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Abstract

In the current era, it is quite challenging to find symmetric data, as the form of most real-world data
is asymmetric, meaning it tends to slant towards one side or another. These types of data emerge from
various fields, including finance, economics, medicine, and reliability. Traditional statistical models
often fail to handle such type of data as most of the statistical procedures are developed under normality
assumptions. Therefore, the usual way of modeling these data results in incorrect predictions or leads to
wrong decisions. There is no familiar methodology available in the research for modeling asymmetric
data. Hence, there is a need to address this research gap as an emerging area of research in statistical
modeling. In this paper, we propose a new systematic approach called the Model Selection Algorithm
for modeling asymmetric data. In this algorithm, we incorporate various statistical tools and provide
a guideline for a step-by-step procedure. Further, we have applied maximum likelihood estimation for
parameter estimation, and model selection criteria such as Cramer Von Mises, Anderson Darling, and
Kolmogorov Smirnov tests. We used real-time data to demonstrate the effectiveness of the algorithm.

Keywords: Lifetime distributions, Estimation, Information Criteria, Goodness of fit, Model selec-
tion.

1. Introduction

In this information era, data plays a significant role in policy and decision-making in various fields.
With the advancement of technology, data generation, and its utilization have been increasing
exponentially. However, it is important to note that the behavior of data is dynamic and depends
on several factors. Therefore, it is crucial to understand the intricacies of data and its behavior
to utilize it effectively. As part of our data analysis process, we use statistical models to gain a
better understanding of the patterns and trends present in the data. These models help us to
delve deeper into the underlying structure of the data and make informed decisions based on the
findings from the statistical inference.

The foundation of the probability models is to capture the dynamics and variability of data. A
vast amount of literature has been written about probability models, and new results are being
produced daily. Choosing the right model for a particular asymmetrical dataset may be difficult
for even statistics experts. To facilitate this process, we have developed a framework that considers
choosing the best model for asymmetric data under study. Both statisticians and data analysts
may benefit from this approach to make sensible Inference.

Data that has an uneven pattern due to an unequal distribution of data points’ frequencies
is referred to as asymmetrical data or skewed data. This kind of data is not symmetrical since
the mean, median, and mode are not equal and also not at the same location. Consequently, the
distribution takes on an extended form on one side and a longer or fatter tail on the other. We
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will encounter many fields including Finance, Economics, Medicine, etc.

To provide a more sophisticated depiction of asymmetrical data, a combination of probability
models may be employed. This technique proves especially valuable when handling data from
a range of sources or with varying patterns. Blending different distributions into one mixture
distribution enables the model to more effectively capture the distinctive features of the data.
This proves particularly advantageous when the true underlying distribution remains unknown.
By embracing a mixture model, analysts can more precisely assess the probability of different
outcomes and make informed decisions based on the data at hand.

Karl Pearson [25] a prominent biometrician, proposed one of the earliest mixture models by
fitting a proportionate mixture of two normal density functions. Subsequently, several writers
used the finite mixture model to create bimodal distributions. This approach was limited to
bimodal or multimodal datasets until Lindley [22] used the finite mixture model to generate a
single parameter distribution for unimodal data. Furthermore, a mixed distribution was created
by utilizing different proportions of gamma and exponential distributions, resulting in an im-
proved outcome.

For the past few years, the authors of the study initially developed a model, which was
subsequently applied to real-time data. However, the current situation presents a challenge, as
there is no clarity on the most appropriate model to use for the available data. The data at hand
are asymmetric, which makes it difficult to determine the most suitable distribution. To address
this issue, a framework was established to identify the model that best aligns with the data.
This involved a meticulous examination of the data properties to select a model that accurately
captures the data features. Consequently, a model was developed that can provide reliable
predictions through this approach. The study aims to provide a concise and comprehensible
process for selecting an appropriate model for asymmetric real-time data. Considerable efforts
were made to ensure that the method is straightforward and easy to understand, with the ultimate
goal of facilitating the decision-making process for businesses and academics alike.

