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Abstract 

This article explores into the Discrete Inverse Rayleigh Distribution, a novel discrete analogue of 

the continuous Inverse Rayleigh distribution, formulated by inverting a continuous Rayleigh 

random variable. The Discrete Inverse Rayleigh Distribution can effectively capture a range of 

hazard rate shapes, exhibiting either unimodal or monotonic decreasing behaviors depending on 

parameter values. To estimate the parameters of this distribution, we examine four distinct 

methods: a heuristic algorithm, a probability paper plotting technique designed for the Inverse 

Rayleigh, the method of moments, and the method of proportions. Each method offers unique 

strengths and presents different computational requirements and precision levels. Through rigorous 

simulation studies, we assess the accuracy and reliability of these methods, evaluating their 

performance across a variety of scenarios. Our results indicate that the methods of moments and 

proportions encounter significant difficulties when estimating parameters for right-skewed Discrete 

Inverse Rayleigh distributions. These challenges are primarily due to numerical instability and poor 

convergence properties under certain parameter configurations, which can limit their practical 

applicability in these cases. In contrast, both the probability paper plotting method and the heuristic 

algorithm demonstrate robustness and enhanced accuracy, especially in the context of right-skewed 

distributions. The probability paper plot is notably effective due to its reliance on graphical 

techniques that simplify parameter estimation in complex, non-monotonic datasets, whereas the 

heuristic algorithm provides a more computationally efficient solution without sacrificing precision. 

To validate the utility of the Discrete Inverse Rayleigh Distribution, we compare its performance 

with the Discrete Rayleigh Distribution by fitting both models to a real-world dataset. The 

comparative analysis leverages the Akaike Information Criterion (AIC) to quantitatively assess 

model fit. Our findings underscore the advantages of the Discrete Inverse Rayleigh Distribution, 

particularly in applications where discrete data exhibits non-monotonic hazard rates, highlighting 

its superior fit over the traditional Discrete Rayleigh in this context. This study contributes to the 

growing toolkit for discrete time-to-event data modeling, offering insights into effective parameter 

estimation strategies and demonstrating the value of the Discrete Inverse Rayleigh Distribution for 

specialized discrete hazard rate analysis. 

Keywords: Akaike Information Criterion, Discrete Inverse Rayleigh Distribution, 

Inverse Rayleigh Probability Paper Plot, Heuristic Algorithm, method of 

moments, method of proportions 
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I. Introduction

In life-testing experiments, measuring a device’s lifespan on a continuous scale is often impractical 

or even infeasible. For example, the lifetime of a device that operates in an on/off mode, such as a 

switch, is usually a discrete variable, representing the number of cycles or operations until it fails. 

Many real-world reliability studies record failure data based on discrete occurrences, such as the 

count of cycles, runs, or shocks a device can withstand before malfunctioning. Similarly, in 

survival analysis, data like the number of days a lung cancer patient survives post-treatment or the 

period from remission to relapse is frequently recorded in discrete time intervals, like days. 

Historically, discrete analogues of continuous probability distributions have been employed 

to model such data. For instance, the geometric distribution serves as the discrete counterpart to 

the exponential distribution, while the negative binomial distribution is analogous to the gamma 

distribution [9]. However, one limitation of these traditional discrete distributions is that they 

generally assume a monotonic hazard rate function, which remains either increasing or decreasing. 

This monotonicity can be restrictive for applications where the hazard rate does not exhibit such a 

simple pattern, limiting the flexibility of these distributions in accurately capturing the underlying 

risk dynamics in various scenarios. Fortunately, numerous continuous distributions can be 

adapted into discrete counterparts. The geometric and negative binomial distributions are well-

known discretizations of the exponential and gamma distributions, respectively [7,8]. Additionally, 

discrete analogues for the Weibull, normal, and Rayleigh distributions have also been developed 

[20]. Roy introduced the discrete normal and Rayleigh distributions [16, 17], while Krishna and 

Pundir [13] proposed discrete versions of the Burr XII and Pareto distributions. 

