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Abstract

Acceptance sampling plan by attributes is a statistical measure used in quality control in various
production process. It is mainly determined for identifying whether the lot or the batch of the product is
accepted or rejected based on the number of defective items in the sample. Appropriate sampling plan
provides defect-free lot. There are several sampling plans are available for determine the sample size.
Among the sampling plan, double sampling plan is more effective because it is always giving best result
in lot selection compared with other sampling plan. In most of the practical situation, it is very hard to
found the product as strictly defective or non-defective. In some situation, quality of the product can be
classified several types which are expressed as good, almost good, bad not so bad and so on. This causes
ambiguity deficiency in proportion value of lot or process. In mathematical tools, fuzzy set or fuzzy
logic is one of the powerful modeling, which has incomplete and imprecise information. The fuzzy set
theory is adopted to cope the vagueness in these linguistic expressions for the accepting sampling. In
this article double sampling plans, are determined when non-conformities are fuzzy number and being
modeled based on Zero-Inflated Poisson (ZIP) distribution. The Operating Characteristic (OC) function
and Average Sample Number (ASN) function are evaluated both numerically and graphically in fuzzy
and crisp environments.

Keywords: Acceptance double sampling plan, Fuzzy OC curve, Fuzzy average sample number,
ZIP distribution, Fuzzy parameter.

1. Introduction

The present research deals with quality control issues raised by the ZIP distribution, an elaborate
statistical model used in industrial operations. Traditional sample tactics, although effective for
well-behaved distributions, may struggle with the zero-inflated character of certain datasets. To
cope with this, we present a unique technique which integrates fuzzy logic into the construction
of a double sampling plan optimised for ZIP distribution. Fuzzy logic, popular because of its
adaptability in coping with imprecision and uncertainty, strengthens the plan by simulating the
unclear boundary between zero and non-zero occurrences in the ZIP distribution. This study
expands on the fundamental work of Zadeh and Kosko (1965) in fuzzy logic and is consistent
with recent research in quality control systems. This study has a substantial impact on industry,
helping to develop quality control techniques. Our objective is to provide a robust double
sampling strategy that combines fuzzy logic with ZIP distribution complexities in order to
enhance decision-making and consistently detect deviations from quality requirements in an
industrial context where technological breakthroughs may result in occasional zero defects. ZIP
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distribution used in many of fields such as agriculture, epidemiology, econometrics, public health,
process control, medicine, and manufacturing.

Numerous scenarios, such as Bohning, Dietz, and Schlattmann [1] use the ZIP model on
dental epidemiology data to examine excess zeros in intervention effects by ZIP regression.
Fuzzy probability is examined by Buckley [2], who introduced new methods of probability
theory in the environment of uncertainty. Chakraborty [3] introduces a fuzzy optimization
technique for single sampling plans that minimizes inspection while managing customer risk
by utilizing a Poisson distribution. Duncan AJ [4] Quality Control and Industrial Statistics is a
most impact guide that combines statistical methods with practical approaches to quality control
in industrial circumstances.Ezzatallah and Gildeh [5] suggest a fuzzy Poisson-based acceptance
double sampling strategy for the management of unpredictable defective proportions.Janani K,
Vignesh A and et al.,[6] . introduce a novel fuzzy set-based tactics for identify and conserve
endemic plant species in the Nilgiris Biosphere Reserve. The work effectively addresses multi-
criteria decision-making by leveraging advanced fuzzy operators, which provide improved
representation of ambiguity compared to previous study’s. Kavithanjali, Sheik Abdullah, and
Kamalanathan [7] review SQC methodologies in single and double-sampling plans, pointing
at possible effects on quality.Kavithanjali and Sheik Abdullah [8] present a inovative research
by integrates of fuzzy logic ZIP distribution for SSPs, managing quality control and risk in
uncertainity distribution plan. Kaviyarasu and Asif T Thottathil [9] deals the application of Zero-
Inflated Poisson distribution in designing optimal acceptance sampling plans for quality control
in manufacturing with a focus on special type double sampling plans.LA Zadeh [10] presents
fuzzy sets and the degree of membership, which lays the groundwork for the employment of
the conventional theory of sets in fuzzy control.Lambert [11] shows that ZIP regression can
be employed for better data analysis in manufacturing by handling excess zeros in count data.
Malathi and Muthulakshmi [12] initiate an inquiry into fuzzy logic in double-sampling plans to
deal with ambiguity in quality assessments. McLachlan and Peel [13] provide a detailed reference
on finite mixture models, which is vital for the analysis of complex data and heterogeneous
populations. Naya, Urioste, and Chang [14] employ ZIP models, demonstrating that age is a
significant factor in the occurrence of black patches. Ridout, Demetrio, and Hinde [15] provide
practical horticulture examples to evaluate models for excess zeros in count data.Schilling and
Neubauer [16] provide a comprehensive and authoritative guide on acceptance sampling plan,
offering useful insights for quality control in numerous industries. In the context of statistical
process control, Xie, He, and Goh [17] establish the ZIP distribution’s superiority over the Poisson
distribution for over-dispersed data.