In our paper, we begin by presenting the framework that we followed for fitting skewed data
in section 2. In Section 3, we also provide additional insight into the assumptions and limitations
of our approach. We discuss a real-time application to demonstrate the effectiveness of our
framework in finding the most suitable mixture model by our proposed methodology. Finally, in
Section 4, we discuss the basic properties of the proposed model and also discuss the simulation
work that was done for the proposed model.

2. Model Selection Algorithm

This algorithm outlines a comprehensive and systematic approach to analyzing asymmetrical
data. It involves a model selection process that is designed to provide a detailed understanding
of the data. The first step in this process is to gather the data and partition it using clustering
techniques. This allows for the identification of distinct groups within the data, which can then
be analyzed separately. After the data has been partitioned, the next step is to fit a probability
distribution to each partition. This is done to determine the best-fit model for each group of
data. The selection of the best-fit model is based on a variety of factors, including the goodness
of fit, the complexity of the model, and the interpretability of the results. Finally, the best-fit
models from each partition are combined to propose a comprehensive hybrid model. This model
provides a detailed understanding of the data and allows for the identification of patterns and
trends that may not be apparent when analyzing the data as a whole. Sakthivel and Vidhya
([26]-[27]) have discussed the algorithm and given different applications.
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Figure 1: Framework for selecting a better model

The steps involved in this algorithm are as follows:

Step 1: Consider the asymmetrical data.

Step 2: Visualize the data to identify the distribution of the random variable. And test the
modality of the data.

Step 3: Divide the data into two parts using the clustering technique.

Step 4: Calculate the skewness for both parts of the data to capture the asymmetry.

Step 5: Consider the basic distributions for modeling based on the data characteristics.

Step 6: For the first part of the data, estimate the value of parameters using MLE for suitable
probability distributions and determines the model’s adequacy by computing the goodness
of fit and information metrics.

Step 7: Repeat the process for the second part of the data.

Step 8: Choose a better model from the considered distributions in steps 6 & 7, based on
minimized -2LL, AIC, BIC, and AICc values.

Step 9: Propose a new model by combining the selected models from Step 8.

An advanced framework has been developed to effectively analyze asymmetrical data using a
suite of analytical tools. In our framework, we incorporate the fundamental models to choose a
better model. The distributions incorporated in this framework such as symmetric, heavy-tailed,
light-tailed, positively skewed, and negatively skewed models. The framework employs a range
of statistical techniques, including K-mean Clustering for initial data partitioning, maximum
likelihood estimation for parameter estimation, and statistical tests such as Cramer Von Mises,
Anderson Darling, and Kolmogorov Smirnov for rigorous model evaluation. The model selection
process is further refined through the application of information criteria, which includes Akaike
Information Criteria (AIC), Bayesian Information Criteria (BIC), and Corrected Akaike Informa-
tion Criteria (AICc). These criteria help to identify the most suitable model for analyzing the data,
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ensuring that the insights gained are both accurate and reliable.

This comprehensive approach ensures an efficient methodology for gaining valuable insights
from asymmetrical datasets and can be used in a variety of applications, including Engineering,
Finance, Marketing, and Healthcare. By utilizing a range of analytical tools and statistical tech-
niques, the framework can effectively analyze complex data sets, providing valuable insights that
can be used to inform decision-making processes.

Before using the framework, it is important to consider certain assumptions. Firstly, the data
used for analysis should be asymmetrical with dual peaks and should not be perfectly bimodal.
Additionally, the framework is specifically designed for situations where the distribution of
the data significantly deviates from a normal distribution. To be suitable for analysis using
this framework, the data must exhibit some degree of skewness, either positive or negative.
Furthermore, the framework is best suited for data that exhibits heavy tails and allows for the
existence of outliers in the dataset. It is important to note that this framework is designed for
univariate data analysis only.

