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Abstract 

This study presents a Bayesian spatial-temporal analysis for studying Dengue incidence in Tamil 

Nadu, aiming to provide insights into decision-making and risk assessment strategies. Statistical 

models that allow a more accurate depiction of true disease rates by borrowing information from 

neighboring regions will help mitigate the effects of sparsely populated regions and deliver better 

inference.  Perhaps the most conspicuous manner of modeling spatial dependence is to introduce 

spatially associated random effects within a Bayesian hierarchical setting. The Bayesian modeling 

and inferential framework are flexible and extremely rich in its capabilities to accumulate various 

scientific hypotheses and assumptions. The spatial and spatial temporal epidemiology is concerned 

with the description and analysis of spatial and spatial temporal variations in disease risk with respect 

to risk factors. As the primary aim of this work is to quantify the spatial disease pattern of dengue 

incidences apart from the mapping of disease modelling the disease and finding spatial 

clusters/hotpots is one important aspect in epidemiology is to find the temporal trends in or outside 

of clusters. In this study, a spatial-temporal trends model is fitted using the Leroux CAR prior’s set 

up for studying the spatial-temporal disease patterns with the estimation of the temporal trends with 

reference to dengue incidences in Tamil Nadu, India. 

Keywords: Spatial temporal, Bayesian modeling, Bayesian hierarchical modeling, 
Leroux CAR prior 

I. Introduction

In spatial epidemiology, the main interest is to describe the spread of a disease or infection through 
models that attempt to summarize the spatial and temporal effects. After detecting disease clusters, 
further analysis about those clusters leads to the finding of the temporal trend of the cluster. The 
Bayesian methodology is highly useful to study this behaviour which may be better than the classical 
procedure, because of the fact that the procedure of Bayesian inference combines prior distribution 
of model parameters and the data likelihood, for deriving the posterior distribution of parameters 
which portray the behaviour of the parameter in a better manner. The Bayesian hierarchical model 
that involves time and regional effects yield more information to the problem of study based on the 
neighbourhood structures of the regions and adjacent times.  
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But a model developed so would be quite complex in nature. However, the computational 
procedures based on MCMC methodology are very much useful to approximate the posterior 
distribution in Bayesian hierarchical models. In this article, a Bayesian model is used to describe the 
spatial patterns with the estimation of the temporal trends with reference to dengue incidences in 
Tamil Nadu, India. The spatio-temporal model was proposed to study the spatial and temporal 
patterns which allows for spatial temporal discontinuities between areas [12] by using this model 
the study has been made to address the climatic variability of dengue cases in Makassar Indonesia 
[1]. The rate of cases in neighborhood i and time j, mosquito density data, fixed scaling factors, 
lagged time for specific variables and different weighting functions between neighborhood effects 
which consists of economic value of the neighborhood, population density and travel distance 
between neighborhoods are included. The nearest-neighborhood effects, (local) and all between-
neighborhood effects (global) are compared in order to predict the association between mosquito 
density and human cases of dengue. Models that preferred were contains global between-
neighborhood effects and the covariates mosquito density and human cases of dengue and their 
interaction. In this study we have used the district wise dengue incidences data collected from the 
Government of Tamil Nadu over the period of 2007 – 2018. 

II. The Spatial and Temporal Models

The Bayesian methodology is highly useful to study this behaviour which may be better than the 
classical procedure, because of the fact that the procedure of Bayesian inference combines prior 
distribution of model parameters and the data likelihood, for deriving the posterior distribution of 
parameters which portray the behaviour of the parameter in a better manner. As already stated, a 
large number of models have been proposed for estimating the Spatio-temporal trends in disease 
risk and as our disease outcome variable is a count they have the general form,  

𝑌𝑖𝑡~Poisson(𝐸𝑖𝑡𝑅𝑖𝑡)  for 𝑖 = 1, … , 𝑁, 𝑡 = 1, … , 𝑇 (1) 

   In(𝑅𝑖𝑡) = 𝛽0 + 𝛽1Rainfall𝑖𝑡 + 𝛽2Temperature𝑖𝑡 + 𝜓𝑖𝑡     (2) 

𝛽~𝑁(𝜇𝛽 , Σ𝛽)               (3) 

where the number of observed disease count is denoted by 𝑌 = (𝑌1, … , 𝑌𝑁)𝑖×𝑇, where 
𝑌𝑡 = (𝑌1𝑡 , … , 𝑌𝑖𝑡) denoted by 𝑖 × 1 column vector of observed disease count for all regions i for time t, 
𝐸𝑖𝑡  is the expected number of disease cases, 𝑅𝑖𝑡 is the relative risk of dengue disease in area i and 
time t. The vector of covariate regression parameters is denoted by 𝛽and a multivariate Gaussian 
prior is assumed with mean 𝜇𝛽 and diagonal dispersion matrix Σ𝛽, 𝜓𝑖𝑡  is the random effect for the 
study region i and time t. Taking 𝜓𝑖𝑡 = 𝜌𝑇𝜓𝑡−1 + 𝜖𝑡. The temporal autocorrelation is thus induced 
through the mean 𝜌𝑇𝜙𝑡−1, while spatial autocorrelation is induced by the variance 𝜏2𝑄(𝑊, 𝜌𝑠)−1. The
precision matrix is given by, 