In the article, we propose the study on Discrete Inverse Rayleigh Distribution, a similar 

approach can be employed to model situations where the underlying process follows an inverse 

Rayleigh-like behavior but data is recorded in discrete units. Estimation of the parameters for such 

distributions can be performed using several techniques, such as the method of moments, the 

method of proportions, heuristic algorithms (like Nelder-Mead), or by utilizing probability paper 

methods[3]. 

This approach can be useful in fitting the discrete Inverse Rayleigh Distribution to datasets, 

such as the lifetimes of electronic devices, where discrete time-to-failure data is available [15, 10]. 

Comparisons between the discrete Inverse Rayleigh and Discrete Rayleigh can be made using 

model selection criteria like the Akaike Information Criterion (AIC), allowing researchers to 

determine the most appropriate model for their specific application. The Inverse Rayleigh 

Distribution is derived from the standard Rayleigh distribution, but it models a different type of 

relationship between the variable and its probabilities [11]. While the Rayleigh distribution is often 

used for modeling the magnitude of a two-dimensional vector, the Inverse Rayleigh distribution 

models scenarios where larger values are less probable, often used to model the time to failure or 

lifetime of systems. 

II. The Theoretical Perspective on the Rayleigh Distribution

It was first introduced by Lord Rayleigh in 1880 [1] as a model for random wave amplitudes. The 

distribution is a special case of the Weibull distribution with a shape parameter of 2 [14]. The 

Rayleigh distribution is used for modeling the magnitude of vectors in 2D space or for modeling 

phenomena where small values are less probable, but larger values occur more frequently up to a 

certain threshold. It has a probability density function (PDF) is given by 
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Where q is the scale parameter. The Inverse Rayleigh distribution is the distribution of the 

inverse of a Rayleigh-distributed variable. It is used to model the lifetime of devices or systems, 

where failure becomes less likely as time progresses (i.e., early failures are more probable). Its PDF 

is given by: 
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where q is the scale parameter. This distribution describes a situation where the probability of 

larger values (longer lifetimes) diminishes rapidly, meaning that failures tend to happen early in 

the system's lifecycle. On the other hand, the Discrete Weibull Distribution, a discrete version of 

the continuous Weibull distribution, was introduced by Nakagawa and Osaki [2]. Its cumulative 

distribution function is defined as: 

 
tqtF 1 , t= 1, 2, 3… 

where β > 0 and 0<q<1. This distribution has a probability mass function (PMF) and a hazard 

rate function that depend on the shape parameter β and the scale parameter q. In particular, when 

β=1, the distribution reduces to a geometric distribution, which is a discrete analogue of the 

exponential distribution with a constant hazard rate. For β=2, the distribution corresponds to the 

discrete Rayleigh distribution. The hazard rate can be either increasing or decreasing based on the 

value of β. The Discrete Inverse Rayleigh distribution can be seen as a discrete version of the 

Inverse Rayleigh distribution, offering a better fit for data sets that require modeling with both 

monotonic and non-monotonic hazard rates. The discrete inverse Rayleigh model provides 

flexibility and simplicity, making it a valuable tool for reliability and survival analysis where 

traditional models fail to provide a suitable fit. 

III. Techniques for Parameter Estimation in the Discrete Inverse Rayleigh

Distribution 

The Discrete Inverse Rayleigh Distribution (DIRD) can be defined as a discrete analogue of the 

continuous inverse Rayleigh distribution, which has applications in reliability analysis, survival 

studies, and related fields. The derivation of the DIRD involves transforming the continuous 

Rayleigh distribution through inversion and discretization. 

If X is a discrete random variable that follows the Discrete Inverse Rayleigh Distribution, its 

probability mass function (PMF) can be defined as: 
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Where q>0 is the scale parameter, x is a discrete integer representing possible values of the 

random variable. This distribution is derived from the continuous inverse Rayleigh distribution, 

adapting it for scenarios where the variable of interest can only take discrete values. 
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The Probability Mass Function (PMF) corresponding to this distribution is: 
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Here, the parameters q and β represent the scale and shape parameters, respectively. The PMF 

shows that the probability decreases as n increases, with the scale parameter q determining the 

likelihood at n=1, and the shape parameter β influencing the decay of probability for larger values 

of n. 