In the following sections, we will explain the methods we used, show our results, and talk
about why these findings are important for experts working in quality control. We did our
analysis using Python and powerful libraries like NumPy, Pandas, SciPy, and Matplotlib to help
with statistics and data visualization. We believe this research will help improve methods used to
solve problems caused by difficult distributions in industrial environments.

2. Methodology

2.1. Fundamental Definitions

2.1.1 Fuzzy Number: A fuzzy number (Ñ) is a fuzzy set on the real line R, characterized by a
membership function µN : R → [0, 1], that satisfies the following conditions:

• (Ñ) is normal, meaning there exists some x such that µN(x) = 1.

• (Ñ) is convex, meaning for any x1, x2 ∈ R and λ ∈ [0, 1], µN(λx1 +(1−λ)x2) ≥ min(µN(x1), µN(x2)).

• The membership function µN is upper semi-continuous, meaning the set {x ∈ R | µN(x) ≥
α} is closed for every α ∈ (0, 1].

• The support of (Ñ), defined as Supp(Ñ) = {x ∈ R | µN(x) > 0}, is bounded.
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2.1.2 Triangular Fuzzy Number: A triangular fuzzy number Ñ is defined by a triplet (a, b, c), where
a < b < c. The membership function µÑ(x) is given by:

µÑ(x) =


x−a
b−a if a ≤ x ≤ b,
c−x
c−b if b < x ≤ c,
0 otherwise.

This function forms a triangular shape with [a, c] as the base and the peak at x = b.
2.1.3 α-Cut of Fuzzy t: The α-cut of a fuzzy set Ñ is a crisp set of values where the membership
function is at least α. It is defined as:

N[α] = {x ∈ R | µN(x) ≥ α}.

The fuzzy number Ñ[α] can be represented by its lower and upper bounds as NL[α] and
NU [α], where:

NL[α] = inf{x ∈ R | µN(x) ≥ α},

NU [α] = sup{x ∈ R | µN(x) ≥ α}.

2.1.4 ZIP Distribution: The Zero-Inflated Poisson (ZIP) distribution, define as ZIP(φ, λ), is used
when there is an more number of zero counts. The probability mass function (p.m.f.) is found in
Lambert [11] and Mclachlan [13] :

P(D = d | φ, λ) =

{
φ + (1 − φ)e−λ if d = 0,

(1 − φ) e−λλd

d! if d = 1, 2, . . .

In this distribution:

• φ represents the probability of extra zeros.

• λ is the mean of the underlying Poisson distribution.

The ZIP distribution mean is (1 − φ)λ, and the variance is λ(1 − φ)(1 + φλ).
To extend the ZIP distribution to a fuzzy setting, we replace λ with a fuzzy number λ̃ > 0.