It is important to keep in mind that there are certain limitations to this procedure. Especially,
this framework is designed to handle asymmetrical data and requires dividing the data into exactly
two distinct groups. This method has been found to produce superior results for smaller datasets.
We use the limited models to choose a better model. Manual processing of this framework with
significant amounts of data can present numerous challenges and be time-consuming. In future
research, we aim to automate this process through statistical software and produce results using
simple codes. This approach will help streamline the process and make it more efficient for larger
datasets.

3. Model Selection and Validation

In this section, we would like to apply our framework to the datasets on the glass strength of
aircraft windows, as originally reported by Fuller et al. (1994). This dataset is widely recognized
and has been utilized by various authors in the literature. The strength data involved can poten-
tially originate from different underlying probability distributions, each representing varying
conditions or modes.

It is important to note that the strength of aircraft windows is a crucial factor in ensuring the
safety and reliability of air travel. Hence, it is essential to accurately represent the underlying
distribution of the strength data to better understand and predict its behavior. By utilizing a
mixture of probability distribution, we can more effectively capture the inherent variability in the
data and simply fit standard probability distribution. The proposed approach will allow us to
identify the most suitable model for the actual strength data to ensure the safety and reliability of
aircraft windows.

Further, a mixture of probability distributions is a statistical model that combines two or more
probability distributions into a single probability distribution. This concept of mixture enables
to modeling of multimodal data, which present different types of defects or variations in the
manufacturing process. By incorporating multiple distributions, we can capture the full range
of variability in the data, which is crucial for modeling the strength of aircraft windows under
different conditions.

The summary statistic of the data is given in Table 1.
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Table 1: Summary of data

Minimum
First

Quartile
(Q1)

Median Mean
Third

Quartile
(Q3)

Maximum Skewness

18.83 25.51 29.90 30.81 35.83 45.38 0.4263

It is observed that the mean and median values are different. This indicates that the shape of
the density plot is likely to be skewed and not symmetric. These findings can be ensured with
the support of other statistical plots given below.

Figure 2: Graphical representation of the data

The analysis of the dataset through graphical representation has revealed the presence of
two modes, which are depicted in Figure 2. Additionally, we check the modality of the data by
using the Hartigan dip test (1985). Dip statistic=0.081364 (p − value =0.09169). The Hartigan dip
test confirms the data’s unimodality. The Q-Q plot, which shows that the data is not symmetric,
indicates that the data is asymmetric. In light of these findings, we have proceeded to step 3 of
our analytical framework, which involves the division of the data into two parts using K-mean
clustering. Figure 3 presents the clustered data along with the cut line that was used to divide
the data.

After partitioning the data, the next process will evaluate the skewness of both partitions of
the datasets. We can select the model accordingly if the data is positively skewed or negatively
skewed.
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Figure 3: Data partitioning for data

Table 2: Summary of the first part of the data

Minimum Q1 Median Mean Q3 Maximum Skewness
18.83 23.23 25.52 25.22 26.78 31.11 -0.1538

Since the initial portion of the data is unimodal and negatively skewed, we can consider a
probability distribution that also portrays this particular characteristic. The low value of skewness
indicates that the distribution may be nearly symmetric. Therefore, we considered the normal
distribution as one of the choices. The present section deals with the computation of the tools
mentioned in Section 2 for diverse distributions. These computations are crucial to accomplishing
step 6 of the analysis. All statistical findings and calculations have been obtained through the R
programming language, and the resulting outcomes have been documented in Table 3.

Lower values for KS, CVM, and AD suggest a better fit between the model and data. Higher
values imply a poor fit. We can compare p-values to determine the goodness of fit. A p-value
closer to zero denotes a weaker fit, while a p-value closer to unity denotes a better fit.

From Table 3, we are unable to identify which model best matches the data. On the other
hand, we might go on to the next process if we filter the model using Table 3. After calculating
the information criteria, the data’s best fit is selected.
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Table 3: Estimated parameters value and Goodness of fit for the first part of the dataset.

