently not solvable using standard mathematical expressions.
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Algorithm 1 Hybrid Bayesian Average Model

Require: data, num_iterations, num_bootstrap_iterations, sample_size
Define function MCMC(data, num_iterations):

Initialize θ ← 0
Initialize chain← empty list
FOR each iteration from 1 to num_iterations DO

Draw θnew from a normal distribution with mean θ and standard deviation 0.1
Compute acceptance probability α← min(1, probability density at θnew

probability density at θ )

IF a random number between 0 and 1 is less than α THEN
Set θ ← θnew

Add θ to chain
END FOR
RETURN chain

Define function MH(data, num_iterations):
Initialize θ ← 0
Initialize chain← empty list
FOR each iteration from 1 to num_iterations DO

Draw θnew from a normal distribution with mean θ and standard deviation 0.1
Compute acceptance probability α← min(1, probability density at θnew

probability density at θ )

IF a random number between 0 and 1 is less than α THEN
Set θ ← θnew

Add θ to chain
END FOR
RETURN chain

Define function Gibbs(data, num_iterations):
Initialize θ ← 0
Initialize chain← empty list
FOR each iteration from 1 to num_iterations DO

Draw θ from a normal distribution with mean equal to data mean and standard deviation
equal to data std

Add θ to chain
END FOR
RETURN chain

Define function Bootstrapping(data, num_bootstrap_iterations, sample_size):
Initialize bootstrapped_samples← empty list
FOR each iteration from 1 to num_bootstrap_iterations DO

Randomly select sample_size indices from data with replacement
Create bootstrapped_sample by selecting elements of data at these indices
Add bootstrapped_sample to bootstrapped_samples

END FOR
RETURN bootstrapped_samples

Define function Bayesian_Average(parameters):
RETURN mean of parameters

Define function run_hybrid_model(data, num_iterations, num_bootstrap_iterations, sam-
ple_size):

Initialize parameters← empty list
FOR each iteration from 1 to num_iterations DO

Obtain MCMC chain using MCMC(data, num_iterations)
Obtain MH chain using MH(data, num_iterations)
Add results to parameters list

END FOR
RETURN Bayesian_Average(parameters)
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3.2. Gibbs sampling

A series of samples from a joint probability distribution may be created iteratively using the
Gibbs sampling technique. When using such a sequence, the goal is to compute an integral
(like an anticipated value) or estimate the joint distribution (like a histogram). Gibbs sampling
is suitable when the individual conditional distributions of each variable are known, but the
joint distribution is not explicitly known. Using the current values of the other variables as a
conditioning factor, the Gibbs sampling technique is used to iteratively produce a sample from
each variable’s distribution. The samples can be demonstrated to constitute a Markov chain, and
the stationary distribution of that chain precisely corresponds to the joint distribution that is
required. Gibbs sampling is a highly suitable approach for sampling the posterior distribution of
a Bayesian network, which is typically characterized as a set of conditional distributions.

3.2.1 The Gibbs sampler

In the context of picture restoration using the MCMC technique, Gibbs sampling is a flexible
technique for fitting statistical models [24]. This method is based on the recommendations of
Tanner and Wong (1987) for replacement sampling using data augmentation.

Assume that we divide λ into r blocks, such that λ = (1, 2, . . . , r). Considering that λ is
now in the state λ(t), let’s say we make the transition in the manner described below:

Draw λ
(t+1)
1 from h(λ1|λ

(t)
2 , . . . , λ

(t)
r ),

Draw λ
(t+1)
2 from h(λ2|λ

(t+1)
1 , λ

(t)
3 , . . . , λ

(t)
r ),

...

Draw λ
(t+1)
r from h(λr|λ(t+1)

1 , . . . , λ
(t+1)
r−1 ).

We call the distributions h as conditional distributions in their whole. By executing one full
cycle of the Gibbs sampler, we may update the whole vector λ by changing each of the r blocks in
the manner illustrated. The selection of components lower-dimensional blocks has assumed the
role.

3.3. Bootstrap sampling

A potent resampling method for estimating a statistic’s sampling distribution in statistics is called
a bootstrap sample. It is beneficial when standard parametric approaches are not appropriate or
when the underlying distribution of the data is unclear. Bootstrapping is the process of repeatedly
to generate a large number of bootstrap samples, replacement samples are chosen from the
observable data. The distribution of the statistic’s sample may be approximated using these
samples, including the mean, variance, and regression coefficients. The fundamental tenet of
bootstrap sampling is that the data’s empirical distribution can be utilized to approximate the
actual population distribution.

