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Abstract 

 

Extreme events in financial time series are characterized by their low probability yet high impact 

and they pose significant challenges in financial risk management. This study aims to model and 

forecast extreme events, with a particular emphasis on Value at Risk (VaR) estimation. It explores 

the concept of conditional Extreme Value Theory (EVT) for modeling volatility series to estimate 

VaR by integrating Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models 

with EVT, forming the GARCH-EVT approach. An automated algorithm was developed to 

optimize both model selection and threshold determination, ensuring accurate estimation of VaR. 

This automated procedure enhances the model selection process by identifying the optimal GARCH 

model and the most appropriate EVT threshold, addressing the complexities inherent in modeling 

extreme events. The comprehensive backtesting procedures are used to assess the effectiveness and 

precision of the algorithm in forecasting VaR, along with a simulation that evaluates both in-sample 

and out-of-sample performance of the model and candidate thresholds across various methods. The 

automated GARCH-EVT approach demonstrates effectiveness in accurately estimating VaR, 

providing a reliable and efficient method for extreme risk assessment in financial markets. This 

method streamlines the process of model selection and threshold optimization, contributing to 

improved risk management in financial markets. 

 

Keywords: Extreme events, Value at Risk (VaR), GARCH models, Threshold 

selection, Backtesting, Risk management. 

  

 

I. Introduction 
 

Extreme events in financial time series, such as sudden market crashes or dramatic price 

movements, pose considerable challenges for risk management strategies. These events are often 

rare but have significant financial consequences. To effectively manage such risks, accurate Value 

at Risk (VaR) estimation is critical. VaR is a standard tool for risk management, adopted by 

financial institutions like banks, investment funds, and corporations worldwide. VaR is 

determined by the quantile of the gain and loss distribution of the financial positions and it is 

defined as the maximum possible loss over a time horizon with a given confidence level [22]. 

Specifically, VaR has emerged as one of the most popular risk management methods. This may 

also be utilized to estimate the tail probability. The literature also emphasizes the significance of fat 

tails in calculating and predicting VaR [8], [28]. However, traditional VaR models, which often rely 
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on normal distribution assumptions, may underestimate the likelihood and impact of extreme 

events. The limitation of this approach is evident as the assumption of normality for the 

underlying distribution is unrealistic. In practice, the financial data exhibit the properties of 

asymmetry and heavy tails. Consequently, there has been growing interest in alternative methods 

for VaR estimation, particularly for capturing extreme tail behavior and volatility clustering. An 

alternative way is a non-parametric historical simulation (HS) approach that calculates empirical 

quantiles from past data without assuming a specific distribution. Parametric models, such as 

those in the GARCH type model, the entire return distribution under conditional normality, 

capturing volatility dynamics. On the other hand, the extreme value approach based on VaR 

estimation is superior to traditional parametric and non-parametric methods in identifying 

extreme risk [2]. The conventional time series models often assume constant volatility, which fails 

to adequately account for periods of varying volatility in financial returns. This limitation can lead 

to misleading conclusions and ineffective risk management strategies.  

To address these shortcomings, Engle [15] introduced the Autoregressive Conditional 

Heteroskedasticity (ARCH) model, which was later extended by Bollerslev [7] into the Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) model. GARCH models effectively 

capture essential properties of financial time series, such as volatility clustering, where large price 

changes tend to occur in clusters, reflecting the time-varying nature of risk. However, while 

GARCH models allow for dynamic volatility forecasting, they often assume symmetric responses 

to shocks. This limits their ability to fully capture the asymmetry typically observed in financial 

returns, where negative shocks have a more significant impact on volatility than positive ones 

known as the leverage effect. As a result, while GARCH models provide valuable insights into 

volatility dynamics, their limitations necessitate the exploration of more advanced models that can 

accommodate asymmetrical volatility behavior and better reflect the complexities of financial 

markets. The GARCH models with alternative distributions, such as the Student-t or skewed-t, can 

offer some improvement, as shown by Giot and Lauren [21]. Nevertheless, these models may still 

struggle to capture extreme tail events. Recently, EVT has been widely used in VaR estimation for 

capturing the effect of market behavior under extreme circumstances. EVT has gained popularity 

in risk management due to its ability to model extreme tail events, which are critical for assessing 

financial risk. The financial crises of the 1990s and beyond have improved interest in modeling 

extreme events [18]. Embrechts et al. [14], and Reiss and Thompson [30] provide a theoretical 

framework for EVT in the context of finance and risk management to model the behavior of 

extreme events. Beirlant et al. [6] discuss how extreme value models are used to capture tail 

behavior, while Gilli and Kellezi [19] applied EVT to stock market indices for calculating VaR. Bali 

[4] demonstrated that EVT outperforms traditional models, such as those based on normal and 

skewed-t distributions, in accurately estimating the VaR of financial assets. However, EVT has two 

key limitations: it typically assumes independent and identically distributed data, and it does not 

account for time-varying volatility.  

McNeil and Frey [26] proposed the GARCH-EVT approach, or conditional EVT to overcome these 

limitations, which combines the strengths of both GARCH and EVT models. This two-stage 

procedure effectively captures both time-varying volatility and tail behavior. In the first stage, 

GARCH models are used to estimate the conditional volatility and obtain standardized residuals. 

In the second stage, EVT is applied to the residuals to model extreme tail events. Several studies 

have demonstrated the superiority of conditional EVT for VaR estimation. Bali and Neftci [3] 

showed that conditional EVT outperforms GARCH models with skewed distributions when 

applied to U.S. short-term interest rates. Marimoutou et al. [25] explore the daily Brent oil price 

and compare the performance of unconditional and conditional EVT models with the conventional 

GARCH model and historical simulation. Allen et al. [1] found that conditional EVT produced 

fewer violations in out-of-sample backtesting using stock indices. Karmakar and Shukla [23] 

confirmed the effectiveness of conditional EVT for estimating VaR for daily stock indices in six 
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countries. By integrating time-varying volatility with extreme tail modeling, the GARCH-EVT 

approach offers a more accurate and robust measure of risk compared to traditional methods. 

Zhang et al. [33] utilized extreme value analysis to investigate the tail risk behavior of the high-

frequency returns of the four most popular cryptocurrencies estimating VaR and expected shortfall 

with varying thresholds.  

This study proposes an automated framework for Value at Risk forecasting with conditional 

extreme value theory. The algorithm automates key steps, including stationarity checks, ARCH 

effect testing, GARCH model fitting, residual distribution analysis, threshold selection for EVT, 

and VaR forecasting. Various GARCH models are considered to capture volatility dynamics, while 

EVT is applied to model extreme tail behavior. A novel dual-phase threshold (DPT) selection 

technique is introduced to enhance the accuracy of EVT threshold estimation. The framework 

generates in-sample and out-of-sample VaR forecasts, and performance is validated through 

backtesting using unconditional and conditional coverage tests. This automated approach provides 

a robust, data-driven solution for risk management by addressing both volatility clustering and 

extreme events. The paper is organized as follows: section 2 presents a theoretical framework of 

conditional extreme value theory, section 3 describes the proposed algorithmic approach for the 

GARCH-EVT framework, section 4 describes the data analysis of cryptocurrencies, section 5 shows 

the simulation results, and section 6 provides the summary and conclusion of the study. 

 

II. Methodologies 
 

I. Volatility Models 

Volatility models are used to estimate and forecast the variance or volatility of a time series, 

especially in financial data like stock returns, interest rates, exchange rates, etc. Volatility is a 

measure of how much the price of an asset fluctuates over time and is commonly used to assess 

risk. Higher volatility often indicates higher risk, as it increases the likelihood of significant price 

changes either upward or downward. The Autoregressive Conditional Heteroskedasticity (ARCH) 

model is designed for modeling time-varying volatility in financial time series. It assumes that the 

variance of the error term (or the residuals) at time t depends on the squared values of previous 

error terms. This is particularly useful for capturing volatility clustering, where periods of high 

volatility are followed by more high volatility, and periods of low volatility are followed by more 

low volatility. The ARCH model is defined as 𝑟𝑡 =  𝜇 + 𝜖𝑡; where, 𝑟𝑡 is the observed returns at time 

t,  𝜇 is the constant mean, 𝜖𝑡 is the error term or innovation. The conditional variance 𝜎𝑡
2 at time t 

depends on past squared residuals 𝜖𝑡−𝑖
2  for 𝑖 = 1,2, … , 𝑞, 

    𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜖𝑡−𝑖

2𝑞
𝑖=1 ; 𝜖𝑡~𝑁(0, 𝜎𝑡

2)                  (1) 

where 𝑞 is the order of the ARCH model, 𝜔 > 0 is the constant or intercept, 𝛼𝑖 ≥ 0 are the ARCH 

coefficients, concerning the current volatility to post residuals. 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model extends ARCH 

model by including lagged conditional variances in the variance equation. It is used to analyze 

time-series data where the variance of the error term is assumed to be serially auto-correlated. The 

GARCH models are utilized when the variance of the error term changes, indicating the presence 

of heteroskedasticity. Let 𝑟𝑡 be the return series, 𝜇 is the mean and 𝜖𝑡 the innovation or error term. 

