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ABSTRACT 

Different researchers in the field of distribution theory have derived new models for generalizing the 

classical ones to make them more flexible and to aid their application in various fields. This 

generalization and extension of the classical models is mostly done using families of distributions. 

This article presents a new family of distributions called the Exponentiated Pareto-G family of 

distributions with two positive shape parameters. Some statistical properties of the new family of 

distributions, such as explicit expressions for the quantile function, probability-weighted moments, 

moments, generating function, Reliability function, hazard function, and order statistics are 

discussed. A maximum likelihood estimation technique is employed to estimate the model 

parameters. Two submodels such as Weibull and Frechet distributions are employed to check the fit 

of the family of distributions with the aid of their pdf and hazard function plots. Also, a simulation 

study is presented to assess the performance of the maximum likelihood estimator. Furthermore, two 

real-life applications are carried out to assess the fit and flexibility of the new family using the 

Weibull model as the baseline. The results showed that the new distribution fits better in the two 

real data sets considered among the range of distributions considered. 

Keywords: Exponentiated Pareto-G, maximum flood level, precipitation, 

consistent, flexibility 

I. INTRODUCTION

Research in the field of statistical distribution theory has increased tremendously in the past few 

years and still growing rapidly. Different researchers in the field of distribution theory have 
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derived new models for generalizing the classical ones to make them more flexible and to aid their 

application in various fields. This generalization and extension of the classical models is mostly 

done using families of distributions. These families of distributions developed have aided the fit of 

many classical distributions with the addition of extra parameters to the baseline distributions. 

Several considerations motivate the development of new generalized families of 

distributions. More adaptable, flexible, and robust models are required since current distributions 

frequently fall short of capturing the variability and patterns found in modern data. New 

distributions that can explain high-dimensional data and adjust to different contexts become 

crucial as data dimensionality and complexity rise. By offering a more accurate representation of 

the underlying processes, such distributions improve the resilience and accuracy of statistical 

analysis. Some of the well-known recently proposed modified families of distributions in the 

literature by different researchers to improve the standard theoretical distribution and also add 

flexibility to the classical distributions are: the new generalized family of distributions by [2], 

Topp-Leone Kumaraswamy-G family of distributions by [12], Topp-Leone Exponentiated-G family 

of distributions by[ 11], Rayleigh-exponentiated odd generalized-X family of distributions by [17], 

Type I half-logistic exponentiated-G family of distributions by [6], new generalized family of 

distributions by [15], Exponentiated type II generalized Topp-Leone-G family of distributions by 

[1]. 

II. THE EXPONENTIATED PARETO-G FAMILY (ETP-G) OF DISTRIBUTIONS

A new two-parameter distribution, called the exponentiated Pareto distribution introduced by [9] 

with cdf and pdf given as 

 ( ; , ) 1 1F x x


 
   

 
(1) 

   
1

1
( ; , ) 1 1 1f x x x

 
  


      

 
   (2) 

According to [3], the cdf of the T-X family of distribution is given as 

 
 

 
( )

( )

W G x

a

F x r t dt R W G x            (3) 

Where  ( )W G x satisfies the following conditions

(i)    ( ) ,W G x a b

(ii)  ( )W G x is differentiable and monotonically non-decreasing, and 

(4) 

(iii) 
   ( ) as - and ( ) asW G x a x W G x b x    

Let ( )r t  be the pdf of a random variable  ,T c d for c d   and  ( )W G x  be a

function of the cdf of a random variable X . 

Then the pdf corresponding to equation (3) is given by; 
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   ( ) ( ) { ( ) }
d

f x W G x r W G x
dx

 
  
 

     (4) 

Proposition 1: 

Let  ;G x  be the cdf of any arbitrary random variable X . Also, let  ,T c d  be a random

variable with a pdf, ( )r t . Furthermore, let our proposed link function be given as ( )G x , using the 

expoenentiated Pareto distribution as the generator, then the cdf of Exponentiated Pareto-G family 

of distributions is given as: 

 ( ; , , ) 1 1 ( ;F x G x
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From equation (6), 
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1 (1 ( ))
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Where , 0    are the shape parameters and 0   is a vector of parameters depending on the 

baseline distribution used. 

