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Abstract   
 

In this paper, procedures for modeling rare events, which include power and energy shortages, 

are considered when analyzing the balance reliability of electric power systems using simulation 

methods. The primary goal is to investigate the use of iterative methods to form a sequence of 

nested probability subspaces with decreasing probability. Implementations of the subspace 

method are considered. A modification of the entropy method is proposed that involves a smooth 

adaptation of the indicator functions. The discussed procedures undergo a comparative analysis. 

The main disadvantage of the considered methods is their efficiency, which depends on the proper 

specification of parametric constants. The methods to improve the accuracy and convergence of 

iterative procedures are outlined. 
 

Keywords: Monte Carlo simulation, power system reliability, simulation of rare events, cross-

entropy method, probabilistic evaluation 

 
 

I. Introduction      
 

The main task of analyzing the reliability of an electric power system (EPS) is to assess the 

probabilistic indicators (probability, frequency, mathematical expectation, etc.) of power deficit 

(PD) in the EPS, the presence of which is considered a violation of the normal functioning of the 

EPS (failure) [1–3]. All technical systems, including EPS, exhibit a low probability of failure (a 

fraction of a percent) [4–5]. A technical system's reliability analysis is associated with the modeling 

and analysis of failure events. In this case, as a rule, failure occurs with an infinitely large 

combination of external events. Thus, in an EPS with two load nodes and a fixed maximum power 

of electric stations, a power deficit can manifest itself with an unacceptably large increase in the 

load of either the first, second, or both nodes. In this case, the excess of the total load over 

generation is continuous and hence has an infinitely uncertain value in implementation. The 

number of load and generation nodes in real EPS design circuits is measured in thousands. As a 

result, the probability of failure increases many times over, and identifying the most significant 

combinations of events leading to system failure becomes difficult. 

The main mathematical apparatus for analyzing the reliability of EPS is currently the 

methods of statistical tests, and in particular the Monte Carlo method (MCM) [6–10]. These 

methods make it possible to model systems with complex functional relationships that cannot be 

described analytically, including taking into account the stochastic uncertainty associated with 

supply, demand, and the capacity of intersystem connections. The main drawback of the MCM is 
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known: to ensure the required accuracy of the results, a sufficiently large number of tests is 

required, since N is inversely proportional to the probability of the simulated events. In particular, 

when modeling an event with a probability of 10-3 and a modeling error of 1%, at least 106 

statistical tests are required [11]. When analyzing the balance reliability of real EPS, the most 

significant are multiple failures (simultaneous failure of two power transmission lines, 

simultaneous failure of a power line and a power unit, failure of a power unit during peak loads, 

etc.), since single failures of EPS electrical equipment, as a rule, do not lead to limitations on power 

consumption. EPS are designed and constructed taking into account criterion N-1, in which a 

single failure of any element of the EPS should not lead to failure of the power supply process to 

consumers [12–14]. The probability of multiple independent failures is equal to the product of the 

failure probabilities of the failed elements. As a result, the probability of multiple failures takes 

values of 10-5–10-7. At the same time, to identify, model, and analyze post-emergency states of 

EPS using the MCM method, the number of tests is required to be at least 107. With a smaller 

number of tests, the identification of such rare events becomes unlikely, which leads to a 

significant error in the resulting reliability indicators [14]. 

Given that each test necessitates the execution of optimization calculations (optimal flow 

distribution), the reliability analysis of EPS will require several hours of computer time. Note that 

most general problems, such as choosing the optimal configuration of the electrical network 

during its development, involve the calculation of reliability indicators. Hence, the duration of 

calculating the reliability of the EPS development option as a separate calculation block is limited 

in time. The modern power system requires increasingly complex detail and expansion of the 

factors taken into account, which non-linearly increases the complexity of the task of assessing the 

reliability of the EPS. Taken together, this leads to the inexpediency, and sometimes even 

impossibility, of using a standard MCM to assess the reliability indicators of a power system. 

Modifications of the MCM are required, aimed at increasing the computational efficiency of 

statistical methods. 

One of the ways to solve the problem of performing a large number of relatively similar 

calculations associated with modeling rare (with a failure probability of less than 10-5) events in a 

multidimensional probabilistic space is the idea of parallel computing. The technology for 

simultaneous use of several computers (or processors) has been actively developing over the past 

30 years [15–17]. Parallel calculations certainly reduce the computational load of the MCM. 

