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Abstract 

A precise forecast of the one-day-ahead load is essential for the efficient management of modern 

power system operations. This paper proposes a univariate model for short term load forecasting 

(STLF) that improves the precision of the Pattern sequence forecasting (PSF) algorithm. An 

analysis was conducted to identify the underlying patterns in the electrical load data using K-

means clustering and hierarchical clustering algorithms. The results demonstrate the efficacy of 

hierarchical clustering. The limitations of the original PSF algorithm, particularly in its clustering 

and prediction phases are addressed using hierarchical clustering and a new weighted average 

formula. The proposed method was validated using real-time series datasets and its performance 

was compared with those of three pattern sequence-based forecasting models. The performance is 

further evaluated on two electricity demand data sets and compared with bench mark models. The 

uncertainty and reliability of the forecast model was assessed using an error variance metric. The 

results show the superior forecast accuracy of the model.  

Keywords: short-term load forecasting, hierarchical clustering, pattern sequence, 
time series, weighted average. 

1. Introduction

The growing concerns of society regarding sustainability, decarbonization, and environmental 
change have spurred technological advancements in electrification, electric vehicles, and 
renewable energy. These technological breakthroughs present substantial difficulties in the energy 
supply-demand balance, as electricity storage is difficult [1]. Consequently, electrical load 
forecasting is crucial for efficient electrical system management. Numerous load forecasting 
models have been proposed in the literature, depending on the time range of the future values to 
be predicted: short-term (intraday and day-ahead), medium-term (one week to several months 
ahead), and long-term (one or more years). Short-term load forecasts are critical for planning 
power system operations and for bidding strategies in deregulated electricity markets [2]. Load 
behavior is the fundamental driver of power pricing, therefore the level of accuracy in predicting 
future loads has a direct impact on the financial performance of energy businesses and other 
market participants [3]. 

Over the years, various techniques have been developed for Short Term Load Forecasting 
(STLF). These models include contemporary computational intelligence, machine learning, and 
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pattern recognition techniques in addition to traditional methods [4]. Among these, pattern 
recognition techniques leverage past data to identify load series patterns.  

In the short term, load patterns are highly autocorrelated. Univariate models analyse past 
load patterns to predict future loads and do not depend on external factors. Consequently, 
univariate models can prevent inaccuracies caused by faulty or noisy exogenous data and produce 
more reliable and robust forecasts in STLF. This study proposes a univariate model for STLF that 
relies solely on the historical load series and does not incorporate any other information. 
Pattern similarity is crucial in univariate models to ensure precise prediction. Understanding these 
patterns guarantees that the models capture the essential characteristics of the data, leading to 
more robust, interpretable, and applicable models across various domains [5]. Unsupervised 
learning techniques such as clustering reveal hidden patterns in data. This technique groups data 
points into meaningful clusters based on underlying patterns.  

The Pattern Sequence Forecasting (PSF) technique [6] utilized clustering technique to identify 
patterns in time series data and then applied them to generate predictions. Owing to its efficacy 
and interpretability, it has gained prominence in a multitude of applications [7-10]. 

The PSF has certain limitations, although its performance in electrical load forecasting is 
encouraging. Some previous studies have addressed the limitations of the PSF algorithm and 
proposed improvements and modifications that are useful in increasing the forecast accuracy of 
electrical load data and in treating missing values and outliers [11-12]. The current study suggests 
alterations to the original PSF algorithm in both the clustering and prediction stages to improve the 
precision of electrical load forecasting. We performed a comprehensive analysis of the proposed 
methodology using publicly accessible Pennsylvania - New Jersey - Maryland (PJM) market 
demand data and compared it with benchmark models to ascertain its effectiveness. 

The subsequent sections of the paper are organized as follows: Section 2 presents the original 
PSF algorithm, a literature review of the proposed PSF modifications, and scope for improvement. 
Section 3 outlines the proposed methodology. Section 4 reports and analyzes the performance of 
the proposed methodology. Section 5 summarizes the contributions of this study.  

2. Pattern Sequence Similarity algorithm: Variations and scope for refinement

2.1. Original PSF algorithm 

The PSF algorithm [6] can be divided into two phases: clustering and prediction. Phase one aims to 
assign each day, or a vector of 24 hours, to a cluster. The cluster pattern sequence prior to the day 
to be predicted was matched with the historical patterns, and future values were obtained by 
averaging the subsequent days of the matched patterns. 
The different steps involved in both phases of the PSF algorithm are as follows: 
The clustering component encompasses several activities, such as data normalization, 
determination of optimal number of clusters, and obtaining the cluster labels.  