The pdf to equation (7) is given as 

   
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III. EXPANSION OF DENSITY
This section presents the densities expansion which will be used to estimate some of the 

distributions properties. 
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For | | 1z  and   is a positive real non integer. 

Applying equation (9) and equation (10) on the last term in equation (8), we have 
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In this vain, using equation (9) and equation (10) on equation (6), we have 
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IV. PROPERTIES OF ETP-G

I. PROBABILITY WEIGHTED MOMENTS (PWMS)

,
0

( ) ( )( ( ))r s r s

r s E X F X x f x F x dx


      (13) 

The PWMs of EtP-G is derive by substituting equation (11) and equation (12) into equation (13) by 

replacing h with s, we have 
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II. MOMENTS
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The rth moments for EtP-G distribution is derive by substituting equation (11) into equation (15) to 

obtain 
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III. MOMENT GENERATING FUNCTION (MGF)

The Moment Generating Function of x is given as 
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The MGF for EtP-G distribution is derive by substituting equation (11) into equation (17) we obtain 
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where the expansion of 
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MGF for EtP-G distribution  in equation (18) given as 

 
 

 
, 0 00

1 1 2
( ) 1 ( ; ) ( ; )

!

z
ji j z

x

i j q

i jt
M t x g x G x dx

iz j

 
  

  


 

      
    

  
  (19)

RT&A, No 1 (82) 
Volume 20, March 2025 

42



I. , Sule, O. A., Bello, I. A., Kolawole
GENERALIZED EXPONENTIATED-G FAMILY OF DISTRIBUTIONS

IV. RELIABILITY FUNCTION
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V. HAZARD FUNCTION
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VI. QUANTILE FUNCTION
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VII. ORDER STATISTICS
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The pdf of rth order statistic for distribution is obtained also replacing h with v+r-1 in cdf 

expansion, we have 
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The pdf of the minimum order statistic of the EtP-G distribution is obtained by setting r=1 in 

equation (24) 
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Also, the pdf of the maximum order statistic of the distribution is obtained by setting r = n in 

equation (24) 
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VIII. MAXIMUM LIKELIHOOD ESTIMATION

This section explores the maximum likelihood estimation (mle) technique to estimate the unknown 

parameters of the EtP-G distribution. Let 1 2, ,..., nx x x be a random sample of size n from the EtP-G 

distribution. Then, the likelihood function based on observed sample for the vector of parameter 

( , , )T    is given by
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The components of score vector , ,U U U U are given as 
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Equations (28), (29) and (30) cannot be solved analytically, so we have to resort to numerical 

method to estimate the unknown parameters. 
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V. SUB MODELS

I. EXPONENTIATED PARETO-WEIBULL (ETPW) DISTRIBUTION

The cdf and pdf of the Weibull distribution are given as 

( )( ; , ) 1 xG x e
     (31) 

1 ( )( ; , ) xg x x e
        (32) 

Where 0, , 0x    . 

The cdf for ETPW distribution is obtained by inserting equation (31) into equation (7) as 

( )( ; , , , ) 1 2 xeF x




    
    

   
   (33) 

And the pdf for ETPW distribution is obtained by differentiating equation (33) with respect to x as 

1 ( ) ( ) (

1
1

)( ; , , , ) 2 1 2x x xxf x e e e
    









    


   
         

     
 (34) 

Where 0, , , , 0x     

Figure 1: Plots of pdf of ETPW distribution with different parameter values 

Reliability function for the ETPW distribution is given as 

( )( ; , , , ) 1 1 2 xeR x



    

     
   

(35)
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Hazard function for the ETPW distribution is given as 

1 ( ) ( ) ( )

( )

1
1

2 1 2

( ; , , , )

1 1 2

x x x

x

T

x e e e

e

x

  



 



    





   




  



   



      
     

    
   

 (36) 

Quantile function for the ETPW distribution is given as 

 

1

1
1

1
log 1 1 1x Q u U









   

     
        

        

 (37) 

II. EXPONENTIATED PARETO-FRECHET (ETPFr) DISTRIBUTION

The Frechet distribution's cdf and pdf are provided as 

( )

