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Abstract 

The goal of this study was to address the computational challenges associated with parametric 
estimation of the gamma distribution by evaluating the performance of the maximum likelihood and 
maximum a-posteriori estimation methods within the framework of Markov Chain Monte Carlo 
simulations. This was done by first assuming a censored life-testing strategy that terminates on the 
rth failure from a given sample of n electronic devices. Second, we obtained the joint distribution 
function of the first r-order statistic by arranging the r values in order of magnitude. Finally, we 
explored through the Markov Chain Monte Carlo framework using the maximum likelihood and 
maximum a-posteriori to estimate the gamma distribution parameters. The findings of this study 
suggest that both estimation methods were not significantly different from the actual hypothesized 
parameter values. Further, we observed that irrespective of the prior distribution used for the 
Bayesian maximum a-posteriori Markov Chain Monte Carlo estimation, the resulting parametric 
estimates of the gamma distribution remain the same, confirming the assertion that the Bayesian 
maximum a-posteriori Markov Chain Monte Carlo approach is a valuable tool for informative 
posterior analysis. The study’s uniqueness lies in adopting a censored life-testing strategy centered 
on the joint distribution function of the first r-order statistic. 

Keywords: bayesian inference, gamma distribution, maximum likelihood 
estimation, maximum a-posteriori, reliability analysis 
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I. Introduction

The Gamma distribution has been extensively studied and developed in statistical inference.  It is 
preferred over other probability distributions for its superior applications in insurance and finance. 
Dickson [1] and Veazie et al. [2] project the two or three parameter Gamma distribution for its ability 
to model highly skewed positive and or negative data points. Gamma distribution application is 
most evident in studying random variables such as waiting times, claim size or frequency and 
investment returns. While every probability distribution offers some distinct advantage in specific 
contexts, Dey et al. [3] support the gamma distribution for its computational efficiency and 
memoryless property. Memoryless property means that the occurrences of past events do not 
influence the probability of future occurrences of the event (Noguchi & Robles [4]; Shore [5]; Tao 
[6]). In other words, the memoryless property of the gamma distribution makes it easy to study the 
probability of the occurrence of an event independently of the probability of future occurrences of 
the event. This property demonstrates the usefulness and versatility of the gamma distribution in 
several survival and reliability studies. 

The use of the gamma distribution in reliability analysis extends to other fields such as 
engineering, manufacturing and biomedical research. For instance, in modeling time-to-failure of 
manufactured components, Elsayed [7] employed the gamma distribution alongside the Maximum 
Likelihood Estimation (MLE) method to estimate the parameters. Similarly, Shipes et al. [8] used the 
Poisson-Gamma Model in their survival analysis of time-to-event clinical trial data. These studies 
underscore the flexibility of the gamma distribution in capturing diverse event patterns. More 
importantly, the parametric estimation of the gamma distribution in these studies offers room for 
further exploration. Meeker and Escobar [9] explained parametric estimation in both reliability and 
survival analysis as fitting a specific probability distribution (e.g., gamma, exponential, Weibull) to 
the observed failure data and estimating its parameters (location, shape and scale parameters). 

Literature abounds with different combinations of estimation and simulation methods to 
estimate the gamma distribution parameters. Several studies (Ghosh & Hamedani [10]; Junmei & 
Liqin [11]) seem to opt for the MLE method due to its optimal and consistent parameter estimators. 
Ghosh and Hamedani [10] provided detailed properties of the two-parameter gamma distribution 
using the MLE method to investigate its moments, hazard function and reliability parameters. When 
applied to a lifetime data set, the gamma distribution produced a superior fit compared to other 
models. While the gamma distribution is applauded for its flexibility in model fitting, Ozsoy, Unsal 
and Orkcu [12] warned of a potential computational complexity when MLE is used for its parameter 
estimation. They explained that the distribution function (or survival function) of the gamma 
distribution is not available in a closed form if the shape parameter is not an integer, thereby making 
the use of MLE a near futile exercise. This notwithstanding, studies (Hamada et al. [13]; Rubinstein 
& Kroese [14]) have adapted numerical methods to evaluate the parameters of the gamma 
distribution by exploring a combination of Bayesian estimation and simulation procedures. Hamada 
et al. [13] found the Bayesian estimation useful in their probabilistic framework for reliability 
estimation as it incorporates additional information about the distribution known as a prior. The 
Bayesian framework entails careful elicitations of prior expert information to enhance the data, 
leading to improved prediction of extreme cases (Coles & Tawn [15]). Hussain et al. [16] and Kohole 
et al. [17] proffer the Bayesian method, as it at least offers a way around the complexity of the root 
of the maximum likelihood equation known to exist in MLE. The Bayesian approach, therefore, 
appears more flexible and informative through its posterior analysis. 

