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Abstract

Control charts are essential in production processes to maintain quality of the products. Inspite of
numerous control charts existing for process location under normal model, there is a need for developing
control charts when situations demand production process under other distributions. In this paper, a
class of control charts based on various midranges is proposed for monitoring location parameter of an
ongoing process when process variables follow exponential distribution. The midranges are defined and
their distributions are obtained. The performance of some members of the proposed class are evaluated in
terms of their power, average run length (ARL), median run length (MRL) and standard deviation of run
length (SDRL). Also, optimality and effectiveness of members of the class are discussed along with their
illustration through an example.

Keywords: ARL, control limits, exponential distribution, location parameter, process control, rth

midrange

1. Introduction

Control charts are indispensable tools in statistical process control (SPC) for monitoring and
optimizing ongoing manufacturing processes. They provide a visual representation of process
variation over time, enabling practitioners to distinguish between chance cause of variation and
assignable cause of variation. The monitoring of process location parameter helps in maintaining
ongoing process and gives an indication about when corrective actions are required. Many
control charts are developed with the assumption that process variables are taken from normal
distribution, which usually do not represent some real-world scenarios. For example, chemical
process, lifetime process and cutting tool wear process do not follow a normal distribution as
highlighted in [3]. Therefore, studies focusing on non-normal distributions, particularly skewed
distributions are of importance in decision making in process control.

In manufacturing operations, downtime often follows a two parameter exponential distribu-
tion, characterized with probability density function (pdf)

f (x) =
1
λ

e−
x−µ

λ , x ≥ µ, −∞ < µ < ∞, λ > 0 (1)

where µ represents the average downtime duration. Monitoring µ is crucial for understanding
and managing production interruptions effectively. Focusing on µ, which signifies the central
tendency of downtime durations, allows companies to implement proactive measures such as
predictive maintenance scheduling and process optimization. Statistical process control techniques
enable the monitoring of µ through tools like process average control charts. These charts aid
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in identifying deviations from expected downtime durations and facilitate corrective actions to
maintain operational efficiency and minimize disruptions. They enhance production reliability,
resource utilization and support continuous improvement efforts aimed at reducing overall
downtime resulting in improvement of productivity.

Numerous control charts have been developed for process location and scale parameters
based on the assumption of normal distribution. The control charts for process location based on
various approaches under normal model are discussed in [11], [13], [15], [18], [21] and [22]. The
nonparametric control charts offer an alternative method to monitor ongoing processes suitable
for scenarios where the distributional form of process variables is not known or it is non-normal.
The nonparametric control charts based on distribution-free statistics are deliberated in [2],[4], [7],
[8], [16],[17] and [23].

The quantile based statistics offering robust tools are helpful in assessing the location parame-
ter. Various approaches of defining quantiles are discussed in [5] , [12] and [20] elaborates on rth

midrange and discuss its asymptotic variance. The sampling distribution of quantiles is explored
in [10] along with providing foundational insights into their statistical properties. The control
charts whose control limits are depending on quantiles of non-normal distributions are discussed
in [3].

In recent years, the prime focus has been towards developing control charts for exponential
distribution. For instance, a control chart to jointly monitor both process location and scale is
proposed by [9]. An in-depth examination of the theoretical foundations and practical techniques
associated with exponential distribution is provided in [1]. A control chart to monitor process
stability using exponential distribution modelling for event times is studied in [19]. The control
charts for joint monitoring of origin and scale parameters for ongoing processes are proposed
in [14]. A median control chart is suggested to monitor process median under non normality
including exponential distribution in [6].

The motivation for proposing a class of control charts based on rth midrange when process
variables are taken from exponential distribution is to intensify either sensitivity or robustness of
control charts. Also, identifying an optimal control chart among the proposed class of control
charts that rationalizes the application of the control chart under exponential model.

In this paper, we propose a class of control charts based on rth midrange and obtain the
optimal control chart to detect shift in the process location parameter. Section 2 elaborates on
the features of rth midrange. Section 3 deals with the proposed class of control charts and
their evaluation. Section 4 and 5, respectively, deal with the illustration of control charts and
conclusions based on our observations.