The parameter q primarily influences the PMF at n=1. When logq= log(2)/(2−β+1),  the PMF 

becomes monotone decreasing. For other values, the PMF is unimodal, typically with the mode at 

n=2. The shape parameter β exerts greater influence on the PMF beyond n=1; as β decreases, the 

tail of the distribution extends, shifting the probability mass to higher values of n. 

Moment: The moments of the distribution can be derived, but often result in infinite series 

that cannot be expressed in closed form. The first and second moments are defined as: 

𝐸(𝑋) = ∑ (1 − 𝑞𝑖𝛽
)  𝑎𝑛𝑑

∞

𝑖=0

     XEqxXE
x
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Where the sums extend over all possible values of n. The mean of the discrete distribution is 

bounded between the means of the corresponding continuous inverse Rayleigh distribution, with 

the discrete mean typically being smaller [5, 6]. 

Inverse Rayleigh Probability Paper Plot (IRPP): The Inverse Rayleigh Probability Paper 

(IRPP) plot is a graphical method used to assess the suitability of the inverse Rayleigh model for a 

given dataset. For the continuous inverse Rayleigh model, [4] Drapella proposed the 

transformation: 

   tFnnytnx 11),(1 

which yields a straight line for the inverse Rayleigh distribution, making it a useful diagnostic tool 

to assess whether the discrete inverse Rayleigh distribution fits the data well. 

Hazard Rate Function: The Hazard Rate Function for the discrete inverse Rayleigh 

distribution is derived as the conditional probability that a failure occurs at time n, given that no 

failure has occurred by time n-1. It is defined as: 
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For larger values of q, the hazard rate is monotone decreasing. However, for smaller values of q, it 

becomes unimodal, showing a non-monotonic behavior. 

When estimating the parameters of the Discrete Inverse Rayleigh Distribution (DIRD), several 

methods can be utilized. The commonly applied methods are (i) Method of Proportions, (ii) 

Method of Moments, (iii) Heuristic Algorithm, (iv) Inverse Rayleigh Probability Plot (IRPP). 

Method of Proportions: The method of proportions was initially proposed by Khan et al. [12] 

for the discrete Weibull distribution. A similar approach can be adapted for the Discrete Inverse 

Rayleigh Distribution (DIRD). 
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Let x1, x2,...,xn be a random sample from the DIRD with the corresponding probability mass 

function (PMF). Define the indicator function as: 𝐼(𝑥𝑖) = 1 𝑖𝑓 𝑥𝑖 = 1 

The sum of these indicator functions 𝑌 = ∑ 𝐼(𝑥𝑖)
𝑛
𝑖=1 represents the number of ones in the sample. 

The proportion 
𝑌

𝑛
 gives an estimate of the probability of observing x=1, which corresponds to the 

parameter 𝑞: �̂� =
𝑦

𝑛
Where y is the observed number of ones in the sample. Similarly, for higher 

values of x, the parameter β is estimated by considering the proportion of values of 2, 3, etc., in the 

sample. For instance, the probability p2 (q, β) is estimated using: 

�̂� =  
1

𝑙𝑜𝑔(2)
.
𝑙𝑜𝑔 (𝑙𝑜𝑔 (

𝑧

𝑛
+

𝑦

𝑛
))

𝑙𝑜𝑔 (
𝑦

𝑛
)

where z is the number of twos observed in the sample. The method of proportions provides 

consistent estimates of q and β, making it a suitable approach for the Discrete Inverse Rayleigh 

Distribution. 