In recent decades, the surge in statistical applications has sparked a growing interest in 
Bayesian parametric simulation, giving rise to the efficient concept of Maximum a-Posteriori (MAP). 
Serving as the Bayesian counterpart to MLE, MAP estimation entails identifying parameter values 
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that maximize the posterior distribution and act as estimates for the unknown parameters (Hesse et 
al., 2016). When there is a noninformative prior in the Bayesian analysis, the MAP estimate is the 
same as that of the MLE. Due to the computational intensity of MAP resulting from the incorporation 
of prior information, Hesse et al. [18] turned to Markov chain Monte Carlo (MCMC) to obtain 
samples from the posterior distribution, enabling the estimation of regression parameters. The 
concept of MCMC is popular in fields such as manufacturing, physics and finance, and it uses 
probability distributions to make selections (Benson & Kellner [19]). In reliability assessment, Naess, 
Leira and Batsevych [20]) noted that the MCMC can check failure criterion, regardless of the 
distribution or system complexity. Fauzi et al. [21]) relied on the MCMC algorithms for sampling 
from a posterior distribution, essentially, to simulate system behavior and estimate reliability 
metrics. 

This study aims to tackle the computational challenges associated with parametric estimation 
of the gamma distribution by evaluating the performance of two estimation procedures: Maximum 
Likelihood Estimation (MLE) and Maximum a-Posteriori (MAP) estimation. These assessments will 
be conducted within the framework of Markov Chain Monte Carlo (MCMC) simulations. In this 
paper, the two MCMC-based estimation techniques are denoted as MLE_MCMC and MAP_MCMC. 
The study’s uniqueness lies in the adoption of a censored life-testing strategy, terminating upon the 
occurrence of the rth (where r < n) failure. This approach diverges from classical life testing, which 
requires the complete failure of all n samples. The study concentrates on the joint distribution 
function of the first r-order statistic, precisely the smallest r values, as an alternative to utilizing the 
complete dataset for estimation. Additionally, we look into the sensitivity of MAP_MCMC by 
applying various prior distributions. This study is relevant as it illustrates that the joint distribution 
function of the first r-order statistic proves more suitable for estimating the parameter(s) of the 
probability density function (pdf) of the time-to-failure random variable for any engineered device. 

II. Methods

Consider n samples of manufactured components that were subjected to reliability life tests from a 
certain population of interest. The random variable T of interest is the time it takes until the 
component fails. Suppose the underlying failure times are 𝑇𝑇(1),⋯ ,𝑇𝑇(𝑛𝑛)  where 𝑇𝑇(𝑖𝑖) ≤ 𝑇𝑇(𝑖𝑖+1), 𝑖𝑖 =
1,⋯ ,𝑛𝑛 − 1. And let 𝐹𝐹𝑇𝑇(𝑡𝑡) be the distribution function of T and let 𝑓𝑓𝑇𝑇(𝑡𝑡) be its probability density 
function (pdf). Assuming further that the reliability life tests conclude at the rth failure, where r is 
less than or equal to n, the number of failures is treated as a fixed value, while the failure times are 
regarded as random variables. We employ the gamma distribution to model the time-to-failure 
random variables in this scenario of life testing, assuming that the failure rate is not constant. The 
gamma distribution is preferred in this instance because it exhibits a failure rate that follows a 
bathtub-shaped curve (decreasing failure rates at the initial phase and increasing failure rates at a 
later phase). Blanksby and Lyons [22] assert that the gamma distribution allows for flexibility in 
capturing diverse failure rate behaviours and is well-suited for scenarios where the hazard function 
varies over time. The next subsection presents a synopsis of the gamma distribution.  

I. Gamma Time-to-Failure Random Variable

The continuous random variable T, is said to have the gamma distribution with parameters α > 0 
and β > 0 if its pdf is given by:  

𝑓𝑓𝑇𝑇(𝑡𝑡) = 𝛽𝛽𝛼𝛼𝑡𝑡𝛼𝛼−1𝑒𝑒−𝛽𝛽𝛽𝛽

𝛤𝛤(𝛼𝛼)
, 𝑡𝑡 > 0                                                                           (1)

where 𝛤𝛤(𝛼𝛼) = ∫ 𝑡𝑡𝛼𝛼−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑡𝑡∞
0  is the gamma function. The cumulative distribution function is the 
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regularized gamma function: 
𝐹𝐹𝑇𝑇(𝑡𝑡) = 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡)

𝛤𝛤(𝛼𝛼)
, 𝑡𝑡 > 0.  (2) 

where 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡) is the lower incomplete gamma function, that is 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡) = ∫ 𝑡𝑡𝛼𝛼−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑡𝑡𝛽𝛽𝑡𝑡
0 . This 

gamma distribution is in the two-parameter family of continuous probability distributions. These 
are: 

• Shape Parameter (α): This parameter determines the shape of the distribution. It is a
positive real number.