• Data normalization: Data normalization was used to smooth the trend from the original
data. The transformation used in the original PSF algorithm is 𝑥𝑗 =

𝑥𝑗
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1

 where 𝑥𝑗 is the 

demand of the jth hour of the day and 𝑁 is equal to 24 (the number of hours per day). 
• Number of clusters: The optimal number of clusters is determined by the concordance

between at least two of the following three indices: the Silhouette index, Dunn index, and
the Davies-Bouldin index.

• Clustering/Labelling: K-means clustering was used to label each day with the optimal
number of clusters. Clustering reduces the dimensionality of the data from 24 features to a
single dimension, which enhances resilience by substituting the actual values with whole
numbers (cluster labels).

The prediction phase in PSF consists of activities such as choosing the optimal window size, 
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identifying matching pattern sequences, and calculating the final forecasts. 
Let 𝑋(𝑖) ∈ ℝ24 be a vector composed of 24-hourly demand of day 𝑖, and the corresponding cluster 
label is given by 𝐿𝑖  ∈ {1, 2, … , 𝐾}, where 𝐾 is the number of clusters.  

• Selection of optimal window size: The optimal window length (𝑤) of the pattern sequence
must be determined prior to prediction. The calculation is performed using n-fold cross
validation, and is selected at which prediction error ∑ ‖�̅�(𝑡) − 𝑋(𝑡)‖𝑡∈𝑇𝑆  is minimum
during the training process. Here �̅�(𝑡) is the forecasted demand for day 𝑡, and 𝑇𝑆 refers to
the testing set.

• Identification of matching pattern sequences: If day 𝑑 is to be predicted, matchings for a
sequence of labels 𝑆𝑤

𝑑−1 = [𝐿𝑑−𝑤, 𝐿𝑑−𝑤+1, … , 𝐿𝑑−2, 𝐿𝑑−1] of window length 𝑤, are searched in
the labelled data. The search continues until at least one matching pattern sequence of the
same length is discovered. If no replicates are identified, the window size is reduced by
one unit. This guarantees the presence of at least one duplicate in a labelled sequence, with
a minimum w value of 1.

• Forecasting: After identifying the matches, the subsequent 24 values that directly follow all
coincidences are extracted to a vector 𝑁𝑆. Finally, the values are averaged using the
formula given in  to anticipate the value of the future load.

�̅�(𝑡) =
1

𝑠𝑖𝑧𝑒(𝑁𝑆)
∑ 𝑁𝑆(𝑗)

𝑠𝑖𝑧𝑒(𝑁𝑆)
𝑗=1         (1) 

2.2. Modifications Proposed in the literature 

The literature proposes various modifications and improvements to the PSF algorithm. This 
section discusses some of the variations of the original PSF algorithm. The original PSF algorithm 
identifies analogous patterns in temporal data, although it had difficulties with specific instances. 
To address this issue, an enhanced version of the PSF algorithm was developed in [11] to predict 
anomalies in time series data with high accuracy. The method proceeds by using an additional 
measure to identify motifs or repetitive patterns in sequences that leads to improved predictions 
and capacity to identify potential outliers. A modification to PSF was proposed in [12], which uses 
nonnegative tensor factorization for clustering in PSF and is a promising direction for energy 
demand prediction. A novel method employing the PSF algorithm is presented in [13] wherein the 
accuracy of power demand forecasting was enhanced by employing distribution-based predictions 
and computing the frequency ratios of the cluster patterns. The imputePSF method suggested in 
[14] is a variation of the PSF algorithm that looks for recurring patterns in observed data to obtain
a more accurate estimate of missing values. A novel hybrid algorithm, the funPSF, was designed to
forecast functional time series, particularly in the context of electricity demand [15]. This algorithm
combines functional data clustering with a forecasting strategy based on pattern sequence
similarity. The bigPSF [16] and CUDA-bigPSF [17] algorithms, which build on the PSF method,
design big data time series forecasting with notable improvements in scalability and accuracy. An
improved version of the algorithm proposed in [10] which makes use of self-organizing maps and
artificial neural networks and a genetic algorithm to determine the optimal hyperparameters of the
model. MV-bigPSF algorithm [18], was proposed to forecast a multivariate time series. The model
leverages the PSF algorithm, showcasing exceptional scalability and effectiveness in handling data
sets consisting of millions of samples.