Model
Estimated
Parameter

-2logL
CVM

(p values)
AD

(p-values)
KS

(p-values)

Gamma
α̂=66.3065
β̂=2.6293

86.4328
0.0419

(0.9287)
0.2466
(0.972)

0.1406
(0.8451)

Lognormal
µ̂=3.2200
σ̂=0.1239

86.7240
0.0468

(0.9014)
0.2746

(0.9553)
0.1480

(0.7992)

Weibull
k̂=9.2248
λ̂=26.5551

86.4999
0.0362

(0.9561)
0.2449

(0.9729)
0.1291

(0.9058)

Cauchy
â=25.6887
b̂=1.7157

91.4211
0.0546

(0.8542)
0.3931

(0.8537)
0.1259

(0.9195)

Logistic
â=25.2943
b̂ =1.73282

86.4194
0.0316

(0.9742)
0.1950

(0.9919)
0.1179

(0.9500)

Normal
µ̂=25.2181
σ̂=3.0433

86.0835
0.0344

(0.9636)
0.2100

(0.9876)
0.1251

(0.9231)

Gompertz
k̂=0.1834
λ̂=0.0016

96.5179
0.3806

(0.0803)
1.9689

(0.0962)
0.2722

(0.1328)

Gumbel
k̂=23.6725
λ̂=3.0430

89.1066
0.0793

(0.7019)
0.4724

(0.7727)
0.1660

(0.6767)

Laplace
λ̂=25.5200
β̂=2.3737

86.9575
0.0408

(0.9343)
0.2566

(0.9666)
0.1100

(0.9717)

Table 4: Model selection criteria for the first part of the dataset

Model AIC BIC AICc
Gamma 90.4328 92.0993 91.2899
Lognormal 90.7240 92.3905 91.5812
Weibull 90.4999 92.1664 91.3571
Cauchy 95.4211 97.0875 96.2782
Logistic 90.4194 92.0858 91.2766
Normal 90.0835 91.7499 90.9407
Gompertz 100.5179 102.1843 101.3750
Gumbel 93.1066 94.7730 93.9637
Laplace 90.9575 92.6239 91.8147

From Table 4, selecting a model is a simpler process. It was determined that the distribution
with the lowest values of AIC, BIC, and AICc provided the best fit. Hence, the normal distribution
is the most suitable fit for the first segment of the data. This process is then repeated for the
second part of the data.

Table 5: Summary of the second part of the dataset

Minimum Q1 Median Mean Q3 Maximum Skewness
33.20 34.11 36.45 37.60 38.96 45.38 0.90099

Since the data’s second component is skewed towards positive values, we should choose a
probability distribution that also displays positive skewness. This will help us accurately represent
the shape of the data and ensure more representative statistical analysis and modeling.
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Table 6: Estimated parameters value and Goodness of fit for the second part of the dataset.

Model
Estimated
Parameter

-2logL
CVM

(p-values)
AD

(p-values)
KS

(p-values)

Rayleigh σ̂=26.753 110.6552
0.8793

(0.0039)
4.1262

(0.0078)
0.5370

(0.0003)

Lindley θ̂=0.0519 119.5955
0.9050

(0.0034)
4.3004

(0.0065)
0.5289

(0.0004)

Exponential θ̂=0.0266 129.5586
1.1305

(0.0009)
5.2124

(0.0024)
0.5866

(0.0000)

Gamma
α̂=85.9100
β̂=2.2846

78.7922
0.1428

(0.4163)
0.9128

(0.4045)
0.2506

(0.2914)

Weibull
k̂=8.8277
λ̂=39.5728

82.47142
0.1983

(0.2725)
1.1507

(0.2861)
0.2829

(0.1745)

Pareto α̂=8.4226 69.7299
0.0427

(0.9254)
0.2184

(0.9324)
0.1266

(0.9573)

Lomax
α̂=185.6654
λ̂=5.3694

132.0715
1.1395

(0.0008)
5.2563

(0.0023)
0.5866

(0.0000)

Lognormal
µ̂=3.6213
σ̂=0.1064

78.3804
0.1344

(0.4453)
0.8709

(0.4305)
0.2440

(0.3208)

Cauchy
â=35.8128
b̂=1.9214

81.5577
0.1156

(0.5192)
0.8219

(0.4631)
0.2018

(0.5517)

