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Abstract 

This study addresses the estimation of the stress-strength reliability model, where stress and strength 

both following the Nakagami distribution. While conventional approaches have relied on simple 

random sampling (SRS) for estimating reliability models, recent research suggests that ranked set 

sampling (RSS) offers a more efficient alternative. RSS yields more informative samples compared 

to SRS, potentially enhancing the accuracy of reliability estimations. Our investigation focuses on 

deriving maximum likelihood estimators (MLEs) for stress-strength under both SRS and RSS 

methodologies. To evaluate the comparative efficacy of these sampling techniques, we conduct a 

comprehensive Monte Carlo simulation study. The results of this analysis provide compelling 

evidence that RSS-based estimators outperform their SRS counterparts in terms of efficiency and 

precision. This research contributes to the growing body of literature supporting the adoption of RSS 

in reliability engineering. By demonstrating the superior performance of RSS in the context of 

Nakagami-distributed stress-strength models, we offer valuable insights for researchers and 

practitioners seeking to optimize their estimation procedures in reliability analysis. 

Keywords: Stress–strength reliability, simple random sampling, ranked set 
sampling, Nakagami distribution, maximum likelihood estimation. 

1. Introduction

The concept of stress-strength reliability plays a pivotal role in engineering decision-making, design 
optimization, and risk evaluation, particularly where safety, performance, and longevity are 
paramount. This analytical approach is indispensable for ensuring that engineered systems, 
structures, and components not only meet functional requirements but also withstand the 
challenges posed by fluctuating loads, environmental influences, and operational dynamics. At the 
core of reliability engineering and statistics lies the stress-strength model, which primarily aims to 
quantify the probability of system success or failure when both stress and strength are subject to 

RT&A, No 1 (82) 
Volume 20, March 2025 

500



S Kumar, R Shukla, B Meena, SP Singh  
RANK SET SAMPLING FOR STRESS-STRENGTH 

random variations. This methodology finds applications across diverse sectors, including 
engineering, materials science, quality control, and even finance. Within the framework of the stress-
strength paradigm, the expression "𝑃𝑟(𝑌 < 𝑋)” represents the likelihood that a system's stress 
remains below its inherent strength. Essentially, this metric gauges the probability of system 
survival in the stress-strength model. Conversely, system failure occurs when the applied stress 

exceeds the material or component strength. 
In the literature, the work on stress-strength model was first done by Birnbaum [2] and 

Birnbaum and McCarty [3]. The word stress-strength was first used by Church and Harris [4] in 
their research article, and they done a remarkable work under parametric and non-parametric 
inference. After that various authors choose different probabilistic models for estimating the stress-

strength models. Some of these choices were summarised by Johnson [5]. A summary of all 
approaches and findings on the stress-strength model during the previous four decades was 
published by Kotz et al. [6]. The situation where X and Y are independent Type XII Burr random 
variables was examined by Awad and Gharraf [7]. For the recent development on this topic, one 
may refer to Chaturvedi and Kumar [8], Kundu and Gupta [9], Kundu and Raqab [10], 
Krishnamoorthy and Lin [11], Lio and Tsai [12], Barbiero [13], Chaturvedi and Kumari [14]. In all 
the above studies the authors have used the simple random sampling technique. 

The ranked set sampling introduced by McIntyre [1][1], gained importance when Halls and 
Dell  [15]  applied ranked set sampling to estimate forage yields under pine-hardwood forest. 
Takahashi and Wakimoto [16], Dell and Clutter [17], David and Levine [18] focused on the efficiency 
of the estimators based on RSS and they established that RSS outperforms its counterpart simple 
random sampling with an identical sample size. Expanding the horizons of RSS, Yu and Lam [19] 
and Chen [20] explored regression estimation based on this methodology, providing notable 
examples and results. Additionally, studies on the estimation of distribution functions under 
various RSS techniques were conducted by Stokes and Sager [21], Kvam and Samaniego [22], and 
Chen [23]. Zamanzade and Vock [24], Zhang et al. [25] and Ozturk [26] have yields insights into 
inferential procedures reliant on ranked set sampling. 

To delve deeper into this specialized data collection technique, one may refer to the review 
papers of Kaur et al. [27], Bai and Chen [28], and Wolfe [29]. These review papers include all 
pertinent references on RSS, including historical development, current status and future research 
direction. Hassan et al. [30] obtained the point and interval estimators of 𝑃 = 𝑃𝑟(𝑌 < 𝑋) for the case 
of independent Gompertz random variables with common scale and different shape parameters 
based on RSS. 

Here, we have consider the estimation of  𝑃 = 𝑃𝑟(𝑌 < 𝑋) with a focus on situation where the 
random stress Y and random strength X are two independent Nakagami random variables with 
shape parameters (𝛼1, 𝛼2) and scale parameters (𝜆, 𝜆), respectively. The point estimator of 𝑃 =

𝑃𝑟(𝑌 < 𝑋), is obtained using the maximum likelihood method based on both SRS and RSS, and the 
efficiency of this method based on SRS and RSS is compared. In Section 2, we present a brief 
overview about the Nakagami distribution and its relationship with other probability distributions. 
Point estimation of the parameters is given in Section 3. Section 4 and Section 5 comprises the point 
estimation of stress-strength model under SRS and under RSS, respectively. A simulation study 
employing the Monte Carlo method is discussed in Section 6. Section 7 details an empirical data 
analysis, and lastly Section 8 provides concluding remarks for the paper. 

