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Abstract

In this paper, procedures for modeling rare events, which include power and energy shortages,
are considered when analyzing the balance reliability of electric power systems using simulation
methods. The primary goal is to investigate the use of iterative methods to form a sequence of
nested probability subspaces with decreasing probability. Implementations of the subspace
method are considered. A modification of the entropy method is proposed that involves a smooth
adaptation of the indicator functions. The discussed procedures undergo a comparative analysis.
The main disadvantage of the considered methods is their efficiency, which depends on the proper
specification of parametric constants. The methods to improve the accuracy and convergence of
iterative procedures are outlined.

Keywords: Monte Carlo simulation, power system reliability, simulation of rare events, cross-
entropy method, probabilistic evaluation

I. Introduction

The main task of analyzing the reliability of an electric power system (EPS) is to assess the
probabilistic indicators (probability, frequency, mathematical expectation, etc.) of power deficit
(PD) in the EPS, the presence of which is considered a violation of the normal functioning of the
EPS (failure) [1-3]. All technical systems, including EPS, exhibit a low probability of failure (a
fraction of a percent) [4-5]. A technical system's reliability analysis is associated with the modeling
and analysis of failure events. In this case, as a rule, failure occurs with an infinitely large
combination of external events. Thus, in an EPS with two load nodes and a fixed maximum power
of electric stations, a power deficit can manifest itself with an unacceptably large increase in the
load of either the first, second, or both nodes. In this case, the excess of the total load over
generation is continuous and hence has an infinitely uncertain value in implementation. The
number of load and generation nodes in real EPS design circuits is measured in thousands. As a
result, the probability of failure increases many times over, and identifying the most significant
combinations of events leading to system failure becomes difficult.

The main mathematical apparatus for analyzing the reliability of EPS is currently the
methods of statistical tests, and in particular the Monte Carlo method (MCM) [6-10]. These
methods make it possible to model systems with complex functional relationships that cannot be
described analytically, including taking into account the stochastic uncertainty associated with
supply, demand, and the capacity of intersystem connections. The main drawback of the MCM is
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known: to ensure the required accuracy of the results, a sufficiently large number of tests is
required, since N is inversely proportional to the probability of the simulated events. In particular,
when modeling an event with a probability of 10-3 and a modeling error of 1%, at least 106
statistical tests are required [11]. When analyzing the balance reliability of real EPS, the most
significant are multiple failures (simultaneous failure of two power transmission lines,
simultaneous failure of a power line and a power unit, failure of a power unit during peak loads,
etc.), since single failures of EPS electrical equipment, as a rule, do not lead to limitations on power
consumption. EPS are designed and constructed taking into account criterion N-1, in which a
single failure of any element of the EPS should not lead to failure of the power supply process to
consumers [12-14]. The probability of multiple independent failures is equal to the product of the
failure probabilities of the failed elements. As a result, the probability of multiple failures takes
values of 10-5-10-7. At the same time, to identify, model, and analyze post-emergency states of
EPS using the MCM method, the number of tests is required to be at least 107. With a smaller
number of tests, the identification of such rare events becomes unlikely, which leads to a
significant error in the resulting reliability indicators [14].

Given that each test necessitates the execution of optimization calculations (optimal flow
distribution), the reliability analysis of EPS will require several hours of computer time. Note that
most general problems, such as choosing the optimal configuration of the electrical network
during its development, involve the calculation of reliability indicators. Hence, the duration of
calculating the reliability of the EPS development option as a separate calculation block is limited
in time. The modern power system requires increasingly complex detail and expansion of the
factors taken into account, which non-linearly increases the complexity of the task of assessing the
reliability of the EPS. Taken together, this leads to the inexpediency, and sometimes even
impossibility, of using a standard MCM to assess the reliability indicators of a power system.
Modifications of the MCM are required, aimed at increasing the computational efficiency of
statistical methods.