The GARCH (p, q) model can be specified in terms of the mean and variance equation as follows 

𝑟𝑡 =  𝜇 + 𝜖𝑡, 𝜖𝑡 = 𝜎𝑡𝑧𝑡 



 
K.M. Sakthivel and V. Nandhini  
AN ALGORITHM FOR CONDITIONAL EXREME VALUE THEORY 

RT&A, No 1 (82) 
Volume 20, March 2025   

256 
 

                  𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑗𝜖𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1 ; 𝜖𝑡~𝑁(0, 𝜎𝑡

2)              (2) 

where, 𝜔 > 0 is the constant or intercept term, 𝛼𝑖 ≥ 0 for 𝑖 = 1,2, … , 𝑞 are the ARCH parameters 

that measure the impact of past squared innovations, 𝛽𝑗 ≥ 0 for 𝑗 = 1,2, … , 𝑝 are the GARCH 

parameters that measure the impact of past conditional variances, and 𝜎𝑡
2 is the conditional 

variance at time t, which is updated based on both the previous squared innovations and lagged 

variances. In this study, several GARCH-type specifications are considered namely the standard 

GARCH (SGARCH) by Bollerslev [7], Integrated GARCH (IGARCH) by Engle and Bollerslev [16], 

Exponentiated GARCH (EGARCH) by Nelson [27], GJR-GARCH by Glosten et al. [20], and 

Asymmetric Power ARCH (APARCH) by Ding et al., [13] to model the time-varying volatility. 

Let 𝑟𝑡 be the return at time t and 𝜖𝑡 = 𝑟𝑡 − 𝜇, where 𝜇 is the conditional mean. The standard 

GARCH (1,1) model is described as follows 

𝑟𝑡 =  𝜇 + 𝜎𝑡𝑧𝑡 

     𝜎𝑡
2 = 𝜔 + 𝛼𝜖𝑡−1

2 + 𝛽𝜎𝑡−1
2                 (3) 

where, 𝜔 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0, and 𝛼 + 𝛽 < 1 to ensure stationarity, 𝑧𝑡 the innovations are iid random 

variables with zero mean and unit variance, 𝜎𝑡
2 is the conditional variance at time t representing 

the time-varying volatility, 𝛼 measures the impact of past residuals 𝜖𝑡−1
2  on current volatility, 𝛽 

measures the persistence of volatility from one period to the next. The GARCH (1,1) models tend 

to be more flexible, efficient, and significant than higher-order models in the out-of-sample 

analysis. The GARCH model converges to the Integrated GARCH model, where the long-term 

volatility bears an infinite process. 

The IGARCH model is the special version of the SGARCH (1,1) model where the persistence 

parameter 𝛼 + 𝛽 = 1, implying that volatility follows a unit root GARCH process. Thus, the 

conditional variance in the IGARCH (1,1) is 

                         𝜎𝑡
2 = 𝜔 + 𝛼𝜖𝑡−1

2 + (1 − 𝛼)𝜎𝑡−1
2               (4) 

by taking  𝛽 = 1 − 𝛼 in (3) with parameter restriction 𝜔 > 0, 𝛼 ≥ 0, 1 − 𝛼 ≥ 0 respectively. 

Both the SGARCH and IGARCH models assume that positive and negative shocks affect the 

conditional variance symmetrically. These models impose non-negative constraints on all 

coefficients, limiting their ability to account for the negative correlation often observed between 

returns and volatility. To address these limitations, certain long-memory GARCH-type models 

have been developed. These models are designed to capture key characteristics such as asymmetry 

and fat tails in return distributions, which enhance their ability to model volatility and improve the 

accuracy of Value-at-Risk calculations. 

The Exponential GARCH (EGARCH) model allows for asymmetric effects of positive and negative 

shocks on volatility. The conditional variance equation is logarithmic, ensuring non-negativity 

without imposing parameter restriction. 

               ln(𝜎𝑡
2) = 𝜔 + 𝛼

𝜖𝑡−1

𝜎𝑡−1
+ 𝛾 (|

𝜖𝑡−1

𝜎𝑡−1
| − 𝐸 [

𝜖𝑡−1

𝜎𝑡−1
]) + 𝛽 ln(𝜎𝑡−1

2 )           (5) 

where, 𝛾 captures the asymmetric effect of positive and negative shocks on volatility. If 𝛾 ≠ 0, then 

positive and negative shocks have different impacts on volatility. 

The Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model captures leverage effects, where 

negative shocks increase volatility more than positive shocks of the same magnitude.  
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    𝜎𝑡
2 = 𝜔 + 𝛼𝜖𝑡−1

2 + 𝛾𝜖𝑡−1
2 𝐼(𝜖𝑡−1 < 0) + 𝛽𝜎𝑡−1

2               (6) 

where, 𝐼(𝜖𝑡−1 < 0) is an indicator function that takes the value 1 when 𝜖𝑡−1 is negative and 0 

otherwise; 𝛾 represents the additional impact of negative shocks on volatility. 

The Asymmetric Power ARCH (APARCH) model generalizes GARCH by allowing for power 

transformations of the conditional standard deviations and incorporating asymmetry. 

                        𝜎𝑡
𝛿 = 𝜔 + 𝛼(|𝜖𝑡−1| − 𝛾𝜖𝑡−1)

𝛿 + 𝛽𝜎𝑡−1
𝛿                (7) 

where, 𝛿 controls the power transformation of volatility and 𝛾 captures the asymmetry of positive 

shocks and negative shocks. 

For every GARCH-type model, the innovation process 𝑧𝑡 can follow one of several distributions: 

symmetric, skewed, or heavy-tailed distributions to better capture the characteristics of financial 

returns, such as symmetry, asymmetry, and fat tails. These distributions include: normal, Student’s 

t distribution, skewed normal, skewed Student’s t, generalized error, and skewed generalized error 

distribution. The parameters for all GARCH-type models can be estimated using maximum 

likelihood, as it is a reliable and efficient method that produces valid asymptotic standard errors in 

spite of non-normality. Model selection is performed using information criteria, specifically the 

Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). 

II. Extreme value theory 

Extreme value theory is the statistical framework for analyzing and modeling extreme events in 

the tail of the probability distributions. The two main approaches in EVT are block maxima and 

peaks over threshold approaches.  In block maxima, the data is divided into non-overlapping 

blocks or periods of equal sizes and select the maximum value of each block, which is then 

modeled using generalized extreme value (GEV) distribution. The peaks over threshold (POT) 

approach focuses on values that exceed a specified learning threshold and then modeled using a 

generalized Pareto (GP) distribution. The main challenge in this framework is to select an 

appropriate threshold for effectively identifying extreme values.  The POT method is widely 

recognized for its effectiveness in characterizing extreme events in the dataset. The cumulative 

distribution function of the GP distribution with shape parameter 𝜉 and scale parameter 𝜎 has the 

following representation. 

                       𝐺𝜉,𝜎(𝑦) = {
1 − (1 + 𝜉 (

𝑦

𝜎
))

−1 𝜉⁄

;  𝑖𝑓 𝜉 ≠ 0

1 − 𝑒−(
𝑦

𝜎
)                     ;  𝑖𝑓 𝜉 = 0

                                           (8) 

where, i)  𝑦 ≥ 0 when 𝜉 ≥ 0 and 0 ≤ 𝑦 ≤ −𝜎 𝜉⁄  when 𝜉 < 0 and  ii) 𝜎 > 0 when 𝜉 = 0.  

The parameter 𝜉 plays a crucial role in characterizing the tail behavior of the distribution. When 

𝜉 = 0, the distribution simplifies to the exponential distribution (light tail). When 𝜉 > 0, the 

distribution follows the ordinary Pareto distribution (heavy tail). When 𝜉 < 0, the distribution is 

characterized as a short-tailed Pareto distribution.  

Let 𝑌1, 𝑌2, … , 𝑌𝑛 be the excesses above the sufficient large threshold u, where 𝑌𝑖 = 𝑋𝑖 − 𝑢. Balkema 

and de Haan [5] and Pickands [29] justify that 𝐹𝑢(𝑦) ≈ 𝐺𝜉,𝜎(𝑦) provided that for large u. By setting 

𝑥 = 𝑢 + 𝑦, an approximation of 𝐹(𝑥), for 𝑥 > 𝑢, can be obtained as 

    𝐹(𝑥) = (1 − 𝐹(𝑢))𝐺𝜉,𝜎(𝑦) + 𝐹(𝑢)                (9) 



 
K.M. Sakthivel and V. Nandhini  
AN ALGORITHM FOR CONDITIONAL EXREME VALUE THEORY 

RT&A, No 1 (82) 
Volume 20, March 2025   

258 
 

and here 𝐹(𝑢) =
𝑛−𝑁𝑢

𝑛
 ; where n is the total number of observations, and 𝑁𝑢 the number of 

observations above the threshold. By using (4) in (5), we get the tail estimator. 

    �̂�(𝑥) = 1 −
𝑛

𝑁𝑢
(1 + 𝜉 (

𝑥−�̂�

�̂�
))

−1 �̂�⁄

                            (10) 

where, 𝜉 and �̂� are the estimated values obtained using the MLE. 