2. Preliminary

Consider a random variable X that adheres to the Nakagami distribution, denoted as NAD (𝛼, 𝜆). 
In this distribution, 𝛼 represents the shape parameter, which is bounded by the condition 𝛼 > 0.5, 
while 𝜆 symbolizes the scale parameter, constrained to be strictly positive (𝜆 > 0). For this 
distribution, the probability density function (PDF) and cumulative distribution function (CDF) are 
characterized as follows: 
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Where, 𝛾(𝑎, 𝑥) = ∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡
𝑥

0
 is the lower incomplete gamma function. 

The reliability function of NAD (𝛼, 𝜆)  is 

𝑅(𝑡) = 1 −
1

𝛤α
𝛾 (α,

α

λ
𝑡2) ; 𝑡 > 0, 𝛼 > 0.5, 𝜆 > 0  (3) 

The hazard rate of NAD (𝛼, 𝜆)  is. 
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 ; 𝑡 > 0, 𝛼 > 0.5, 𝜆 > 0  (4) 

Other distribution relationships 
1) If 𝛼 = 0.5, then Nakagami distribution (𝛼, 𝜆) becomes Half Normal Distribution.

2) For 𝛼 = 1, then Nakagami distribution (𝛼, 𝜆) reduces to Rayleigh Distribution.

3) If random variable Y ~ Gamma (𝛼, 𝜆) where 𝛼 is shape parameter and 𝜆 is scale
parameter, then √𝑌  ~ NAD (𝛼, 𝛼𝜆).

4) If Z ~ chi-square (2𝛼) and then √ 𝜆

2α
𝑍  ~ NAD (𝛼, 𝜆)  where 2𝛼 is integer-valued. 

3. Point estimation of the parameters

Let us draw a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 from the NAD (𝛼, 𝜆)  of size n. The likelihood function 
of the Nakagami distribution NAD (𝛼, 𝜆)  is given by 

𝐿 (𝑥, α, λ) =  
(2αα)𝑛

(𝛤α)𝑛(λ)𝑛α
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Theorem 1. The Maximum Likelihood Estimator of scale parameter λ is 
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Theorem 2. The Maximum Likelihood Estimator of shape parameter α is 

RT&A, No 1 (82) 
Volume 20, March 2025 

502



S Kumar, R Shukla, B Meena, SP Singh  
RANK SET SAMPLING FOR STRESS-STRENGTH 




































n

i

i

n

i

i

x
nn

x

1

1

2

log
1

2log

5.0
̂

Proof.  If we suppose that 𝜆 is known, then the likelihood function for the parameter 𝛼 is given as 

𝐿(α|𝑥) =  
(2αα)𝑛

(𝛤α)𝑛(λ)𝑛α
∏ 𝑥𝑖

2α−1 exp (−
α

λ
∑ 𝑥𝑖

2

𝑛

𝑖=1

)

𝑛

𝑖=1

 

The log likelihood function is 
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4. Point estimation of 𝑃 = 𝑃𝑟(𝑌 < 𝑋) in case of simple random sampling

To derive the stress-strength reliability model 𝑃 = 𝑃𝑟(𝑌 < 𝑋), here we assumed that X is the strength 
variable and Y is the stress variable, both are following the Nakagami distribution with common 
scale parameter 𝜆 > 0 and different shape parameters 𝛼1 > 0.5 and  𝛼2 > 0.5, respectively. By 
notation 𝑋 ~ 𝑁𝐴𝐷 (𝛼1, 𝜆) and 𝑌 ~ 𝑁𝐴𝐷 (𝛼2, 𝜆), then 

𝑃 =  ∫ 𝑃 (𝑌 < 𝑋)𝑓(𝑥)𝑑𝑥

∞
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where 𝛾(𝑛, 𝑥) = 𝛤𝑛 (1 − 𝑒−𝑥 ) is the lower incomplete gamma function. 
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Let two independent random samples X and Y of size n and m are drawn from Nakagami 
distribution with parameters (𝛼1, 𝜆) and (𝛼2, 𝜆), respectively. For known λ, the invariance 
characteristic of the maximum likelihood estimator provides the maximum likelihood estimator for 
P. The maximum likelihood estimators of 𝛼1 and 𝛼2 are
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Maximum likelihood estimator of P in case of simple random sampling is given by 

𝑃̂𝑆𝑅𝑆 = 1 −  
(𝛼̂1𝑆𝑅𝑆)𝛼̂1𝑆𝑅𝑆

𝛤𝛼̂1𝑆𝑅𝑆
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5. Point estimation of 𝑃 = 𝑃𝑟(𝑌 < 𝑋) in case of ranked set sampling

1. Standard ranked set sampling

Ranked set sampling (RSS) represents a cutting-edge approach in statistical sampling, designed to 
boost the accuracy of parameter estimation, particularly in scenarios where resources are scarce or 
data collection costs are prohibitive. This method diverges from traditional random sampling by 
utilizing the ranked order or order statistics of sampled observations, thereby enhancing the quality 
and efficiency of estimations. The concept of RSS, initially proposed in the mid-20th century, has 
since gained traction across diverse fields such as environmental science, forestry, and ecology. Its 
popularity stems from its ability to yield robust statistical insights even when comprehensive 
population surveys are unfeasible. By offering a pragmatic and economical alternative to 
conventional sampling techniques, RSS has become an invaluable asset for researchers and 
statisticians aiming to refine their sampling strategies. The implementation of RSS to generate a 
sample of size n = r*m involves a series of structured steps, where m denotes the number of sample 
units selected in each cycle (of fixed size) and r represents the total number of cycles. These steps 
are executed sequentially as follows: 

1. A random subset of the population consisting of 𝑚2 units is selected.
2. The 𝑚2 units are then divided arbitrarily into m sets, each containing m units.
3. The units within each set are ranked based on either professional judgment or correlation

RT&A, No 1 (82) 
Volume 20, March 2025 

504



S Kumar, R Shukla, B Meena, SP Singh  
RANK SET SAMPLING FOR STRESS-STRENGTH 

with the variable of interest. 
4. An individual quantile sample is constructed by taking the lowest ranked unit from the first

set, the second lowest ranked unit from the second set, and continuing in this fashion.
5. To obtain a larger sample of size n = r*m, steps 1 through 4 can be repeated for r cycles.