The fuzzy p.m.f. can be represented as:

P̃(d | α) =

{
φ + (1 − φ)e−λ if d = 0,

(1 − φ) e−λλd

d! if d = 1, 2, . . .

where λ belongs to the α-cut of λ̃.

2.2. Python Programming

In this present study on statistical quality control, we used Python programming to create the
upper and lower bounds of the Fuzzy Operating Characteristic (OC) Band and the Fuzzy Average
Sample Number (ASN) tables. Moreover, we created graphs to visualize the Fuzzy OC, the fuzzy
probability of acceptance, and the average sample number curves. Python’s extensive analytical
abilities and versatile libraries make it straightforward to implement these statistical methods
within our study methodology.

3. Operating procedure for DSP under ZIP distribution conditions

Let us consider a circumstance where we analyse the N- lot size for defects with Zero-Inflated
Poisson (ZIP) distribution. These are general steps of the typical double sampling plan.
Step 1:
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• Take a random sample of size n1 and count the number of defective items (D1).

• c1 is the acceptance number for the first sample.

• c2 is the acceptance number for both combined samples.

Step 2:

• Accept the lot if D1 ≤ c1.

• Reject the lot if D1 > c2.

• If c1 < D1 ≤ c2, proceed to Step 3.

Step 3:

• Take a random sample from second sample n2 and count the number of defective items
(D2).

• Add D1 and D2 together.

• Accept the lot if D1 + D2 ≤ c2, otherwise reject it.

Step 4:

• The random variables D1 and D2 follows the ZIP distribution with parameter λ1 = n1 p and
λ2 = n2 p, given a large sample size and a small probability p.

• Let Pa stand for the acceptance probability of the lot based onto the combined samples.

• P̃I
a is for the acceptance probability after the first sample and P̃I I

a for the second sample.

Thus, the overall probability of acceptance is:

P̃a = P̃I
a · P̃I I

a

Using the ZIP distribution pmf, the number of nonconforming items in the lot is given by

P̃ (D = d | φ, λ) = P̃ (d) =

{
φ + (1 − φ) e−λ , When d = 0
(1 − φ) e−λ λd

d! , When d = 1, 2, . . . , 0 < φ < 1, λ > 0

Given a sample size of n1, the probability of finding no deficiencies will be

P̃ (D = 0) = P̃I
a (α) = φ + (1 − φ) e−n1 p (1)

Given a sample size of n2, the probability of finding one deficiencies will be

P̃ (D = 1, D1 + D2 ≤ 1) = P̃I I
a (α) = (1 − φ) e−np n2 p (2)

From a sample of size n1 the probability of finding one or less defects will be

P̃ (D ≤ 1) = φ + (1 − φ) e−n1 p (1 + n1 p) (3)

From a sample of size n2 the probability of finding one or more defects will be

P̃I I
a (α) = (1 − φ) e−np (0.5)(n1 p)2 (4)

A DSP only accepts a lot if a sample of size n1 has no faults and a sample of size n2 has one
defect or less. Thus, DSP’s P̃a (α) will be provided by

P̃a (α) = PI
a (α) + PI I

a (α) (5)
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3.1. Numerical illustration 1

Consider that P̃ = (0.01, 0.02, 0.03), N=200, n1=10, n2=10, c1= 0 ,c2=1, λ̃ = np̃, φ = 0.0001
,n=n1 + n2.