However, the relationship between the number of parallel computing resources and computation 

time is similar to a linear function [17]. Hence, when modeling rare events, the positive effect of 

parallelization of calculations becomes less obvious. Another direction is the use of pattern 

methods, metamodels, artificial immunity, artificial neural networks, least-squares support vector 

machines [18–21], etc. These methods have also demonstrated a reduction in the MCM method's 

computational load. However, as a rule, for reliability evaluation tasks, they have not been tested, 

are focused on a certain class of problems, are often ineffective, and do not provide the required 

accuracy and reliability of identifying events with a probability of less than 10-4, which is typical 

for real energy systems. Hence, the problem of identifying rare events remains relevant. Iterative 

methods associated with the transformation of analyzed spaces, functions of probability 

distributions of random variables, and criterion functions are more universal in nature. The most 

common methods in this class are subspace and significant sampling methods [22–25], as well as 

cross-entropy methods [26–28]. 

This paper proposes and analyzes new procedures for determining the probabilistic 

parameters of rare events based on nested set methods, including mono and polycenters for 

forming an intermediate sample of significant events, as well as a modification of the cross-

entropy method. The models and methods used in this study are described in Section III and IV, 

after Section II, where the mathematical formulation of rare event simulation is highlighted. 

Section V presents an example case study, and the results are analyzed to address the objectives of 
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the work. In Section VI, conclusions are drawn. 

 

II. Mathematical formulation of Power Deficit as a rare event 
 

Let     be a random vector that combines all probabilistic input variables,        etc. In the 

simplest case, when only available generation and load are taken into account and random states 

of system elements, ambient temperature, etc. are not taken into account,   *        

     +  where   –where is the number of the electrical network node. In order to focus attention on 

the mechanisms for identifying rare events associated with failures of EPS operation, the set of 

random, probabilistically determined quantities in this work is limited only by the load and 

available generation. 

The deficiency of the system is determined by the difference            ∑   ∑   

        It can be estimated, for example, using the system power deficit (PD) function,      

   or (taking into account the capacity of the electrical network)      (        ). When *     +  

is independent, it often makes sense to consider a generalized random variable - the available 

generating capacity of a node,         . Its mean and variance:                  
     

     
 . 

As a result, the number of control stochastic variables is reduced to the number of nodes in the 

electrical network. In this case,          ∑        . 

In general, when analyzing local PDs, it is necessary to take into account the laws of power 

distribution in the electrical network. In this case, each node is characterized by the export 

           or import (-  ) of power, determined by the dispatch control of the EPS and 

depending on the available power of the nodes      ( )  In this case, the local PD           

                    With local PD, the system PD is fixed if at least one of the nodes has a local 

PD     ∑       To more accurately account for the scarcity of EPS, it is necessary to take into 

account active power losses in the network, which are determined by the distribution of power 

flows   {          }  in the elements of the electrical network and are nonlinear in nature. 

Taking into account power losses is associated with the appearance of an additional 

condition    ∑    In this case,                         

Vector   is determined by solving the problem of optimal distribution of load power between 

power sources. In the simplest case, acceptable in reliability assessment problems, we can consider 

     where   is the flow distribution matrix [7]. As a result, it can be noted that the PD in an 

EES represents a complex (often determined algorithmically) functional dependence on a set of 

control variables, usually of a random nature. 

The system failure state is fixed if some criterion function  ( ) specified on the set of control 

variables exceeds its inherent threshold value,  ( )      . In practice as shown in Fig. 1, to 

identify failures, a function with a zero threshold is more often used,  ( )   ( )      ,  which 

takes a negative value when the system fails,  ( )   . In this case, the region of system states 

characterized as “failure”: 

   *      ( )   +  (1) 

If we consider the presence of PD in the EPS as a failure, then the criterion function has the 

form: 

 ( )     .∑             ( )   /  

The criterion function corresponds to the indicator function:  

 ( )  {
   ( )    

   ( )    
 

which allows you to express many logical constructions in analytical form. In particular, the 

probability    of a failure state (the presence of a power deficit in the EPS) can be defined as the 

mean of the indicator function  ( ), which in state   takes the value 1 in the presence of a failure in 

the EPS and 0 in its absence: 
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   ∫ ( )  ( )    
(2) 

where  ( ) – is the probability density function (PDF) of the multidimensional random variable   

that determines the event under consideration. For a given PDF  ( ), the probability of a rare 

event occurring is determined by the region  ,  that satisfies the criterion  ( )     