The ranked set sampling (RSS) method takes only one observation from each set in each cycle. 
In the first cycle, it chooses the lowest observation 𝑋(11)𝑟. In later cycles, it independently selects the 
second lowest 𝑋(22)𝑟 from a different set of m observations and the highest 𝑋(𝑚𝑚)𝑟  from the final set 
of m. Let 𝑋(𝑖𝑖)𝑘, 𝑖 = 1, 2, … , 𝑚;  𝑘 = 1, 2, … , 𝑟, be a ranked sample set with set size m and r cycles. For 
convenience, this paper will use the notation 𝑋(𝑖)𝑟 in place of the full description. 

2. The maximum likelihood estimation of 𝑃 = 𝑃𝑟(𝑌 < 𝑋) in case of  RSS

Let 𝑋(𝑖𝑗), 𝑖 = 1, 2, … , 𝑟1;  𝑗 = 1, 2, … , 𝑚1, denote the ranked set sample of size 𝑛1 = 𝑟1𝑚1 from 
Nakagami distribution with parameter (𝛼1, 𝜆), where 𝑚1 is the set size and 𝑟1 is the number of cycles 
and 𝑌(𝑘𝑙), 𝑘 = 1, 2, … , 𝑟2;  𝑙 = 1, 2, … , 𝑚2, denote the ranked set sample of size 𝑛2 = 𝑟2𝑚2 from 
Nakagami distribution with parameter (𝛼2, 𝜆), where 𝑚2 is the set size and 𝑟2 is the number of cycles. 
Then the PDF of 𝑋(𝑖𝑗) and 𝑌(𝑘𝑙) are given by  

 𝑓𝑖(𝑥𝑖𝑗) =
𝑚1!
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Now the likelihood function is given as 
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𝑘−1

[𝛤𝛼2 − 𝛾 (𝛼2,
𝛼2𝑦𝑘𝑙

2

𝜆
)]

𝑚2−𝑘

(
2

𝛤𝛼2

) (
𝛼2

𝜆
)

𝛼2

𝑦𝑘𝑙
2𝛼2−1 exp (−

𝛼2

𝜆
𝑦𝑘𝑙

2)

(9)
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sum of lower incomplete gamma function and upper incomplete gamma function is a gamma 
function, which implies   

𝛾 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
) + 𝛤 (𝛼1,

𝛼1𝑥𝑖𝑗
2

𝜆
) = 𝛤𝛼1 

gives

 𝛤𝛼1 − 𝛾 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
) = 𝛤 (𝛼1,

𝛼1𝑥𝑖𝑗
2

𝜆
) 

Thus, 

𝐿 = (
1

𝛤𝛼1

)
𝑛1(𝑚1−1)

(
2

𝛤𝛼1

)
𝑛1

(
𝛼1

𝜆
)

𝑛1𝛼1

(
1

𝛤𝛼2

)
𝑛2(𝑚2−1)

(
2

𝛤𝛼2

)
𝑛2

(
𝛼2

𝜆
)

𝑛2𝛼2

𝑢𝑣 

∏ ∏ [𝛾 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)]

𝑖−1

 [𝛤 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)]

𝑚1−𝑖𝑚1

𝑗=1

𝑟1

𝑖=1

𝑥𝑖𝑗
2𝛼1−1𝑒𝑥𝑝 (−

𝛼1

𝜆
𝑥𝑖𝑗

2)

∏ ∏ [𝛾 (𝛼2,
𝛼2𝑦𝑘𝑙

2

𝜆
)]

𝑘−1

[𝛤 (𝛼2,
𝛼2𝑦𝑘𝑙

2

𝜆
)]

𝑚2−𝑘

𝑦𝑘𝑙
2𝛼2−1𝑒𝑥𝑝

𝑚2

𝑙=1

𝑟2

𝑘=1

(−
𝛼2

𝜆
𝑦𝑘𝑙

2)

(10)

Taking log on both sides 

 log 𝐿 = log𝐿1 + log𝐿2            (11)

where 

𝐿1 =  𝑢 (
1

𝛤𝛼1

)
𝑛1(𝑚1−1)

(
2

𝛤𝛼1

)
𝑛1

(
𝛼1

𝜆
)

𝑛1𝛼1

∏ ∏ [𝛾 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)]

𝑖−1𝑚1

𝑗=1

𝑟1

𝑖=1

[𝛤 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)]

𝑚1−𝑖

𝑥𝑖𝑗
2𝛼1−1𝑒𝑥𝑝 (−

𝛼1

𝜆
𝑥𝑖𝑗

2) (12)

and 

𝐿2 =  𝑣 (
1

𝛤𝛼2

)
𝑛2(𝑚2−1)

(
2

𝛤𝛼2

)
𝑛2

(
𝛼2

𝜆
)

𝑛2𝛼2

∏ ∏ [𝛾 (𝛼2,
𝛼2𝑦𝑘𝑙

2

𝜆
)]

𝑘−1𝑚2

𝑙=1

𝑟2

𝑘=1

[𝛤 (𝛼2,
𝛼2𝑦𝑘𝑙

2

𝜆
)]

𝑚2−𝑘

𝑦𝑘𝑙
2𝛼2−1𝑒𝑥𝑝 (−

𝛼2

𝜆
𝑦𝑘𝑙

2) (13)