2. Role of rth Midrange and its Distribution

Suppose X1, X2, . . . , Xn is a random sample of size n taken from exponential distribution
E
(
µ, λ−1) whose pdf is given in (1) and µ, λ are location and scale parameters respectively. The

rth midrange due to [20] is given by

Mr =
1
2

(
X(r) + X(n−r+1)

)
, r = 1, 2, . . . ,

⌊
n
2
+

1
2

⌋
(2)

where X(r) is the rth order statistic and [y] is the largest integer ≤ y.
The rth midrange is known for its wide range of sensitivity as well as robustness to outliers. It
also provides a reliable measure of central tendency which is ideal for skewed or heavy-tailed
distributions. Its flexibility allows it to adapt to various statistical measures, including median,
midquartile and midpercentiles. Its minimal data requirement and computational simplicity
compared to measures like arithmetic mean enhances its utility. These features make it important
for real time applications and statistical analysis that need quick-reliable summaries of the data.

For r = 1, we have, M1 =
1
2

(
X(1) + X(n)

)
(3)
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which is midrange given by the average of extreme order observations of a sample. It is a sensitive
measure and offers a simple, yet effective summary of the location.
For r = n+1

2 , n+1
4 , n+1

10 and n+1
100 we get respectively, the

median, Md = X( n+1
2 ) (4)

midquartile or midhinge, Mh =
X( n+1

4 ) + X(3 n+1
4 )

2
, (5)

middecile, MDi =
X(i n+1

10 ) + X((10−i) n+1
10 )

2
, i = 1, 2, . . . , 5 (6)

and midpercentile, MPi =
X(i n+1

100 )
+ X((100−i) n+1

100 )

2
, i = 1, 2, . . . , 50. (7)

Also, Mr is called as quasi midrange for r ≥ 2.

Further, the pth sample quantile is given by X(r) with

r =

{
np, if np is an integer
[np] + 1, if np is not an integer

(8)

where 0 < p < 1. Here, we get the median at p = 1
2 .

When r = [np] + 1, the midquantile is given by

Mq =
X([np]+1) + X(n−[np])

2

=
X(p(n+1)) + X((1−p)(n+1))

2
(9)

As given in [10], suppose zp is a sample quantile, then

zp ∼ N

(
ξp,

p(1 − p)
n f 2

(
ξp
)) (10)

where ξp is a population quantile given by ξp = F−1(p) and f
(
ξp
)

is the pdf evaluated at ξp.
Hence,

Mq =
zp + z1−p

2
∼ N

(
ξp + ξ1−p

2
, σ2

Mq

)
where

σ2
Mq

=
1
4

[
p(1 − p)
n f 2

(
ξp
) + (1 − p)p

n f 2
(
ξ1−p

) + 2p2

n f
(
ξp
)

f
(
ξ1−p

)] . (11)

Under exponential distribution,
ξp = µ − λ log(1 − p) (12)

and
f
(
ξp
)
=

1 − p
λ

. (13)

Therefore,

E
(

Mq
)
= E

(
zp + z1−p

2

)
=

µ − λ log(1 − p) + µ − λ log(p)
2
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= µ − λ

2
log(p(1 − p)) (14)

Defining M∗
q = Mq +

λ
2 log(p(1 − p)),

we get E
(

M∗
q

)
= µ and σ2

M∗
q
= σ2

Mq
. (15)

Therefore, σ2
M∗

q
=

1
4

[
p(1 − p)λ2

n(1 − p)2 +
(1 − p)pλ2

np2 +
2p2λ2

n(1 − p)p

]
=

λ2

4n

[
p

(1 − p)
+

(1 − p)
p

+
2p

(1 − p)

]
=

λ2

4n

[
p2 + (1 − p)2 + 2p2

p(1 − p)

]
=

λ2

4n

[
4p2 − 2p + 1

p(1 − p)

]
, 0 < p ≤ 1

2
. (16)

However, to obtain the mean and variance of M1, we consider the following results due to [1].

E
(

X(r)

)
= µ + λ

r

∑
j=1

1
n − j + 1

, (17)

Var
(

X(r)

)
= λ2

r

∑
j=1

1

(n − j + 1)2 , r = 1, 2, . . . , n (18)

and Cov
(

X(r), X(s)

)
= λ2

r

∑
j=1

1

(n − j + 1)2 , 1 ≤ r ≤ s ≤ n. (19)

Now,

E
(

X(1)

)
= µ +

λ

n
and E

(
X(n)

)
= µ + λ log(n).

Hence,

E (M1) =
E
(

X(1)

)
+ E

(
X(n)

)
2

=
µ + λ

n + µ + λ log(n)
2

= µ +
λ

2

[
1
n
+ log(n)

]
.