3.3.1 Procedure for Bootstrap sampling

The sampling distributions of sample statistics are fundamental for statistical inference. Primarily,
the bootstrap method enables one to estimate the sampling distribution based on a single sample,
although with some degree of approximation. The following is an explanation of how it functions.

Step 1: Perform resampling. Generate several more samples, referred to as bootstrap samples
or resamples, by randomly selecting and replacing elements from the first random sample. Each
sample is of same magnitude as the initial random sample.
Sampling with replacement involves randomly selecting one observation from the original sample
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and returning it before selecting the next observation. This is like to randomly selecting a number
from a hat, and then returning it before making another selection. Consequently, any number
may be selected once, several times, or not at all. If we conducted a replacement sampling, we
would get the identical set of numbers that we initially had, only in a new sequence. Practically,
we would begin with the whole original sample, rather than only six observations, and generate
several resamples, rather than just three.
Step 2: Compute the bootstrap distribution. Compute the statistical measures for each individual
sample. The collection of these resample statistics is referred to as the bootstrap distribution. If
we wish to calculate the average repair time of the population, the statistic we use is the sample
mean.
Step 3: Utilize the bootstrap distribution. The bootstrap distribution provides insights on the
form, central tendency, and the statistic’s sample distribution’s variability. The bootstrap standard
error may be defined as the standard deviation of the bootstrap distribution associated with a
given statistic.If the specific statistic being considered is the sample mean, then the bootstrap
standard error may be calculated using resamples is

SE(boot, X̄) =

√
1

B− 1 ∑
(

X− 1
B ∑ X̄∗

)2

in this formula, X̄∗ represents the average value of a single resample. Simply taking the standard
deviation of the B values yields the bootstrap standard error. The asterisk in * distinguishes
between the original sample mean and the resample mean.

3.4. MH Algorithm

The algorithm of Metropolis-Hastings [25, 26] is a Samples from the posterior distribution p(λ|X)
may be generated by the Markov chain Monte Carlo approach. The algorithm™s starting vector
value is denoted by λ0. Afterwards, a sequence of N parameter vectors, λi for i = 1, N, are
produced as follows:

a. Create a proposal distribution q(λ∗|λi−1), such as a Normal distribution with λi−1 as the
mean, and use it to generate a candidate parameter vector λ∗.

b. Calculate

T =
p(Y|λ∗)λ(λ∗)q(λi−1|λ∗)

p(Y|λi−1)λ(λi−1)q(λ∗|λi−1)
,

where p(Y|λ∗) and the prior densities of λ∗ and λi−1, respectively, and the likelihood values
of the parameter vectors λ∗ and λi−1, respectively.

c. Assuming that u is chosen at random from a uniform distribution over the interval (0, 1)
and if T, is greater than u, then λi = λ∗; otherwise, λi = λi−1.

d. Following an initial phase of, let™s say, M iterations, the resultant chain will converge to
a chain whose members are randomly selected from the posterior parameter distribution
p(λ|X). Eliminate the first M iterations as much as possible.

e. The beginning value λ0, the proposal distribution q(λ∗|λi−1). Before using the Metropolis-
Hastings method, you must ascertain the overall iteration count N as well as the number of
rejected iterations M. The criteria for selecting these parts still need more investigation.

f. It is possible to summarize many aspects of the posterior parameter distribution using the
collected sample. Using the sample of parameter vectors λj with j = M + 1, . . . , N, one may
calculate the posterior means to minimize expected quadratic loss,

λ̄ =
1

N −M

N

∑
j=M+1

λj
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Next, the vector λ̄ can be viewed as a model parameter estimate. Comparing parameter estimates
to the complete posterior probability distribution, one must forfeit some information. The
posterior variances, parameter correlations, and model prediction distribution can all be computed
using the sample of parameter vectors.

3.5. Markov Chain Monte Carlo Methods (MCMC)

Let λ = (λ1, λ2, . . . λn) be a vector that includes every variable for which we require probability
density functions. This indicates that we want to discover p(λi|Y), where Y is the collection of
measurements, for each variable λi. Applying the Bayes theorem, we get

p(λi|Y) =
p(Y|λi)p(λi)

p(Y)
=

p(Y|λi)p(λi)∫
θi

p(Y|λi)p(λi)dλi

The term p(λi|Y) is also referred to as the target distribution or posterior because this is
the distribution we are attempting to estimate. The likelihood function, p(Y|λ), indicates the
likelihood that the data was generated with the given set of parameters. It is represented by
the term p(Y), which is the prior distribution of λ. If the denominator is not tractable, it is not
possible to give an explicit analytic expression of the probability density function. It is possible
that the formula is tractable for some λi but not for others, which means that another approach
may need to be used for estimating each variable has few different possibilities.