One of the ways to solve the problem of performing a large number of relatively similar
calculations associated with modeling rare (with a failure probability of less than 10-5) events in a
multidimensional probabilistic space is the idea of parallel computing. The technology for
simultaneous use of several computers (or processors) has been actively developing over the past
30 years [15-17]. Parallel calculations certainly reduce the computational load of the MCM.
However, the relationship between the number of parallel computing resources and computation
time is similar to a linear function [17]. Hence, when modeling rare events, the positive effect of
parallelization of calculations becomes less obvious. Another direction is the use of pattern
methods, metamodels, artificial immunity, artificial neural networks, least-squares support vector
machines [18-21], etc. These methods have also demonstrated a reduction in the MCM method's
computational load. However, as a rule, for reliability evaluation tasks, they have not been tested,
are focused on a certain class of problems, are often ineffective, and do not provide the required
accuracy and reliability of identifying events with a probability of less than 10-4, which is typical
for real energy systems. Hence, the problem of identifying rare events remains relevant. Iterative
methods associated with the transformation of analyzed spaces, functions of probability
distributions of random variables, and criterion functions are more universal in nature. The most
common methods in this class are subspace and significant sampling methods [22-25], as well as
cross-entropy methods [26-28].

This paper proposes and analyzes new procedures for determining the probabilistic
parameters of rare events based on nested set methods, including mono and polycenters for
forming an intermediate sample of significant events, as well as a modification of the cross-
entropy method. The models and methods used in this study are described in Section III and 1V,
after Section II, where the mathematical formulation of rare event simulation is highlighted.
Section V presents an example case study, and the results are analyzed to address the objectives of
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the work. In Section VI, conclusions are drawn.

II. Mathematical formulation of Power Deficit as a rare event

Let x € R™be a random vector that combines all probabilistic input variables, L;, G;, etc. In the
simplest case, when only available generation and load are taken into account and random states
of system elements, ambient temperature, etc. are not taken into account, x ={L;G;, i =
1, ...,n}, where i —-where is the number of the electrical network node. In order to focus attention on
the mechanisms for identifying rare events associated with failures of EPS operation, the set of
random, probabilistically determined quantities in this work is limited only by the load and
available generation.

The deficiency of the system is determined by the difference Dy = Ly — Gy = Y L; — X G;,
Ls > Gy. It can be estimated, for example, using the system power deficit (PD) function, S = Gy —
Ly or (taking into account the capacity of the electrical network) S = min(G; — L;, Vi). When {L;, G;}
is independent, it often makes sense to consider a generalized random variable - the available
generating capacity of a node, r; = G; — L;. Its mean and variance: u,, = pg, — t; a,?i = aczi + crLZL..
As a result, the number of control stochastic variables is reduced to the number of nodes in the
electrical network. In this case, Dy = -1y, = — )Y 1;, 15 <O0.

In general, when analyzing local PDs, it is necessary to take into account the laws of power
distribution in the electrical network. In this case, each node is characterized by the export
u;, i =1,..,n or import (-u;) of power, determined by the dispatch control of the EPS and
depending on the available power of the nodes u; = u;(r). In this case, the local PD D; = u; —1; =
u; — G;+ L;; D; > 0. With local PD, the system PD is fixed if at least one of the nodes has a local
PD Ds =3}, D;. To more accurately account for the scarcity of EPS, it is necessary to take into
account active power losses in the network, which are determined by the distribution of power
flows z = {z]-, j=1, ...,m} in the elements of the electrical network and are nonlinear in nature.
Taking into account power losses is associated with the appearance of an additional
condition wy = Y u;. In this case, Dy = Ly — Gy + w5, Dy = 0.

Vector z is determined by solving the problem of optimal distribution of load power between
power sources. In the simplest case, acceptable in reliability assessment problems, we can consider
z = Cu where C is the flow distribution matrix [7]. As a result, it can be noted that the PD in an
EES represents a complex (often determined algorithmically) functional dependence on a set of
control variables, usually of a random nature.