∴ E (M∗
1) = E

(
M1 −

λ

2

[
1
n
+ log(n)

])
= µ. (20)

Also, Var
(

X(1)

)
=

λ2

n2 , Var
(

X(n)

)
= λ2, and Cov

(
X(1), X(n)

)
=

λ2

n2 .

Therefore, Var (M∗
1) = σ2

M∗
1
=

1
4

[
Var

(
X(1)

)
+ Var

(
X(n)

)
+ 2 · Cov

(
X(1), X(n)

)]
=

1
4

[
λ2

n2 + λ2 +
2λ2

n2

]
=

λ2

4

[
3
n2 + 1

]
. (21)
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3. Control charts and their evaluation

In this section, we propose a class of shewhart type control charts based on rth midrange, using
the mean and standard deviation (sd) of the appropriate statistics. The control limits of M∗

r
control charts are given by

UCLM∗
r = E (M∗

r ) + 3σM∗
r , CLM∗

r = E (M∗
r ) , LCLM∗

r = E (M∗
r )− 3σM∗

r . (22)

where UCLM∗
r , CLM∗

r and LCLM∗
r is the upper control limit, center line and lower control limit of

M∗
r control chart. E (M∗

r ) and σM∗
r represent respectively the mean and sd of M∗

r control chart. The
variance of some members of the proposed class of control charts, M∗

r are furnished in Exhibit 1.

Exhibit 1: Variance of various members of rth midrange

Mr M∗
r σ2

M∗
r

M1 M1 − λ
2

[
1
n + log(n)

]
λ2

4

[
3

n2 + 1
]

MD1 MD1 − 1.2040λ 2.3333 λ2

n
MD2 = MP20 MD2 − 0.9163λ 1.1875 λ2

n
Mh Mh − 0.8370λ λ2

n
MD3 = MP30 MD3 − 0.7803λ 0.9048 λ2

n
MD4 = MP40 MD4 − 0.7136λ 0.8750 λ2

n
MD5 = MP50 = Md MD5 − 0.6931λ λ2

n

Since E
(

M∗
d
)
= E(M∗

h) and σ2
M∗

d
= σ2

M∗
h

, the M∗
d and M∗

h control charts and their performances
will be the same.
The performance of proposed M∗

r control chart is evaluated using some performance measures
viz. power, PM∗

r ; average run length, ARLM∗
r ; median run length, MRLM∗

r and sd of run length,
SDRLM∗

r . These measures are defined as

PM∗
r = 1 − βM∗

r (23)

where, βM∗
r = P

(
LCLM∗

r < M∗
r < UCLM∗

r | µ′) (24)

is the operating characteristic (OC) function,

ARLM∗
r =

1
PM∗

r

(25)

MRLM∗
r =

log (0.5)
log
(
1 − PM∗

r

) (26)

and SDRLM∗
r =

√
ARLM∗

r

(
1 − ARLM∗

r

)
(27)

The βM∗
r represents the probability of not detecting the shift a in the process location parameter in

the first subsequent sample if the process location shifts from µ to µ
′
= µ + a. The PM∗

r indicates
the effectiveness of control chart in detecting a shift in the process location parameter. The
ARLM∗

r represents the average number of samples needed to detect the shift and measures how
quickly the control chart responds to process shifts, with a lower ARL indicating faster detection.
MRLM∗

r provides the median number of samples required to detect a shift and it complements
the ARL by offering a central tendency measure that is less influenced by extreme values. The
SDRLM∗

r measures the variability in the number of samples needed to detect a shift and asses the
consistency of control chart's performance, with lower SDRL indicating higher consistency. The
values of PM∗

r , ARLM∗
r , MRLM∗

r and SDRLM∗
r are computed by setting λ2 = 1. The values of

PM∗
r , ARLM∗

r are presented in Table 1 and MRLM∗
r , SDRLM∗

r in Table 2.
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When a random sample is taken from exponential distribution, the distributional form of
midrange is not known. Hence using R program, we evaluate various performance measures
of M∗

1 for different values of n and a. The computed values of these performance measures are
presented in Table 3. All the tables are given in appendix.

For various values of a and n = 10, we plot Figure 1 using Table 1 and 2. Figure 2 is plotted
using Table 3 for different values on n.