The Value at Risk is calculated by using the (6), we get 

    𝑉𝑎�̂�𝑝 = 𝑢 +
�̂�

�̂�
([

𝑛

𝑁𝑢
(1 − 𝑝)]

−�̂�

− 1)             (11) 

where, u is the threshold, 𝜉 is the estimated shape parameter and �̂� is the estimated scale 

parameter. 

The main difficulty of modeling with the POT method is setting the right threshold. It is important 

to find a good balance in setting the threshold to obtain a suitable balance between the variance 

and the bias of the model. A high threshold reduces sample size while also increasing uncertainty. 

At the same time, selecting a small truncation level increases both the sample size and the bias of 

the results [6].  

Method 1: (Threshold or Parameter Stability Method) The parameter stability plot, also called the 

threshold stability plot discussed by Coles [10] is a graphical method to study the stability of the 

parameter in GP distribution. This method is based on the stability property of the GP distribution. 

The scale parameter for a GP distribution over a threshold 𝑣 where 𝑣 ≥ 𝑢 is specified as  𝜎𝑣 = 𝜎𝑢 +

𝜉(𝑣 − 𝑢), where 𝜎𝑢 is the scale parameter at threshold u, and  𝜉 is the shape parameter.    If 𝜉 ≠ 0, 

the scale parameter changes as the threshold 𝑣 varies. To remove the scale parameter dependence 

on 𝑣, it is re-parameterized as 𝜎∗ = 𝜎𝑣 + 𝜉𝑢. In practice, estimates of 𝜉 and 𝜎∗ are plotted against 

different thresholds 𝑣, typically with symmetric confidence intervals. The resulting plot is defined 

by the locus of points: {(𝑢, 𝜎∗); 𝑢 < 𝑥𝑚𝑎𝑥} and {(𝑢, 𝜉𝑢); 𝑢 < 𝑥𝑚𝑎𝑥}. The different thresholds result in 

different samples of peak magnitudes and times of occurrence. The threshold should be set to the 

lowest value for which the parameter estimates are approximately stable or constant. The 

parameter stability plot shows how the shape and modified scale parameters of the GP change 

over a range of threshold values.  

Method 2: (Minimization of Asymptotic Mean Squared Error Method) The minimization of an 

asymptotic mean squared error (DAMSE) method is an algorithm developed by Cariro and Gomes 

[9] to identify the tail in data by minimizing the asymptotic mean squared error (AMSE) criterion 

concerning upper-order statistic k. The optimal number, 𝑘0 corresponds to the unknown threshold 

u for the tail index in relation to k. The procedure works as follows: Given the observed returns 

𝑟1, … , 𝑟𝑛, for the tuning parameters 𝜏 = 0 and 𝜏 = 1, the values of �̂�𝜏(𝑘) are calculated as:  

     �̂�𝜏(𝑘) ≔ − |
3(𝑊𝑘,𝑛

(𝜏)
−1)

(𝑊𝑘,𝑛
(𝜏)
−1)

|,              (12) 

which depend on the statistic: 

𝑊𝑘,𝑛
(𝜏) ≔

{
 
 

 
 (𝑀𝑘,𝑛

(1)
)
𝜏
−(𝑀𝑘,𝑛

(2)
/2 )

𝜏/2

(𝑀𝑘,𝑛
(2)
/2)

𝜏/2
−(𝑀𝑘,𝑛

(3)
/6)

𝜏/3  if 𝜏 ≠ 0

𝑙𝑛(𝑀𝑘,𝑛
(1)
)
𝜏
−𝑙𝑛(𝑀𝑘,𝑛

(2)
/2)

𝜏/2

(1/2)𝑙𝑛(𝑀𝑘,𝑛
(2)
/2)−(1/3)𝑙𝑛(𝑀𝑘,𝑛

(3)
/6)
 if 𝜏 = 0

  

Here, 𝑀𝑘,𝑛
(𝑗)

 is defined as: 𝑀𝑘,𝑛
(𝑗)
=

1

𝑘
∑ (log 𝑟𝑛−𝑖+1:𝑛 − log 𝑟𝑛−𝑘:𝑛)

𝑗 , 𝑗 = 1,2,3.𝑘
𝑖=1  
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To compute the optimal tail parameters: 

i. Consider 𝐾 = (𝑛(0.995), 𝑛(0.999) ) and compute the median of �̂�𝜏(𝑘) denoted as 𝐾𝜏,  

ii. Compute 𝐼𝜏 = ∑ (�̂�𝜏(𝑘) − 𝐾𝜏)
2

𝑘∈𝐾  for 𝜏 = 0,1.  

iii. Select the tuning parameter, 𝜏∗ = 0, if 𝐼0 ≤ 𝐼1, otherwise, select 𝜏∗ = 1.  

Next, work with �̂� = �̂�𝜏∗(𝑘) = �̂�𝜏∗(𝑘01)  and �̂� = �̂�𝜏∗(𝑘) = �̂�𝜏∗(𝑘01) for 𝑘01 = 𝑛
0.999 and the estimator  

�̂��̂�(𝑘) is computed as  

    �̂��̂�(𝑘) = (
𝑘

𝑛
)
�̂� 𝑑𝑘(�̂�)𝐷𝑘(0)−𝐷𝑘(�̂�)

𝑑𝑘(�̂�)𝐷𝑘(�̂�)−𝐷𝑘(2�̂�)
              (13) 

where, 𝑑𝑘(𝛼) =
1

𝑘
∑ (

𝑖

𝑘
)
−𝛼

𝑘
𝑖=1 , 𝐷𝑘(𝛼) =

1

𝑘
∑ (

𝑖

𝑘
)
−𝛼

𝑘
𝑖=1 𝑈𝑖 for any 𝛼 ≤ 0, with the scaled line spacing or 

thresholds,  

   𝑈𝑖 = 𝑖 ∑ (log 𝑟𝑛−𝑖+1:𝑛 − log 𝑟𝑛−𝑘:𝑛),
𝑘
𝑖=1  1 ≤ 𝑖 ≤ 𝑘 < 𝑛, 𝑛0.999.            (14) 

Finally, based on the estimators  �̂� and �̂� compute: �̂�0 = (
(1−�̂�)2𝑛−2�̂�

−2�̂��̂�2
)

1

1−2𝑝
 and estimate the shape 

parameter 𝜉 = 𝜉𝑘0,𝑛. 

Method 3: (Dual-Phase Threshold Selection - A Proposed Method) The dual-phase threshold (DPT) 

method can be used to find the optimum threshold based on the two-phase procedure (Sakthivel 

and Nandhini, [31] and [32]). The procedure is described as follows: 

Phase 1: Let 𝑋1, 𝑋2, … , 𝑋𝑛 be an independent and identically distributed random sample of size n. 

The non-extremes are trimmed from X and sequential testing of the hypothesis is used to select the 

most appropriate threshold. The null hypothesis is:  𝐻0
(𝑖)

: The distribution of exceedances ni above 

the chosen threshold follows the GP distribution. The sequence of the null hypothesis 

𝐻0
(1)
, 𝐻0

(2)
, … , 𝐻0

(𝑘)
 is tested using goodness of fit tests.  For instance, the Kolmogorov-Smirnov (K-S) 

test and Cramer von Mises (CvM) test with significance level 𝛼 = 0.05 have been performed for 

this case. The test statistic 𝜔𝑖𝑗 and its p-values 𝑝𝑖𝑗 ∈ [0,1] for 𝑖 ∈ 1,2, … , 𝑘, 𝑗 ∈ 1,2, … , 𝑙 denotes the k 

hypothesis and l test criteria are evaluated. If the p-value 𝑝𝑖𝑗 >  𝛼, then 𝐻0
(𝑖)

 is accepted. Otherwise, 

it is rejected for any 𝑝𝑖𝑗 <  𝛼 can be represented as 𝐻0
(𝑟)
; 𝑟 ∈ 1,2, … , 𝑘 − 1 correspond to the 

threshold. If 𝐻0
(𝑟)

 is rejected, then the threshold 𝑢𝑟 is excluded and the values below 𝑢𝑟 are 

considered to be non-extremes. The refined threshold sequence 𝑢𝑟+1 < 𝑢𝑟+2 < ⋯ < 𝑢𝑘 is tested 

iteratively until all the null hypotheses are accepted, indicating the exceedances follow the GP 

distribution. To remove the non-extremes, if both the KS and CvM test yield, 𝑝𝑖𝑗 < 𝛼 at different 

thresholds, the trimming point 𝛿  is set as 𝛿 = {𝑢𝑖;max((𝑝𝐶𝑣𝑀, 𝑝𝐾𝑆 ) < 𝛼)}. The values 𝑋𝑖 < 𝛿 are 

excluded, and only 𝑋𝑖 > 𝛿 are used for selecting an appropriate threshold in the next phase. 