𝑄(𝑊, 𝜌𝑠) =  𝜌𝑠(diag[𝑊1] − 𝑊) + (1 − 𝜌𝑠)𝐼      (4) 

where (1, 𝐼) is a 𝑁 × 1 vector of ones and the 𝑁 × 𝑁 identity matrix respectively. Hence, the spatial 
autocorrelation is induced by the neighbourhood matrix W defined above, and if 𝜔𝑖𝑗 = 1 then the 
random errors (𝜖𝑘𝑡 , 𝜖𝑗𝑡) are modelled as spatially autocorrelated, while if 𝜔𝑖𝑗 = 0 then (𝜖𝑖𝑡 , 𝜖𝑗𝑡) are 
assumed to be conditionally independent. Thus 𝜌𝑠, 𝜌𝑇 respectively control the levels of spatial and 
temporal autocorrelation, with values of 0 corresponding to independence while a value 1  
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corresponds to string autocorrelation. The precision matrix 𝑄(𝑊, 𝜌𝑠) corresponds to the conditional 
autoregressive (CAR) prior proposed by Leroux [15], given by, 

𝜖𝑖𝑡|𝜖−𝑖𝑡 , 𝑊~𝑁 (
𝜌𝑠 ∑ 𝜔𝑖𝑗𝜖𝑗𝑡

𝑁
𝑗=1

𝜌𝑠 ∑ 𝜔𝑖𝑗+1−𝜌𝑠
𝑁
𝑗=1

,
𝜏2

𝜌𝑠 ∑ 𝜔𝑖𝑗+1−𝜌𝑠
𝑁
𝑗=1

)   (5) 

With the temporal informative priors  𝜏2~Inverse Gamma(1, 0.01) 𝜌𝑠 , 𝜌𝑇~Uniform(0, 1) and     𝜖−𝑖𝑡 =

(𝜖1𝑡 , … , 𝜖𝑖−1𝑡 , 𝜖𝑖+1𝑡 , … , 𝜖𝑁𝑡). If 𝜌𝑠 = 1 the model simplifies to the intrinsic CAR prior proposed Besag 
et al.,[3] and if 𝜌𝑠 = 0 the errors 𝜖𝑘𝑡 are independent and normally distributed with mean zero and 
a constant variance 𝜏2. 

III. Results

The analysis was performed using the model assumed in the previous section. As the primary aim 
of this work is to quantify the spatial disease pattern of dengue incidences risk over time the spatially 
autoregressive model is used.  The MCMC samples are generated from the three independent 
Markov chains and each chain was run for 20,000 samples. To check whether the Markov chains are 
converged the trace plot of the samples for each parameter are observed and since the samples show 
no trend in their means or variances, convergence is assured. These trace plots are presented in 
Figure:1 

Figure 1: Trace plots of the MCMC samples from each chain 

The Gelman and Rubin diagnostic [7] is used as an additional check for testing the between to within 
chain variation reduction in the MCMC samples. It is observed that the samples are well mixed both 
separately and then jointly as the values of the point estimates are less than 1.1. 
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Table1: Gelman-Rubin statistic 

MCMC Chain Point Estimates Upper Credible Interval 
Chain 1 1.04 1.13 
Chain 2 1.07 1.25 
Chain 3 1.04 1.14 

Table 2: Posterior Quantities for Selected Parameters and DIC of the 

 Autoregressive CAR Model (Chain 1) 

Model paramters Median 2.5% 97.5% n.effective Geweke.diag
Intercept 26.1415 14.3764 39.2920 22.9 -0.2
Rainfall 0.0001 -0.0006 0.0007 29.3 1.5

Temperature -6.7187 -10.6279 -3.1630 22.3 0.1
tau2 2.2096 1.8642 2.6795 231.0 -1.5
rho.S 0.9083 0.8233 0.9542 200.0 -2.0
rho.T 0.6794 0.5806 0.7782 91.1 -2.0

DIC=2365.255 
The above Table.2 provides the parameter summaries and posterior median point estimates with 
95% credible intervals.  The Deviance Information Criterion is given at the bottom. It is observed 
that the covariate temperature has a negative relationship with dengue incidences and all other 
covariates have a positive relationship. The spatial and temporal parameters  𝜌𝑠 and 𝜌𝑇 exhibit the 
presence of spatial and temporal autocorrelation after adjusting for the effects of covariates. It is 
observed that the condition for convergence according to Geweke diagnostic [8] is satisfied as the 
corresponding values lie between -2 to +2.  