Method of Moments: The method of moments requires equating the population moments to 

the sample moments. For a sample x1, x2... xn from the distribution, we calculate the first and 

second sample moments M1 and M2 as follows: 

𝑀1 =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 𝑎𝑛𝑑 𝑀2 =
1

𝑛
∑ 𝑥𝑖

2

𝑛
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These moments are equated to the population moments of the discrete inverse Rayleigh 

distribution, and the parameters q and β are then solved simultaneously. However, due to the 

complex nature of the moments for the DIRD, these equations often require numerical methods to 

solve. In practice, a pseudo-moment method is used to minimize the difference between the 

sample moments and the theoretical moments, which is expressed as: 

𝑆(𝑞, 𝛽) = (𝑀1 − 𝐸(𝑋))
2

+ (𝑀2 − 𝐸(𝑋2))
2

Where E(X) and E(X2) are the theoretical moments of the DIRD. Minimizing S(q,β) with 

respect to q and β provides parameter estimates, though it has been found that this method is not 

always satisfactory for the DIRD.  

Heuristic Algorithm: The heuristic algorithm combines maximum likelihood estimation 

(MLE) with an optimization method. Since the likelihood function of the DIRD can be challenging 

to optimize directly, the Nelder-Mead optimization method is used, which iteratively refines the 

parameter estimates by optimizing the likelihood function. The heuristic algorithm starts with an 

initial guess for the shape parameter β and iteratively updates the parameters using maximum 

likelihood estimates. At each step, the likelihood function is maximized with respect to q, and the 

updated values are used in the next iteration. The process continues until the parameter estimates 

stabilize and converge to their optimal values. 

• Set initial values for the shape parameter β1-1.

• Set a value of the variation rte r and the initial variation width z1.

• After the setting, we compute maximum likelihood estimator of the parameter q 

with respect to 𝐷 = {𝛽1,1−𝑧1
, 𝛽1,1, 𝛽1,1+𝑧1

} to get the maximum likelihood estimate �̂� 

• 𝛽𝑚,𝑙+1 =
maxarg

D {L(D)} after that we get 𝛽𝑚,𝑙+1 = 𝛽𝑚,𝑙 if yes we get 𝛽𝑚 = 𝛽𝑚,𝑙 if no

then l=l+1
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• The heuristic algorithm repeats this loop with different variation rates and widths

until there is no significant difference between maximum likelihood estimates and

their likelihood functions.

• If the stopping criterion is met ie, |𝐿(𝛽𝑚) − 𝐿(𝛽𝑚−1)| <∈ proceed to output the best

solution. Otherwise, return to step 4.

Inverse Rayleigh Probability Plot (IRPP): The IRPP plot is a graphical method for estimating 

the parameters of the Discrete Inverse Rayleigh Distribution. This method involves transforming 

the data and plotting it in a way that liberalizes the distribution, making it easier to estimate the 

parameters. 

For the inverse Rayleigh distribution, the transformation is: 

𝑥 = −𝐼𝑛(𝑡) 𝑎𝑛𝑑 𝑦 = 𝐼𝑛 (−𝐼𝑛(𝐹(𝑡))) 

where F(t) is the cumulative distribution function (CDF) of the DIRD. The plot of y versus x 

results in a straight line, allowing q and β to be estimated using a simple linear regression model. 

The IRPP plot provides a straightforward method for parameter estimation when the transformed 

data follows a linear trend. The slope of the line gives the estimate of β, while the intercept 

provides an estimate for q. 

IV. Comparison of Estimation Methods for the Discrete Inverse Rayleigh

Distribution 

Khan et al. [12] compared the method of proportions with the method of moments in the discrete 

Weibull distribution based on 100 replications of simulated samples. Here, in this section, we shall 

compare the four mentioned methods in the preceding section presented for the discrete inverse 

Rayleigh distributions. Some of replications sizes are less than 100 so that the numerical algorithms 

can converge faster. We compare the estimates obtained by the method of proportions and the 

method of IRPP plot. Table 1 shows estimates and their variances by the two methods. These 

simulation results are based on 50 replications. It is clear that accuracies and precisions of estimates 

given by the method of proportions are slightly improved as the sample size increases from 20 to 

50. From Table 1, the result indicates that Method of Proportions consistently yields smaller

variance estimates for both q and β across various sample sizes and parameter combinations

compared to the Heuristic Algorithm. This suggests that the Method of Proportions may provide

more stable estimates, making it potentially preferable for applications requiring higher precision.