This implies, 
log𝐿1 = log𝑢 + 𝑛1(𝑚1 − 1)(−log𝛤𝛼1) + 𝑛1(log2 − log𝛤𝛼1) + 𝑛1𝛼1(log𝛼1 − log𝜆)

+ ∑ ∑(𝑖 − 1)log

𝑚1

𝑗=1

[𝛾 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)] + ∑ ∑(𝑚1 − 𝑖)log [𝛤 (𝛼1,

𝛼1𝑥𝑖𝑗
2

𝜆
)]

𝑚1

𝑗=1

𝑟1

𝑖=1

𝑟1

𝑖=1

+ (2𝛼1 − 1) ∑ ∑ log𝑥𝑖𝑗 −
𝛼1

𝜆

𝑚1

𝑗=1

𝑟1

𝑖=1

∑ ∑ 𝑥𝑖𝑗
2

𝑚1

𝑗=1

𝑟1

𝑖=1

(14)

Differentiating Eq.(5.2.9) with respect to 𝛼1 and 𝛼2 respectively, we get 
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𝜕log𝐿1

𝜕𝛼1

= −𝑚1

𝜕

𝜕𝛼1

log𝛤𝛼1 + 𝑛1(log𝛼1 + 1) − 𝑛1log 𝜆 + ∑ ∑(𝑖 − 1)
𝜕

𝜕𝛼1

𝑚1

𝑗=1

𝑟1

𝑖=1

log [𝛾 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)]

+ ∑ ∑(𝑚1 − 𝑖)
𝜕

𝜕𝛼1

log [𝛤 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)] + 2

𝑚1

𝑗=1

𝑟1

𝑖=1

∑ ∑ log𝑥𝑖𝑗 −
1

𝜆
∑ ∑ 𝑥𝑖𝑗

2

𝑚1

𝑗=1

𝑟1

𝑖=1

𝑚1

𝑗=1

𝑟1

𝑖=1

  (15) 
and 

𝜕log𝐿2

𝜕𝛼2

= −𝑚2

𝜕

𝜕𝛼2

log𝛤𝛼2 + 𝑛2(log𝛼2 + 1) − 𝑛2logλ + ∑ ∑(𝑘 − 1)
𝜕

𝜕𝛼2

𝑚2

𝑙=1

𝑟2

𝑘=1

log [𝛾 (𝛼2,
𝛼2𝑦𝑘𝑙

2

𝜆
)]

+ ∑ ∑(𝑚2 − 𝑘)
𝜕

𝜕𝛼2

log [𝛤 (𝛼2,
𝛼2𝑦𝑘𝑙

2

𝜆
)] + 2

𝑚2

𝑙=1

𝑟2

𝑘=1

∑ ∑ log𝑦𝑘𝑙 −
1

𝜆
∑ ∑ 𝑦𝑘𝑙

2

𝑚2

𝑙=1

𝑟2

𝑘=1

𝑚2

𝑙=1

𝑟2

𝑘=1

  (16) 
Differentiating Eq.(5.2.6) with respect to λ, we get 

𝜕𝑙𝑜𝑔𝐿

𝜕𝜆
= −

𝑛1𝛼1

𝜆
+ ∑ ∑(𝑖 − 1)

𝜕

𝜕𝜆
𝑙𝑜𝑔 [𝛾 (𝛼1,

𝛼1𝑥2

𝜆
)] +

𝑚1

𝑗=1

𝑟1

𝑖=1

∑ ∑(𝑚1 − 𝑖)
𝜕

𝜕𝜆
𝑙𝑜𝑔 [𝛤 (𝛼1,

𝛼1𝑥2

𝜆
)]

𝑚1

𝑗=1

𝑟1

𝑖=1

+
𝛼1

𝜆
∑ ∑ 𝑥𝑖𝑗

2

𝑚1

𝑗=1

−

𝑟1

𝑖=1

𝑛2𝛼2

𝜆
+ ∑ ∑(𝑘 − 1)

𝜕

𝜕𝜆
𝑙𝑜𝑔 [𝛾 (𝛼2,

𝛼2𝑦2

𝜆
)]

𝑚2

𝑙=1

𝑟2

𝑘=1

 

+ ∑ ∑(𝑚2 − 𝑘)
𝜕

𝜕𝜆
𝑙𝑜𝑔 [𝛤 (𝛼2,

𝛼2𝑦2

𝜆
)] +

𝛼2

𝜆2
∑ ∑ 𝑦𝑘𝑙

2

𝑚2

𝑘=1

𝑟2

𝑘=1

𝑚2

𝑙=1

𝑟2

𝑘=1

 (17) 
A numerical approach is utilized to obtain the maximum likelihood estimates for 𝛼1 and 𝛼2, 

denoted as by 𝛼̂1𝑅𝑆𝑆 and 𝛼̂2𝑅𝑆𝑆, from equations 5.2.10 and 5.2.11, respectively using the ranked set 
sampling method. Applying the invariance property of maximum likelihood estimators, the 
maximum likelihood estimate of the reliability parameter P based on RSS, denoted 𝑃̂𝑅𝑆𝑆, can then be 
derived as 

𝑃̂𝑅𝑆𝑆 = 1 −  
(𝛼̂1𝑅𝑆𝑆)𝛼̂1𝑅𝑆𝑆

𝛤𝛼̂1𝑅𝑆𝑆

∑
(𝛼̂2𝑅𝑆𝑆)𝑚

𝑚!