1. The closed analytic form of p(λ|Y) can be written as a conventional probability distribution
that can be directly sampled, or in the event that this is not possible, sampled via the inverse
transform sampling method.

2. Although there are some variables, λnew such that the expressions p(λ1|λnew . . . Y) and
p(λnew|λ1, λi, Y) can be in closed analytic form, p(λ|Y) cannot be written in a closed
analytic form. Drawing λi from p(λi|λi) and λ0 from p(λ|λ1, Y) can then be used to sample
p(λ|Y).

3. Although the proportionality of the joint posterior density p(λ1, λnew, . . . , λi) is known, no
closed analytic equation for p(λ|Y) has been established. The so-called Metropolis-Hastings
algorithm, one specific application of the MCMC method, which stands for Markov Chain
Monte Carlo, is applicable here.

4. Performance Evaluation

In order to determine which estimating method is the most effective, performance measurements
like average variance (AV), mean squared error (MSE), coverage probabilities, and interval lengths
are utilized. This will allow for the identification of any trends or patterns that may exist across a
range of sample sizes, as well as the provision of insights into the relative effectiveness of the
techniques.

4.1. Average values(AV)

The following mathematical formula can be used to determine the average values (AV) in the
context of performance metrics,

AV =
1
N

N

∑
i=1

xi

where, AV represents the average value.
N represents the overall count of observations.
xi stands for every single observation.
In the context of the research on estimation techniques for the Lindley distribution with fuzzy
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data, the average values (AV) are calculated to represent the central tendency of the estimation
results obtained from different techniques. The AV provides insight into how closely the estimates
align with the true parameter value, which in this case is 1.

4.2. Mean squared error(MSE)

By averaging the squares of the errors between estimated and true values, the mean squared
error (MSE) is a frequently used metric to assess the accuracy of an estimator. This mathematical
formula is used to compute the MSE

MSE =
1
N

N

∑
i=1

(xi − x̄i)
2

where, Mean squared error is abbreviated as MSE.
N represents the total amount of observations.
xi is the actual value. x̄i represents the estimated value.

4.3. Coverage probability

A statistical metric called coverage probability is employed to evaluate the dependability of
confidence intervals. It displays the proportion of confidence intervals containing the parameter’s
true value. Coverage probability is computed as follows in the context of studies on fuzzy data
estimate methods for the Lindley distribution.

Coverage Probability =
Number of Confidence Intervals that contain the True Value

Total Number of Confidence Intervals

This measure provides insights into the effectiveness of the estimation techniques in providing
confidence intervals that capture the true parameter value. A coverage probability close to the
desired confidence level indicates that the estimation technique is providing reliable and accurate
confidence intervals.

4.4. Interval Length

The width or range of a confidence interval, which expresses the accuracy of the estimation, is
referred to as the interval length. It is computed as the absolute difference between the confidence
interval’s upper and lower boundaries. In the context of the research on estimation techniques for
the Lindley distribution with fuzzy data, interval length can be calculated as follows

Interval Length = Upper Bound− Lower Bound

This measure provides insights into how narrow or wide the confidence intervals are, which
reflects the precision of the estimation. Smaller interval lengths indicate higher precision, while
larger interval lengths indicate lower precision.

5. Results and Discussion

5.1. Results

We provide the results of our investigation on the performance of several estimate approaches
applied to the Lindley distribution with fuzzy data in the results section. We compare the
efficiency of the following techniques: Gibbs sampling, Bootstrapping Sampling, Markov Chain
Monte Carlo (MCMC), and Metropolis-Hastings (MH). Our investigation covers a range of
sample sizes, from 15 to 100, with each estimating step performed 10,000 times. The fuzzification
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procedure uses preset fuzzy systems {x̃1, . . . , x̃8} to alter produced samples to account for dataset
uncertainty. Each membership function, µx̃i (x), is designed to reflect the data’s fuzzy properties
correctly. This section tries to highlight any trends or patterns discovered across various sample
sizes, as well as give insights into the approaches’ comparative performance. Furthermore, we
take into account minor fluctuations in x-values to guarantee that uncertainties in fuzzy data are
accurately represented, improving the integrity of our analysis and aiding researchers in picking
the best methodologies for statistical inference.