P̃ [α] = [0.01 + 0.01α , 0.03 − 0.01α]

From equation(1) the fuzzy probability of a sample of size n1 having no faults is thus as follows:

P̃ (D = 0) = P̃I
a (α) = φ + (1 − φ) e−10p

P̃I
a [α] =

{
φ + (1 − φ)

(
e−(0.3−0.1α)

)
, φ + (1 − φ)

(
e−(0.1+0.1α)

)}
From equation (2) the fuzzy probability of a sample of size n2 having one fault is thus as follows:

P̃(D = 1, D1 + D2 ≤ 1) = P̃I I
a (α) = (1 − φ)e−20p · 10p

P̃II
a [α] =

{
(1 − φ) e−(0.2+0.2α) (0.1 + 0.1α) , (1 − φ) e−(0.6−0.2α) (0.3 − 0.1α)

}
From equation (5) a DSP only accepts a lot if a sample of size n1 has no faults and a sample of n2
has one defect or less. Thus, DSP’s P̃a (α) will be provided by

P̃a [α] = P̃I
a (α) + P̃I I

a (α)

=
{

φ + (1 − φ) e−(0.3−0.1α) + (1 − φ) e−(0.6−0.2α) (0.3 − 0.1α) ,

φ + (1 − φ) e−(0.1+0.1α) + (1 − φ) e−(0.2+0.2α) (0.1 + 0.1α) }

Figure 1: Fuzzy probability of acceptance with DSPs under ZIP distribution

Table 1: Fuzzy probability of acceptance with DSP φ = 0.0001, α= 0,0.005,1

α P̃I
a P̃I I

a P̃a[α]

0.000 [0.740844, 0.904847] [0.081865, 0.164627] [0.905471, 0.986712]

0.005 [0.741215, 0.904395] [0.082192, 0.164517] [0.905732, 0.986587]

1.000 [0.818749, 0.818749] [0.134051, 0.134051] [0.952799, 0.952799]
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As in Figure 1 and Table 1, it shows that 98 to 100 out of every 100 lots accepted in this
process.

4. Fuzzy OC curve for DSPs under ZIP distribution

The fuzzy parameter is applied to construct the operating characteristic (OC) curve for the DSP.
This curve demostrate the relationship between the fraction of nonconforming items, denoted as
p, and the acceptance probability is Pa(p). The OC curve helps differentiate between good and
bad lots in the sampling plan. Producer’s risk occurs when a customer rejects a product that
actually meets the quality standards (i.e., the product is of good quality). On the other hand,
consumer’s risk happens when a customer accepts a product that fails to meet the standards (i.e.,
the product quality is poor). A fuzzy parameter with upper and lower bounds can be used to
estimate the defective fraction. If these bounds are equal, the process is considered to be in an
optimal state.

4.1. Numerical illustration 2

Consider that, P̃ = (0.01, 0.02, 0.03) , φ = 0.0001, n1=10, n2=5, c1=1, c2=2,n = n1 + n2, b2=0.01,
b3=0.02 following that we have, P̃ [α] = [k + 0.01α, 0.02 + k − 0.01α] , 0 ≤ k ≤ 0.98.
Accordingly, the first sample fuzzy probability of acceptance using equation (3) is

P̃I
a (α) = P̃[0, 1][α] = [φ + (1 − φ)e−10p(1 + 10p)], f1(p) = [φ + (1 − φ)e−10p(1 + 10p)]

Since is decreasing, as follows:

P̃I
a [0] =

[
φ + (1 − φ) e−(10k+0.2) (1 + (10k + 0.2)) , φ + (1 − φ) e−(10k) (1 + 10k)

]
and accordingly the second sample’s fuzzy probability of acceptance from equation (4) is

P̃I I
a (α) = P̃(D1 = 2, D2 = 0) =

[
(1 − φ) e−15p 50p2

]
, f2 (p) =

[
(1 − φ) e−15p 50p2

]
P̃I I

a (0) =
[
(1 − φ) e−15k 50 (k2), (1 − φ) e−15(k+0.02) 50(k + 0.02)2

]
0 ≤ k ≤ 0.98

Next, we will obtain the α-cut by examining the f2(p) function in the following manner:

P̃I I
a (α) =


(1 − φ) e−15k 50 k2, (1 − φ) e−15(k+0.02) 50(k + 0.02)2 , 0 ≤ k < 1.7

15
(1 − φ) e−15k 50 k2 , 0.12 , 1.7

15 ≤ k < 0.12
(1 − φ) e−15(k+0.02) 50(k + 0.02)2, 0.12 , 0.12 ≤ k < 2

5
(1 − φ) e−15(k+0.02) 50(k + 0.02)2 , (1 − φ) e−15k 50 k2 , 2

5 ≤ k ≤ 0.98

P̃a[α] = P̃I
a (0) + P̃I I

a (0)

Table 2: Sample values at different k levels with acceptance DSP using ZIP distribution

k P̃I
a P̃I I

a P̃a(α)

0.00 [0.982479, 1.000000] [0.000000, 0.014815] [0.997294, 1.000000]

0.01 [0.963067, 0.995322] [0.004303, 0.028690] [0.991758, 0.999625]

0.02 [0.938454, 0.982479] [0.014815, 0.043901] [0.982355, 0.997294]

0.03 [0.909805, 0.963067] [0.028690, 0.059040] [0.968845, 0.991758]

0.04 [0.878111, 0.938454] [0.043901, 0.073175] [0.951286, 0.982355]

0.05 [0.844211, 0.909805] [0.059040, 0.085726] [0.929937, 0.968845]

0.06 [0.808811, 0.878111] [0.073175, 0.096373] [0.905184, 0.951286]

0.07 [0.772505, 0.844211] [0.085726, 0.104982] [0.877487, 0.929937]

RT&A, No 4(80)

Volume 19, December, 2024

952



Kavithanjali S, Sheik Abdullah A
A FUZZY LOGIC DSP FOR ZIP USING IN PYTHON

k P̃I
a P̃I I

a P̃a(α)

0.08 [0.735785, 0.808811] [0.096373, 0.111554] [0.847339, 0.905184]

0.09 [0.699059, 0.772505] [0.104982, 0.116179] [0.815238, 0.877487]

0.10 [0.662647, 0.735785] [0.111554, 0.118965] [0.781683, 0.847339]

0.11 [0.626792, 0.699059] [0.116179, 0.120058] [0.747170, 0.815238]

0.12 [0.591660, 0.662647] [0.118965, 0.119622] [0.712177, 0.781683]

0.13 [0.557353, 0.626792] [0.120058, 0.117834] [0.677139, 0.747170]

0.14 [0.523917, 0.591660] [0.119622, 0.114881] [0.642457, 0.712177]

0.15 [0.491356, 0.557353] [0.117834, 0.110947] [0.608493, 0.677139]

0.16 [0.462891, 0.524978] [0.116107, 0.108862] [0.571753, 0.641086]

0.17 [0.433806, 0.493296] [0.112817, 0.104399] [0.538204, 0.606113]

0.18 [0.406065, 0.462891] [0.108862, 0.099564] [0.505629, 0.571753]

0.19 [0.379677, 0.433806] [0.104399, 0.094479] [0.474156, 0.538204]

0.20 [0.354635, 0.406065] [0.099564, 0.089248] [0.443883, 0.505629]

0.21 [0.330921, 0.379677] [0.094479, 0.083959] [0.414880, 0.474156]

0.22 [0.308510, 0.354635] [0.089248, 0.078684] [0.387195, 0.443883]

0.23 [0.287369, 0.330921] [0.083959, 0.073486] [0.360854, 0.414880]

0.24 [0.267458, 0.308510] [0.078684, 0.068411] [0.335869, 0.387195]

0.25 [0.248736, 0.287369] [0.073486, 0.063498] [0.312234, 0.360854]

0.26 [0.231155, 0.267458] [0.068411, 0.058777] [0.289932, 0.335869]

0.27 [0.214669, 0.248736] [0.063498, 0.054268] [0.268937, 0.312234]

0.28 [0.199228, 0.231155] [0.058777, 0.049985] [0.249214, 0.289932]

0.29 [0.184783, 0.214669] [0.054268, 0.045939] [0.230722, 0.268937]