Logistic
â=36.9773
b̂=2.3644

80.0735
0.1038

(0.5729)
0.8596

(0.4378)
0.2024

(0.5483)

Normal
µ̂=37.6033
σ̂=4.1682

79.7004
0.1608

(0.3614)
1.0064

(0.3524)
0.2633

(0.2402)

Gompertz
k̂=0.1200
λ̂=0.0014

91.5035
0.5587

(0.0269)
2.6816

(0.0407)
0.4545

(0.0037)

Gumbel
k̂=35.7494
λ̂=2.8798

75.6418
0.0814

(0.6912)
0.6522

(0.5971)
0.1805

(0.6872)

Laplace
µ̂=36.6535
β̂=3.1747

79.7542
0.0815

(0.6908)
0.7508

(0.5152)
0.1684

(0.7628)

Table 7: Model selection criteria for the second part of dataset

Model AIC BIC AICc
Gamma 82.7922 84.0703 83.8831
Weibull 86.4714 87.7495 87.5623
Pareto 71.7299 72.3689 72.0633
Lognormal 82.3804 82.3804 83.6585
Cauchy 85.5577 86.8358 86.6486
Logistic 84.0735 85.3516 85.1644
Normal 83.7004 84.9785 84.7913
Gumbel 79.6418 80.9199 80.7328
Laplace 83.7542 85.0323 84.8451

Applying the same methodology to the second half of the data, we can conclude from Tables
6 and 7 that the Pareto distribution is the best fit. We may go on to the next stage once we have
successfully obtained the two components required for the two sections of our data. We may
infer from step 7 that a Pareto distribution would be appropriate for the second half of the data,
and a normal distribution for the first part. Step 9 involves creating a new distribution called the
Normal-Pareto distribution (NPD) by combining these two distributions using the finite mixture
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model. Section 4 describes the function of NPD.

We must test our suggested model to ensure that it functions accurately and efficiently with
data. We will be able to demonstrate that our framework performs better than the current model
and yields better outcomes through this approach. Thus, we carry out step 6 again using the
suggested model, and Table 8 presents the outcomes.

Table 8: Estimated parameters value, Goodness of fit, and Model selection criteria for the dataset

Model
Estimated
Parameter

-2LL CVM AD KS AIC BIC AICc

Rayleigh σ̂=22.36 236.4
0.8388

(0.0055)
4.3918

(0.0057)
0.3189

(0.0027)
238.4 239.8 238.5

Lindley θ̂=0.063 253.9
1.1389

(0.0010)
5.8718

(0.0011)
0.3655

(0.0003)
255.9 257.4 256.1

Exponential θ̂=0.032 274.5
1.7891
(0.000)

8.5303
(0.000)

0.4587
(0.0000)

276.5 277.9 276.6

Gamma
α̂=18.93
β̂=0.614

208.2
0.0816

(0.6863)
0.4387

(0.8085)
0.1349

(0.5785)
212.2 215.1 212.6

Lognormal
µ̂=3.401
σ̂=0.231

208.0
0.0791

(0.7007)
0.4136

(0.8341)
0.1246

(0.6759)
212.0 214.8 212.4

Weibull
k̂=4.635
λ̂=33.674

210.9
0.0908

(0.6353)
0.5973

(0.6492)
0.1526

(0.4238)
214.9 217.8 215.4

Pareto α̂=2.146 225.5
0.6215

(0.0192)
3.2534
(0.000)

0.25419
(0.0298)

227.5 228.9 227.6

Lomax
α̂=113.53
λ̂=4.392

281.5
2.0613

(0.0000)
9.6293
(0.000)

0.4903
(0.000)