( ; , )  ,      0,  , 0xG x e x


   


         (38) 

( )
1( ; , )  ,      0,  , 0xg x x e x


     


     (39) 

The cdf for ETPFr distribution is given as 

( )

( ; , , , ) 1 1 , 0, , , , 0xeF x x




       


  

      
   

    (40) 

The pdf for ETPFr distribution is given as 

1
1

( ) ( ) ( )
1( ; , , , ) 1 1 1 , 0, , , , 0x x xx xe e ef x

  




  
 



        


  

  
 

    
         
     

(41)
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Figure 2: Plots of pdf of ETPFr distribution with different parameter values 

Reliability function of the ETPFr distribution is given as 

( )

( ; , , , ) 1 1 1 xR x e




   


  
     
   

    (42) 

Hazard function of the ETPFr distribution is given as 

( ) ( ) ( )
1

( )

1
1

1 1 1

( ; , , , )

1 1 1

x x x

x

T

e e

e

x

x e
  



 

 




 





   

  


 










    
      
     

  
    
   

 (43) 

Quantile function of the ETPFr distribution is given as 

  1

1
1

log 1 1

x Q u

U










 

  
   

     
      

 (44) 

VI. SIMULATION STUDY

This section addresses a numerical analysis to evaluate the performance of MLE for ETPW 

Distribution. 
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Table 1: MLEs, biases and RMSE for some values of the parameters of ETPW distribution 

    (25,2,6,5)  (27,4,8,6) 

N Parameters Estimated 

Values 

Bias RMSE Estimated 

Values 

Bias RMSE 

20 







25.7129  

2.7524  

6.7789  

5.0041 

0.7129 

0.7524 

0.7789 

0.0041 

3.7808 

2.0073 

2.2489 

0.4382 

27.7166  

5.5891  

9.1209  

6.0493 

0.7166 

1.5891 

1.1209 

0.0493 

4.1678 

4.0788 

2.8826 

0.4292 

50 







25.5242  

2.2234  

6.4049  

5.0226 

0.5242 

0.2234 

0.4049 

0.0226 

3.1134 

0.9125 

1.5416 

0.2663 

27.4919  

4.5111  

8.5580  

6.0445 

0.4919 

0.5111 

0.5580 

0.0445 

3.2601 

1.8794 

1.7238 

0.2728 

100 





25.3816  

2.0852  

6.2106  

5.0193 

0.3816 

0.0852 

0.2106 

0.0193 

2.3289 

0.4054 

1.0451 

0.1648 

27.4562  

4.2018  

8.2503  

6.0314 

0.4562 

0.2018 

0.2503 

0.0314 

2.2990 

0.9604 

1.1375 

0.1609 

250 





25.5657  

2.0123  

5.9821  

5.0174 

0.5657  

0.0123 

-0.0179

0.0174

1.6176 

0.2027 

0.5937 

0.0796 

27.3854  

4.0360  

8.0288  

6.0192 

0.3854 

0.0360 

0.0288 

0.0192 

1.4242 

0.4619 

0.6385 

0.0843 

500 





25.4954  

1.9991  

5.9229  

5.0078 

0.4954 

-0.0009 -

0.0771

0.0078

1.2777 

0.1293 

0.4329 

0.0553 

27.2583  

4.0074  

7.9697  

6.0076 

0.2583  

0.0074 

-0.0303

0.0076

0.8795 

0.2968 

0.4076 

0.0495 

1000 





25.4001  

1.9956  

5.9244  

5.0045 

0.4001 

-0.0044 -

0.0756

0.0045

0.9152 

0.0896 

0.2979 

0.0323 

27.1578  

4.0003  

7.9761  

6.0031 

0.1578  

0.0003 

-0.0239

0.0031

0.5850 

0.1969 

0.2774 

0.0342 

Table 1 displays the values of biases, estimated values and RMSEs It is noticed from the table that 

the RMESs approach zero and the estimates tend to the true parameter values as the sample 

increases. This is an indication that that the maximum likelihood estimates are efficient and 

consistent. 