   ∫  ( )  
 

 ( )  

  

 
Figure 1: Derivation of distorted probability distribution 

 

The PDF  ( ) of a random vector   of system states is almost impossible to represent in the 

form of an analytical expression, since it is the result of the convolution of a large number of 

system parameters of different types, with different parameters (loads, generations, binary 

variables that determine the state of system elements, solar radiation, wind speed, etc.). That is 

why the main method of analyzing the reliability of EPS at present is the simulation method 

(MCM), which allows, through repeated tests and their statistical processing, to obtain a fairly 

accurate estimate of the required values. In this case, as initial data, as a rule, the parameters of 

marginal distributions of initial RVs are set (for example, the load of node   of an EPS is described 

by a normal (Gaussian) distribution with a mathematical expectation    and a standard deviation 

(STD)   ,     (       ).   

 

III. State subspace method 
 

The performance of the MCM can be improved by applying variance reduction techniques such as 

significance sampling. The main idea of this group of methods is the formation of a sequence of 

subsets,              of the system state space, where each subsequent subspace 

increases the probability of identifying rare events and is determined on the basis of the previous 

one, forming a sequence of the Markov chain. In this case, the probability of the occurrence of a 

rare event can be written as follows: 

     (  ⋂  

 

   

)  ∏  (  |    )

 

   

  

Each subsequent subset is chosen so that the probability of the conditional event   (  |    ) 

would be large enough. As a result, a small probability is represented as a product of relatively 

large probabilities [23–25]. One of the ways to form (  |    ) is to select a given share    of the 

most significant events   
 
 (  

 
   
 
     

 
), where      ;  – is the sample size. The index   

characterizes the maximum level of the criterion function  ( ) for the set   
   . The significance of 
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events is determined by the value of  ( ) – the smaller  ( ), the greater the significance of   (for 

 (           )   , the entire area   
  consists of “significant” (deficit states of the EPS)). 

Significance differentiation determines the mechanism of formation of the set   
 . The complete 

sample      obtained from the data of step     is ordered in ascending order  ( ):  (  )    

 (  ). The first       events (   100  percentile of the function ψ(x)) determine the set   
  and the 

maximum value of the criterion function corresponding to it,        ( ( )     
 
), which, in 

turn, is the basis for the formation of a new set    {     ( )    }.  In this case, the value    can 

be considered as the probability of the conditional event   (  |    )    . 

 The presented stage-by-stage process of formation of a set of rare events is characterized by a 

positive value      at all intermediate stages. This means that the set   
  contains both failure 

events,  ( )   ,  and non-failure events  ( )   , that is, the principle of selecting events is to 

exclude less significant events and expand the region of more significant events ,         . 

Initially,     , which means that all system states generated on the basis of marginal PDF 

belong to the analysis zone. However, at subsequent stages, when generating the analyzed set of 

pseudo-random states of the system, a restriction is introduced:  ( )      . As a rule, this is 

realized by replacing the PDF parameters of random variables with some new calculated values. 

At the last stage     . This means that all events in the truncated set with    are failures. But 

failures can also be events that do not fall into the region determined by the percentile,    

 ( )     Here, the conditional probability is determined according to the 

relation:   (  |    )   ( ( )   )  , where  ( ( )   ) –  is the number of sample elements 

of size N satisfying the requirement  ( )   . 

Depending on the algorithm, the total sample size  ( ) at intermediate stages may differ from 

the specified  , however, the selection principle is preserved - only the    part of the set of 

system states formed for analysis is accepted for further consideration. 

 

       A. Monocenter for the formation of an intermediate sample 

A relatively small set of   
    is only the basis for the formation of    . Its elements are 

determined according to the type and parameters of the pseudo-random number generation 

distribution function in step    .  At stage   , these should be different parameters, with a greater 

degree of identification of a rare event. One of the possible options for the formation of a new 

sample is proposed to generate pseudo-random numbers distributed according to a normal 

distribution with mean     (  
   
   
   
     

   
) and variance     (  

   
   
   
     

   
).  At 

the first stage, as  ( )  ( ) the mean and variances of the considered set of initial random variables 

are taken. Since the vector with parameters (     )  is the best representative of the region   ,  it is 

reasonable to consider this vector as the center of the region   . 