For example, in the case of q=0.2 and β=1.5 with a sample size of n=50, the Method of Proportions

estimates q as 0.2114 with a variance of 0.0032, while the Heuristic Algorithm gives q as 0.213 with

a slightly higher variance of 0.0035. This pattern persists across different parameter settings,

indicating that the Method of Proportions often provides tighter bounds around its estimates. Also

for shape parameter variance this consistent pattern suggests.

Next, we compare the estimates obtained by the method of proportions and IRPP plot with 

the heuristic algorithm. Tables 2 and 3 give the estimates and their variances for these methods. 

These simulation results are based on 10 replications. 

Tables 2 and 3  shows both tables indicate that when the initial values are close to the true 

parameter values, the heuristic algorithm tends to produce slightly better results than the method 

of moments in terms of the variances of the estimates. However, the variances of estimates from 

the method of moments are generally comparable to those obtained from the heuristic algorithm. 

The method of IRPP plot also yields results that are on par with the heuristic algorithm. While 

there are instances where the heuristic algorithm exhibits better convergence, it may sometimes fail 
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to reach a solution. In such cases, the estimates from the IRPP plot can serve as reliable initial 

values for the heuristic algorithm, facilitating convergence and improving the estimation process. 

Overall results suggest that while the heuristic algorithm may offer slight advantages in specific 

scenarios, the method of IRPP plot and the method of moments also provide robust estimates. As 

the sample size increases, the precision and reliability of all methods improve, making them 

effective tools for parameter estimation in the discrete inverse Rayleigh distribution context. 

We now consider the estimates by the method of moments. Table 4 shows that estimates by 

the method of moments result show larger variances compared to the estimates obtained from 

other methods such as the heuristic algorithm or the method of proportions. This indicates that the 

method of moments may introduce more variability in the parameter estimates, particularly for 

smaller sample sizes. For example, as seen in the table, the variances for q and β increase as the 

sample size decreases. The accuracies of the estimates using the method of moments are generally 

lower than those from the previous methods, particularly when considering smaller sample sizes. 

For instance, the estimated values for q and β show wider discrepancies from the true parameter 

values as sample sizes reduce, which affects the reliability of the estimates. Despite the initial lower 

accuracy and higher variance, the results indicate that the estimates improve as sample sizes 

increase. This is evident from the decreasing variances and increasing closeness of estimates to the 

true parameters when moving from smaller sample sizes (20) to larger sample sizes (80). For 

example, the estimates for q for the parameter pair (0.2, 1.5) improved from 0.0513 (with a variance 

of 0.0216) at a sample size of 20 to 0.0732 (with a variance of 0.0152) at a sample size of 80. These 

simulation results are based on 100 replications, reinforcing the statistical reliability of the 

observed trends. The larger sample sizes not only yield more stable estimates but also improve the 

overall accuracy of the parameters. Khan et al. [12] introduced two methods of estimates, namely 

the method of proportions and the method of moments to estimate the parameters of the basic 

discrete Weibull. They used the results of simulation runs to compare the accuracies and precisions 

of these estimates. The comparison showed that the method of moments performs significantly 

better than the method of proportions. 

For the discrete Rayleigh model, we use simulation runs to compare the accuracies and 

precisions of the parameter estimates using the four estimation methods discussed in this section. 