285.5 288.3 285.9

Cauchy
â=29.258
b̂=5.093

225.6
0.1696

(0.3363)
1.2009

(0.2669)
0.1612

(0.3573)
229.6 232.4 230.0

Logistic
â=30.44
b̂=4.224

211.6
0.0966

(0.6051)
0.5729

(0.6727)
0.1425

(0.5094)
215.6 218.5 216.0

Normal
µ̂=30.81
σ̂=7.135

209.8
0.0936

(0.6203)
0.5559

(0.6892)
0.154

(0.4125)
213.8 216.6 214.2

Gompertz
k̂=0.117
λ̂=0.002

216.7
0.1332

(0.4473)
1.0257

(0.3434)
0.1549

(0.4053)
220.7 223.6 221.1

Gumbel
k̂=27.399
λ̂=5.986

208.2
0.0757

(0.7204)
0.3980

(0.8497)
0.1358

(0.5704)
212.2 215.1 212.7

Laplace
µ̂=29.900
β̂=6.124

217.3
0.1477

(0.3984)
0.8691

(0.4328)
0.1599
(0.367)

221.3 224.2 221.7

Normal-Pareto
(NPD)

θ̂=0.973
µ̂=29.690
σ̂=8.117
α̂=152.23

202.3
0.062

(0.8019)
0.551

(0.6590)
0.122

(0.6984)
210.3 216.0 211.8

By comparing the newly created probability distribution against conventional distributions
using every criterion that was used to choose the model, its goodness of fit was assessed. Table 8
and Figure 4 make it clear that our suggested mixed probability model yields the best results,
and our methodology helps select a more appropriate model for the skewed data.

However, comparing the traditional distribution alone is not enough to prove that our pro-
posed model is a better fit for the data so we extended the study and collected various distributions
using various techniques, and compared it with our proposed model. The results are given in
Table 9.
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Figure 4: Comparison fit for the dataset

Other than the model listed in Table 9, many distributions are taken into account for compari-
son. The distributions are Shanker, Akash, Rama, Suja, Sujatha, Amarendra, Devya, Shambhu,
Aradhana, Akshya, Inverse Rayleigh, Inverse Exponential, Kpenadidum, Iwok-Nwi, Two parame-
ter Pranav, Two parameter Sujatha, Weibull Extended Pranav, Extended Pranav, Weibull-Lindley,
Weibull- Pranav, Exponentiated Exponential, Exponentiated Hypoexponential, Generalized In-
verted Exponential, Inverted Exponential, Beta Generalized Inverted Exponential, Exponentiated
Exponential, Exponentiated Lindley, Exponentiated Akash, Gold, Power Size Biased Two Parame-
ter Akash distributions.

In summary, the Normal-Pareto distribution provides the best fit to the data when compared
to other distributions.

4. Key Properties of Normal-Pareto Distribution

From the above statistical analysis, we have examined our proposed model key features in
depth. The model satisfy the essential condition for the distribution function, this shows that they
can be used for more research and application in pertinent areas.

4.1. Normal-Pareto Distribution (NPD)

The model can be obtained using a finite mixture model.

f (x) = w1g1(x) + w2g2(x) (1)

Equation (1) is used for developing the Normal-Pareto model. Where g1 (x) ∼ Normal (µ, σ),
g2 (x) ∼ Pareto(xm, α) and w1 = θ ; w2 = 1 − w1 = 1 − θ and xm is the minimum of x. To obtain
a perfect density function, we utilized a normalizing constant.

Let X ∼ NPD(θ, µ, σ, α) then the probability density function (pdf) and
cumulative distribution function (cdf) for the NPD are
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Table 9: Estimated value of parameters, and model selection criteria for data for various distributions

Model
Estimated
Parameter

-LL AIC BIC AICc

A Distribution (A) α̂=125.662 107.950 217.901 219.335 218.039
Inverse Gompertz
(IG)

α̂=1.249, β̂=119.762 107.884 219.768 222.636 220.196

Kumaraswamy
Inverse Gompertz
(KuIG)

α̂=79.042, β̂=18.694
γ̂=26.554

103.988 213.976 218.278 214.865

Exponentiated
Aradhana

α̂=19.1870, θ̂=0.2200 104.083 212.165 215.033 212.594

Inverse Weibull
(IW)