0.30 [0.171284, 0.199228] [0.049985, 0.042132] [0.213416, 0.249214]

0.31 [0.158682, 0.184783] [0.045939, 0.038565] [0.197247, 0.230722]

0.32 [0.146928, 0.171284] [0.042132, 0.035236] [0.182163, 0.213416]

0.33 [0.135975, 0.158682] [0.038565, 0.032138] [0.168112, 0.197247]

0.34 [0.125777, 0.146928] [0.035236, 0.029265] [0.155041, 0.182163]

0.35 [0.116289, 0.135975] [0.032138, 0.026607] [0.142896, 0.168112]

0.36 [0.107469, 0.125777] [0.029265, 0.024155] [0.131624, 0.155041]

0.37 [0.099275, 0.116289] [0.026607, 0.021899] [0.121175, 0.142896]

0.38 [0.091669, 0.107469] [0.024155, 0.019828] [0.111497, 0.131624]

0.39 [0.084612, 0.099275] [0.021899, 0.017933] [0.102542, 0.121175]

0.40 [0.078069, 0.091669] [0.019828, 0.016195] [0.094264, 0.111497]

0.41 [0.072006, 0.084612] [0.017930, 0.014610] [0.086617, 0.102542]

0.42 [0.066391, 0.078069] [0.016195,0.013167] [0.079558, 0.094264]
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Figure 2: FOC band with DSP using ZIP distribution n1 = 10, c1 = 1, n2 = 5, andc2 = 2

The instance shown in Figure 2 is what happens when process quality drops from a perfect
condition to a modest state, at which point the FOC band widens. Table 2 will be computed by
simplifying and using fuzzy arithmetic.

5. Fuzzy Average Sample Number (FASN) with DSPs using ZIP distribution

The first benefit of a DSP is that it requires a small average sample size to make a sensible
choice. In the context of this technique, the sample number is determined by either n1 or n2,
which must add up to n1+n2. When deciding on the first sample (with fuzzy probability P̃
(D1≤c1 or D1 > c2,)) the P̃Idescribes the fuzzy probability of drawing the first sample. If the first
sample gives an uncertain result P̃(c1< D1 ≤ c2 ), a second sample with a total population of
n1+n2 is required. This is represented by the fuzzy probability and will be referred to as P̃I I . The
fuzzy mean formula is used to determine the FASN: FASN = µ̃SN (α) = {n1 p1 + (n1 + n2) pI I }.
Pi ∈ P̃i (α) , i = I, I I , PI + PI I = 1 Thus, we obtain FASN = {n1 + n2 pI I }

The following illustration is based on FASN using illustration I
P̃ = (0.01, 0.02, 0.03),N=200, n1=10, n2=10 ,c1= 0 ,c2=1, λ̃ = np, φ = 0.0001, n = n1 + n2

P̃(α) = [0.01 + 0.01α, 0.03 − 0.01α]

FASN =
{

10 + 10
[
(1 − φ)e−10p 10p

]}
FASN =

{
10 + (1 − φ) e−10p 100p

}
FASN (α) =

{
10 + (1 − φ) e−(0.1+0.1α) (1 + α) , 10 + (1 − φ) e−(0.3−0.1α) (3 − α)

}
Underα = 0 we gain FASN (0) = 10.90 , 12.22
The figure 3 shows triangular fuzzy graph illustrates how the FASN adapts to varying degrees

of ambiguity, illustrating the adaptability nature of the sampling plan under different fuzzy
probability conditions.The Average Sample Number (ASN) curve in double sampling plans is
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used to assess sampling efficiency and resource optimisation. It helps to compare different plans
and get insights into sampling performance under varied lot characteristics. ASN curves help
in decision-making by indicating the predicted number of samples needed for acceptance or
rejection at various quality standards. This ensures balanced inspection costs and quality control.
and the sample size relies on whether or not a second sample is needed. We may depict the FASN
band in terms of P̃, the fuzzy proportion faulty in an entering lot, using the P̃ structure that was
developed.