• Scale Parameter (β): This parameter is associated with the rate of events. It is also a
positive real number. The density and cumulative distribution functions are sometimes
expressed in terms of the scale parameter, 𝜃𝜃 = 1 𝛽𝛽⁄ .

Table 1 shows some characteristics of the gamma distribution (Mann et al. [23]). 

Table 1: Properties of the gamma distribution 

 Properties 

Measures Properties 

Mean 𝛼𝛼
𝛽𝛽

Variance 𝛼𝛼
𝛽𝛽2

Median No simple closed 

Mode 𝛼𝛼−1
𝛽𝛽

 for 1α ≥  

Reliability function 
𝑒𝑒−𝛽𝛽𝑡𝑡 �

(𝛽𝛽𝑡𝑡)𝑛𝑛

𝑛𝑛!

𝛼𝛼−1

𝑛𝑛=1

In the next subsection, we explore two approaches for estimating the parameters of the gamma 
distribution through the Markov Chain Monte Carlo (MCMC) simulation framework: (a) Maximum 
Likelihood Estimation (MLE) and (b) Maximum a-Posteriori (MAP). 

II. Parametric Estimation of the Gamma Distribution

According to Ofosu and Hesse [24], the likelihood function L of the first r-order statistics, 𝑇𝑇(1) ≤
𝑇𝑇(2) ≤ ⋯ ≤ 𝑇𝑇(𝑟𝑟),  of the random variable of interest in this study can be specified as:   

𝐿𝐿 = 𝑓𝑓𝑇𝑇(1),⋯,𝑇𝑇(𝑟𝑟)(𝑡𝑡1,⋯ , 𝑡𝑡𝑟𝑟) 

 =
𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟)!
[1 − 𝐹𝐹𝑇𝑇(𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟�𝑓𝑓𝑇𝑇(𝑡𝑡𝑖𝑖)

𝑟𝑟

𝑖𝑖=1

 

 =
𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟)!
�1 −

𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)
𝛤𝛤(𝛼𝛼) �

𝑛𝑛−𝑟𝑟

��
𝛽𝛽𝛼𝛼𝑡𝑡𝑖𝑖𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑡𝑡𝑖𝑖

𝛤𝛤(𝛼𝛼) �
𝑟𝑟

𝑖𝑖=1

 

 =
𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟)!
[𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 �

1
𝛤𝛤(𝛼𝛼)�

𝑛𝑛−𝑟𝑟

�
1

𝛤𝛤(𝛼𝛼)�
𝑟𝑟

𝛽𝛽𝑟𝑟𝛼𝛼��𝑡𝑡𝑖𝑖𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑡𝑡𝑖𝑖�
𝑟𝑟

𝑖𝑖=1

 

 =
𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟)!
[𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 �

1
𝛤𝛤(𝛼𝛼)�

𝑛𝑛

𝛽𝛽𝑟𝑟𝛼𝛼 ��𝑡𝑡𝑖𝑖𝛼𝛼−1
𝑟𝑟

𝑖𝑖=1

� 𝑒𝑒−𝛽𝛽∑ 𝑡𝑡𝑖𝑖
𝑟𝑟
𝑖𝑖=1 . 
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 (3) 
The natural logarithm of the likelihood function gives: 

ln 𝐿𝐿 = ln𝑛𝑛! − ln(𝑛𝑛 − 𝑟𝑟)! + (𝑛𝑛 − 𝑟𝑟) ln[𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)] − 𝑛𝑛 ln𝛤𝛤(𝛼𝛼) + 𝑟𝑟𝛼𝛼 ln𝛽𝛽 + (𝛼𝛼 − 1)∑ ln 𝑡𝑡𝑖𝑖𝑟𝑟
𝑖𝑖=1 −

 𝛽𝛽 ∑ 𝑡𝑡𝑖𝑖𝑟𝑟
𝑖𝑖=1 .  (4) 

This function yields the following logarithmic likelihood equations: 

𝜕𝜕 ln 𝐿𝐿
𝜕𝜕𝛽𝛽

= 𝑟𝑟𝛼𝛼
𝛽𝛽
− ∑ ln 𝑡𝑡𝑖𝑖 +𝑟𝑟

𝑖𝑖=1
𝛽𝛽𝛼𝛼−1(𝑛𝑛−𝑟𝑟)𝑡𝑡𝑟𝑟𝛼𝛼𝑒𝑒−𝛽𝛽𝛽𝛽𝑟𝑟

[𝛤𝛤(𝛼𝛼)−𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]
= 0  (5) 

𝜕𝜕 ln 𝐿𝐿
𝜕𝜕𝛼𝛼

= (𝑛𝑛−𝑟𝑟)�𝛤𝛤′(𝛼𝛼)−𝛤𝛤′(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)�
[𝛤𝛤(𝛼𝛼)−𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]

+ 𝑛𝑛𝛤𝛤′(𝛼𝛼)
𝛤𝛤(𝛼𝛼)