µx̃1(x) =



1, if x ≤ 0.13

0.33− x
0.2

, if 0.13 ≤ x ≤ 0.33

0, otherwise

µx̃2(x) =



x− 0.13
0.2

, if 0.13 ≤ x ≤ 0.33

0.58− x
0.25

, if 0.33 ≤ x ≤ 0.58

0, otherwise

µx̃3(x) =



x− 0.33
0.25

, if 0.33 ≤ x ≤ 0.58

0.83− x
0.25

, if 0.58 ≤ x ≤ 0.83

0, otherwise

µx̃4(x) =



x− 0.58
0.25

, if 0.58 ≤ x ≤ 0.83

1.08− x
0.25

, if 0.83 ≤ x ≤ 1.08

0, otherwise

µx̃5(x) =



x− 0.83
0.25

, if 0.83 ≤ x ≤ 1.08

1.58− x
0.5

, if 1.08 ≤ x ≤ 1.58

0, otherwise

µx̃6(x) =



x− 1.08
0.5

, if 1.08 ≤ x ≤ 1.58

2.08− x
0.5

, if 1.58 ≤ x ≤ 2.08

0, otherwise

µx̃7(x) =



x− 1.58
0.5

, if 1.58 ≤ x ≤ 2.08

3.08− x, if 2.08 ≤ x ≤ 3.08

0, otherwise
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µx̃8(x) =



x− 2.08
1

, if 2.08 ≤ x ≤ 3.08

1, if x ≥ 3

0, otherwise

Table 1: Averages values and mean squared errors of the GIBBS estimates of θ = 1, coverage probabilities

n AV MSE Coverage Length

15 1.0307 0.0405 0.9403 0.7508
20 1.0289 0.0386 0.9457 0.7205
30 1.0289 0.0349 0.9524 0.6501
50 1.0246 0.0258 0.9526 0.4507
70 1.0154 0.0192 0.9538 0.3509
100 1.0102 0.0187 0.9559 0.1804

Table 2: Averages values and mean squared errors of the Bootstrapping Sampling estimates of θ = 1, coverage
probabilities

n AV MSE Coverage Length

15 1.0327 0.0426 0.9385 0.7703
20 1.0295 0.0375 0.9447 0.7409
30 1.0255 0.0329 0.9486 0.6305
50 1.0198 0.0247 0.9519 0.4902
70 1.0147 0.0198 0.9538 0.4003
100 1.0098 0.0115 0.9556 0.2106

Table 3: Averages values and mean squared errors of the MCMC estimates of θ = 1, coverage probabilities

n AV MSE Coverage Length

15 1.0316 0.0437 0.9365 0.7559
20 1.0285 0.0389 0.9436 0.7253
30 1.0247 0.0337 0.9489 0.6154
50 1.0184 0.0256 0.9519 0.4708
70 1.0139 0.0209 0.9537 0.3804
100 1.0087 0.0127 0.9553 0.1905

Table 4: Averages values and mean squared errors of the MH estimates of θ = 1, coverage probabilities

n AV MSE Coverage Length

15 1.0309 0.0425 0.9378 0.7653
20 1.0287 0.0384 0.9446 0.7357
30 1.0249 0.0339 0.9485 0.6254
50 1.0175 0.0245 0.9529 0.4956
70 1.0125 0.0195 0.9538 0.3907
100 1.0087 0.0128 0.9552 0.2104
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Table 5: Combined of all methods using Bayesian model average technique

n AV MSE Coverage Length

15 1.0305 0.0409 0.9379 0.7559
20 1.0284 0.0379 0.9441 0.7264
30 1.0249 0.0339 0.9490 0.6174
50 1.0193 0.0251 0.9519 0.4761
70 1.0140 0.0204 0.9536 0.3877
100 1.0093 0.0132 0.9552 0.2009

Diagrammatic presentation of the table values obtained in the simulation process

Figure 1: Comparison of Average Values Across Different Samples sizes

Figure 2: Comparison of MSE Across Different Samples sizes
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Figure 3: Comparison of Interval length Across Different Samples sizes