α̂=446.1827, β̂=4.655 105.323 214.647 217.515 215.075

Lomax Gumbel
Type-Two (LGTT)

α̂=31.7086, β̂=0.4549
θ̂=89.5227, k̂=0.8379

104.818 217.636 223.372 219.174

Lomax-Gompertz
(LomGo)

α̂=0.2952, β̂=3.7704
θ̂=0.0005, k̂=0.2523

105.729 219.457 225.193 220.996

Weighted Quasi
Akash Distribution

θ̂=0.6152, α̂=3.7439
β̂=16.9691

104.117 214.234 217.528 215.123

Three-parameter
Weighted
Lindley distribution
(TWLD)

θ̂=0.6198, α̂=18.300
β̂=16.9691

104.119 214.238 217.558 215.127

Weighted New
quasi-Lindley

α̂=4.7687, θ̂=0.6146
ĉ=-16.9412

104.116 214.232 218.534 215.120

Harris Extended
Generalized
Exponential Distribution
(HEGED)

ĉ=-0.1121, φ̂=0.0761
λ̂=0.1566, θ̂=5.0976

104.093 216.186 221.922 217.724

Marshall Olkin Extended
Generalized Exponential
Distribution (MOEGE)

φ̂=0.0761, λ̂=0.1566
θ̂=5.0976

105.776 217.552 221.854 218.441

Inverse Flexible Weibull
(IFW)

α̂=61.167, β̂=0.0859 104.963 213.927 216.795 214.355

Exponentiated Inverse
Flexible Weibull (EIFW)

α̂=2.376,β̂=0.164
γ̂=81.51

104.141 214.282 218.584 215.171

Normal-Pareto
(NPD)

θ̂=0.973, µ̂=29.6904
σ̂=8.1176, α̂=152.232

101.167 210.334 216.069 211.872

f (x) =
2
(

θ
σ
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e−

1
2 (

x−µ
σ )

2

+ (1 − θ) αxm
α
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)
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(√

2µ−
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2xm
2σ

)
− 1
)

θ + 2
(2)
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θ
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er f
(
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)
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)
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For xm ≤ x, α > 0, µ ∈ R, σ > 0, 0 ≤ θ ≤ 1. Where, xm is the minimum of x.

RT&A, No 4(80)

Volume 19, December, 2024

941



K.M. Sakthivel and Vidhya G
MODELING ASYMMETRICAL DATA

The survival function of X is

S (x) =
1((

er f
(

µ−xm√
2σ

)
− 1
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)
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− 2xα
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(4)

The hazard function of X is

h (x) =
2xα

(
θ

σ
√

2π
e−

1
2 (

x−µ
σ )

2

+ (1 − θ) αxm
α
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(
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)
− 2
)
+ 2
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− 2xα
m (θ − 1)

(5)

Figure 5 displays the possible shapes of the pdf, cdf, sf, and HF of the Normal-Pareto distribution
for the various parameter values.

Figure 5: The shapes of the pdf, cdf, sf, and HF of NPD for different values of the parameters

The mean value can be calculated using the following equation.

Mean =

2
3
2
√

π (αµθ − µθ − αxmθ + αxm) + (α − 1)
(

2Γ
(

1, (µ−xm)
2

2σ2

)
σ −

√
2Γ
(

1
2 , (µ−xm)

2

2σ2

)
µ

)
θ

√
2
√

π (α − 1)
((

er f
(

µ−xm√
2σ

)
− 1
)

θ + 2
) (6)
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The nth-order statistic is given as

fX(n)
(x) = n
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The first-order statistic is obtained as

fX(1)
(x) = n
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(8)

We obtained the maximum likelihood estimator of parameters (θ, µ, σ, α) of the NPD. Consider
the following log-likelihood function l of a random sample X1, X2, . . . , Xn from the density of
NPD (θ, µ, σ, α) given in Equation (9).

l = n log2 − nlog

(
θ

(
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) (9)

On differentiating Equation (9) with respect to the parameters θ, µ, σ, and α and equating to
zero, we obtain the following likelihood equations.
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and

∂l
∂α

= ∑

 xα
m ln (xm) (1 − θ) x−α−1α − xα

m ln (x) (1 − θ) x−α−1α + xα
m (1 − θ) x−α−1
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2π
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 = 0 (13)

Now the MLEs θ̂, µ̂, σ̂,and α̂ of the parameters θ, µ, σ,and α of NPD can be obtained by solving
the above four likelihood equations with the help of statistical software R.