+ 𝑟𝑟 ln𝛽𝛽 +∑ ln 𝑡𝑡𝑖𝑖𝑟𝑟
𝑖𝑖=1 = 0  (6) 

Solving Equations (5) and (6) is notably challenging. When a straightforward solution to the 
likelihood equations is elusive, various procedures are available for MLE. Common methods 
encompass Iterative Methods, the Expectation-Maximization (EM) Algorithm, Gradient Descent, 
Quasi-Newton Methods, Monte Carlo Methods, Profile Likelihood, Bootstrapping, and Numerical 
Optimization (Dempster et al.[25]; Gilks et al. [26]; Nocedal & Wright [27]; Press et al. [28]). 
In cases where obtaining a solution to the log-likelihood equations proves to be difficult, we turn to 
Markov Chain Monte Carlo (MCMC) sampling techniques to generate samples from the likelihood 
function. Consequently, we applied the MCMC estimation technique and referred to it as 
MLE_MCMC. The primary objective is to determine parameter estimates that maximize the 
likelihood function given the sample data. The MLE_MCMC approach identifies the mode of the 
simulated MCMC sample from the bivariate likelihood function in Equation (3), representing the 
point estimate of the parameter vector 𝜃𝜃 = (𝛼𝛼,   𝛽𝛽). That is, 

𝜃𝜃𝑀𝑀𝐿𝐿𝑀𝑀 = arg  𝑚𝑚𝑚𝑚𝑚𝑚 �𝑘𝑘[𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 � 1
𝛤𝛤(𝛼𝛼)

�
𝑛𝑛
𝛽𝛽𝑟𝑟𝛼𝛼(∏ 𝑡𝑡𝑖𝑖𝛼𝛼−1𝑟𝑟

𝑖𝑖=1 )𝑒𝑒−𝛽𝛽∑ 𝑡𝑡𝑖𝑖
𝑟𝑟
𝑖𝑖=1 �  (7) 

The following algorithm is the description for the multivariate Metropolis Hastings procedure 
(Steyvers [36]): 

• Set 𝑡𝑡 = 1
• Generate an initial value for  𝛽𝛽~𝑈𝑈(𝑢𝑢1, 𝑢𝑢2).
• Repeat

𝑡𝑡 = 𝑡𝑡 + 1
Do a MH step on α,
Generate a proposal 𝜃𝜃∗~𝑁𝑁(𝜃𝜃,   𝜎𝜎2);
Evaluate the acceptance probability 𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑛𝑛 �1, 𝐿𝐿(𝜃𝜃∗ 𝑥𝑥⁄ )

𝐿𝐿(𝜃𝜃 𝑥𝑥⁄ )
� ; 

Generate a u from a Uniform( 0, 1) Distribution
If 𝑢𝑢 ≤ 𝑚𝑚, accept the proposal and set 𝜃𝜃 = 𝜃𝜃∗

• Until 𝑡𝑡 = 𝑇𝑇.

Maximum A Posteriori (MAP) estimation is the Bayesian counterpart to Maximum Likelihood 
Estimation (MLE), incorporating additional information through the prior distribution. Now, the 
joint pdf of 𝑋𝑋(1),⋯ ,𝑋𝑋(𝑟𝑟)  and 𝜃𝜃 = (𝛼𝛼,   𝛽𝛽) is given by 𝑔𝑔(𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟 , 𝜃𝜃) = 𝑓𝑓𝑋𝑋(1),⋯,𝑋𝑋(𝑟𝑟)(𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟|𝜃𝜃)𝜋𝜋(𝜃𝜃), 
where 𝜋𝜋(𝜃𝜃) is the prior distribution of the parameter Θ. We assume α and β are independent and 
exponentially distributed with means a and b, respectively. Thus, 𝜋𝜋(𝜃𝜃) = 1

𝑎𝑎𝑎𝑎
𝑒𝑒−(𝛼𝛼 𝑎𝑎+𝛽𝛽 𝑎𝑎⁄⁄ ), 𝛼𝛼 > 0, 𝛽𝛽 >

0.
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𝑔𝑔(𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟 ,𝜃𝜃) = 𝑛𝑛!
𝑎𝑎𝑎𝑎(𝑛𝑛−𝑟𝑟)!

[𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 � 1
𝛤𝛤(𝛼𝛼)

�
𝑛𝑛
𝛽𝛽𝑟𝑟𝛼𝛼 ∏ �𝑡𝑡𝑖𝑖𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑡𝑡𝑖𝑖�𝑒𝑒

−�𝛼𝛼𝑎𝑎+
𝛽𝛽
𝑏𝑏�𝑟𝑟

𝑖𝑖=1 . (8) 

Thus, the marginal p.d.f. of 𝑋𝑋(1),⋯ ,𝑋𝑋(𝑟𝑟) is 

𝑔𝑔𝑋𝑋(1),⋯,𝑋𝑋(𝑟𝑟)(𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟) = � � 𝑔𝑔(𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟 ,𝜃𝜃)𝑑𝑑𝛼𝛼𝑑𝑑𝛽𝛽
∞

0

∞

0
 

 = 𝑛𝑛!
𝑎𝑎𝑎𝑎(𝑛𝑛−𝑟𝑟)!∫ ∫ [𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 � 1

𝛤𝛤(𝛼𝛼)
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 (9) 
The conditional p.d.f. of Θ, given 𝑋𝑋(1),⋯ ,𝑋𝑋(𝑟𝑟),  is therefore defined by 

𝜋𝜋(𝜃𝜃|𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟) =
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𝑔𝑔𝑋𝑋(1),⋯,𝑋𝑋(𝑟𝑟)(𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟)

 =

𝑛𝑛!
𝑚𝑚𝑎𝑎(𝑛𝑛 − 𝑟𝑟)! [𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 � 1

𝛤𝛤(𝛼𝛼)�
𝑛𝑛
𝛽𝛽𝑟𝑟𝛼𝛼 ∏ �𝑡𝑡𝑖𝑖𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑡𝑡𝑖𝑖�𝑒𝑒

−�𝛼𝛼𝑎𝑎+
𝛽𝛽
𝑏𝑏�𝑟𝑟

𝑖𝑖=1

𝑛𝑛!
𝑚𝑚𝑎𝑎(𝑛𝑛 − 𝑟𝑟)!∫ ∫ [𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 � 1

𝛤𝛤(𝛼𝛼)�
𝑛𝑛
𝛽𝛽𝑟𝑟𝛼𝛼 ∏ {𝑡𝑡𝑖𝑖𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑡𝑡𝑖𝑖}𝑒𝑒

−�𝛼𝛼𝑎𝑎+
𝛽𝛽
𝑏𝑏�𝑟𝑟

𝑖𝑖=1 𝑑𝑑𝛼𝛼𝑑𝑑𝛽𝛽∞
0

∞
0
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where K is independent of α and β. The typical approach in Bayesian estimation is to employ the 
posterior mean, 𝐸𝐸(𝜃𝜃|𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟), as a point estimate for θ (Hesse et al. [18]). The Maximum a posteriori 
(MAP) estimator of θ is the value that maximizes the posterior distribution. This study uses the 
Markov Chain Monte Carlo (MCMC) sampling approach to draw samples from the posterior 
distribution. This specific method of estimation, denoted as MAP_MCMC for the purpose of this 
study, identifies the mode of the posterior distribution, representing the point estimate for the 
parameter θ. Thus, 

𝜃𝜃𝑀𝑀𝐿𝐿𝑀𝑀 = arg  𝑚𝑚𝑚𝑚𝑚𝑚 �= 𝐾𝐾[𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 � 1
𝛤𝛤(𝛼𝛼)

�
𝑛𝑛
𝛽𝛽𝑟𝑟𝛼𝛼(∏ 𝑡𝑡𝑖𝑖𝛼𝛼−1 𝑟𝑟

𝑖𝑖=1 )𝑒𝑒−�
𝛼𝛼
𝑎𝑎+

𝛽𝛽
𝑏𝑏+𝛽𝛽∑ 𝛽𝛽𝑖𝑖

𝑟𝑟
𝑖𝑖=1 ��.   (11) 

III. Results and Discussion

Consider a scenario where a company specializes in manufacturing a specific device, its components, 
or equipment. The company is dedicated to assessing the reliability of these items. In this context, 
reliability denotes the probability of a device successfully fulfilling its intended function. A sample 
of n such devices from a population of interest is placed in an environment closely resembling the 
conditions the items will encounter in actual use. One or more stresses of constant severity are then 
applied to simulate real-world scenarios. Given that, 200 of these devices are programmed to 
undergo reliability life testing with the test truncating when the 100th failed device was observed. 
The first 100 sampled time-to-failure units were ordered and fitted to the gamma distribution. 

Given that T is a continuous random variable with a distribution function 𝐹𝐹𝑇𝑇(𝑡𝑡), then, according 
to the probability integral transformation concept,  𝑈𝑈 = 𝐹𝐹𝑇𝑇(𝑡𝑡), follows the continuous uniform 
distribution over the interval (0, 1) (Ofosu & Hesse [24]). The inverse transform sampling method is 
employed subsequently to generate samples from the gamma distribution using the following steps: 

• Generate a random number u from the standard uniform distribution in the interval (0,
1).