2.3. Scope for Refinement 

In the clustering phase, the PSF algorithm employs K-means clustering. Despite its efficiency and 
simplicity, the K-means clustering algorithm has certain limitations, including sensitivity to the 
initialization of centroids, scale, and density. Also, ignoring the temporal order of the time series 
can hinder its efficiency when dealing with time series data or complicated pattern identification. 
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In the prediction phase, simply averaging the patterns observed immediately after a matched 
sequence may not be the optimal method. This is because the averaged pattern may not accurately 
depict the load pattern of the specific day under examination, particularly if the cluster patterns 
discovered differ from those of the previous working day [13]. 

3. Proposed Methodology

This section outlines the proposed methodology, which is based on the fundamental PSF 
algorithm. Below is a summary of the steps of the proposed methodology. Section 3.1 describes the 
data preprocessing; Section 3.2 details the clustering phase, which includes the determination of 
the clustering algorithm and the tuning of hyperparameters (k and w); and Section 3.3 presents the 
prediction phase. Fig. I illustrate the flow of the proposed method.  

Figure 1: Flow of the Proposed Methodology 

3.1 Pre-Processing Phase 

Data normalization is a crucial technique in data pre-processing, particularly in clustering 
algorithms, as they rely on distance measurements to determine the similarity between any two 
data points. When features are not normalized, those with large scales can have a disproportionate 
impact on the distance calculations, resulting in biased or incorrect cluster labels. 

The normalize technique used in this paper is 
𝑥𝑗

′ =
𝑥𝑗−min (𝑥𝑖)

max (𝑥𝑖)−min (𝑥𝑖)
 (2) 

where 𝑥𝑗
′ denotes the normalized value for 𝑥𝑗 and 𝑖 = 1, 2, … , 24.

This transformation is called Min-max normalization, which brings all the values into the range 
[0, 1]. Min-max normalization ensures that all features contribute equally to the clustering process, 
prevents any single feature from dominating due to its scale, and can lead to better and more 
interpretable clustering results [19]. 

3.2 Clustering Phase 

The main objective of the clustering step is to classify the data into groups based on the behavior 
and underlying patterns in the time series. It provides a representation that preserves the original 
information and describes the shape of the time series data as accurately as possible.  
The clustering phase consists of two steps: finding optimal values for the parameters and the 
clustering technique. 

PRE-PROCESSING 

PHASE

CLUSTERING PHASE 

Grid Search (k and w) Hierarchical 

Pattern Matching Finding 

Weights 
Final Forecast 

PREDICTION PHASE 

Data 

Normalization 

Parameter Optimization 
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3.2.1 Parameter Optimization (Optimal values of 𝑘 and 𝑤) 

The proposed algorithm has two input parameters: the number of clusters (𝑘) and the length of the 
window (𝑤) that contains the search patterns. The optimal values of 𝑘 and 𝑤  are determined 
using a grid search over the training set. We split the original data set into training and testing sets. 
We further divided the training set into two sets, 𝑦𝑇  and 𝑦𝑉 one for training and the other for 
validation to fine-tune the hyperparameters. The proposed algorithm was applied to different 
combinations of 𝑘 and 𝑤 for prediction. Among all possible combinations of  𝑘 and 𝑤, the pair that 
results in the minimum prediction error on  𝑦𝑉 i.e., ∑ ‖𝑦�̅�(𝑡) − 𝑦𝑣(𝑡)‖𝑚𝑖𝑛   is considered as the 
optimal value of parameters  𝑘 and 𝑤. 

3.2.2 Clustering Technique 

This study used two different clustering algorithms: K-means and Hierarchical clustering. An 
analysis of both algorithms was performed to identify the patterns in the historical data. 

K-means Clustering:

The primary concept underlying K-means clustering [20] is to establish k centroids, where each
centroid represents a distinct cluster with k denoting the predetermined number of clusters. Each
point in the given data set was assigned to its closest centroid. The centroids of these new clusters
are recalculated and a new binding is performed between the same data points and the new centroids.

Consequently, the location of the centroid’s changes. This process was repeated until the centroids

converged.