From Tables 1 to 5, it is observable that the hybrid approach, which combines all methods
using the Bayesian model averaging technique, yields more reliable estimates. In Table 5, the
average values (AV) are calculated using this Bayesian model averaging technique, combining
estimates from all methods. Compared to individual approaches, this hybrid method provides
estimates closer to the true value of 1, indicating improved accuracy. Table 5 shows that the
modifications applied in the hybrid approach result in values that are even closer to the true value
of 1 than those in Tables 1 through 4. Specifically, the Proposed table (Table 5) offers more precise
average values, suggesting that this method achieves a superior level of accuracy in estimating the
true value. Additionally, it reports lower mean squared error (MSE) values, highlighting improved
accuracy in estimating the population parameters. Lower MSE values suggest confidence intervals
that are closer to the true values. Furthermore, the coverage probabilities in Table 5 align
closely with the desired confidence level, demonstrating the reliability of this approach. The
graphical representations in Figures 1 to 4 further support these findings. Over Gibbs Sampling,
Bootstrapping Sampling, MCMC, the Metropolis-Hastings (MH) Algorithm, and the unique
hybrid strategy, the hybrid method stands out for its accuracy in parameter estimation for the
Lindley distribution on fuzzy data. Figures 1 and 2 demonstrate that the hybrid approach yields
average values closer to 1, and Figure 3 confirms lower MSE, indicating improved precision.
Additionally, Figures 3 and 4 show that coverage probabilities and interval lengths are more
favorable, underlining the robustness of the hybrid approach compared to individual methods.
In conclusion, the unique hybrid strategy, presented in Table 5, offers balanced and efficient
parameter estimation with superior accuracy across multiple metrics. The Bayesian model
averaging technique combines estimates from all methods, producing values that consistently
approach the true value of 1. This approach enhances mean squared errors, coverage probabilities,
and confidence interval lengths across different sample sizes, outperforming Bootstrapping,
MCMC, and MH estimates.

5.2. Discussion

The provided research summarizes the performance of Gibbs sampling, Bootstrapping Sampling,
MCMC, and MH approaches for estimating parameters for the Lindley distribution on fuzzy
data, as well as a unique hybrid strategy that combines these methods using Bayesian model
averaging. The combination of these strategies presents a potential opportunity for improving
estimate accuracy and dependability. Notably, the Bayesian model average methodology used
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Figure 4: Comparison of Coverage Values Across Different Samples sizes

in the proposed hybrid method combines data from many estimating methodologies, resulting
in estimates that are consistently closer to the real parameter value of 1 over a range of sample
sizes. By exploiting the characteristics of each individual technique, the hybrid strategy yields
reduced mean squared errors, indicating greater estimate accuracy. Furthermore, the hybrid
method’s confidence intervals preserve coverage probabilities that are consistent with the targeted
confidence level, demonstrating the method’s trustworthiness in statistical inference. Overall,
the results from emphasize the hybrid method’s usefulness in improving estimate accuracy and
reliability, providing a strong foundation for parameter estimation in the Lindley distribution
framework with fuzzy data.

6. Conclusion

Ultimately, a novel method for parameter estimation in the Lindley distribution domain is
embodied by the combination of Gibbs sampling, Bootstrapping sampling, MCMC, and MH
techniques using Bayesian model averaging, especially when dealing with fuzzy data. Examining
the hybrid approach closely across a range of sample sizes, it shows itself to be a remarkable
performer, always guiding estimates toward the real parameter value of 1. This convergence
toward the true value highlights the ability of the hybrid method to strengthen accuracy and
avoid estimate mistakes, therefore promoting increased trust in the deduced conclusions. A
notable finding is that the hybrid approach tends to provide less mean squared errors than
its component individual techniques. This decrease in mean squared errors not only shows
improvement in estimating accuracy but also highlights the ability of the hybrid method to extract
a plethora of data from many estimation techniques, hence improving the quality of the estimated
values. In addition, the confidence intervals produced by the hybrid approach firmly adhere to
coverage probabilities that correspond with the target confidence level, therefore confirming the
robustness and dependability of the approach in the field of statistical inference. These results
have far-reaching consequences that cut across many fields where ambiguity and imprecision are
commonplace, even beyond the boundaries of academic study. Researchers and professionals
struggling with parameter estimate problems in the face of erratic fuzzy data will find the hybrid
approach to be a true miracle. Through the use of complementary strengths of many estimating
methods, the hybrid approach causes a paradigm change in statistical analysis, enabling more
careful decision-making processes and a higher degree of confidence in the conclusions that are
obtained. All things considered, the combination of Gibbs sampling, Bootstrapping sampling,
MCMC, and MH techniques via Bayesian model averaging is a fundamental development in the
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history of statistical inference techniques. Going ahead, more research and development of the
hybrid approach show promise for overcoming the many obstacles related to parameter estimation
in a variety of distributional frameworks and datasets, so paving the way for a revolutionary
development in the field of statistical methods and their usefulness in many different research
fields.
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