Table 3: Posterior Median Relative Risk for Covariates 

Credible Interval 50% 2.5% 97.5% 
Temperature 1.0 0.999 1.002 

Rainfall 1.004 0.780 1.437 

The estimated relative risk of the covariates obtained from MCMC samples for the regression 
parameters 𝛽1 and 𝛽2 are obtained and given in Table.3 It is seen that the covariate temperature is 
not significantly related to dengue incidence risk as 95% credible interval consist of the null risk of 
1. A similar thing is observed for the variable rainfall.

Figure 2: Posterior Median and 95% Credible Interval for the Temporal Trend in Dengue 
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With reference to Spatio-temporal trends in disease risk, the following graph (Figure: 2) has been 
plotted based on posterior risk distributions, in which the samples of fitted values are divided by 
the fixed expected number of disease cases.  

Table 4: Posterior Median and 95% credible interval for the 

Temporal Trend in Dengue Disease Risk. 

Year Median 
Lower Credible 

Interval 
Upper Credible 

Interval 

2007 0.0133 0.0119 0.0147 
2008 0.0171 0.0152 0.0192 
2009 0.0168 0.0154 0.0184 
2010 0.0137 0.0124 0.0152 
2011 0.0417 0.0391 0.0445 
2012 0.2014 0.193 0.2101 
2013 0.1064 0.1015 0.1115 
2014 0.0437 0.0412 0.0463 
2015 0.0155 0.0719 0.0794 
2016 0.0475 0.0448 0.0504 
2017 0.5473 0.5252 0.5712 
2018 0.0505 0.0477 0.0535 

To estimate the average temporal trend, the average risk across the study areas for each year is 
estimated which yields the posterior distribution of spatial averages for each year. The 
corresponding posterior median and 95% credible intervals are given in the following Table 4. The 
estimated temporal trend in disease risk is plotted in the following Figure 3. The figure clearly shows 
a downward trend in dengue incidences over 12 years study period. The peaks of risk are observed 
in 2012 and 2017. 

Figure 3: Estimated temporal trend in Temporal Trend in Dengue incidence risk as measured by The Spatial 

Interquartile Range 
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The measure of variations in disease risk over the study region called “Total Inequality” is measured 
by the interquartile range (IQR) variation for each year and is given in Table 4. and the corresponding 
plot is given in Figure 3 The figure clearly shows that the total inequality in Dengue incidences when 
using the interquartile range has increased over the years till 2017 and decreased in 2018 which 
suggest that the population is becoming uneven in terms of later years. 

Table 4: Inter Quartile Ranges 

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

IQR 0.008 0.013 0.009 0.005 0.015 0.142 0.096 0.036 0.078 0.038 0.475 0.038 

The spatial pattern is computed in two ways, the one is with reference to the posterior median risk 
surface and the one is the posterior exceedance probability. The maps of posterior exceedance 
probability and the median risk have been generated and shown in figures: 4 and 5. 

Figure 4: Estimated (Posterior Median) Risk Surface for 

2017 
Figure 5: The Posterior Exceedance Probabilities that 

the risk in 2017 is greater than 1 

From figure: 5, it is observed that the areas of highest risk are found in Chennai and the next level of 
higher risk is observed in Tirunelveli. Moderate levels of risk are found in Coimbatore, Thoothukudi, 
Madurai, Theni, Salem and Thiruvallur. Lower levels of risk are found in Tiruppur, Tiruchirapalli, 
Thanjavur, Ramanathapuram and Kanyakumari. The Posterior Exceedance Probabilities map shows 
that the majority of areas have zero probability of exceeding the risk of 1, except the areas Chennai 
and Tirunelveli. 
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IV. Discussion

Spatial-temporal disease mapping is a familiar approach for studying disease patterns in an effective 
manner. In this article, a spatial-temporal trends model is fitted using the Leroux CAR prior’s set up 
for studying the spatial-temporal disease patterns of Dengue incidences are over the 12 years. 
From the analysis, a downward trend of dengue incidences is observed and the peaks of risk is 
observed in 2012 and 2017. Areas of highest risk are found in Chennai and the next level of higher 
risk is observed in Tirunelveli. Moderate levels of risk are found in Coimbatore, Thoothukudi, 
Madurai, Theni, Salem and Thiruvallur. These results are observed both spatially and temporally. If 
sufficient preventive measures are taken up by the health authorities on the areas quoted above the 
disease incidences may get lower and even null. 
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