• Find the inverse of the desired cumulative density functions (CDF), denoted as 𝐹𝐹−1(𝑢𝑢).
• Compute 𝑡𝑡 = 𝐹𝐹−1(𝑢𝑢). The computed values of the random variable X correspond to the

desired distribution with probability density function 𝑓𝑓𝑇𝑇(𝑡𝑡).
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There is no closed-form expression for the gamma distribution’s inverse cumulative 
distribution function (CDF). However, various numerical methods and statistical software packages 
are available to calculate quantiles (inverse CDF values) for the gamma distribution. Commonly 
employed numerical methods include the Newton-Raphson Method and Brent's Method (Burden & 
Faires [29]; Kincaid & Cheney [30]; Dahlquist & Björck [31]). In addition, other statistical software 
packages like R, Python (SciPy), MATLAB and MS. Excel provide functions to compute quantiles 
for the gamma distribution (Eaton [32]; Hanselman & Littlefield [33]).  

We, therefore, use the 'gaminv' function in MATLAB (MathWorks [34]) to calculate quantiles 
for a given probability, simulated from the uniform distribution over the interval (0, 1). Table 2 
displays the first 100 out of 200 ordered data points simulated from the gamma distribution with 
parameters alpha (α) = 10 and beta (β) = 0.05, resulting in a mean (µ) of 200. It is assumed that these 
observations represent the outcomes of a reliability life test involving 200 devices until the failure of 
the 100th device.  

Table 2: Ordered data simulated from the gamma distribution 

73.230 76.643 81.308 85.709 88.578 90.103 91.545 91.884 95.091 97.130 
98.564 99.319 101.788 105.722 107.333 107.880 110.057 111.884 113.007 115.471 

117.521 121.779 125.079 125.766 128.059 128.199 130.834 132.564 134.648 135.505 
135.923 136.019 138.582 141.671 142.111 143.420 144.675 146.128 147.288 147.939 
152.135 153.413 153.475 155.564 155.716 156.338 156.353 157.133 157.848 157.903 
159.273 159.895 159.900 160.563 160.563 161.096 162.658 162.837 168.294 168.322 
169.501 169.539 170.437 170.723 170.831 172.767 173.089 173.164 173.700 175.040 
175.844 176.285 176.485 177.148 177.296 177.426 177.463 178.349 178.942 179.484 
181.027 181.703 181.777 182.658 182.677 182.807 185.919 188.967 189.609 189.759 
189.848 190.031 191.716 192.004 192.051 192.169 192.448 194.546 194.670 195.500 

On the MLE_MCMC parameter estimates, we deduce from Equation (3), given that n = 200, r = 
100, 𝑡𝑡𝑟𝑟 = 195.500 from Table 2, together with the Metropolis-Hastings algorithm, as described above, 
were employed to draw samples from the likelihood function. The MATLAB code for implementing 
the component-wise Metropolis sampler for the likelihood function is provided in Listings A1 and 
A2, in the appendix. The mode of this bivariate sample provides the maximum likelihood estimate 
for the parameters alpha (α) and beta (β) of the gamma distribution, which are given by 𝛼𝛼𝑀𝑀𝐿𝐿𝑀𝑀 =
10.4169 and 𝛽𝛽𝑀𝑀𝐿𝐿𝑀𝑀 = 0.0487, respectively. Note that the maximum likelihood estimates are not 
significantly different from the actual value of the parameters, that is α = 10 and β = 0.05. Figure 1 
shows the graph of the actual and the estimated gamma function with the given parameters. 

The closeness of these estimated parameters of the gamma distribution is consistent with 
observations made by Saulo et al. [35], who observed that the generalized gamma distribution 
generated very close values of the log-likelihood function when compared to the Dagum distribution 
in an MLE procedure for censored remission times of cancer patients. The closeness of the values 
affirms that the MLE_MCMC approach is as trustworthy as the classical MLE. 
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Figure 1: pdf of the gamma distribution 

Similar to the MLE_MCMC estimates, we utilize the data from Table 2 and the Metropolis-
Hastings algorithm to simulate a sample from the Bayesian posterior distribution. We further 
assumed that α and β are independent and exponentially distributed with means a = 15 and b = 0.08. 
The MATLAB code for implementing the Metropolis-Hastings sampler for the posterior distribution 
in Equation (9) is provided in Listings A3 and A4, in the appendix to obtain the MAP_MCMC 
parameter estimates of the gamma distribution. 

The results reveal that the MAP_MCMC estimates of α and β are 𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀 = 10.4169 and 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 =
0.0487 which precisely match the results obtained when sampling is done directly from the 
likelihood function. These results remain consistent even when varying the values of a and b, such 
as a = 20 and b = 1. In other words, the parameter estimates of the gamma distribution from the 
MAP_MCMC approach produce precisely the same estimates as the MLE_MCMC approach. The 
seemingly no difference between the two estimation methods confirms their flexibility in resolving 
estimation complexities associated with the gamma distribution for time-to-failure variables.  