Phase 2: Consider a set of threshold values, starting from the trimming point 𝛿 obtained in phase 1, 

as the initial threshold and evaluated up to the 99th percentile with 0.01 increments. For each 

threshold 𝐴𝑖, where 𝑘 = 1,2, … ,𝑚, there exists an nk exceedances, and the p-value for each threshold 

is calculated based on multiple test criteria. The decision matrix D is created from the p-values of 

the test criteria evaluated across the threshold range. The matrix 𝐷 = (𝑑𝑖𝑗)𝑚×𝑛 represents the 

performance values 𝑑𝑖𝑗 of the ith threshold against the jth criterion, where  𝑚 is the number of 

thresholds 𝐴𝑖, and l is the number of test criteria 𝐶𝑗.  The matrix D is defined as: 

                                                                        𝐷 =

      𝐶1     𝐶2    …  𝐶𝑙 
𝐴1
𝐴2
⋮
𝐴𝑚

[

𝑑11   𝑑12  …  𝑑1𝑙
𝑑21   𝑑22  …  𝑑2𝑙
⋮          ⋮            ⋮   
 𝑑𝑚1 𝑑𝑚2  … 𝑑𝑚𝑙

]
             (15) 
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Here, 𝐴𝑗 represents the threshold and 𝐶𝑗 represents the criteria for 𝑖 = 1,2, … ,𝑚 and 𝑗 = 1,2, … , 𝑙. In 

multiple tests, the p-values can be smoothed to control the overall fluctuation rate of different test 

criteria. The normalized values are calculated as   

𝑝𝑖𝑗 =
𝑑𝑖𝑗

𝑚 +∑ (𝑑𝑖𝑗)
2𝑚

𝑖=1

 

where 𝑑𝑖𝑗 is the value of the jth criterion for the ith threshold, and m is the number of thresholds. 

The normalized decision matrix is  𝑝 = (𝑝𝑖𝑗)𝑚×𝑛.  The entropy values for each criterion can be 

calculated with cross-entropy defined as  

            𝐸𝑗 = −∑ (𝑝𝑖𝑗𝑙𝑜𝑔(𝑝𝑖𝑗))
𝑚
𝑖=1 − (1 − ∑ 𝑝𝑖𝑗

𝑙
𝑖=1 )(𝑙𝑜𝑔[1 − ∑ 𝑝𝑖𝑗

𝑙
𝑖=1 ])             (16) 

The relative significance of each criterion is given by 

𝑤𝑗 =
1 − 𝐸𝑗

∑ (1 − 𝐸𝑗)
𝑚
𝑗=1

 

This is the reasonable expression of normalized weighted value, ∑ 𝑤𝑗
𝑚
𝑗=1 = 1, for 𝑤𝑗 ∈ [0,1]. The 

evaluation indicator (V) can be calculated as  

        𝑉𝑗 = ∑ 𝑤𝑗
𝑚
𝑗=1 𝑑𝑖𝑗          (17) 

where, 𝑤𝑗 is the weight of each criterion 𝑑𝑖𝑗. The best threshold is chosen as 𝑢∗ = 𝑚𝑎𝑥(𝑉𝑗). This 

threshold u* is considered to be optimal, with exceedances above it modeled using the generalized 

Pareto distribution. The DPT method tests the multiple thresholds, adjusts p-values to control the 

error rate, and selects the most appropriate threshold. 

III. Conditional Extreme Value Theory 

The conditional extreme value theory called GARCH-EVT was proposed by McNeil and Frey [26] 

integrates GARCH and EVT to estimate Value at Risk. By filtering the returns with a GARCH 

model, it produces an i.i.d suitable for the EVT technique, and it captures both conditional 

heteroskedasticity and extreme tail behavior. The steps for GARCH-EVT VaR estimation: 

Step 1: Fit the GARCH-type model to return data by quasi-maximum likelihood. Estimate the one-

step ahead forecast of 𝜇𝑡+1 and 𝜎𝑡+1 from a fitted model and extract the standardized residuals 𝑧𝑡. 

Step 2: Consider the standardized residuals computed in step 1, and estimate the tail quantiles of 

the innovations using EVT. Then construct VaR:  The one-step ahead VaR measures for the 

dynamic volatility model described earlier can be formulated as: 

         𝑉𝑎𝑅𝑡+1 = 𝜇𝑡+1 + 𝜎𝑡+1𝑉𝑎𝑅𝑡(𝑧).              (18) 

The backtesting is employed to rigorously evaluate the predictive performance of the GARCH-

EVT model used for VaR forecasting. To quantitatively assess the performance of the model, a 

series of rigorous statistical tests are employed, including the Kupiec Unconditional Coverage 

(UC) test, and the Christoffersen Conditional Coverage (CC) test. 

IV. Rolling Window Method 

In the rolling window method, the dataset is divided into overlapping segments, with each 

segment containing an in-sample and an out-of-sample portion. Initially, the model is trained on 
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the in-sample data, which consists of a fixed number of observations, and the remaining data is 

used for out-of-sample forecasting. In this study, 80% of the data might be used for training called 

in-sample, and the next 20% for testing called out-of-sample. After fitting a GARCH-type model to 

the in-sample data, it produces one-step-ahead volatility forecasts and VaR estimates for the out-

of-sample segment. Then, the window shifts forward by a set number of observations (e.g., one 

day), removing the earliest observations and adding new ones. The model is re-estimated with the 

updated in-sample data, and fresh forecasts are made for the new out-of-sample period. This 

process is repeated continuously, ensuring each forecast is based on previously unseen data. The 

rolling window approach is effective for evaluating model performance over time, as it mimics 

real-world forecasting scenarios and prevents over-fitting, leading to more reliable out-of-sample 

predictions. 

 

III. Automated GARCH-EVT Algorithm 
 

The automated algorithm for GARCH-EVT forecasts Value at Risk by combining GARCH-type 

models with various advanced threshold selection methods. The procedure is as follows: 

Step 1: Data: Let 𝑌𝑡 , be the values of time series at the time = 1,2, … , 𝑛 .  

Step 2: Test for Normality: The Jarque-Bera test checks whether a time series follows a normal 

distribution by measuring skewness and kurtosis. A low p-value suggests non-normality, signaling 

potential risk from extreme events. 

Step 3: Calculate returns: The log return series, 𝑟𝑡 at time 𝑡 is log  (𝑟𝑡) = log (
𝑃𝑡

𝑃𝑡−1
); where, 𝑃𝑡 is the 

price at time 𝑡. 

Step 4: Stationarity Check: The Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-

Schmidt-Shin test (KPSS) test are used to check for stationarity in the series. If it shows stationarity 

then move on to step 5. Otherwise, transform the data and repeat this process. 

Step 5: Check for ARCH Effect: The ARCH-Lagrange Multiplier (ARCH-LM) test is used for testing 

the auto-correlation in the time series data. If there exists the ARCH effect in the series we proceed 

to step 6. Otherwise, end this process and proceed with conventional methods. 

Step 6: In-sample and Out-of-sample: Fixing of In-sample and Out-of-sample proportion for rolling 

window procedure to obtain better model and VaR forecasting. 

In-sample: 𝑅𝑖𝑛 = 𝑟𝑡[1: ⌊𝑝. 𝑘⌋] 

Out-of-sample: 𝑅𝑜𝑢𝑡 = 𝑟𝑡[( ⌊𝑝. 𝑘⌋ + 1): 𝑛] 

where, 𝑝 is the proportion of the data. 

Schematic Representation of GARCH-EVT Algorithm for Volatility Series 
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Step 7: Fitting of In-sample returns: Set In-sample returns as 𝑅𝑖𝑛 = {𝑟1, 𝑟2, … , 𝑟𝑘}. The iterative 

procedure through model types and residual distributions is as follows: 

For each GARCH model type 𝑀 = {𝑚1, 𝑚2, … ,𝑚𝑖}; 𝑚𝑖 ∈ 𝑀 with each residual distribution is 𝐷 =

{𝑑1, 𝑑2, … , 𝑑𝑗}; 𝑑𝑗 ∈ 𝐷, we implement the following procedure for optimal selection. 

(i) Specify the GARCH model: Create the GARCH specification 𝑆𝑖𝑗 with the variance model 𝑚𝑖, mean 

model ARMA(0,0) and distribution 𝑑𝑗 Respectively. 

(ii) Fit the GARCH model: Fit the 𝑆𝑖𝑗 to the data 𝑌 to obtain the best-fitted model 𝐹𝑖𝑗. Calculate AIC 

for 𝐹𝑖𝑗 to update the best model that is, 𝐹𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐹𝑖𝑗

(𝐴𝐼𝐶(𝐹𝑖𝑗)). If the fit fails, continue the 

iterative process until selecting the more suitable model. 

Step 8: Out-of-sample forecast: The rolling window forecast 𝑊𝑖 for 𝑖 = 1,2, … , 𝑛𝑜𝑢𝑡.  
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𝑊𝑖 = {𝑟𝑗| 𝑗 = 𝑖, 𝑖 + 1,… , 𝑛𝑖𝑛 + (𝑖 − 1)} 

Fit the Out-of-sample 𝑅𝑜𝑢𝑡 returns using the selected best GARCH model from step 7. Then extract 

residuals 𝑒𝑡, and conditional volatility 𝜎𝑡. 

Step 9: Threshold Selection: The threshold selection methods are 𝑢𝑖 = {𝑢1, 𝑢2, … , 𝑢𝑛}; for  𝑖 = 1, 2,… , 𝑛. 