The new set of pseudo-random vectors generated at stage   with center (     ),   in the 

general case, contains points that do not belong to    according to the criterion        , that is, 

do not satisfy the condition  ( )      . The solution to this problem is either the addition of the 

resulting set to   elements that satisfy the condition  ( )      , or a simple removal of 

unsatisfactory system states. In the latter case, the sample is reduced from   to    elements, but all 

elements of the remaining set belong to   . It should be noted that the number of elements to be 

removed is, as a rule, relatively small, and the reduction of the analyzed set has little effect on the 

statistical estimates of the desired parameters (in particular, on the probability and mean of PD). 

Calculations show that the choice of (     )  as the center of formation of the set    leads to 

some overestimation of the probability of a rare event in the region of very low probabilities 

(order: 10-6 in relation to 10-7). More accurate is the choice of the center at the point    ,  

corresponding to the maximum value at stage     criterion function,  (   )       . Here, it is a 

priori assumed that at least half of the new generation of system states will not satisfy the 
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condition  ( )     , but this increases the probability of taking into account those states that do 

not fall into the statistical sample with the center  (     ). An increase in the proportion of deleted 

events is inextricably linked with the requirement to increase the sample size N. The shift of the 

center (             )  of the sample relative to the MO leads to the need to correct the variance  

       |        |
 
. 

 

       B. Gaussian distribution- centered method 
The monocentric approach assumes the concentration of the sample around some center, for 

example, according to a normal (Gaussian) distribution with mean at the center of the sample. 

However, the principle of selecting a peripheral region according to the probability    and the 

asymmetry of the region of a rare event (the greater the load, the greater the PD) casts doubt on 

the validity of the Gaussian distribution at intermediate stages. Logically more justified here is a 

probability distribution, unknown in type, but represented by a set of (reference) points defined at 

the previous stage      (  
   
   
   
     

   
). Statistical modeling of this distribution is possible 

by representing the set    as a union of subsets centered at the reference points    ⋃   (  
   
).  

As the STD    when forming the set     we can consider the maximum distance between the points 

of the set     :       |  
   

   
   
| (   

   
   
   
)        This makes it possible to ensure the 

intersection of sets of points formed in multidimensional spheres with centers at points   
   

 

    , and therefore more fully and uniformly take into account the region         

 

       C. Adaptive Sampling Algorithm 
The main problem of methods of nested subspaces of states is the dependence of the resulting 

data on the mechanism of formation of intermediate sets. In this case, situations are possible when 

the subsequent subspace practically does not change the criterion threshold          which leads 

to the lack of convergence of the computational process for a given number of iterations. In this 

case, the resulting probability of a rare event becomes arbitrarily small. Hence, the main directions 

of research in this area are aimed at increasing the robustness of the methods. There are a fairly 

large number of proposals for the formation of intermediate sets [22-25]. Along with the 

monocentric methods described above, we proposed and tested the adaptive sampling method, 

the essence of which is the multiple adaptive correction of the parameters (mean and variance) of 

the distribution of the intermediate sample. Its steps are as follows: 

1. Initialization:                              

2. Generation according to the standard normal (Gaussian) distribution of N 

pseudo-random numbers:   *       +. 

3. Transformation of the set   into a matrix   *       + of named random 

variables (load, generation, state of the system elements), according to their marginal distribution 

laws      (  ). 

4. Definition of the vector of criterion functions   *  (  )+ and its sorting in 

ascending order of the function:   (  )      (    ) 

5. Determination on the set   of the percentile (      ), the parameter      

corresponding to it, and the set of named significant states of the system     *     (  )    +. 

6. Generation of a new sample of N random states of the system based on the 

reference states of the system. 

7. Items 4-6 are repeated until     .  In this case, the conditional probability 

  (  |    )       At the last step  , for      the number     of elements is determined that 

satisfy the condition    (   )         (     )   . The resulting probability of a rare event is 

  ( )    
         

8. Determination of other analyzed probabilistic indicators (mean of PD, etc.). 
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IV. Cross entropy method 
 

The cross-entropy method (CEM) [26-28] is based on replacing the real function  ( ) of the 

distribution density of the analyzed multivariate random variable, according to which the MCM is 

sampled, by some auxiliary PDF  ( ),  which shifts the scope of analysis into the region of interest 

of a rare event. This approach is widely known in the calculation of integrals of complex functions 

by statistical methods, where the integrand is multiplied and divided by some PDF, completely 

defined on the integration interval under consideration: 

∫  ( )  
 

 

 ∫
 ( )