Further, we explore the sensitivity of the MAP_MCMC estimator to different prior distributions 
by conducting a repeated MCMC simulation assuming that the parameters α and β are independent 
and follow Lognormal, Pareto, Weibull, and Gumbel priors. The results of the MAP_MCMC estimate 
for α and β across these four prior distributions are consistent with those obtained using the 
exponential prior. The implication is that irrespective of the distribution used, the outcome for the 
two estimation procedures or methods produced the same parameter estimates. We, therefore, 
concur with previous studies (Hussain et al. [16]; Kohole et al. [17] to conclude that the Bayesian 
MCMC approach offers a more flexible and informative posterior analysis. In addition, our 
estimation procedure affirms Fauzi et al. [21] assertion that Bayesian MCMC algorithms for 
sampling from a posterior distribution essentially simulate system behavior and estimate reliability 
metrics. 

IV. Conclusions

The applicability of the gamma distribution to study the distribution of random variables, such as 
time-to-failure of an event, has proven to be effective and versatile in many reliability studies. The 
preoccupation of these studies centers on the parametric estimation and derivation of other 
properties of the gamma distribution. The challenge, however, is the computational complexities 
encountered when the classical maximum likelihood estimation (MLE) method is used for the 
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parameter estimation. It is contested that MLE does not provide a straightforward solution to the 
log-likelihood equations since the inverse cumulative distribution function (CDF) of the gamma 
distribution cannot be expressed in a closed form. Consequently, many studies have resorted to 
numerical methods to evaluate gamma distribution parameters by exploring a combination of 
Bayesian estimation and other simulation procedures. 

Therefore, in this study, we relied on one of the Bayesian parametric simulation methods called 
Maximum a-Posteriori (MAP) to estimate the gamma distribution parameters. The MAP is 
considered the Bayesian counterpart to MLE. It entails identifying parameter values that maximize 
the posterior distribution and act as estimates for the unknown parameters. Subsequently, we used 
the Markov Chain Monte Carlo (MCMC) simulation procedure to obtain samples from the posterior 
distribution to obtain the gamma parameters. The MCMC was necessary because of the 
computational intensity the MAP requires to incorporate the prior information. Our objective was 
to evaluate the performance of the Maximum Likelihood Estimation (MLE) and Maximum a-
Posteriori (MAP) estimation methods under the framework of Markov Chain Monte Carlo (MCMC) 
simulations. This evaluation was done by first assuming a censored life-testing strategy that 
terminates on the rth (where r < n) failure from a given sample of n electronic devices. Second, we 
obtained the joint distribution function of the first r-order statistic by arranging the values of r in 
order of magnitude. Finally, we explored, through the MCMC framework, the parametric estimation 
of the gamma distribution using the MLE and the MAP.  

The finding of the study suggests that both estimation methods yielded the exact parameter 
estimates of 10.4169 and 0.0487, respectively, for alpha (α) and beta (β) of the gamma distribution. 
These estimates were not significantly different from the actual hypothesized value of  α =10 and β 
= 0.05. The seemingly no difference between the two estimation methods confirms their flexibility in 
resolving estimation complexities associated with the gamma distribution for time-to-failure 
variables. Further, we observed that irrespective of the prior distribution used for the MAP_MCMC 
estimation, the resulting parametric estimates of the gamma distribution remain the same 
(unchanged), confirming the assertion that the Bayesian MCMC approach is a valuable tool for 
informative posterior analysis. 
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Appendix 
Listing A1: Likelihood function for α and β 

1. function y = MLE_gamma(alpha,beta,x,n,xr,r)
2. y=(gamma(alpha)-gammainc(alpha,beta*xr))^(n-r)*(1/gamma(alpha))^n*beta^

(r*alpha)*prod(x.^(alpha-1))*exp(-beta*sum(x));
Listing A2: Implementation of Metropolis Hastings algorithm in MATLAB using the likelihood function 

1. % % Metropolis procedure to sample from the posterior distribution
2. % Component-wise updating. Use a normal proposal distribution
3. %% Set up the Import Options and import the data
4. opts = spreadsheetImportOptions("NumVariables", 1);
5. % Specify sheet and range
6. opts.Sheet = "Sheet1";
7. opts.DataRange = "A1:A100";
8. % Specify column names and types
9. opts.VariableNames = "x";
10. opts.VariableTypes = "double";
11. % Import the data
12. x = readtable("C:\Users\USER\OneDrive\New Papers\Life Testing\Gamma.xlsx", opts,