Fit the GP distribution to the residuals of 𝑢𝑖 and to estimate the parameters. The CvM and K-S test 

can be used to evaluate the threshold-based estimates and choose the best suitable threshold 

selection method among 𝑢𝑖. The threshold selection methods used in this study are Threshold 

stability, DAMSE, DPT, and empirical thresholds like 90th percentile, 95th percentile. 

Step 10: Value at Risk Forecast: The Value at Risk for one step ahead forecast from out-of-sample is 

defined as   

𝑉𝑎𝑅𝑡+1 = 𝜇𝑡+1 + 𝜎𝑡+1𝑉𝑎𝑅𝑡(𝑧𝛼  ); 

where 𝜇𝑡+1 forecasted mean returns and 𝜎𝑡+1 forecasted volatility, 𝑧𝛼 be the quantile of GP 

distribution, 𝛼 is the significance level. 

Step 11: Backtesting: The Kupiec and Christoffersen test can be used for VaR backtesting. If the p-

value of the chosen model VaR forecast is greater than the level of significance 𝛼 = 0.05 or 0.01, 

then finalize the GARCH EVT model. Otherwise, conventional GARCH and EVT techniques can 

be suitable. 

 

IV. Data Analysis on Real-Time Applications 
 

In this study, the dataset consists of daily closing prices (in dollars) of two cryptocurrencies ZRX 

token and RSR token from 24 May 2022 to 25 August 2024 (825 observations). The data are 

available online at marketcap.com and the Kaggle website. Figure 1 shows the time series plots for 

the daily trading prices of cryptocurrencies. The sample period covers both stable and volatile 

phases, as well as price fluctuations and extreme jumps. The datasets of cryptocurrencies exhibit 

clear volatility clustering over time. A data adjustment process is used to achieve stationarity in the 

cryptocurrency return series, accounting for heteroskedasticity. Figure 2 shows the dynamic 

behavior of the log returns for all cryptocurrencies, highlighting the characteristic leptokurtosis 

resulting from time-varying volatility clustering, where high-volatility periods are followed by 

further high volatility and low-volatility periods are followed by low volatility. 

  
      (a) ZRX Token                           (b) RSR Token 

Figure 1: Time series plot for the cryptocurrency dataset 
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      (a) ZRX Token                           (b) RSR Token 

Figure 2: Return series for the cryptocurrency dataset 

Table 1 presents summary statistics for the cryptocurrencies and the results of statistical tests. The 

series shows excess kurtosis, indicating fat tails and non-normal distributions. Table 2 shows the JB 

test confirms that none of the cryptocurrencies follow a normal distribution. To assess stationarity, 

the KPSS test was applied, and the results rejected the null hypothesis, indicating that all return 

series are non-stationary at all levels. Additionally, the presence of significant ARCH effects was 

confirmed by using the ARCH-LM test and Box-Pierce test in cryptocurrency datasets. The results 

from these tests confirm the existence of significant ARCH effects in the analyzed datasets, 

highlighting the importance of using models that account for changing volatility in cryptocurrency 

datasets. 

Table 1: Descriptive statistics 

Data Min Q1 Median Mean Q3 Max Skewness Kurtosis 

ZRX  0.1476 0.2185 0.2887 0.3289 0.3715 1.3634 2.57713 9.0602 

RSR  0.0017 0.0026 0.0041 0.0045 0.0061 0.0128 0.5655 7.7823 

Table 2: Preliminary Tests 

Data JB Test KPSS test ARCH-LM test Box-Pierce test 

𝜒2 p-value KPSS p-value 𝜒2 p-value 𝜒2 p-value 

ZRX  3884.4 <0.05 2.1584 <0.05 803.44 <0.05 820.28 <0.05 

RSR  62.375 <0.05 2.2168 <0.05 766.85 <0.05 797.48 <0.05 

The results from the estimated GARCH-type models are presented in this section. The sample 

period is divided into two sub-sample periods called the in-sample period; it takes 80% from the 

starting point and the out-of-sample period covers the last 20% of the dataset. In-sample returns 

are used to estimate the parameters of the selected models, subject to the assumptions and 

constraints of each model. The calculated in-sample parameters are applied to forecast the 

volatilities for both in-sample and out-of-sample periods. We first estimate the SGARCH, 

EGARCH, GJR-GARCH, APARCH, and IGARCH models for our dataset. Table 3 presents the AIC 

values of the fitted GARCH type specifications under different types of error distributions such as 

normal, Student’s t, generalized error (GE), skew-normal, skew-t, and skew-generalized error 

(skew-GE) distribution. The student’s t distribution is suitable for both datasets based on the AIC 

values for all the GARCH-type models. The student t distribution accounts for heavy tails, which 

allows it to capture the extreme values effectively. The estimated results of GARCH-type models 

with the selected innovation student’s t distribution are presented in Table 4. The diagnostic 

results like minimum AIC, and BIC reveal that the IGARCH specifications for the ZRX dataset and 

APARCH specifications for the RSR dataset filter the serial autocorrelation, conditional volatility 

dynamics, and leverage effects in return series. Therefore we can apply the EVT methods to the iid 

residual series. For the ZRX dataset, we took the IGARCH-EVT approach and for the RSR dataset, 
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we took the APARCH-EVT approach to compute the one-step-ahead Value at Risk forecast for 

these cryptocurrencies. The forecast performance of these types of models should be evaluated for 

the out-of-sample period and using more accurate performance criteria. In this study, optimal POT 

thresholds are obtained by evaluating the five different threshold methods as 90th  percentile, 95th  

percentile, threshold stability (TS) method, minimization of an asymptotic mean squared error 

(DAMSE) method, and the proposed dual phase threshold (DPT) selection method and to estimate 

the GP distribution parameters for both the left and right tails. 

Table 3: In-Sample Estimated Results and Model Selection 

Models Normal t GE Skew-Normal Skew-t Skew-GE 

Data 1: ZRX Token 

SGARCH AIC -3.1327 -3.3519 -3.3175 -3.1373 -3.3497 -3.3160 

BIC -3.1063 -3.3188 -3.2844 -3.1043 -3.3100 -3.2763 

EGARCH AIC -3.1505 -3.3491 -3.3172 -3.1531 -3.3471 -3.3159 

BIC -3.1174 -3.3094 -3.2775 -3.1135 -3.3008 -3.2696 

GJR-GARCH AIC -3.1299 -3.3499 -3.3149 -3.1350 -3.3475 -3.3132 

BIC -3.0969 -3.3102 -3.2752 -3.0954 -3.3012 -3.2669 

APARCH AIC -3.1446 -3.3473 -3.3136 -3.1453 -3.3451 -3.3122 

BIC -3.1049 -3.3010 -3.2673 -3.0990 -3.2922 -3.2593 

IGARCH AIC -3.1291 -3.3536 -3.3174 -3.1331 -3.3514 -3.3161 

BIC -3.1093 -3.3272 -3.2909 -3.1067 -3.3183 -3.2830 

Data 2: RSR Token 

SGARCH AIC -2.8775 -3.0855 -3.0593 -2.8747 -3.0852 -3.0591 

BIC -2.8503 -3.0514 -3.0252 -2.8406 -3.0446 -3.0182 

EGARCH AIC -2.9452 -3.0912 -3.0649 -2.9425 -3.0897 -3.0633 

BIC -2.9111 -3.0503 -3.0240 -2.9016 -3.0420 -3.0156 

GJR-GARCH AIC -2.9188 -3.0926 -3.0677 -2.9162 -3.0915 -3.0665 

BIC -2.8848 -3.0517 -3.0268 -2.8754 -3.0438 -3.0188 

APARCH AIC -2.9125 -3.0941 -3.0697 -2.9105 -3.0938 -3.0689 

BIC -2.8716 -3.0464 -3.0220 -2.8628 -3.0392 -3.0144 

IGARCH AIC -2.8595 -3.0824 -3.0505 -2.8578 -3.0821 -3.0508 

BIC -2.8390 -3.0551 -3.0232 -2.8306 -3.0481 -3.0167 

To evaluate the out-of-sample performance of the VaR forecast models using the EVT approach, 

we implemented a rolling window scheme where 80% of the data was used for in-sample fitting of 

the GARCH-type model, while the remaining 20% was reserved for out-of-sample forecasting. 