The system failure state is fixed if some criterion function ¥ (x) specified on the set of control
variables exceeds its inherent threshold value, Y (x) < ¥;;,. In practice as shown in Fig. 1, to
identify failures, a function with a zero threshold is more often used, S(x) = Y (x) — Y;,,, which
takes a negative value when the system fails, S(x) < 0. In this case, the region of system states
characterized as “failure”:

H:={x e R™: 5(x) < 0}. 1)

If we consider the presence of PD in the EPS as a failure, then the criterion function has the
form:

S(r) = min (Z T, — Ty 1 — ui(r),Vi).
The criterion function corresponds to the indicator function:
1, S(x) <O0;
J@) = {o, 58 >0,
which allows you to express many logical constructions in analytical form. In particular, the
probability Py of a failure state (the presence of a power deficit in the EPS) can be defined as the
mean of the indicator function J(x), which in state x takes the value 1 in the presence of a failure in
the EPS and 0 in its absence:
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Py = f J () f()dx, @)

where f(x) — is the probability density function (PDF) of the multidimensional random variable x
that determines the event under consideration. For a given PDF f(x), the probability of a rare
event occurring is determined by the region H, that satisfies the criterion S(x) < 0.

P, = _L(x)<0f(x)dx.

Jx)f (%)
S(x)[<]0
it Sx) 2 >
2 @)
PD donllain X

Figure 1: Derivation of distorted probability distribution

The PDF f(x) of a random vector x of system states is almost impossible to represent in the
form of an analytical expression, since it is the result of the convolution of a large number of
system parameters of different types, with different parameters (loads, generations, binary
variables that determine the state of system elements, solar radiation, wind speed, etc.). That is
why the main method of analyzing the reliability of EPS at present is the simulation method
(MCM), which allows, through repeated tests and their statistical processing, to obtain a fairly
accurate estimate of the required values. In this case, as initial data, as a rule, the parameters of
marginal distributions of initial RVs are set (for example, the load of node i of an EPS is described
by a normal (Gaussian) distribution with a mathematical expectation y; and a standard deviation
(SID) oy, Li~N(x, 4y, ;).

III. State subspace method

The performance of the MCM can be improved by applying variance reduction techniques such as
significance sampling. The main idea of this group of methods is the formation of a sequence of
subsets, H; D H, D -* D H,, = H of the system state space, where each subsequent subspace
increases the probability of identifying rare events and is determined on the basis of the previous
one, forming a sequence of the Markov chain. In this case, the probability of the occurrence of a

rare event can be written as follows:
m

m
P, =Pr|H = ﬂ H;i | =| | Pr(H;|H;-).

Jj=1 j=1
Each subsequent subset is chosen so that the probability of the conditional event Pr(H;|H;_,)
would be large enough. As a result, a small probability is represented as a product of relatively
large probabilities [23-25]. One of the ways to form (HJ|HJ_1) is to select a given share p, of the
most significant events Xl{ = (x{,xé, ...,xi), where k = pyN; N- is the sample size. The index b
characterizes the maximum level of the criterion function (x) for the set X g ~!. The significance of
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events is determined by the value of {(x) — the smaller (x), the greater the significance of x (for
Y(x;,i=1,...k) <0, the entire area le consists of “significant” (deficit states of the EPS)).
Significance differentiation determines the mechanism of formation of the set X g . The complete
sample H;_; obtained from the data of step j — 1 is ordered in ascending order ¥ (x): P(x;) < -+ <
Y(xy). The first pyN events (p, -100 percentile of the function \(x)) determine the set X, ,f and the
maximum value of the criterion function corresponding to it, b; = max(z/) (x),xeX 1{ ), which, in
turn, is the basis for the formation of a new set H; = {x: PYlx) < bj}. In this case, the value p, can
be considered as the probability of the conditional event Pr(Hj |Hj_1) = po.