5. Simulation Study

In this section, we evaluate the performance of ML estimates using a simulation study. For
this purpose, we carry out a replication of 1000 times with various sample sizes ranging from
25 to 250 for the Normal-Pareto Distribution (NPD) parameters. We created a random sample
of NPD using the Monte Carlo simulation method to generate the samples with the help of R
programming. For each sample, we compute the mean value, average bias, and root-mean-square
error (RMSE) to assess the performance of the MLEs, and these values are presented in Table 10.

From Table 10, it is observed that the sample size of n increases, and the bias and RMSE tend
to decrease. Therefore, a larger sample size indicates more accurate results.

Table 10: Simulation analysis: Mean, Bias, and RMSE values of NPD for various sample sizes

Case (i): θ=0.1, µ =0.5,
σ =0.7, α=0.5

Case (ii): θ=0.5, µ =1.5,
σ =0.5, α=0.1

n Parameters Mean
Average

Bias
RMSE Mean

Average
Bias

RMSE

25

θ 0.1355 0.0645 0.0907 0.4968 0.0732 0.1079
µ 26.5063 0.1122 2.6756 6.3569 1.0943 2.3405
σ 0.1943 0.1941 3.1157 0.0308 0.0303 1.8590
α 1.0902 0.2871 0.5930 1.1431 0.1124 1.6121

50

θ 0.1062 0.0619 0.0396 0.4959 0.0610 0.0931
µ 26.6213 0.0046 0.0021 6.2519 0.0575 0.0018
σ 0.0002 6.25e−06 8.77e−05 0.0004 0.0001 0.0003
α 1.0292 0.1007 0.1891 1.0482 0.1078 0.2333

75

θ 0.0997 0.0197 0.0378 0.4908 0.0608 0.0625
µ 26.6190 0.0015 0.0018 6.2507 0.0011 0.0015
σ 0.0002 3.13e−06 7.3e−05 0.0003 0.0003 0.0002
α 1.0172 0.0374 0.1299 1.0273 0.1011 0.1993

100

θ 0.0985 0.0185 0.0341 0.4900 0.0151 0.0515
µ 26.6192 0.0012 0.0011 6.2506 0.0009 0.0009
σ 0.0002 3.12e−06 6.85e−05 0.0003 9.5e−05 0.0001
α 1.0166 0.0368 0.1246 1.0229 0.0663 0.1604

250

θ 0.0900 0.0004 0.0191 0.4902 0.0098 0.0325
µ 26.6108 0.0006 0.0007 6.2506 0.0003 0.0007
σ 0.0002 6.15e−07 5.84e−05 0.0003 4.92 e−05 7.8 e−05

α 1.0084 0.0285 0.0748 1.0031 0.0248 0.0932

6. Conclusion

We developed an algorithm that is a comprehensive and specifically designed framework to
select the most appropriate model for asymmetric data. This framework is based on a unique
combination of probability distributions, which allows us to determine the best possible mixture
of probability models. To ensure that our mixture model is better than existing models, we
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have used various goodness of fit tests and information criteria. Our approach utilizes a finite
mixture model, which combines multiple probability models. We used the maximum likelihood
estimation method to estimate the parameters of NPD. To demonstrate the effectiveness of the
algorithm, we conducted an experiment where we utilized real-time data and ran it through the
algorithm. This enabled us to analyze the data and come up with a new appropriate model based
on the finite mixture. To further test the efficiency of the proposed model, we compared it with
other models used for the same data sets available in the literature. The algorithm proposed NPD
model is found most suitable in this comparison study. Finally, we have obtained the statistical
characteristics of our NPD model.
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