Hierarchical Clustering: 

Hierarchical clustering generally falls into two types: the agglomerative (bottom-up) and the 
divisive (top-down). The agglomerative approach is the most common approach for hierarchical 
clustering. In agglomerative clustering, the clustering algorithm treats each point as an 
independent cluster and, iteratively merges the two most similar clusters into a single cluster at 
each step. It creates a tree-like structure called a dendrogram, which records sequences of merges 
or splits. Fig. 2 depicts a dendrogram with data points on the x-axis and cluster distance on the y-
axis. The method of finding similarities between clusters results in the following hierarchical 
clustering variations: single, average, complete linkages, and Ward's method. Among them is the 
complete-linkage algorithm, which yields tightly bound clusters [21]. 

Figure 2: Dendrogram 
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3.3 Prediction Phase 

This section proposes a new weighing prediction formula that addresses the limitations of the 
original PSF algorithm.  

Let 𝑂𝑤
𝑖 = [𝑋(𝑖 − 𝑤 + 1), 𝑋(𝑖 − 𝑤 + 2), … , 𝑋(𝑖 − 1), 𝑋(𝑖)] be the vector composed of 𝑤 consecutive 

days prior to the day ′𝑖′. The distance between any pair of days 𝑖, 𝑗 is defined as 𝑑𝑖𝑠𝑡(𝑖, 𝑗) =

‖𝑂𝑤
𝑖 − 𝑂𝑤

𝑗
‖, where ‖. ‖ represents the Euclidean norm. The neighbors set of the day ′𝑑 − 1′ be 𝑁𝑆 =

{𝑞1, 𝑞2, … , 𝑞𝑚 } where 𝑞𝑖 is the day whose pattern sequence is matched with 𝑆𝑤
𝑑−1 and 𝑞1 and 𝑞𝑚 are

the first and 𝑚𝑡ℎ neighbor in order of distance calculated using the metric ′𝑑𝑖𝑠𝑡′ . The weighted 
average of the load for the days following the nearest neighbors provides the prediction, assuming 
that load profiles that were similar in the past will likely be similar in the future. The prediction is 
given by Equation. (3) 

    𝑋(𝑑) =
1

∑ 𝛼𝑖𝑖∈𝑁𝑆
∑ 𝛼𝑖𝑋(𝑖 + 1)𝑖𝜖𝑁𝑆   (3) 

where 𝛼𝑖 are the weighting coefficients that can be obtained using any of the following schemes 
given below. The standard method of computing the weighting factors 𝛼𝑖 as outlined in [22] is 
given by means of the Equation (4) 

𝛼𝑖 =
𝑑𝑖𝑠𝑡(𝑞𝑘,𝑑−1)−𝑑𝑖𝑠𝑡(𝑖,𝑑−1)

𝑑𝑖𝑠𝑡(𝑞𝑘,𝑑−1)−𝑑𝑖𝑠𝑡(𝑞1,𝑑−1)
 (4) 

4. Results and Discussion

This section outlines and analyses the performance of the proposed method. Section 4.1 describes 
the data set used to assess the effectiveness of the proposed method. Section 4.2 outlines the 
metrics used to measure the quality of the obtained results. Section 4.3 presents an analysis of the 
clustering techniques. Section 4.4 showcases the performance of the method using PJM market 
demand data for 2022, while, Section 4.5 outlines a comparative analysis with other methods 
proposed in the literature. 

4.1 Data Set 

Electricity demand data of the Pennsylvania - New Jersey - Maryland (PJM) market [23] on hourly 
basis for the year 2021 is considered to analyse the proposed methodology. The data set comprises 
8760 data points with a mean 89.34 × 103 MW. Fig. 3 shows the hourly load data for the year 2021.  

Figure 3: Hourly demand data of PJM market in the year 2021 

One can observe a high demand during summer months specially from June through August. 
Before the clustering analysis the data was normalized as mentioned in Section 3.1. 
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4.2. Performance Metrics 

The efficacy of the proposed methodology in obtaining day-ahead forecasts on the considered data 
was analysed using the forecast error metrics, Mean absolute percentage error (MAPE) in %, Root 
mean square error (RMSE) and Mean absolute error (MAE). 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑙𝑖−𝑙𝑖|

𝑙𝑖
× 100𝑁

𝑖=1            (5) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑙𝑖 − 𝑙𝑖)

2𝑁
𝑖=1  (6) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑙𝑖 − 𝑙𝑖|𝑁

𝑖=1  (7) 
where 𝑙𝑖 and 𝑙𝑖 are the actual load and the forecast load at hour ′𝑖′ respectively and 𝑁 is the number
of predictions.  In addition, the uncertainty in the forecasts can be estimated through the variance 
of the forecast error and evaluated using the metric VAR given by [24]. 