The presented stage-by-stage process of formation of a set of rare events is characterized by a
positive value b; > 0 at all intermediate stages. This means that the set X 1{ contains both failure
events, P(x) <0, and non-failure events P (x) > 0, that is, the principle of selecting events is to
exclude less significant events and expand the region of more significant events , b; < b;_; .
Initially, by = oo, which means that all system states generated on the basis of marginal PDF
belong to the analysis zone. However, at subsequent stages, when generating the analyzed set of
pseudo-random states of the system, a restriction is introduced: ¥ (x) < b;_;. As a rule, this is
realized by replacing the PDF parameters of random variables with some new calculated values.

At the last stage b; < 0. This means that all events in the truncated set with p, are failures. But
failures can also be events that do not fall into the region determined by the percentile, b; <
P(x) <0. Here, the conditional probability is determined according to the
relation: Pr(H,,|Hyy—1) = N(@(x) < 0)/N, where N(i(x) < 0) — is the number of sample elements
of size N satisfying the requirement ¥ (x) < 0.

Depending on the algorithm, the total sample size NU) at intermediate stages may differ from
the specified N, however, the selection principle is preserved - only the p, —part of the set of
system states formed for analysis is accepted for further consideration.

A. Monocenter for the formation of an intermediate sample

A relatively small set of X ;_1 is only the basis for the formation of H;. Its elements are
determined according to the type and parameters of the pseudo-random number generation
distribution function in step j — 1. At stage j, these should be different parameters, with a greater
degree of identification of a rare event. One of the possible options for the formation of a new
sample is proposed to generate pseudo-random numbers distributed according to a normal
distribution with mean p/ = [E(x{_l,xé_l, ...,xi_l) and variance D/ = ]I))(x{_l,xé_l, ...,xi_l). At
the first stage, as u, DV the mean and variances of the considered set of initial random variables
are taken. Since the vector with parameters (u/, D/) is the best representative of the region X/, it is
reasonable to consider this vector as the center of the region H;.

The new set of pseudo-random vectors generated at stage j with center (u/,D’), in the
general case, contains points that do not belong to H; according to the criterion H; c H;_4, that is,
do not satisfy the condition ¥(x) < b;_;. The solution to this problem is either the addition of the
resulting set to N elements that satisfy the condition ¥(x) < b;_;, or a simple removal of
unsatisfactory system states. In the latter case, the sample is reduced from N to N; elements, but all
elements of the remaining set belong to H;. It should be noted that the number of elements to be
removed is, as a rule, relatively small, and the reduction of the analyzed set has little effect on the
statistical estimates of the desired parameters (in particular, on the probability and mean of PD).

Calculations show that the choice of (u/, D’) as the center of formation of the set F; leads to
some overestimation of the probability of a rare event in the region of very low probabilities
(order: 10-6 in relation to 10-7). More accurate is the choice of the center at the point x,
corresponding to the maximum value at stage j — 1 criterion function, ¥(x*/) = b;_,. Here, it is a
priori assumed that at least half of the new generation of system states will not satisfy the
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condition ¥(x) < b;, but this increases the probability of taking into account those states that do
not fall into the statistical sample with the center (u/, D). An increase in the proportion of deleted
events is inextricably linked with the requirement to increase the sample size N. The shift of the
center (u*/ = x*/=1,D*) of the sample relative to the MO leads to the need to correct the variance

, . , .2
DY =DJ + |xJ7t — |

B. Gaussian distribution- centered method

The monocentric approach assumes the concentration of the sample around some center, for
example, according to a normal (Gaussian) distribution with mean at the center of the sample.
However, the principle of selecting a peripheral region according to the probability p, and the
asymmetry of the region of a rare event (the greater the load, the greater the PD) casts doubt on
the validity of the Gaussian distribution at intermediate stages. Logically more justified here is a
probability distribution, unknown in type, but represented by a set of (reference) points defined at
the previous stage C;_; = (x{_l,xé_l, ...,x{;_l). Statistical modeling of this distribution is possible
by representing the set H; as a union of subsets centered at the reference points H; = U Hj, (xg_l).
As the STD o; when forming the set H;; we can consider the maximum distance between the points
of the set Cj_;: 0 = max|x£_1 —x{_1|,(x£_1, x{_l) € Cj_;. This makes it possible to ensure the
intersection of sets of points formed in multidimensional spheres with centers at points x,i_l €
C;_1, and therefore more fully and uniformly take into account the region C;_;.