Figure 1: Performance measures of M∗
r control charts

From Table 1, Table 2 and Figure 1, we observe that, for fixed n and increasing a, PM∗
r increases,

where as ARLM∗
r , MRLM∗

r and SDRLM∗
r decreases. At a = 0 for various values of n, PM∗

r is 0.0027,
ARLM∗

r , MRLM∗
r and SDRLM∗

r are approximately 370, 256 and 369 respectively. Additionally,
across different control charts, it is observed that, the M∗

D2
control chart performs better than

M∗
D1

, M∗
h is better than M∗

D2
and M∗

D3
outperforms M∗

h indicating a progressive improvement in
performance of control charts as decile value increases.
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Figure 2: Performance measures of M1 control chart for various values of n and a

From Table 3 and Figure 2, we observe that, as n increases, for a specified shift a, PM∗
1

increases,
ARLM∗

1
, MRLM∗

1
and SDRLM∗

1
decrease.

We also observe from exhibit 1 that, σ2
M∗

P30
> σ2

M∗
P40

, which reflects that there is a decreasing trend

in the variance of 30th percentile to 40th percentile. Hence, we obtain σ2
M∗

P35
= 0.8681 λ2

n > σ2
M∗

P40
.

Also, we evaluate the values of 36th to 38th percentile and are given by σ2
M∗

P36
= 0.8663 λ2

n ,

σ2
M∗

P37
= 0.8662 λ2

n , σ2
M∗

P38
= 0.8676 λ2

n . We see that, σ2
M∗

P36
> σ2

M∗
P37

< σ2
M∗

P38
yielding minimum

variance for 37th percentile. Hence, we compute various performance measures of M∗
P37

control
chart for various values of n and present in Exhibit 2.
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Exhibit 2: Performance measures for the M∗
P37

control chart

a
n 5 10 15 20 5 10 15 20

PM∗
P37

ARLM∗
P37

0.00 0.0027 0.0027 0.0027 0.0027 370.3983 370.3983 370.3983 370.3983
0.25 0.0084 0.0158 0.0250 0.0360 119.4651 63.2330 39.9287 27.7430
0.50 0.0360 0.0966 0.1790 0.2751 27.7430 10.3510 5.5877 3.6349
0.75 0.1154 0.3257 0.5482 0.7270 8.6621 3.0699 1.8243 1.3755
1.00 0.2751 0.6546 0.8773 0.9645 3.6349 1.5277 1.1399 1.0368
1.50 0.7270 0.9820 0.9994 1.0000 1.3755 1.0183 1.0006 1.0000
2.00 0.9645 0.9999 1.0000 1.0000 1.0368 1.0001 1.0000 1.0000

MRLM∗
P37

SDRLM∗
P37

0.00 256.3938 256.3938 256.3938 256.3938 369.8980 369.8980 369.8980 369.8980
0.25 82.4598 43.4823 27.3284 18.8813 118.9640 62.7310 39.4255 27.2384
0.50 18.8813 6.8223 3.5151 2.1544 27.2384 9.8383 5.0630 3.0948
0.75 5.6505 1.7586 0.8725 0.5339 8.1468 2.5208 1.2262 0.7186
1.00 2.1544 0.6521 0.3304 0.2077 3.0948 0.8978 0.3994 0.1954
1.50 0.5339 0.1726 0.0933 0.0616 0.7186 0.1367 0.0244 0.0036
2.00 0.2077 0.0728 0.0413 0.0281 0.1954 0.0086 0.0002 0.0000

From Exhibit 2 and Tables 1, 2 and 3, we observe that, M∗
P37

control chart displays the highest
power and the lowest ARL, MRL and SDRL when compared to other control charts within the
proposed class. Hence, we consider M∗

P37
as the optimal control chart among the class of M∗

r
control charts.

4. Illustration

In this section, we provide an example to illustrate the class of Mr control charts using partial
data from [3]. The dataset comprises the failure times of light bulbs, recorded in units across 10
samples, each consisting of 10 observations. Various values of Mr for each sample is computed
in Exhibit 3 (a). Here, n = 10, µ is estimated by Mr =

1
10 ∑10

i=1 Mri and σMr by σ̂Mr = δλ̂, where

δ =
√

n−1
2

(
Γ( n−1

2 )
Γ( n

2 )

)
, λ̂ = 1

10 ∑10
i=1 si, s2

i = 1
9 ∑10

i=1 (xi − x)2.