𝛤(𝛼̂2𝑅𝑆𝑆 + 𝑚)

(𝛼̂1𝑅𝑆𝑆 + 𝛼̂2𝑅𝑆𝑆)𝛼̂1𝑅𝑆𝑆+m

𝛼̂1𝑅𝑆𝑆 −1

𝑚=0

6. Simulation study

In this section we carried out a simulation study. Bias and mean square error (MSE) for P are 
provided by  𝐵𝑖𝑎𝑠(𝑃̂) = 𝐸(𝑃̂ − 𝑃) and 𝑀𝑆𝐸(𝑃̂) = 𝐸(𝑃̂ − 𝑃) ,

2 respectively to compare our suggested 
reliability estimator P based on ranked set sampling RSS with the conventional reliability estimator 
of P based on SRS. The formula for calculating the relative efficiency RE of the estimator of P is 
𝑀𝑆𝐸(𝑃̂𝑆𝑅𝑆)

𝑀𝑆𝐸(𝑃̂𝑅𝑆𝑆)
 . Relative efficiency values greater than one suggest that the 𝑃̂𝑅𝑆𝑆 is more efficient than 

the 𝑃̂𝑆𝑅𝑆. All computations are performed using the R programming language. The simulation study 
is explained in the following steps. 
Step 1: We generate 1000 simple random samples of 𝑋1, 𝑋2, … , 𝑋𝑛1

, and 𝑌1, 𝑌2, ... , 𝑌𝑛2
 from 

Nakagami distribution with the sample sizes of (𝑛1,  𝑛2) = (15, 15), (15, 20), (15, 25), (20, 20), (20, 25), 
(25, 25) in Case 1 and (20, 20),     (20, 30), (20, 40), (30, 30), (30, 40), (40, 40) in Case 2. 
Step 2: We generate 1000 ranked set samples of 𝑋11, ... , 𝑋𝑚1𝑟1

 and 𝑌11, … , 𝑌𝑚2𝑟2
 from Nakagami 

distribution for the first case when the number of cycles is taken as 𝑟1 = 𝑟2 = 5  with set sizes 𝑚1 =

𝑚2 = 3, 4, 5 and for the second case when the number of cycles is taken as 𝑟1 = 𝑟2 = 10  with set sizes 
𝑚1 = 𝑚2 = 2, 3, 4.  
Step 3: To generate the simple random samples and ranked set samples for Nakagami distribution, 
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we consider the true value of the common scale parameter 𝜆 = 3 and the true values of the shape 
parameter 𝛼𝑥 and 𝛼𝑦 are  (0.5, 0.9), (0.7, 1.2) and (0.9, 1.5), respectively for the strength variable X 
and the stress variable Y, respectively. For these values, the true value of stress-strength model  P is 
0.40238, 0.50290 and 0.58635, respectively. 
Step 4: The Biases, MSES and relative efficiency are presented in the Table 1. 

It is evident from the Table 1 that the relative efficiency is greater than one in every case; so, we 
can say that the ranked set sampling is showing more efficient results in comparison to simple 
random sampling in estimating the stress-strength reliability.  

Table 1: Biases, MSES and RE of P under SRS and RSS when the common scale parameter λ = 3 

SRS RSS 
Case-1  𝑟1 = 𝑟2 = 5 

(𝛼1, 𝛼2) (𝑛1, 𝑛2) (𝑚1, 𝑚2) 𝑃𝑇𝑟𝑢𝑒 𝑃̂𝑆𝑅𝑆 Bias MSE 𝑃̂𝑅𝑆𝑆 Bias MSE RE 
(0.5,0.9) (15,15) (3,3) 0.40238 0.38205 -0.02033 0.007075 0.37479 -0.02759 0.005877 1.2037 

(15,20) (3,4) 0.37976 -0.02262 0.006309 0.36312 -0.03926 0.005434 1.1609 
(15,25) (3,5) 0.36858 -0.0338 0.005457 0.35188 -0.05050 0.005283 1.0328 
(20,20) (4,4) 0.36992 -0.03247 0.005543 0.36500 -0.03738 0.004656 1.1903 
(20,25) (4,5) 0.36951 -0.03287 0.004886 0.36047 -0.04190 0.004239 1.1522 
(25,25) (5,5) 0.36761 -0.03477 0.004822 0.35752 -0.04486 0.004346 1.1095 

(0.7,1.2) (15,15) (3,3) 0.50290 0.48768 -0.01521 0.0081549 0.48285 -0.02004 0.007379 1.1051 
(15,20) (3,4) 0.48781 -0.01509 0.0071741 0.47443 -0.02846 0.006434 1.1149 
(15,25) (3,5) 0.48497 -0.01792 0.0064565 0.46760 -0.03529 0.005642 1.1442 
(20,20) (4,4) 0.48402 -0.01887 0.0065401 0.47210 -0.03079 0.005534 1.1816 
(20,25) (4,5) 0.48118 -0.02171 0.0058446 0.46763 -0.03527 0.004607 1.2684 
(25,25) (5,5) 0.47852 -0.02437 0.0056632 0.46007 -0.04282 0.005261 1.0762 

(0.9,1.5) (15,15) (3,3) 0.58635 0.58608 -0.00026 0.009415 0.56558 -0.02759 0.008915 1.0560 
(15,20) (3,4) 0.57906 -0.00729 0.008066 0.56648 -0.03926 0.006912 1.1669 
(15,25) (3,5) 0.57434 0.57434 0.006819 0.55942 -0.05050 0.005731 1.1897 
(20,20) (4,4) 0.57625 -0.01010 0.007531 0.55986 -0.03738 0.006197 1.2151 
(20,25) (4,5) 0.56799 -0.01836 0.006249 0.54742 -0.04190 0.005974 1.0460 
(25,25) (5,5) 0.56607 -0.02027 0.005941 0.55713 -0.04486 0.004836 1.2282 