𝑉𝐴𝑅 =
1

𝑁
∑ (

|𝑙𝑖−𝑙𝑖|

𝑙𝑖
− 𝑀𝐴𝑃𝐸)

2
𝑁
𝑖=1  (8) 

4.3 Analysis of clustering techniques 

In the clustering phase prior to the clustering analysis, the important step is to find the best values 
for the input parameters 𝑘 and 𝑤. We considered the yearly load data of the PJM market from 
2021, which spans 365 days, for training, and use the 24-hourly load data from January 1, 2022, for 
validation. We varied 𝑘 from 2 to 7 and 𝑤 from 1 to 12 to measure the forecasting error when 
predicting the validation set. We found that 𝑘 =  4 and 𝑤 =  5 achieve the minimum RMSE, 
leading us to choose these values as optimal. 

We used a sample data set of PJM load data from March 1, 2021, to May 31, 2021 (spring 
season) to demonstrate the effectiveness of the clustering techniques (k-means and hierarchical 
clustering). K-means and Hierarchical clustering were used to label each day in the sample data 
into 4 clusters. Tables I and II shows the percentage of days classified into four clusters. By 
observing the tables, we can clearly classify the clusters into two groups: workings days and 
weekends. From Table 1 and 2 it is evident that Cluster 1 represents a group of weekends and 
clusters 2, 3 and 4 represents a group of working days. However, from both the tables one can 
observe that some days are mislabelled owing to the complex behaviour of the load data.    

Table 1: The distribution of days of the week (in%) and clusters using k-means clustering 

Cluster 
label 

Mon Tue Wed Thu Fri Sat Sun 

1 7.14 0.00 0.00 0.00 0.00 61.54 69.23 
2 64.29 69.23 69.23 53.85 69.23 23.08 15.38 
3 21.43 23.08 15.38 30.77 23.08 7.69 7.69 
4 7.14 7.69 15.38 15.38 7.69 7.69 7.69 

Table 2: The distribution of days of the week (in%) and clusters using Hierarchical clustering 

Cluster 
 label 

Mon Tue Wed Thu Fri Sat Sun 

1 7.14 0.00 0.00 0.00 0.00 69.23 84.62 
2 64.29 53.85 61.54 46.15 61.54 15.38 0.00 
3 0.00 15.38 7.69 7.69 7.69 0.00 0.00 
4 28.57 30.77 30.77 46.15 30.77 15.38 15.38 

In Table 1, one working day and nine weekends were misclassified, and in Table 2, one 
working day and six weekends were misclassified. Upon thorough analysis of holidays during the 
above period, we find that the one mislabelled working day is a Monday, falling on May 31, 2021, 
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as a holiday. Therefore, out of 92 days (working days and weekends), k-means clustering 
mislabelled five Saturdays and four Sundays, whereas hierarchical clustering mislabelled four 
Saturdays and two Sundays. The relative errors for k-means clustering and hierarchical clustering 
were 9.78% and 6.52%. The above analysis reveals that the hierarchical clustering is effective in 
labelling the time series data. 

4.4 Performance of the Proposed method 
A case study is conducted by considering the hourly load data from the PJM market for the year 
2022. The methodology is used to forecast day-ahead load data by considering the historical load 
of one year prior to the day in which the load is to be forecast. We advance the one-year training 
window for a specific day by one day, resulting in forecasts for the next 24 hours. This process 
yields forecasts for an entire year. We calculated and presented the monthly MAPE and error 
variance in Table 3 to evaluate the model's performance across all the months of 2022. The results 
are compared with the results of the model (K-means) obtained by using K-means clustering in the 
clustering phase.  According to the results in Table 3, it is evident that the proposed methodology 
performs significantly better than the K-means model.  The best and worst predictions occur on 7th 
of July and 30th of May with 0.2972 and 9.8249 MAPE (%) respectively. Fig. 4 and 5 shows the 
original day versus the predicted load. 