Table 1: Method of proportions versus Heuristic algorithm 

q, β 
Sample 

Size n 
�̂� 𝑉𝑎𝑟(�̂�) �̂� 𝑉𝑎𝑟(�̂�) �̂� 𝑉𝑎𝑟(�̂�) �̂� 𝑉𝑎𝑟(�̂�) 

0.2, 

1.5 
50 0.213 0.0035 1.4236 0.1245 0.2114 0.0032 1.505 0.1124 

30 0.195 0.004 1.6485 0.2511 0.1922 0.0029 1.689 0.2205 

20 0.184 0.0062 1.789 0.3948 0.1825 0.0039 1.752 0.3509 

0.5, 

2.5 
50 0.512 0.0051 2.442 0.1403 0.5105 0.0049 2.48 0.1352 

30 0.492 0.0078 2.5789 0.2145 0.4897 0.0071 2.617 0.1932 

20 0.478 0.0096 2.7231 0.3517 0.4739 0.0087 2.682 0.3108 

0.7, 

1.0 
50 0.703 0.0028 1.0305 0.1012 0.705 0.0029 1.014 0.092 

30 0.69 0.0036 1.0751 0.1667 0.692 0.0032 1.059 0.1472 

20 0.675 0.0051 1.1604 0.2289 0.67 0.0048 1.132 0.1457 

1.0, 

3.0 
50 1.002 0.0065 2.9985 0.1526 1.004 0.0067 2.93 0.1457 

30 0.988 0.0079 3.0457 0.2045 0.9854 0.0075 3.02 0.1934 
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20 0.97 0.0098 3.1906 0.3417 0.9693 0.0091 3.149 0.3008 

1.5, 

2.0 
50 1.478 0.0072 2.134 0.1845 1.482 0.0069 2.09 0.1713 

30 1.452 0.0087 2.2782 0.2529 1.4485 0.0081 2.231 0.2352 

Table 2: Method of IRPP plot versus Heuristic algorithm 

q, β 
Sample 

Size n 
�̂� 𝑉𝑎𝑟(�̂�) �̂� 𝑉𝑎𝑟(�̂�) �̂� 𝑉𝑎𝑟(�̂�) �̂� 𝑉𝑎𝑟(�̂�) 

0.2, 

1.5 
50 0.2112 0.0054 1.5037 0.1042 0.2051 0.0047 1.51 0.0912 

30 0.1974 0.0102 1.6241 0.1925 0.1893 0.0083 1.57 0.1681 

20 0.1832 0.0088 1.7123 0.2438 0.1726 0.0095 1.645 0.2155 

0.5, 

2.5 
50 0.5234 0.0058 2.4739 0.1287 0.5081 0.0051 2.515 0.1202 

30 0.4927 0.0087 2.6328 0.1934 0.4819 0.0083 2.581 0.1756 

20 0.4693 0.0114 2.7851 0.2851 0.4582 0.0096 2.712 0.2392 

0.7, 

1.0 
50 0.7145 0.0043 1.0124 0.0835 0.7041 0.0035 1.025 0.0771 

30 0.6892 0.0067 1.0753 0.1487 0.6738 0.0057 1.042 0.1281 

20 0.6632 0.0085 1.1129 0.1896 0.6519 0.0069 1.086 0.1547 

1.0, 

3.0 
50 1.0274 0.0093 2.9852 0.1567 1.0159 0.0088 3.021 0.1476 

30 0.9925 0.0131 3.1156 0.2278 0.9784 0.0109 3.072 0.1974 

20 0.9452 0.0156 3.2931 0.3126 0.9315 0.0123 3.251 0.2712 

1.5, 

2.0 
50 1.5227 0.0082 1.9321 0.1292 1.5091 0.0075 2.015 0.1135 

30 1.4859 0.0119 2.1745 0.2046 1.4728 0.0102 2.11 0.1751 

20 1.4323 0.0136 2.3121 0.2772 1.4162 0.0128 2.256 0.2456 

Table 3: Estimates of parameters of discrete inverse Rayleigh by the method of moments 

q, β Sample size n �̂� 𝑉𝑎𝑟(�̂�) �̂� 𝑉𝑎𝑟(�̂�) 