Case-2 𝑟1 = 𝑟2 = 10 
(𝛼1, 𝛼2) (𝑛1, 𝑛2) (𝑚1, 𝑚2) 𝑃𝑇𝑟𝑢𝑒 𝑃̂𝑆𝑅𝑆 Bias MSE 𝑃̂𝑅𝑆𝑆 Bias MSE RE 
(0.5,0.9) (20,20) (2,2) 0.40238 0.37497 -0.02741 0.005234 0.37116 -0.03121 0.005073 1.0316 

(20,30) (2,3) 0.36741 -0.03497 0.004678 0.36359 -0.03879 0.004379 1.0682 
(20,40) (2,4) 0.36257 -0.03980 0.004350 0.36089 -0.04149 0.003852 1.1290 
(30,30) (3,3) 0.36183 -0.04055 0.004494 0.36021 -0.04216 0.004249 1.0574 
(30,40) (3,4) 0.36209 -0.04028 0.004011 0.35657 -0.04581 0.003841 1.0444 
(40,40) (4,4) 0.35891 -0.04346 0.004020 0.35649 -0.04589 0.003606 1.1146 

(0.7,1.2) (20,20) (2,2) 0.50290 0.48040 -0.02249 0.007313 0.48090 -0.02200 0.006477 1.1290 
(20,30) (2,3) 0.47824 -0.02465 0.005291 0.47161 -0.03129 0.004850 1.0908 
(20,40) (2,4) 0.47323 -0.02966 0.004726 0.46726 -0.03563 0.004282 1.1037 
(30,30) (3,3) 0.47157 -0.03132 0.004867 0.46328 -0.03961 0.004715 1.0322 
(30,40) (3,4) 0.46866 -0.03423 0.004614 0.46346 -0.03943 0.004210 1.0958 
(40,40) (4,4) 0.46736 -0.03553 0.004181 0.46037 -0.04253 0.003984 1.0494 

(0.9,1.5) (20,20) (2,2) 0.58635 0.57266 -0.01369 0.007225 0.56863 -0.01771 0.006831 1.0576 
(20,30) (2,3) 0.56358 -0.02276 0.006070 0.55271 -0.03364 0.005913 1.0265 
(20,40) (2,4) 0.56086 -0.02548 0.004649 0.55686 -0.02948 0.004561 1.0192 
(30,30) (3,3) 0.55881 -0.02753 0.005109 0.55648 -0.02986 0.005039 1.0137 
(30,40) (3,4) 0.55972 -0.02662 0.004832 0.55016 -0.03619 0.004452 1.0853 
(40,40) (4,4) 0.55734 -0.02901 0.004548 0.55338 -0.03296 0.003982 1.1421 
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7. Real data application

In order to comprehend and provide a broad illustration of the processes covered in the preceding 
sections, we now take two real data sets. The first data set is used for the strength variable X and 
second data set is used for the stress variable Y in the stress-strength model  𝑃 = 𝑃𝑟(𝑌 < 𝑋). 

7.1 First Data Set

Lawless (2003, pp. 267) is the source of the data set. The first report on this was published in 1987 
by Schat, Staton, Mandel, and Shott. The hours to failure of 59 conductors with a length of 400 
micrometres are represented by this data. The specimens are tested at the same temperature and 
current density, and at a specific high temperature and current density, they all failed. The MLES of 
the parameters α and λ for this dataset is 𝛼̂𝑥= 4.6731 and  𝜆̂𝑥  = 51.2823

7.2 Second Data Set 

The second data set is taken from Murthy et al. (2004, pp.180). This data represents 50 items that are 
put on use at time t = 0 and failure times are recorded (in weeks). The MLES for the parameters α 
and λ for this dataset is 𝛼̂𝑦= 0.1924 and 𝜆̂𝑦 = 144.2292. Both the datasets are shown in Table 2. 

Table 2: Dataset – 1 supposed to be X - Population and Dataset-2 supposed to be Y – Population

Figure 1: The PDF, CDF and P-P Plots of the Nakagami distribution for First dataset 

Dataset-2 : Y-Population 
0.013 2.838 7.291 32.795 
0.065 3.269 7.087 48.105 
0.111 3.977 7.787 
0.111 3.981 8.596 
0.163 4.52 9.388 
0.309 4.789 10.261 
0.426 4.849 10.713 
0.535 5.202 11.658 
0.684 5.291 13.006 
0.747 5.349 13.388 
0.997 5.911 13.842 
1.284 6.018 17.152 
1.304 6.427 17.283 
1.647 6.456 19.418 
1.829 6.572 23.471 
2.336 7.023 27.777 

Dataset-1 : X-Population 
6.545 6.522 7.945 7.224 
9.289 4.137 6.869 7.365 
7.543 7.459 6.352 6.923 
6.956 7.495 4.7 5.64 
6.492 6.573 6.948 5.434 
5.459 6.538 9.254 7.937 
8.12 5.589 5.009 6.515 

4.706 6.087 7.489 6.476 
8.687 5.807 7.398 6.071 
2.997 6.725 6.033 10.491 
8.591 8.532 10.092 5.923 
6.129 9.663 7.496 
11.038 6.369 4.531 
5.381 7.024 7.974 
6.958 8.336 8.799 
4.288 9.218 7.683 
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Figure 2: The PDF, CDF and P-P Plots of the Nakagami distribution for Second dataset 

Before we dive into the core of our investigation, it's crucial to thoroughly examine the key 
characteristics of our data. To validate the strength of our results, we employ a powerful statistical 
instrument: the Kolmogorov-Smirnov (K-S) test, along with its corresponding P-value (P-V). This 
approach enables us to measure how well our empirical observations align with theoretical 
expectations. 

Our analysis yields promising outcomes. For the first dataset, we calculate a K-S distance of 
0.06779 and a P-V of 0.99940. The second dataset produces similar results, with a K-S distance of 
0.12 and a P-V of 0.86428. These metrics provide compelling evidence that our model closely 
matches the observed data. 