Table 3: Monthly MAPE (MMAPE) and Error variance (VAR) for all the months of the year 2022 

Month 
Proposed 

Methodology K-means
MMAPE VAR MMAPE VAR 

January 2.71 6.46e-4 3.43 10e-4 
February 2.41 4.33e-4 3.08 5.92e-4 
March 2.54 5.40e-4 3.02 7.59e-4 
April 2.46 6.15e-4 2.74 6.02e-4 
May 2.22 6.97e-4 2.26 6.57e-4 
June 2.18 4.60e-4 2.97 12e-4 
July 2.01 4.50e-4 2.58 6.55e-4 
August 1.84 4.34e-4 2.27 5.06e-4 
September 2.17 3.96e-4 2.42 6.03e-4 
October 1.53 1.80e-4 1.51 1.82e-4 
November 2.2 4.79e-4 2.08 3.88e-4 
December 2.18 5.79e-4 2.97 9.73e-4 
Average 2.20 4.92e-4 2.61 6.76e-4 

       Figure 4: Best Prediction in PJM load 2022     Figure 5: Worst Prediction in PJM load 2022 
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4.5 Comparative Analysis 

We compared the proposed methodology to three main approaches: Bokde & Asencio et al.'s R 
package (2017) [19], which includes the basic PSF function (RPSF) ; Shende et al.'s (2022) Python 
package [25], which includes the basic PSF function (PPSF) and DPSF functions; and modified PSF 
algorithm proposed in [13]. 

First, we validated the proposed methodology using real-time series "nottem" and "CO2" 
datasets. The “nottem” time series contains the average air temperatures at Nottingham Castle in 
degrees Fahrenheit over 20 years, and the “CO2” dataset consists of atmospheric concentrations of 
CO2 expressed in parts per million (ppm). We conduct a comparative analysis against RPSF, PPSF, 
DPSF functions using the metrics root-mean-square error (RMSE), mean absolute error (MAE), and 
mean absolute percentage error (MAPE). Both the time series data sets were partitioned into 
training and testing datasets. The training set comprised the time series data, with the exception of 
the final 12 values. The testing dataset comprised of final 12 values. The values of the error metrics 
are recorded in Table 4.  

Table 4: A comparative analysis of real-time series forecasting results 

Time 
Series 

Error 
Metric 

RPSF PPSF DPSF Proposed 
Method 

nottem 
RMSE 2.24 1.84 5.27 1.81 
MAE 1.94 1.54 4.77 1.35 
MAPE 4.14 3.23 9.43 2.89 

CO2 
RMSE 5.93 1.42 0.41 1.21 
MAE 5.91 9.27 0.32 1.13 
MAPE 1.62 2.67 0.08 0.61 

From the results, it is evident that the proposed methodology is performed well. The DPSF 
function yields better results for a data with positive or negative trend.  

Secondly, the methodology was compared with the model proposed by Jin et al (2014) [13] 
using the load data of NYISO market over the year 2006 [26] with the error metric MAE. Load data 
of 2005 is used as training set and the forecast of 24-hours ahead is calculated. Further forecasts can 
be found by shifting the window of the training set to next day. The error metric MAE is evaluated 
and recorded in Table 5 against the measures obtained in [13]. 

Table 5: A comparative analysis of the forecast results using MAE of NYISO load data from 2006 

Month 
Mean Absolute Error (MAE) 

RPSF PPSF DPSF 
Modified 

PSF 
Proposed 
Method 

January 6.71 9.61 6.7 3.45 2.18 
February 6.91 9.84 8.07 3.8 2.38 

March 5.20 9.01 7.87 3.59 2.58 
April 9.15 8.87 12.01 3.32 2.18 
May 9.62 12.35 10.37 3.67 2.07 
June 8.06 15.27 11.05 4.53 3.35 
July 9.60 15.91 10.41 5.84 3.37 

August 8.75 13.33 12.83 4.07 2.17 
September 8.45 10.39 8.65 2.6 2.18 

October 4.22 9.97 7.7 2.92 1.67 
November 4.80 9.12 6.87 3.47 2.54 
December 7.65 11.73 8.58 3.77 2.52 
Average 7.43 11.28 9.26 3.75 2.43 
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5. Conclusion

The paper presents a methodology that enhances the forecast capability of the PSF algorithm. The 
modifications to the PSF algorithm that includes a judicious use of hierarchical clustering 
algorithm in its clustering phase and a weighted average formula in the prediction phase has led to 
improved accuracy in day ahead load forecasts. Alongside MAE, RMSE, MAPE, the error variance 
(VAR) has been used for a comprehensive evaluation of the model’s performance. The proposed 
model outperforms benchmark models in terms of forecasting accuracy, as evidenced by the 
performance metrics calculated from the real-time series data.  The findings highlight the 
effectiveness of the proposed approach in enhancing the precision of day-ahead load forecasts, 
making it a valuable tool for efficient power system management and operational planning in 
electricity markets. 
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