 ( )
 ( )  

 

 

   ( ( ))  
 

 
∑ (  )

 

   

  

where  ( )   ( )  ( ). In this case, the problem of choosing an auxiliary function arises - it is 

necessary that the calculation procedure based on it be not only adequate in direction (shift of the 

analyzed area towards a rare event), but also efficient in terms of speed and convergence. In the 

presence of CDF, the probability of power shortage (2) can be represented as the mathematical 

expectation of the weighted indicator function  ( ) ( ), defined in a multidimensional space of 

random variables with a density function  ( ): 

   ∫ ( )
 ( )

 ( )
 ( )   ∫  ( ) ( ) ( )     , ( ) ( )-  (3)  

where  ( )   ( )  ( )  –  is the weight function determined by the initial  ( ) and auxiliary 

 ( ) distribution densities. When choosing the most efficient function   ( ) in the class * ( )+ , the 

minimum of the variance    can serve as an optimization criterion: 

   
 
   [ ( ) (   ( ))]  

Theoretically, the best function leading to zero variance of the desired probability estimate    

is the function [28]: 

  ( )  
 ( ) ( )

∫  ( ) ( )  
 
 ( ) ( )

  
  (4) 

Since the optimal CDF depends on the unknown values    and  ( ), a direct analytical 

determination of   ( ) is impossible. A sufficiently good approximation makes it possible to 

obtain a FEM based on the successive refinement of the parameters   of the multidimensional 

distribution density  (   )and the procedure for determining the resulting value is represented as 

a Markov chain with the choice of parameters at each step. To estimate the parameters  , this 

method uses the results of intermediate statistical tests. The parameter vector   is determined by 

minimizing the cross entropy (KL divergence) [28]. KL-divergence determines the measure of 

proximity of two arbitrary PDFs: the optimal PDF   ( ) and its current estimate  (   ). In the 

proposed work, the function  (   )is represented by the density of a multidimensional normal 

distribution with the mathematical expectation    and the matrix of correlation moments   . In 

this setting, the degree of optimality, in essence, determines the vector of parameters   ,     -).  

CEM solves the problem of optimization iteratively by determining a series of intermediate 

distribution densities * (    )            +, which, as shown in Fig. 2, gradually approach the 

target density   ( ), representing region of existence of a rare event. At step  , the optimal PDF 

  ( )can be represented by the estimate  (      
 ) with the optimal parameters     

  obtained at 

the previous step. In this case,  (      
 )   ( )  (      

 ).  The area    of the intermediate set of 

system states is determined by the threshold   : 

   *     ( )    +  

  ( )  {
           (  )     

            (  )     
 

 

(5) 

The threshold    is calculated as a θ-quantile (for example, a decile obtained during statistical 

tests and sorted from the smallest to the largest values of the threshold function   (  ). In this 

case, the simulation is performed according to the distribution density  (      )  with parameters 
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    . 

The vector    obtained as a result of solving the optimization problem at step     is 

considered as a new value of the vector of parameters of the optimal PDF   ( ),     
 . Starting 

from the initial vector of parameters    that is assumed to be equal to the initial parameters of the 

probability distributions of the analyzed random variables, each subsequent vector    is 

determined by the solution of the optimization problem, approaching the optimal distribution 

density   ( )        ( (    ) )  which, in turn, is the best estimate of the auxiliary PDF optimal 

in the CEM. The procedure is repeated until    becomes negative, or at least   ,        - trials 

are located in the desired region of rare events [28]. If the number of steps to reach the termination 

criterion of the iterative process is m, then the resulting probability of a rare event is: 

 
 

  
 

 
∑ (  ) (       )

 

   

  (6) 

 

 
Figure 2: Derivation of distorted probability distribution using CEM 

 

The classical CEM presented above requires an optimization procedure to be performed 

when determining the parameters    of the current PDF  (    ). In this case,    includes the 

mean       and the matrix of correlation moments    of those realizations x that belong to the area 

  ,     . Expression (6) can be considered as the average value of the values   (  ) with weights 

 (  ). Since it refers to a probability, each component of the sum can be interpreted as the 

probability that the realization    belongs to the current region    of the rare event. Since the area 

  is defined by the indicator function   (  ), then the mean of the available power of nodes in the 

area    is as follows: 

  
( )
 ( ∑     

     

) ( ∑   
     

)  

Matrix of correlation moments can be expressed as follows: 