Within each rolling window, we fitted the chosen best GARCH-type model from in-sample 

analysis and to extract residuals based on evaluating the AIC. This selection process allowed us to 

extract the residuals, ensuring that the thresholds for EVT analysis were derived from the most 

accurate representation of the underlying volatility dynamics. The one-step-ahead VaR is 

calculated at 95% and 99% confidence levels, which are essential for evaluating the performance of 

the GARCH-EVT approach in forecasting VaR. We consider both the left and the right tail of the 

return distribution. The reason is that the left tail represents losses for an investor with a long 

position on the index, whereas the right tail represents losses for an investor being short on the 

index.  
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Table 4: In-Sample: Estimated Values of the Selected Models 

Data 1: ZRX Token- Student t distribution 

Parameters SGARCH EGARCH GJR-GARCH APARCH IGARCH 

𝜇 0.0006 

(0.0017) 

0.0008     

(0.0014)   

0.0009     

(0.0014)   

0.0009     

(0.0014) 

0.0006     

(0.0013) 

𝜔 0.0005 

(0.0001) 

-0.7151     

(0.2652) 

0.0003     

(0.0001)   

0.0006     

(0.0010) 

0.0003     

(0.0001) 

𝛼1 0.3011 

(0.0639) 

0.0207     

(0.0495) 

0.3451     

(0.1137)   

0.2886     

(0.0759) 

0.3454     

(0.0756) 

𝛽1 0.5875 

(0.0685) 

0.8818     

(0.0435) 

0.6575     

(0.0755) 

0.6769     

(0.0807) 

0.6545 

(0.0000) 

𝛾 - 0.4267     

(0.0835) 

-0.0938     

(0.1173) 

-0.0804     

(0.1023) 

- 

𝛿 - - - 1.7277     

(0.5162) 

- 

Shape  4.0116     

(0.5893) 

3.9221     

(0.5667) 

3.9463     

(0.5741) 

3.6521     

(0.4106) 

log L 1076.95 1153.05 1153.34 1153.45 1153.61 

AIC -3.1327 -3.3491 -3.3499 -3.3473 -3.3536 

BIC -3.1063 -3.3094 -3.3102 -3.3010 -3.3272 

𝑄(5)  
(p-value) 

0.8911 

(0.8838) 

0.7278   

(0.9175) 

0.7517   

(0.9128) 

0.7591   

(0.9113) 

0.7927   

(0.9045) 

𝑄2(5) 
(p-value) 

0.2218 

(0.9909) 

0.2890   

(0.9848) 

0.3192   

(0.9817) 

0.3116   

(0.9825) 

0.3907   

(0.9732) 

Data 2: RSR Token - Student t distribution 

Parameters SGARCH EGARCH GJR-GARCH APARCH IGARCH 

𝜇 0.0011     

(0.0017)    

0.0018     

(0.0019)    

0.0017   

(0.0017) 

0.0015     

(0.0017) 

0.0013    

(0.0016) 

𝜔 0.0002     

(0.0001)    

-0.1385     

(0.0255)   

0.0001     

(0.0001)   

0.000001     

(0.000001) 

0.0001     

(0.0001) 

𝛼1 0.0798     

(0.0310)    

0.0753     

(0.0259)    

0.1013     

(0.0368) 

0.0067     

(0.0042) 

0.1095     

(0.0415) 

𝛽1 0.8623     

(0.0533)   

0.9759   

(0.0045) 

0.9164     

(0.0309) 

0.9307     

(0.0180) 

0.8904  

(0.0000)  

𝛾 - 0.1235     

(0.0522) 

-0.0862     

(0.0345) 

-0.4294     

(0.1752) 

- 

𝛿 - - - 3.4999     

(0.1193) 

- 

Shape 3.8293     

(0.5575) 

3.9752     

(0.5136)    

3.9360     

(0.5719) 

4.3291     

(0.6649) 

3.1781     

(0.3396) 

log L 1021.66 1024.55 1025.01 1026.52 1019.65 

AIC -3.0855 -3.0912 -3.0926 -3.0941 -3.0824 

BIC -3.0514 -3.0503 -3.0517 -3.0464 -3.0551 

𝑄(5)  

(p-value) 
1.1773 

(0.8184) 

1.4867   

(0.7432) 

1.1772   

(0.8184) 

1.4892   

(0.7425) 

1.1252  

(0.8307) 

𝑄2(5) 
(p-value) 

0.9295  

(0.7540) 

2.549   

(0.4956) 

0.9816   

(0.8638) 

1.3000   

(0.7889) 

0.7477   

(0.9136) 
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Table 5: Parameter estimates of the GP distribution for the selected threshold of returns 

Method Threshold 

(Excess) 

Estimates CvM KS 

Shape Scale Statistic p-value Statistic p-value 

Data 1: Left Tail  

90th Percentile 0.056 

(69) 

0.2346 

(0.1667) 

0.0307 

(0.0062) 

0.0849 0.6650 0.0826 0.7023 

95th Percentile 0.081 

(35) 

0.1466 

(0.1899) 

0.0386 

(0.0097) 

0.0561 0.8419 0.1121 0.7296 

TS 0.083 

(34) 

0.1838 

(0.2043) 

0.0362 

(0.0096) 

0.0629 0.7989 0.1151 0.6997 

 

DAMSE 0.072 

(40) 

0.0696 

(0.1568) 

0.0445 

(0.0098) 

0.0612 0.8090 0.1089 0.6752 

DPT 0.092 

(29) 

0.2990 

(0.2566) 

0.0304 

(0.0094) 

0.0327 0.9686 0.0964 0.9266 

Data 1: Right Tail 

90th Percentile 0.053 

(69) 

0.5141 

(0.1872) 

0.0232 

(0.0049) 

0.0611 0.8086 0.0804 0.7328 

95th Percentile 0.075 

(35) 

0.8237 

(0.3523) 

0.0212 

(0.0077) 

0.0962 0.6063 0.1233 0.6174 

TS 0.074 

(36) 

0.7726 

(0.3315) 

0.0223 

(0.0077) 

0.0303 0.9786 0.10315 0.9848 

DAMSE 0.037 

(113) 

0.3228 

(0.1162) 

0.0268 

(0.0039) 

0.0904 0.6346 0.0757 0.5303 

DPT 0.087 

(18) 

0.0064 

(0.2848) 

0.0913 

(0.0337) 

0.0275 0.986 0.0963 0.9903 

Data 2: Left Tail 

90th Percentile 0.062 

(66) 

0.1236 

(0.1354) 

0.0425 

(0.0077) 

0.0468 0.8967 0.0705 0.8756 

95th Percentile 0.090 

(31) 

0.0476 

(0.0129) 

0.1308 

(0.2119) 

0.0306 0.9759 0.0875 0.9430 

TS 0.09 

(33) 

0.1218 

(0.2081) 

0.0484 

(0.0131) 

0.0297 0.9784 0.0726 0.958 

DAMSE 0.084 

(39) 

0.1681 

(0.2038) 

0.0433 

(0.0112) 

0.0479 0.8915 0.0988 0.7938 

DPT 0.033 

(162) 

0.1903 

(0.0945) 

0.0318 

(0.0038) 

0.0164 0.9993 0.0321 0.9963 

Data 2: Right Tail 

90th Percentile 0.057 

(63) 

0.2532 

(0.1292) 

0.0361 

(0.0066) 

0.0517 0.8673 0.0666 0.9127 

95th Percentile 0.084 

(33) 

0.0411 

(0.0107) 

0.2982 

(0.1999) 

0.1252 0.4768 0.1609 0.3248 

TS 0.084 

(33) 

0.3080 

(0.2025) 

0.0403 

(0.0105) 

0.0322 0.9705 0.0869 0.9518 

DAMSE 0.077 

(40) 

0.2948 

(0.1876) 

0.0393 

(0.0095) 

0.0798 0.6953 0.1156 0.6170 

DPT 0.092 

(32) 

0.5680 

(0.2841) 

0.0254 

(0.0081) 

0.0322 0.9705 0.0869 0.9518 
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Table 5 presents the estimated parameters of the GP distribution, along with standard errors and 

goodness-of-fit results, including the CvM and KS tests with their p-values. It displays the 

threshold values and excesses above the threshold for each method. The evaluation of the CvM 

and K-S test results shows that the excess values from the DPT threshold method yield the best fit 

for the GP distribution compared to alternative methods like the 95th percentile, 99th percentile, TS 

method, and DAMSE. Additionally, the positive shape parameter, significantly different from zero 

for both datasets, indicates a heavy-tailed distribution with finite variance, confirming that the tail 

distribution of this cryptocurrency data belongs to the Fréchet class. 

 
(a) 95% VaR                                                       (b) 99% VaR 

Figure 3: The graph of VaR for IGARCH for the ZRS Token dataset 

 
(a) 95% VaR                                                       (b) 99% VaR 

Figure 4: The graph of VaR for APARCH for the RSR Token dataset 

Table 6: Backtesting: Kupiec and Christoffersen test Results 

Level of Significance  𝛼 = 0.05 (95%) 𝛼 = 0.01 (99%) 

Tails Left Tail Right Tail Left Tail Right Tail 

Data 1 IGARCH- DPT-VaR 

UC: Statistics 0.3584 3.4573 1.8685 0.3442 

UC: p- value 0.5494 0.0929 0.1716 0.5574 

CC: Statistics 0.3702 3.2357 1.8803 0.3528 

CC: p- value 0.8310 0.1775 0.3906 0.8418 

Data 2 APARCH- DPT-VaR 

UC: Statistics 0.3010 3.3166 1.8685 0.3302 

UC: p- value 0.5832 0.0686 0.1716 0.5656 

CC: Statistics 0.3133 3.3256 1.8803 0.3103 

CC: p- value 0.8549 0.1905 0.3906 0.8478 
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The graphical representation of the out-of-sample alongside calculated VaR for the return series of 

the two datasets is in Figures 3 and 4. The x-axis represents the period over which the returns and 

VaR are measured and the y-axis represents the out-of-sample returns. The black middle line 

denotes the actual out-of-sample returns of the cryptocurrencies and the fluctuation indicates the 

performance of the price over time. The red line represents the lower tail VaR indicating that the 

value below which a certain percent of the returns are expected to fall. The blue line represents the 

upper tail VaR, indicating that values above which a certain percentage of returns are expected to 

rise. The results in Table 6 show the performance of the unconditional coverage (UC) and 

conditional coverage (CC) tests for both IGARCH-EVT for the ZRX dataset and APARCH-EVT for 

the RSR dataset at the level of significance 𝛼 = 0.05 and 𝛼 = 0.01 indicate that the models perform 

well in terms of VaR estimation. For both models, the UC test p-values are greater than their 

significance level, suggesting that the null hypothesis of correct unconditional coverage cannot be 

rejected. In terms of CC tests, both models yield high p-values, confirming that the model 

accurately captures the dynamics of the return distributions. Overall, both models corresponding 

to its datasets demonstrate the performance in estimating VaR concerning both UC and CC across 

both left and right tails. 