"UseExcel", false);
13. x=table2array(x);
14. r=length(x);
15. xr=x(100);
16. n=200;
17. % % Initialize the Metropolis sampler
18. T=5000;  % Set the maximum number of iteration
19. propsigma=[0.01,0.0001]; % standard deviation of proposal distribution
20. parametermin=[9,0.04];  % define minimum for alpha and beta
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21. parametermax=[11,0.06];  % define maximum for alpha and beta
22. seed=1; rand( 'state' , seed ); randn('state',seed ); %#ok<RAND> % set the random seed
23. state=zeros(2,T);   % storage space for the state of the sampler
24. alpha=unifrnd(parametermin(1),parametermax(1)); % Start value for alpha
25. beta=unifrnd(parametermin(2),parametermax(2)); % Start value for beta
26. t=1;  % initialize iteration at 1
27. state(1,t)=alpha;  % save the current state
28. state(2,t)=beta;
29. % % Start sampling
30. while t<T  % Iterate until we have T samples
31. t=t+1;
32. % % Propose a new value for alpha
33. new_alpha=normrnd(alpha,propsigma(1));
34. pratio=MLE_gamma(new_alpha,beta,x,n,xr,r)/MLE_gamma(alpha,beta,x,n,xr,r);
35. a=min([1 pratio]);  % Calculate the acceptance ratio
36. u=rand;  % Draw a uniform deviate from [0 1]
37. if u<a  % Do we accept this proposal?
38. alpha=new_alpha;  % proposal becomes new value for alpha
39. end
40. % % Propose a new value for beta
41. new_beta=normrnd(beta,propsigma(2));
42. pratio=MLE_gamma(alpha,new_beta,x,n,xr,r)/MLE_gamma(alpha,beta,x,n,xr,r);
43. a=min([1 pratio]);  % Calculate the acceptance ratio
44. u=rand;  % Draw a uniform deviate from [0 1]
45. if u<a  % Do we accept this proposal?
46. beta=new_beta;  % proposal becomes new value for beta
47. end
48. % %  Save state
49. state(1,t) = alpha;
50. state(2,t) = beta;
51. end
52. Mean=mean(state,2)
53. Mode=mode(state,2)

Listing A3: Likelihood function for α and β 

1. function y = MLE_gamma(alpha,beta,x,n,xr,r,a,b)
2. y=(gamma(alpha)-gammainc(alpha,beta*xr))^(n-r)*(1/gamma(alpha))^n*beta^

(r*alpha)*prod(x.^(alpha-1))* exp(-beta*sum(x)-alpha/a-beta/b);
Listing A4: Implementation of Metropolis Hastings algorithm in MATLAB using the likelihood function 

1. % % Metropolis procedure to sample from the posterior distribution
2. % Component-wise updating. Use a normal proposal distribution
3. %% Set up the Import Options and import the data
4. opts = spreadsheetImportOptions("NumVariables", 1);
5. % Specify sheet and range
6. opts.Sheet = "Sheet1";
7. opts.DataRange = "A1:A100";
8. % Specify column names and types
9. opts.VariableNames = "x";
10. opts.VariableTypes = "double";
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11. % Import the data
12. x = readtable("C:\Users\USER\OneDrive\New Papers\Life Testing\Gamma.xlsx", opts,

"UseExcel", false);
13. x=table2array(x);
14. r=length(x);
15. xr=x(100);
16. n=200;
17. a=15
18. b=0.08
19. % % Initialize the Metropolis sampler
20. T=5000;  % Set the maximum number of iteration
21. propsigma=[0.01,0.0001]; % standard deviation of proposal distribution
22. parametermin=[9,0.04];  % define minimum for alpha and beta
23. parametermax=[11,0.06];  % define maximum for alpha and beta
24. seed=1; rand( 'state' , seed ); randn('state',seed ); %#ok<RAND> % set the random seed
25. state=zeros(2,T);   % storage space for the state of the sampler
26. alpha=unifrnd(parametermin(1),parametermax(1)); % Start value for alpha
27. beta=unifrnd(parametermin(2),parametermax(2)); % Start value for beta
28. t=1;  % initialize iteration at 1
29. state(1,t)=alpha;  % save the current state
30. state(2,t)=beta;
31. % % Start sampling
32. while t<T  % Iterate until we have T samples
33. t=t+1;
34. % % Propose a new value for alpha
35. new_alpha=normrnd(alpha,propsigma(1));
36. pratio=MLE_gamma(new_alpha,beta, x,n,xr,r,a,b)/MLE_gamma(alpha,beta, x,n,xr,r,a,b);
37. a=min([1 pratio]);  % Calculate the acceptance ratio
38. u=rand;  % Draw a uniform deviate from [0 1]
39. if u<a  % Do we accept this proposal?
40. alpha=new_alpha;  % proposal becomes new value for alpha
41. end
42. % % Propose a new value for beta
43. new_beta=normrnd(beta,propsigma(2));
44. pratio=MLE_gamma(alpha,new_beta, x,n,xr,r,a,b)/MLE_gamma(alpha,beta, x,n,xr,r,a,b);
45. a=min([1 pratio]);  % Calculate the acceptance ratio
46. u=rand;  % Draw a uniform deviate from [0 1]
47. if u<a  % Do we accept this proposal?
48. beta=new_beta;  % proposal becomes the new value for beta
49. end
50. % %  Save state
51. state(1,t) = alpha;
52. state(2,t) = beta;
53. end
54. Mean=mean(state,2)
55. Mode=mode(state,2)
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