VII. APPLICATION

The fit of ETPW distribution is tested with applications to environmental data sets to assess its 

flexibility and robustness. The fit of the new model is compared with some existing distributions 

having Weibul distribution as the baseline. The comparators are: the Type I Half-Logistic 

Exponentiated Weibull (TIHLEtW) Distribution by [7], Type II Exponentiated Half Logistic 

Weibull (TIIEHLW) distribution by [4], Half-Logistic Generalized Weibull (HLGW) Distribution by 

[13], Exponentiated Weibull (EW) by [14]vand Weibull Distribution by [16]. 

The data set 1 consists of 20 observations with respect to maximum flood level data to see 

how the new model works in practice. The data has been obtained from [8] and is given as: 0.654, 
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0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.3235, 0.269, 0.740, 0.418, 0.412, 0.494, 0.416, 

0.338, 0.392, 0.484, 0.265. 

The data set 2 is obtained from [10] and also reported in [5]. It consists of thirty successive 

values of March precipitation (in inches) in Minneapolis/St Paul.  The data are:   

0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 

0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05. 

Table 2: The models' MLEs and performance requirements based on data set 1 

Models ̂ ̂ ̂ ̂ ll AIC BIC 

EtPW 38.9937 0.0354 206.5286 0.5620 16.3103 -24.6205 -20.6376

TIHLEtW 13.8158 2.3621 37.6306 0.5298 13.9359 -19.8717 -15.8888

TIIEtHLW 4.2059 0.6008 2.7424 6.0126 13.3035 -18.6071 -14.6242

HLGW - 0.2951 6.5128 6888.7174 14.9716 -23.9432 -20.0560

EtW - 1.4919 3.0333 2.3652 13.9497 -21.8993 -18.9121

W - 3.5083 - 14.2303 13.2633 -22.5261 -20.5352

Figure 3: Fitted cdf, pdf, Q-Q, and P-P plots for data set 1 

Table 3: The models' MLEs and performance requirements based on data set 1 

Models ̂ ̂ ̂ ̂ ll AIC BIC 

EtPW 48.1901 0.0022 2.9823 1.0738 -38.0910 84.1820 89.7868 

TIHLEtW 4.1437 0.6170 13.5135 0.5563 -38.4067 84.8135 90.4183 
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TIIEtHLW 0.7691 1.6782 0.4909 1.5904 -38.1060 84.2121 89.8168 

HLGW - 0.3416 2.7617 2.7351 -40.1181 86.2362 90.4398 

EtW - 2.4241 1.1680 0.8941 -39.8193 85.6386 89.8422 

W - 1.8088 - 0.3154 -41.6433 87.2866 90.0891 

Figure 4: Fitted cdf, pdf, Q-Q, and P-P plots for data set 2 

Tables 2 and 3 outline the results of the mle of the parameters of the EtPW distribution together 

with the comparator distributions. Based on the goodness of fit statistic AIC and BIC, the new 

probability model recorded the lowest AIC as well the lowest BIC value suggesting that the EtPW 

is best fits the two data sets. Figures 3 and 4 also buttress and reaffirm the fit of the EtPW 

distribution as it follows the pattern and shape of the data. 

VIII. CONCLUSION

This research article proposed and studied a new family of distributions called the Exponentiated 

Pareto-G family of distributions. The family was derived from the exponentiated Pareto 

distribution using the T-X methodology proposed by [3]. The properties of the new family such as 

quantile function, probability-weighted moments, moments, generating function, reliability 
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function, hazard function, and order statistics were examined as statistical components of the 

newly proposed family of distributions. The parameters of the family are estimated using the 

method of maximum likelihood technique. Two submodels such as Weibull and Frechet are used 

to show the shape of the family as baseline distributions. A simulation results to evaluate the new 

distribution's performance is carried out using Weibull as the baseline distribution. This is to assess 

the efficiency of the estimation method used. Two real data sets are applied to ascertain the 

importance and flexibility of the new family of distributions. The results reveal that the new 

exponentiated Pareto Weibull distribution appears to be superior to the existing models 

considered. This implies that the new family has added flexibility to the baseline distribution and it 

can be used to model data in a variety of fields. 
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