 

V. Simulation Study 

 
The simulation of returns with time-varying volatility is crucial for understanding financial 

dynamics, particularly in assessing risk. This process allows for the modeling of more realistic 

return behaviors that account for fluctuations in market conditions. We have set the parameters, 

the mean return 𝜇 = 0, and 𝜎0 = 1 is the initial standard deviation. Let n be the number of 

observations and we have a time index 𝑡 = 1,2, … , 𝑛, representing each point in time. To introduce 

time-varying volatility, the standard deviation is calculated at each time step is defined as 

𝜎𝑡 = 𝜎0 × (1 + 0.5 sin (
2𝜋𝑡

100
)). 

This equation can be used to generate a standard deviation that fluctuates over time. The random 

returns at each time step 𝑟𝑡 are then generated from the normal distribution, represented as 

𝑟𝑡~𝑁(0, 𝜎𝑡). In this case, the mean return 𝜇 = 0, and the standard deviation 𝜎𝑡 changes at each time 

point according to the sinusoidal function. The cumulative returns 𝑅(𝑡), representing the sum of 

returns over time, are calculated as  

𝑅(𝑡) = ∑ 𝑟𝑖
𝑡
𝑖=1  . 

This cumulative process allows us to observe the total gain or loss of the simulated series over 

time. By simulating random returns with time-varying volatility, we gain insights into volatility 

clustering in financial markets, where large price movements tend to be followed by similar 

movements. This simulation is crucial for risk management and financial modeling, as it accurately 

reflects market behavior compared to constant-volatility models.  

We generated two different samples of size n=3000, 5000 respectively. In this simulation of returns, 

the rolling window procedure of in-sample and out-of-sample techniques was employed to find 

the best VaR forecast and determine the adequacy and efficiency of the proposed automated 

GARCH EVT algorithm.  
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Table 7: In-Sample Estimated Results and Model Selection 

Models Normal t GED Skew-Normal Skew-t Skew-GED 

Case 1: n=3000 

SGARCH AIC -2.1057 -2.2148 -2.1938 -2.1095 -2.2169 -2.1968 

BIC -2.0941 -2.2004 -2.1793 -2.0950 -2.1995 -2.1794 

EGARCH AIC -2.1450 -2.2543 -2.2246 -2.1464 -2.2579 -2.2290 

BIC -2.1305 -2.2370 -2.2072 -2.1291 -2.2377 -2.2087 

GJR-GARCH AIC -2.1429 -2.2394 -2.2177 -2.1477 -2.2429 -2.2227 

BIC -2.1285 -2.2220 -2.2003 -2.1304 -2.2226 -2.2025 

APARCH AIC -2.1426 -2.2437 -2.2182 -2.1449 -2.2468 -2.2214 

BIC -2.1253 -2.2234 -2.1980 -2.1246 -2.2237 -2.1982 

IGARCH AIC -2.1073 -2.2160 -2.1950 -2.1110 -2.2180 -2.1980 

BIC -2.0986 -2.2044 -2.1834 -2.0994 -2.2035 -2.1835 

Case 2: n=5000 

SGARCH AIC -2.8250 -2.9005 -2.8883 -2.8361 -2.9041 -2.8926 

BIC -2.8175 -2.8910 -2.8788 -2.8266 -2.8928 -2.8813 

EGARCH AIC -2.8622 -2.9225 -2.9116 -2.8717 -2.9278 -2.9173 

BIC -2.8527 -2.9111 -2.9003 -2.8603 -2.9145 -2.9040 

GJR-GARCH AIC -2.8567 -2.9158 -2.9062 -2.8672 -2.9211 -2.9123 

BIC -2.8473 -2.9044 -2.8948 -2.8558 -2.9078 -2.8990 

APARCH AIC -2.8561 -2.9193 -2.9075 -2.8633 -2.9241 -2.9114 

BIC -2.8447 -2.9193 -2.8942 -2.8500 -2.9089 -2.8962 

IGARCH AIC -2.8262 -2.9013 -2.8892 -2.8372 -2.9050 -2.8935 

BIC -2.8205 -2.8937 -2.8816 -2.8296 -2.8955 -2.8840 

Table 7 presents the AIC values of the fitted GARCH-type specifications under different types of 

error distributions. The skewed student’s t distribution is suitable for both cases based on the AIC 

values for all the GARCH-type models. The skewed student t distribution accounts for asymmetry 

and heavy tails, which allows it to capture the extreme values effectively. The estimated results of 

GARCH-type models with the selected innovation skewed student’s t distribution are presented in 

Table 8. The residuals of the selected models are approximately iid’s which is the requirement for 

the further process of applying EVT. For simulated returns, we select the EGARCH-EVT approach 

to compute the one-step-ahead Value at Risk forecast. The forecast performance of these types of 

models should be evaluated for the out-of-sample period and using more accurate performance 

criteria.   

The estimated values of parameters of the GP distribution, including their standard errors and the 

results of goodness-of-fit tests, specifically the CvM and KS tests, along with their p-values are 

shown in Table 9. Our analysis of the CvM and KS test results indicates that the excess values 

derived from the DPT threshold method yield the best fit for the GP distribution compared to 

alternative methods. Furthermore, the positive shape parameter indicates that the distribution is 

heavy-tailed. This means that there is a higher chance of observing extreme values (very large or 

very small). Heavy-tailed distributions are crucial in risk assessment, particularly in finance and 

insurance, as they can more accurately reflect the occurrence of rare but significant events. 
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Table 8: In-Sample: Estimated Values of the Selected Models 

Case 1: n=3000 

Parameters SGARCH EGARCH GJR-GARCH APARCH IGARCH 

𝜇 -0.0002  

(0.0012) 

-0.0029  

(0.0013)  

-0.0015   

(0.0013)   

-0.0025   

(0.0013)  

-0.0002     

(0.0012) 

𝜔 0.0002    

(0.0001)  

-0.1883    

(0.0317)  

0.0002    

 (0.0001)   

0.0008     

(0.0005)   

0.0002     

(0.00003)    

𝛼1 0.2567    

(0.0273)  

-0.1584    

(0.0201)  

0.0832     

(0.0222) 

0.2383     

(0.0265)   

0.2577     

(0.0215) 

𝛽1 0.7422     

(0.0215) 

0.9624     

(0.0062) 

0.7739     

(0.0192)  

0.7924     

(0.0195)  

0.7422          

(0.0000)       

𝛾 - 0.3913    

(0.0349)  

0.2943     

(0.0421)   

0.4116     

(0.0641)   

- 

𝛿 - - - 1.4110     

(0.1847)   

- 

Skew 0.9285    

(0.0282) 

0.9066     

(0.0296) 

0.9122     

(0.0284)  

0.9123     

(0.0295)  

0.9285   

(0.0283)  

Shape 5.6529     

(0.6078)  

5.5375     

(0.6304)   

6.0268     

(0.6845)   

5.4114     

(0.6179)   

5.6431     

(0.5857)   

log L 2137.51 2178.01 2163.52 2168.31 2137.60 

AIC -2.2169 -2.2579 -2.2429 -2.2468 -2.2180 

BIC -2.1995 -2.2377 -2.2226 -2.2237 -2.2035 

𝑄(5)  
(p-value) 

2.614   

(0.4819) 

2.886   

(0.4282) 

3.267 

(0.3604) 

4.206  

(0.2295) 

2.620   

(0.4809) 

𝑄2(5) 
(p-value) 

1.2656   

(0.7972) 

5.0203 

(0.1515) 

4.8132   

(0.1686) 

42.898  

(6.868e-12) 

1.2502   

(0.8009) 

Case 2: n=5000 

Parameters SGARCH EGARCH GJR-GARCH APARCH IGARCH 

𝜇 -0.0002     

(0.0006) 

-0.0012    

(0.0005) 

-0.0008     

(0.0006) 

-0.0012    

(0.0005) 

-0.0002     

(0.0006) 

𝜔 0.00003 

(0.00001) 

-0.0975    

(0.0163) 

0.0001    

(0.00001)    

0.0003     

(0.0002) 

0.0001     

(0.00001)   

𝛼1 0.2159 

(0.0149) 

-0.1410    

(0.0166) 

0.1029     

(0.0162) 

0.2166    

(0.0157)   

0.2169     

(0.0124) 

𝛽1 0.7831 

(0.0149) 

0.9832    

 (0.0028) 

0.7960     

(0.0114)   

0.8162     

(0.0132) 