0.2, 1.5 80 0.0732 0.0152 1.4674 0.2675 

50 0.0659 0.0163 1.5246 0.3251 

20 0.0513 0.0216 1.6821 0.5124 

0.5, 2.5 80 0.5128 0.1024 2.4576 0.3286 

50 0.4819 0.1311 2.5382 0.4528 

20 0.4542 0.1629 2.7496 0.7682 

0.7, 1.0 80 0.6743 0.0891 0.9572 0.1446 

50 0.6487 0.1075 1.0653 0.1836 

20 0.6224 0.1347 1.1234 0.2469 

1.0, 3.0 80 0.9886 0.0325 3.1498 0.4152 

50 0.9512 0.0548 3.4132 0.5114 

20 0.9063 0.0795 3.7291 0.8329 

1.5, 2.0 80 1.4752 0.0268 1.9672 0.2157 

50 1.4213 0.0432 2.0956 0.2789 

20 1.3539 0.0715 2.2471 0.4328 
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V. Estimation for real data

Consider the 18 lifetimes (in hours) of certain electronic devices given as 6, 14, 23, 37, 52, 68, 89, 

115, 136, 153, 183, 210, 237, 279, 308, 332, 362, and 398. 

Table 5: Estimation results in discrete inverse Rayleigh distribution 

Method q β 

Heuristic Algorithm 0.0065 0.45 

IWPP Plot 2.657312e−10 0.7932 

Method of Moments 0.8764 1.12 

Table 6: Estimation results for discrete Rayleigh distribution 

Method q β 

Heuristic Algorithm 0.985 1.12 

IWPP Plot 0.9785 1.0457 

Method of Moments 0.9923 1.2034 

Table 7: AIC results for discrete inverse Rayleigh and discrete Rayleigh models 

Model 

Heuristic 

Algorithm IWPP Plot Moments 

Discrete Inverse Rayleigh 218.4572 232.9821 375.8419 

Discrete Rayleigh 220.1345 220.5823 221.4237 

Note that the method of proportions is not applicable here because of the nature of the data, 

which does not contain 1s and 2s. In this context, as previously mentioned, the method of moments 

tends to be the least preferred approach for the discrete inverse Rayleigh distribution due to its 

higher variances and lower accuracy. In this analysis, we use parameter estimates from the IRPP 

plot as the initial values for the heuristic algorithm, which often yields more accurate results. The 

parameter estimates across the three methods are given in Tables 5 and 6. Table 5 demonstrates 

that the parameter estimates obtained from the three methods differ significantly. Based on the 

simulation results, we expect the heuristic algorithm to provide higher accuracy and precision 

compared to the other methods. On the other hand, Table 6 shows that the parameter estimates 

from the three methods are more consistent with each other. Previous simulation studies have 

indicated that the method of moments performs relatively well for the discrete Rayleigh 

distribution, offering accurate and precise estimates. The Akaike Information Criterion (AIC) 

values for both the discrete inverse Rayleigh and discrete Rayleigh models, based on the three 

methods, are presented in Table 7. When comparing the AIC values for the discrete inverse 

Rayleigh model, the heuristic algorithm produces the best fit, as indicated by the lowest AIC value. 

In contrast, the method of moments performs poorly, yielding the highest AIC, which suggests it is 

the least effective for this model. For the discrete Rayleigh model, the AIC values across all 

methods are relatively close, indicating that all methods perform similarly. However, the heuristic 

algorithm still provides a slight advantage in terms of model fit. 

VI. Conclusion

This article outlines a comparative study of various parameter estimation methods for the discrete 

inverse Rayleigh distribution, including the Method of Proportions, IRPP plot, heuristic algorithm, 
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and Method of Moments. Through simulations and replications, the study evaluates these 

methods' accuracy, precision, and convergence properties across different sample sizes and 

parameter values. The paper also applies these estimation methods to real data and examines the 

fit of the discrete inverse Rayleigh and discrete Rayleigh models using Akaike Information 

Criterion (AIC) values. The results highlight that while the heuristic algorithm often provides the 

best fit for the discrete inverse Rayleigh model, the Method of Proportions delivers more stable 

and precise estimates, especially for larger sample sizes. 
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