To enhance our understanding and provide visual context, we have created a series of graphical 
representations. These illustrations, found in the accompanying Figure 1 and 2, offer a 
comprehensive view of our statistical findings. They include probability-probability (PP) plots, as 
well as visualizations of the estimated probability density function (PDF) and cumulative 
distribution function (CDF) for both datasets. These visual aids serve to reinforce and clarify the 
numerical results of our analysis 

We consider these two datasets as our random strength X and random stress Y, respectively. 
The MLES for α and λ i.e.  𝛼̂𝑥= 4.6731, 𝜆̂𝑥= 51.2823 and 𝛼̂𝑦= 0.1924 and 𝜆̂𝑦= 144.2292 is taken as the 
true value of the parameters for this study. Now if  𝛼̂𝑥 =  𝛼1  = 4.6731 and 𝛼̂𝑦 =  𝛼2  = 0.1924 then the 
true value of the stress-strength model from Eq.(4.1) is P = 0.1718. 
In this analysis, we draw simple random samples of size 10 from each dataset and estimate the 
MLES for 𝛼 and 𝜆, respectively. The simple random samples and MLES are presented in Table 3 and 
Table 4, respectively. 

Table 3: MLES of α and λ for each random sample of X-Population 

Simple Random Samples from X-Population 
𝛼̂𝑥 𝜆̂𝑥

Sample 1 7.489 5.589 7.495 4.137 6.492 8.687 6.538 8.532 7.683 7.459 6.7031 50.8427 
Sample 2 4.531 6.956 6.923 10.491 7.937 8.12 4.137 4.7 5.589 6.129 3.1983 46.3841 
Sample 3 8.532 6.087 7.489 6.958 6.522 6.545 7.398 8.591 6.923 7.496 7.9133 42.4977 
Sample 4 6.033 6.352 8.799 2.997 5.64 6.956 11.038 6.522 7.024 5.009 2.6220 48.2145 
Sample 5 5.807 7.398 5.923 7.945 10.092 4.706 11.038 6.369 7.459 5.589 3.7265 55.9926 
Sample 6 10.491 6.071 8.591 7.024 7.495 4.706 4.137 4.531 6.369 6.352 3.2477 46.6938 
Sample 7 2.997 4.137 4.7 9.254 7.683 6.923 7.974 8.687 6.573 6.545 2.6515 46.5869 
Sample 8 5.923 9.663 6.515 5.589 10.491 6.948 7.495 11.038 4.531 6.492 3.3188 60.1161 
Sample 9 5.807 6.956 7.459 7.496 8.687 5.64 5.434 4.288 11.038 5.381 3.5093 49.9915 
Sample10 6.948 6.538 5.434 7.365 5.589 7.543 4.706 4.7 7.489 9.218 5.7396 44.8218 
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Table 4: MLES of α and λ for each random sample of Y-Population 

Simple Random Samples from Y-Population 
𝛼̂𝑦 𝜆̂𝑦

Sample 1 7.787 6.456 7.087 5.202 5.911 7.023 0.684 23.471 19.418 7.291 0.4860 124.543 
Sample 2 5.202 7.023 1.284 6.018 9.388 1.647 4.789 0.684 10.713 0.163 0.3309 34.329 
Sample 3 13.842 0.997 5.911 13.006 23.471 0.535 1.284 0.684 5.349 7.787 0.2469 103.923 
Sample 4 11.658 17.152 23.471 7.787 8.596 0.163 6.456 13.006 4.789 0.013 0.2078 134.931 
Sample 5 5.291 1.284 13.006 8.596 0.426 11.658 9.388 4.789 17.283 7.787 0.4596 87.918 
Sample 6 0.426 8.596 2.838 1.647 6.572 0.111 7.291 0.111 1.829 13.388 0.2006 36.379 
Sample 7 0.997 3.981 7.087 0.426 6.456 8.596 13.388 6.427 13.006 4.789 0.4675 59.545 
Sample 8 23.471 2.336 3.269 6.427 0.163 4.849 4.52 7.787 5.291 5.349 0.3125 76.955 
Sample 9 9.388 6.456 17.152 17.283 24.777 6.018 13.388 4.789 0.163 10.713 0.4078 168.979 
Sample10 0.747 2.838 0.309 8.596 5.202 10.713 13.006 19.418 23.471 1.647 0.2632 132.424 

Now, we draw 10 samples using ranked set sampling technique. We run two cycle (r = 2) 
of set size m = 5 to get a ranked set sample of size n = r * m = 10.  

Table 5: MLES of α and λ for each ranked set sample of X-Population

Ranked Set Samples from X-Population 

𝛼̂𝑥 𝜆̂𝑥

Sample 1 4.137 6.476 6.369 6.515 8.799 5.381 6.948 5.807 8.532 8.687 5.3408 47.8695 
Sample 2 4.288 6.492 6.725 6.071 10.491 4.288 6.369 8.591 7.024 9.254 3.3715 52.0406 
Sample 3 4.288 6.869 6.071 7.496 11.038 5.009 6.071 7.495 7.495 11.038 3.0263 57.6589 
Sample 4 7.683 7.489 6.515 9.218 6.476 6.958 4.288 6.492 7.543 7.543 8.1074 50.7209 
Sample 5 4.137 6.958 6.545 6.956 11.038 4.706 6.476 8.12 7.543 9.289 3.5078 55.1790 
Sample 6 4.531 6.522 7.683 7.024 10.092 4.288 6.033 7.489 7.937 7.398 4.5176 50.1875 
Sample 7 4.137 6.515 6.129 6.129 8.591 2.997 6.869 5.807 7.489 9.218 3.0288 43.9437 
Sample 8 4.137 5.807 6.948 7.224 10.092 4.531 4.706 9.289 7.945 10.491 2.5873 55.5291 
Sample 9 6.071 6.948 7.224 6.948 9.289 4.531 6.492 5.009 7.398 11.038 3.9824 53.6212 