Figure 3: FASN for a DSP with using ZIP distribution c1 = 0, c2 = 1, n1 = n2 = 10

5.1. Numerical illustration 3

Let that φ = 0.0001, c1= 0, c2 = 1, N=200, n1 = n2 =10 and b2 = 0.01, b3 = 0.02. Then FASN is
obtained as follows

P̃ (α) = [k + 0.01α , k + 0.02 − 0.01α]

FASN =
{

10 + (1 − φ) e−10p 100p
}

And α-cut of FASN is:

FASN (α) =


FASN∗, FASN∗∗ , 0 ≤ k < 0.08
FASN∗, 13.68∗∗ , 0.08 ≤ k < 0.09
FASN∗∗, 13.68 , 0.09 ≤ k < 0.1
FASN∗∗, FASN∗ , 0.1 ≤ k < 0.98

FASN∗ =
{

10 + (1 − φ) e−(10k+0.1α)100 (k + 0.01α)
}

and

FASN∗∗ =
{

10 + (1 − φ) e−(10k+0.2−0.1α)100 (k + 0.02 − 0.01α)
}

Figure 4 and table 3 shows the FASN band, the first sample will determine whether the batch
is accepting or reject, depending on how good the process is executed. This implies that the
sample number will be less, and if the process quality is average, most of the time, while selecting
whether to accept or reject the lot, a second sample should be picked, increasing the sample size.
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Figure 4: FASN band for a DSP with using ZIP distribution of c1 = 0, c2 = 1, n1 = n2 = 10

Table 3: FASN for a DSP with using ZIP distribution c1 = 0, c2 = 1, n1 = n2 = 10

k FASN* FASN** k FASN* FASN**

0.00 10.0000 11.6373 0.21 12.5713 12.3057

0.01 10.9047 12.2222 0.22 12.4374 12.1770

0.02 11.6373 12.6810 0.23 12.3057 12.0519

0.03 12.2222 13.0324 0.24 12.1770 11.9309

0.04 12.6810 13.2925 0.25 12.0519 11.8144

0.05 13.0324 13.4757 0.26 11.9309 11.7025

0.06 13.2925 13.5943 0.27 11.8144 11.5955

0.07 13.4757 13.6588 0.28 11.7025 11.4935

0.08 13.5943 13.6784 0.29 11.5955 11.3964

0.09 13.6588 13.6612 0.30 11.4935 11.3043

0.10 13.6784 13.6140 0.31 11.3964 11.2170

0.11 13.6612 13.5426 0.32 11.3043 11.1346

0.12 13.6140 13.4520 0.33 11.2170 11.0568

0.13 13.5426 13.3466 0.34 11.1346 10.9836

0.14 13.4520 13.2300 0.35 11.0568 10.9147

0.15 13.3466 13.1053 0.36 10.9836 10.8500

0.16 13.2300 12.9751 0.37 10.9147 10.7894

0.17 13.1053 12.8415 0.38 10.8500 10.7326

0.18 12.9751 12.7064 0.39 10.7894 10.6794

0.19 12.8415 12.5713 0.40 10.7326 10.6298

0.20 12.7064 12.4374 0.41 10.6794 10.5834
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6. Conclusion

In this study, we proposed a fuzzy ZIP distribution-based technique for developing acceptance
double sampling plans (DSP) using fuzzy features. These plans are clearly defined since the
results are consistent with classical plans when the proportion of damaged items is sharp. The
primary parameters of the DSP, proportion defective, and sample size, are considered a triangle
fuzzy number. With these parameters, the fuzzy operating characteristic and average sample
number curves are generated and given in this paper. It was demonstrated that the plans OC and
ASN curves resemble a band lower boundaries. Under this approach, FASN will have a lesser
value depending on how perfect or inadequate the process quality.
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