C. Adaptive Sampling Algorithm

The main problem of methods of nested subspaces of states is the dependence of the resulting
data on the mechanism of formation of intermediate sets. In this case, situations are possible when
the subsequent subspace practically does not change the criterion threshold by, = by_;, which leads
to the lack of convergence of the computational process for a given number of iterations. In this
case, the resulting probability of a rare event becomes arbitrarily small. Hence, the main directions
of research in this area are aimed at increasing the robustness of the methods. There are a fairly
large number of proposals for the formation of intermediate sets [22-25]. Along with the
monocentric methods described above, we proposed and tested the adaptive sampling method,
the essence of which is the multiple adaptive correction of the parameters (mean and variance) of
the distribution of the intermediate sample. Its steps are as follows:

1. Initialization: k = 1; N, = poN; Ng = 1/pg; A= 0.6

2. Generation according to the standard normal (Gaussian) distribution of N
pseudo-random numbers: U = {uy, ..., uy}.

3. Transformation of the set U into a matrix X = {xq,...,xy} of named random

variables (load, generation, state of the system elements), according to their marginal distribution
laws X; = (pl(ul)

4, Definition of the vector of criterion functions ¥ = {¥;(x;)} and its sorting in
ascending order of the function: ¥;(x;) = 1;_; (x;_1)

5. Determination on the set ¥ of the percentile (p,-100), the parameter b, =0
corresponding to it, and the set of named significant states of the system Hy;, = {x;:¢;(x;) < by}.

6. Generation of a new sample of N random states of the system based on the
reference states of the system.

7. Items 4-6 are repeated until b, = 0. In this case, the conditional probability

Pr(Hy|H,_1) = po. At the last step m, for b,, < 0 the number N,, of elements is determined that
satisfy the condition ¢y (me) <0,y Nm+1(me+1) > 0. The resulting probability of a rare event is
Pr(H) = pI*"'N,,/N.

8. Determination of other analyzed probabilistic indicators (mean of PD, etc.).
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IV. Cross entropy method

The cross-entropy method (CEM) [26-28] is based on replacing the real function f(x) of the
distribution density of the analyzed multivariate random variable, according to which the MCM is
sampled, by some auxiliary PDF q(x), which shifts the scope of analysis into the region of interest
of a rare event. This approach is widely known in the calculation of integrals of complex functions
by statistical methods, where the integrand is multiplied and divided by some PDF, completely
defined on the integration interval under consideration:

q(x)

where W(x) = f(x)/q(x). In this case, the problem of choosing an auxiliary function arises - it is

b b 1<
[ o= [ L2 q@ax = g (we) = 5 Y Wi,

necessary that the calculation procedure based on it be not only adequate in direction (shift of the
analyzed area towards a rare event), but also efficient in terms of speed and convergence. In the
presence of CDF, the probability of power shortage (2) can be represented as the mathematical
expectation of the weighted indicator function J(x)W (x), defined in a multidimensional space of
random variables with a density function g(x):

Py = j 1<x)%q<x)dx - f JEOW @@ dx = E,J(OW @), ®

where W(x) = f(x)/q(x) — is the weight function determined by the initial f(x) and auxiliary
q(x) distribution densities. When choosing the most efficient function g*(x) in the class {q(x)}, the
minimum of the variance Py can serve as an optimization criterion:
mqin V, [JOW (x5 (x))]-
Theoretically, the best function leading to zero variance of the desired probability estimate Py
is the function [28]:

< JO@ @@ “
J1GOf (x)dx Py

Since the optimal CDF depends on the unknown values Py and j(x), a direct analytical
determination of g*(x) is impossible. A sufficiently good approximation makes it possible to
obtain a FEM based on the successive refinement of the parameters v of the multidimensional
distribution density q(x; v)and the procedure for determining the resulting value is represented as
a Markov chain with the choice of parameters at each step. To estimate the parameters v, this
method uses the results of intermediate statistical tests. The parameter vector v is determined by
minimizing the cross entropy (KL divergence) [28]. KL-divergence determines the measure of
proximity of two arbitrary PDFs: the optimal PDF q*(x) and its current estimate q(x; v). In the
proposed work, the function q(x; v)is represented by the density of a multidimensional normal
distribution with the mathematical expectation p, and the matrix of correlation moments X;. In
this setting, the degree of optimality, in essence, determines the vector of parameters v = [f,; Z,]).

CEM solves the problem of optimization iteratively by determining a series of intermediate
distribution densities {q(x; vy), k = 1,...., NT}, which, as shown in Fig. 2, gradually approach the
target density q*(x), representing region of existence of a rare event. At step k, the optimal PDF
q"(x)can be represented by the estimate q(x; v}_,) with the optimal parameters v;_; obtained at
the previous step. In this case, W (x; v;_,) = f(x)/q(x; vy_1). The area H, of the intermediate set of
system states is determined by the threshold by:

Hk1= {x;l}/’lé(x% < Zk};
’ X < H
Jex) = {0, V(D) > by, ®)

The threshold by, is calculated as a 6-quantile (for example, a decile obtained during statistical
tests and sorted from the smallest to the largest values of the threshold function ¥;(x;). In this
case, the simulation is performed according to the distribution density q(x; v,_,;) with parameters
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vk_l.
The vector v* obtained as a result of solving the optimization problem at step k—1 is

considered as a new value of the vector of parameters of the optimal PDF ¢q*(x), v, = v". Starting
from the initial vector of parameters v, that is assumed to be equal to the initial parameters of the
probability distributions of the analyzed random variables, each subsequent vector v, is
determined by the solution of the optimization problem, approaching the optimal distribution
density q*(x) = limy_(q(x; vy) ), which, in turn, is the best estimate of the auxiliary PDF optimal
in the CEM. The procedure is repeated until b, becomes negative, or at least 8 € [0.01, 0.1] trials
are located in the desired region of rare events [28]. If the number of steps to reach the termination
criterion of the iterative process is m, then the resulting probability of a rare event is:

N
A1
Pr = NZ/(xi)W(xi; V). ©

Distorted
Distributio
H={x:S(x) <0} Intermediate

_..z‘ Distributions
wn

5 %) < b k = 1,2}
o]

>

=

z .
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o e
& Distributio
PD domain | X

1

Figure 2: Derivation of distorted probability distribution using CEM

The classical CEM presented above requires an optimization procedure to be performed
when determining the parameters v, of the current PDF q(x,v;). In this case, v, includes the
mean y; and the matrix of correlation moments X, of those realizations x that belong to the area
Hy, x € Hy. Expression (6) can be considered as the average value of the values Jr(x;) with weights
W (x;). Since it refers to a probability, each component of the sum can be interpreted as the
probability that the realization x; belongs to the current region H; of the rare event. Since the area
Hyis defined by the indicator function /i (x;), then the mean of the available power of nodes in the

area H, is as follows:
k
= > xW; |/ > W,

Xi{€EH| X;€EH|

Matrix of correlation moments can be expressed as follows:

K k k
© = W - w0 - w7/ > wa |
Xi€EH Xi€EH|
These parameters form the vector v,. With this approach, an optimization procedure is not
required, which significantly reduces the duration of calculations without a significant decrease in

the accuracy of the results.
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V. Computational results

To compare the described procedures, calculations of the balance reliability indicators are
performed for a five-node electrical circuit shown in Fig. 3, where in addition to the topology, load
and generation expectations are presented. Standard deviations are taken equal to 10% of
expectations. TLs, numbered in the order {1-5; 1-4; 4-5; 2-4; 2-3; 3-4}). TL have resistances
respectively R = {10; 5; 5; 3; 1; 2}; X = {100; 50; 50; 50; 33; 10; 10}. The limiting capacity of all
connections was taken equal to 500 MW.