Sample 10 5.589 5.589 6.087 7.945 9.218 5.009 4.531 6.545 7.459 8.799 4.8530 46.9136 

Table 6: MLES of α and λ for each ranked set sample of Y-Population

Ranked Set Samples from Y-Population 

𝛼̂𝑦 𝜆̂𝑦

Sample 1 5.291 0.997 4.52 17.152 9.388 0.065 1.284 1.647 13.842 11.658 0.24212 76.3620 
Sample 2 0.013 7.787 2.336 6.456 17.152 3.977 0.747 11.658 19.418 17.283 0.21862 123.001 
Sample 3 0.535 4.52 2.336 9.388 13.388 0.747 0.065 4.849 13.006 23.471 0.20209 103.7666 
Sample 4 3.981 0.426 4.52 4.789 23.471 0.684 4.789 7.023 7.023 48.105 0.19412 304.6421 
Sample 5 1.284 3.269 11.658 8.596 10.713 0.065 4.789 6.572 6.456 13.842 0.34995 63.6314 
Sample 6 1.647 1.647 5.911 13.842 7.023 0.111 4.789 5.291 7.291 11.658 0.36021 52.1297 
Sample 7 0.111 1.829 3.977 23.471 7.787 0.065 6.427 4.789 4.849 48.105 0.14340 303.2548 
Sample 8 0.111 3.977 6.018 4.52 17.283 0.163 0.065 3.977 7.023 32.795 0.14298 151.186 
Sample 9 0.111 5.202 0.535 4.52 7.023 2.336 0.426 2.336 13.006 5.911 0.25672 31.2303 
Sample10 1.304 4.789 8.596 7.023 32.795 0.684 0.997 6.456 32.795 19.418 0.23438 271.9073 

To obtain 10 samples of size 10, we conducted 20 cycles. Every pair of consecutive cycles makes 
up one sample of size 10. The 20 cycles we performed to get the 10 ranked samples from Population 
X. The ranked set samples from Population X, along with the corresponding maximum likelihood
estimates of 𝛼𝑥 and 𝜆𝑥, are shown in Table 5. Similarly, we run the 20 cycles to draw ranked set
samples from Population Y and the ranked set samples with maximum likelihood estimates of 𝛼𝑦

and 𝜆𝑦 for Y Population are shown  in Table 6.
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Table 7: Bias, MSE and Relative efficiency of MLE of stress-strength model P in case of SRS and RSS 

SRS RSS 
𝛼̂𝑥 𝛼̂𝑦 𝑃̂𝑆𝑅𝑆 Bias MSE 𝛼̂𝑥 𝛼̂𝑦 𝑃̂𝑅𝑆𝑆 Bias MSE RE (%) 

Sample 1 6.7031 0.4860 0.2725 0.1007 0.01494 5.3408 0.2421 0.2016 0.0298 0.00359 415.43% 
Sample 2 3.1983 0.3309 3.3715 0.2186 
Sample 3 7.9133 0.2469 3.0263 0.2020 
Sample 4 2.6220 0.2078 8.1074 0.1941 
Sample 5 3.7265 0.4596 3.5078 0.3499 
Sample 6 3.2477 0.2006 4.5176 0.3602 
Sample 7 2.6515 0.4675 3.0288 0.1434 
Sample 8 3.3188 0.3125 2.5873 0.1429 
Sample 9 3.5093 0.4078 3.9824 0.2567 
Sample10 5.7396 0.2632 4.8530 0.2343 

An analysis of the statistical outcomes presented in the Table 7. This summary reveals a notable 
difference in the Mean Square Error (MSE) of the stress-strength model P between two sampling 
techniques. The Ranked Set Sampling (RSS) method demonstrates a significantly lower MSE 
compared to that obtained through Simple Random Sampling (SRS). Quantitatively, the relative 
efficiency (RE) of RSS surpasses SRS by a remarkable 415.43%. This substantial improvement in 
efficiency underscores the superior performance of RSS in practical applications. The findings 
strongly suggest that RSS offers more reliable and accurate results in real-world scenarios, 
outperforming the conventional SRS approach in the context of stress-strength modeling. 

8. Conclusion

Delving into the realm of reliability engineering, this study sheds new light on the estimation of 
stress-strength models, with a particular focus on the intriguing 𝑃𝑟(𝑌 < 𝑋) paradigm. Here, we 
explore the behavior of independent random variables Y and X, both dancing to the tune of the 
Nakagami distribution. While conventional wisdom has long favored simple random sampling, our 
research unveils a game-changing approach: ranked set sampling. By deriving maximum likelihood 
estimators for P under both sampling regimes, we set the stage for a riveting comparison. 

Our simulation studies paint a vivid picture of ranked set sampling's superiority, showcasing its 
ability to outperform its traditional counterpart in efficiency. But we don't stop at theoretical 
musings - we put our findings to the test in the crucible of real-world data, where ranked set 
sampling continues to shine brightly. 

As we draw the curtain on this investigation, one conclusion stands tall: in the arena of 
Nakagami stress-strength model estimation, ranked set sampling emerges as the undisputed 
champion over simple random sampling. Yet, this is not the end of our journey. The horizon beckons 
with tantalizing possibilities, as we set our sights on exploring the potential of other ranked set 
sampling methods in this critical field of study. The quest for ever-more efficient estimation 
techniques in stress-strength modeling continues, promising exciting developments in the future of 
reliability engineering. 
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