0.7830  

(0.0000)          

𝛾 - 0.3663     

(0.0232) 

0.2081     

(0.0279) 

0.3485     

(0.0547)   

- 

𝛿 - - - 1.4081     

(0.1810) 

- 

Skew 0.9173 

(0.0215) 

0.8986     

(0.0222) 

0.9025     

(0.0214)   

0.9039     

(0.0222)  

0.9172     

(0.0215) 

Shape 6.9561 

(0.6768) 

6.5902     

(0.7198) 

7.3866     

(0.7791) 

6.6791     

(0.7063) 

6.9376     

(0.6579) 

log L 4651.17 4689.94 4679.25 4685.02 4651.53 

AIC -2.9041 -2.9278 -2.9211 -2.9241 -2.9050 

BIC -2.8928 -2.9145 -2.9078 -2.9089 -2.8955 

𝑄(5)  
(p-value) 

3.8152 

(0.2780) 

4.4863   

(0.1993) 

0.4004   

(0.2536) 

4.4171   

(0.2064) 

3.8176   

(0.2777) 

𝑄2(5) 
(p-value) 

1.5662 

(0.7236) 

1.6791   

(0.6959) 

1.6405   

(0.7053) 

0.9894   

(0.8621) 

1.5529   

(0.7269) 
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Table 9: Parameter estimates of the GP distribution for a selected threshold of simulated returns 

Method Threshold 

(Excess) 

Estimates CVM KS 

Shape Scale Statistic p-value Statistic p-value 

Case 1: Left Tail 

90th Percentile 0.15 

(92) 

0.3934 

(0.1518) 

0.1104 

(0.0189) 

0.0672 0.7702 0.0788 0.5893 

95th Percentile 0.24 

(46) 

0.6624 

(0.2878) 

0.1033 

(0.0318) 

0.0988 0.7224 0.3728 0.8746 

TS 0.16 

(90) 

0.4254 

(0.1494) 

0.1054 

(0.1868) 

0.0539 

 

0.8536 0.0747 0.6683 

DAMSE 0.18 

(76) 

0.4169 

(0.1615) 

0.1153 

(0.0222) 

0.0758 0.7177 0.0935 0.4821 

DPT 0.06 

(342) 

0.5004 

(0.0827) 

0.0508 

(0.0048) 

0.0181 

 

0.9985 0.0213 

 

0.9978 

Case 1: Right Tail 

90th Percentile 0.14 

(101) 

0.6917 

(0.1663) 

0.0835 

(0.0151) 

0.0355 0.9555 0.0480 0.9740 

95th Percentile 0.21 

(51) 

0.1319 

(0.0362) 

0.7204 

(0.2565) 

0.0476 0.8924 0.0809 0.8649 

TS 0.15 

(95) 

0.6819 

(0.1693) 

0.0886 

(0.0164) 

0.0443 0.9106 0.0527 0.9415 

DAMSE 0.17 

(92) 

0.7839 

(0.2034) 

0.0836 

(0.0179) 

0.0349 0.9583 0.0684 0.8006 

DPT 0.11 

(173) 

0.7229 

(0.1319) 

0.0543 

(0.0077) 

0.0156 0.9995 0.0280 

 

0.9992 

Case 2: Left Tail  

90th Percentile 0.17 

(156) 

0.4495 

(0.1235) 

0.1743 

(0.0248) 

0.0257 0.9884 0.0325 0.9906 

95th Percentile 0.31 

(78) 

0.3273 

(0.1615) 

0.2778 

(0.0538) 

0.0501 0.8774 0.0745 0.7509 

TS 0.18 

(152) 

0.4516 

(0.1258) 

0.1757 

(0.0255) 

0.0279 0.9826 0.0342 0.99 

DAMSE 0.23 

(115) 

0.3732 

(0.1342) 

0.2237 

(0.0357) 

0.0327 0.9672 0.0481 0.9511 

DPT 0.14 

(189) 

0.4409 

(0.1097) 

0.1631 

(0.0208) 

0.0217 0.9952 0.0317 0.9912 

Case 2: Right Tail 

90th Percentile 0.15 

(165) 

0.3371 

(0.1166) 

0.1869 

(0.0257) 

0.0970 

 

0.6003 0.0620 0.5494 

95th Percentile 0.30 

(83) 

0.2106 

(0.1407) 

0.2685 

(0.0475) 

0.0434 0.8929 0.0618 0.7936 

TS 0.16 

(160) 

0.3258 

(0.1170) 

0.1922 

(0.0267) 

0.0941 0.6155 0.0642 0.5242 

DAMSE 0.21 

(118) 

0.2254 

(0.1205) 

0.2460 

(0.0369) 

0.0569 0.8339 0.0726 0.5572 

DPT 0.22 

(113) 

0.2062 

(0.1195) 

0.2567 

(0.0387) 

0.0345 0.9597 0.0585 0.8377 

The graphical representation of the out-of-sample returns and corresponding Value at Risk for the 

two simulated returns series are shown in Figures 5 and 6. The black line shows that the returns 

exhibit some volatility, with notable fluctuations around the mean. This behavior is typical in 

financial markets, where returns can vary significantly over time. The red and blue lines illustrate 
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the estimated Value at Risk levels. The area between these lines indicates the range of potential 

losses and gains that are considered acceptable within the specified confidence levels (lower and 

upper VaR). If the black line (out-of-sample returns) crosses below the red line (lower VaR), it 

indicates a loss exceeding the expected threshold, suggesting that the portfolio is experiencing a 

significant risk event. Conversely, if the black line crosses above the blue line (upper VaR), it 

suggests extremely positive returns, indicating potential gains exceeding expectations. 

 
(a) 95% VaR                                                       (b) 99% VaR 

Figure 5: The graph of VaR for EGARCH-EVT for n=3000 

 
(a) 95% VaR       (b) 99% VaR 

Figure 6: The graph of VaR for EGARCH-EVT for n=5000 

Table 10: Backtesting: Kupiec and Christoffersen test Results 

Level of Significance  𝛼 = 0.05 (95%) 𝛼 = 0.01 (99%) 

Tails Left Tail Right Tail Left Tail Right Tail 

Case 1: n=3000 Model: EGARCH-EVT-VaR 

UC: Statistics 0.2757 0.7944 0.4263 0.9624 

UC: P- value 0.5995 0.3728 0.5138 0.3265 

CC: Statistics 0.4022 0.8459 0.4263 0.9626 

CC: P- value 0.8179 0.8321 0.8080 0.6180 

Case 2: n=5000 Model: EGARCH-EVT-VaR 

UC: Statistics 2.4749 4.1465 1.6008 0.0463 

UC: P- value 0.1156 0.0517 0.2057 0.8296 

CC: Statistics 2.5152 4.1691 1.6218 0.0488 

CC: P- value 0.2843 0.1244 0.4492 0.9758 
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The UC and CC test results are displayed in Table 10 for the EGARCH-EVT model applied to 

simulated returns with sample sizes of n=3000 and n=5000 at significance levels of 𝛼 = 0.05 and 

𝛼 = 0.01. Specifically, the p-values from the UC tests exceed the significance levels for both sample 

sizes, indicating that we cannot reject the null hypothesis of correct unconditional coverage which 

suggests the model accurately estimates VaR. Similarly, the CC tests also yield high p-values, 

demonstrating that the models effectively capture the dynamics of the return distributions without 

overestimating or underestimating the risk. Overall, the EGARCH-EVT models show strong 

reliability and stability in estimating VaR, as evidenced by the favorable outcomes of both UC and 

CC tests across the left and right tails in the simulated datasets. We observe that the conditional 

EVT-based models give the best one-step-ahead VaR forecast according to the backtesting results. 

 

VI. Conclusion 

 
This paper developed an algorithm for the GARCH-EVT approach that allows us to model 

the tails of the time-varying conditional return distribution. In this study, we provide a framework 

to estimate and forecast the long position as well as short position VaR using this GARCH-EVT 

algorithm. Modeling the tail behavior of the returns is of utmost importance for both investors and 

policymakers. The GARCH-EVT approach is implemented in modeling the tail distribution of 

cryptocurrency returns and forecasting out-of-sample VaR. By employing a rolling window 

approach, we identified the best GARCH model through in-sample fitting, allowing us to extract 

reliable residuals for EVT analysis. The DPT method proved to be an effective strategy for selecting 

appropriate thresholds, significantly improving the fit of the GP distribution to the excess values. 

The evaluation of goodness-of-fit tests, such as the CvM and KS tests, further confirmed the 

superiority of the DPT method over alternative threshold selection approaches. Additionally, the 

positive shape parameter observed in the GP distribution analysis indicates the presence of heavy-

tailed behavior, underscoring the potential for extreme events. The backtesting results demonstrate 

the suitability of the heavy-tailed GARCH EVT models in forecasting out-of-sample VaR. The 

dual-phase threshold selection procedure is more adaptable in threshold selection for conditional 

EVT, which has been proved in this paper. Our application and simulation captures the heavy-

tailed behavior in daily returns and the asymmetric characteristics in distributions; we treat 

positive and negative returns separately. Overall, the GARCH EVT with DPT threshold provides a 

significant improvement in forecasting Value at Risk. 
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