∑ 
( )
 ( ∑  (  )(     

( ))(     
( )) 

     

) ( ∑  (  )

     

)  

These parameters form the vector   .  With this approach, an optimization procedure is not 

required, which significantly reduces the duration of calculations without a significant decrease in 

the accuracy of the results. 
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V. Computational results 
 

To compare the described procedures, calculations of the balance reliability indicators are 

performed for a five-node electrical circuit shown in Fig. 3, where in addition to the topology, load 

and generation expectations are presented. Standard deviations are taken equal to 10% of 

expectations. TLs, numbered in the order {1-5; 1-4; 4-5; 2-4; 2-3; 3-4}. TL have resistances 

respectively R = {10; 5; 5; 3; 1; 2}; X = {100; 50; 50; 50; 33; 10; 10}. The limiting capacity of all 

connections was taken equal to 500 MW. 

 

Figure 3: Test circuit 

The calculation results are presented in Table I, where the methods are indicated: MCM – 

classical Monte Carlo method; Monocenter – subspace method with one point of formation of an 

intermediate subspace; Polycenter – the set     ;  is taken as reference points for the formation of 

the intermediate subspace   ; SubSet– method of subspaces with changing parameters of 

probability distributions when forming an intermediate subspace; CEM– simplified cross-entropy 

method. 

Table 1: Computational results 

Methods Pr, 10-5 Pr, Сv Pr_Eps, % mD, 10-4 mD, Cv mD_Eps, % t, sec 

Convolution 2.23 0 0 1.21 0 0 0 

MCM 2.23 0.07 0.1 1.21 0.10 0.1 19 

Monocenter 2.24 0.6 0.5 1.48 0.90 22.1 0.44 

Polycenter 2.29 0.65 2.9 1.52 0.92 25.7 0.19 

SubSet  2.2 0.58 -1.4 1.41 0.92 16.7 3.21 

CEM 2.3 0.54 3.3 1.24 0.03 2.5 0.12 

 

The second column presents the calculated probability of the total power deficit of the EPS. It 

should be noted that all presented methods show an accuracy of a rare event acceptable for 

practical calculations - a maximum deviation of 3.3% (column Pr_Eps, %, CE method) with an 

exact probability value Pr = 2.23×10–5 can be considered insignificant for low probabilities. For 

comparison, it can be mentioned that with such probabilities, the widespread replacement of the 

binomial distribution with the Poisson distribution has a much larger error. The coefficient of 

variation presented in the Pr_Cv column shows that the spread of the resulting probabilities is 

relatively small for all methods.  

The next 3 columns refer to the mean of PD. Here the spread (coefficient of variation (column 

mD, Cv)) of the resulting values is much greater. It should be noted that the relative error in 

calculating the mean of the PD exceeds 25%. Increasing accuracy is possible by increasing the 

volume of the intermediate sample. However, this leads to an increase in the duration of 

calculations (column t), which in the presented calculation procedures depends mainly on time-

intensive transformations of probability distributions (uniform- Gaussian- individual (marginal)). 

If we assume that all random variables are described by the same normal distribution (with 
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different parameters), then this allows us to reduce the duration of calculations several times. 

The results obtained allow us to recommend cross-entropy methods for practical use that 

provide the smallest scatter of the resulting indicators. 

 

VI. Conclusion 
 

The described methods for identifying rare events in the electric power industry refer to those 

events for which it is possible to determine a criterion function that changes its value depending 

on the distance from the desired events. Such functions (and events) in the electric power industry 

include power shortages, positive when there is a shortage and negative when there is a reserve of 

generating capacity. The main technology for identifying rare events is the use of Markov chains, 

where each subsequent event is determined on a set of events identified at the previous stage 

according to some criterion. Of the existing approaches to identifying rare events, two can be 

identified that are most suitable for technical systems: those based on the use of nested subspace 

technology and the transformation of distribution functions of random variables (including 

entropy methods). It can be noted that all the procedures considered make it possible to identify 

rare events with an accuracy acceptable for practical use. According to the robustness criterion, 

preference can be given to the adaptive sampling algorithm from the class of nested subspaces and 

the modified cross-entropy method from the class of distribution function transformations. The 

accuracy of the calculations largely depends on the settings of the methods, including the size of 

the test sample at the intermediate stages of forming significant events. In this case, the duration of 

calculations is determined not only by the sample size, but also by the need for probabilistic 

transformations of distribution functions. 
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