Bl B2

& ®

G1=1700 MW G2=50 MW
B4

-— _

L1=600 MW L2=50 MW
G4=1200 MW
F————
B5 L4=1500 MW B3

G5=2000 MW G3=900 MW

— ———

Ls L3=1440 MW

Figure 3: Test circuit

The calculation results are presented in Table I, where the methods are indicated: MCM —
classical Monte Carlo method; Monocenter — subspace method with one point of formation of an
intermediate subspace; Polycenter — the set H,_4; is taken as reference points for the formation of
the intermediate subspace Hy; SubSet- method of subspaces with changing parameters of
probability distributions when forming an intermediate subspace; CEM- simplified cross-entropy
method.

Table 1: Computational results

Methods Pr, 10 Pr, Cv Pr_Eps, % mD, 104 mD, Cv mD_Eps, % t, sec

Convolution 2.23 0 0 1.21 0 0 0
MCM 2.23 0.07 0.1 1.21 0.10 0.1 19
Monocenter 2.24 0.6 0.5 1.48 0.90 221 0.44
Polycenter 2.29 0.65 2.9 1.52 0.92 25.7 0.19
SubSet 2.2 0.58 -1.4 1.41 0.92 16.7 3.21
CEM 2.3 0.54 3.3 1.24 0.03 2.5 0.12

The second column presents the calculated probability of the total power deficit of the EPS. It
should be noted that all presented methods show an accuracy of a rare event acceptable for
practical calculations - a maximum deviation of 3.3% (column Pr_Eps, %, CE method) with an
exact probability value Pr = 2.23x10-5 can be considered insignificant for low probabilities. For
comparison, it can be mentioned that with such probabilities, the widespread replacement of the
binomial distribution with the Poisson distribution has a much larger error. The coefficient of
variation presented in the Pr_Cv column shows that the spread of the resulting probabilities is
relatively small for all methods.

The next 3 columns refer to the mean of PD. Here the spread (coefficient of variation (column
mD, Cv)) of the resulting values is much greater. It should be noted that the relative error in
calculating the mean of the PD exceeds 25%. Increasing accuracy is possible by increasing the
volume of the intermediate sample. However, this leads to an increase in the duration of
calculations (column t), which in the presented calculation procedures depends mainly on time-
intensive transformations of probability distributions (uniform- Gaussian- individual (marginal)).
If we assume that all random variables are described by the same normal distribution (with
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different parameters), then this allows us to reduce the duration of calculations several times.
The results obtained allow us to recommend cross-entropy methods for practical use that
provide the smallest scatter of the resulting indicators.

VI. Conclusion

The described methods for identifying rare events in the electric power industry refer to those
events for which it is possible to determine a criterion function that changes its value depending
on the distance from the desired events. Such functions (and events) in the electric power industry
include power shortages, positive when there is a shortage and negative when there is a reserve of
generating capacity. The main technology for identifying rare events is the use of Markov chains,
where each subsequent event is determined on a set of events identified at the previous stage
according to some criterion. Of the existing approaches to identifying rare events, two can be
identified that are most suitable for technical systems: those based on the use of nested subspace
technology and the transformation of distribution functions of random variables (including
entropy methods). It can be noted that all the procedures considered make it possible to identify
rare events with an accuracy acceptable for practical use. According to the robustness criterion,
preference can be given to the adaptive sampling algorithm from the class of nested subspaces and
the modified cross-entropy method from the class of distribution function transformations. The
accuracy of the calculations largely depends on the settings of the methods, including the size of
the test sample at the intermediate stages of forming significant events. In this case, the duration of
calculations is determined not only by the sample size, but also by the need for probabilistic
transformations of distribution functions.
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