Exhibit 3 (a): CLMr of various control charts

Sl. no M1 M(D1)
M(D2)

Mh M(D3)
M(P37)

M(D4)
x̄ si

1 0.6600 1.0025 0.8960 0.8438 0.7965 0.7155 0.6750 0.8550 0.5355
2 0.6500 1.1275 1.0340 1.0112 1.0135 0.9474 0.8920 1.0140 0.4709
3 1.1700 1.0020 0.9840 0.9725 0.9590 0.9368 0.9260 0.9720 0.5548
4 1.6100 0.6885 0.6320 0.5925 0.5340 0.4851 0.4770 0.6380 0.4327
5 0.6500 0.9640 0.9200 0.8887 0.8505 0.7970 0.7740 0.8870 0.4436
6 0.9500 0.7370 0.7460 0.7688 0.7935 0.8578 0.8970 0.8420 0.4411
7 0.9800 0.7125 0.6460 0.6512 0.6895 0.7150 0.7150 0.7010 0.3990
8 1.1700 1.0760 0.9140 0.8700 0.8700 0.8485 0.8310 0.9170 0.4607
9 1.6100 0.8310 0.8360 0.7888 0.6965 0.6136 0.5960 0.7590 0.5363

10 1.2500 1.0230 0.9890 1.0100 1.0640 1.0719 1.0490 1.0250 0.5394

CLMr = M̄r 1.0700 0.9164 0.8597 0.8398 0.8267 0.7989 0.7832 x̄ = 0.8610 λ̂ = 0.4814
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Exhibit 3 (b): σMr , UCLMr , CLMr , LCLMr and wMr of various control charts

Statistic σMr UCLMr CLMr LCLMr wMr

M1 0.2511 1.8234 1.0700 0.3166 1.5069
MD1 0.2391 1.6336 0.9164 0.1992 1.4344
MD2 0.1706 1.3714 0.8597 0.3480 1.0233
Mh 0.1565 1.3093 0.8398 0.3703 0.9391

MD3 0.1489 1.2733 0.8267 0.3801 0.8932
MP37 0.1457 1.2359 0.7989 0.3619 0.8740
MD4 0.1464 1.2224 0.7832 0.3440 0.8784

Figure 3: M1, MD2 , Mh, MD3 , MP37 , MD4 control charts

From Exhibit 3 (b) and Figure 3 it is observe that, the M1, MD2 , Mh, MD3 , MP37 and MD4 control
charts show that the process is in control. Further, the wMr is largest for MD1 control chart and
smallest for MP37 control chart.
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5. Conclusions

In this section, we record our conclusions about the proposed class of Mr control charts based on
our findings.

• A class of control charts based on rth sample midrange is proposed for location parameter
when process is under exponential model.

• The proposed class of control charts includes midrange, mid quantile, middecile, midper-
centile, midhinge and median control charts as its members.

• Mr is biased estimator. Hence, after adjusting the bias, it is renamed as M∗
r .

• When bias of Mh and Md estimators are adjusted, the M∗
h and M∗

d control charts are the
same.

• The power of the proposed class increases for smaller shifts as the sample size increases,
exhibiting greater ability to detect shifts in process location.

• ARL and MRL decrease as sample size increases indicating improved performance of the
control charts.

• As sample size increases, the performance of the control charts stabilizes.
• Among the various members of the proposed class, the control chart based on 37th percentile,

M∗
P37

outperforms other control charts establishing its optimality.

Appendix

Table 1: PM∗
r

and ARLM∗
r

of various control charts

Statistic
a

n 5 10 15 20 5 10 15 20
PMr∗ ARLMr∗

MD1

0.00 0.0027 0.0027 0.0027 0.0027 370.3983 370.3983 370.3983 370.3983
0.25 0.0046 0.0067 0.0091 0.0118 217.3808 148.3252 109.5630 85.0522
0.50 0.0118 0.0247 0.0416 0.0623 85.0522 40.4195 24.0249 16.0627
0.75 0.0286 0.0739 0.1360 0.2106 34.9655 13.5312 7.3520 4.7475
1.00 0.0623 0.1762 0.3211 0.4712 16.0627 5.6741 3.1139 2.1223
1.50 0.2106 0.5419 0.7891 0.9180 4.7475 1.8452 1.2673 1.0894
2.00 0.4712 0.8729 0.9808 0.9979 2.1223 1.1455 1.0196 1.0022

MD2

0.00 0.0027 0.0027 0.0027 0.0027 370.3983 370.3983 370.3983 370.3983
0.25 0.0067 0.0116 0.0174 0.0242 150.0911 86.4698 57.4181 41.2916
0.50 0.0242 0.0607 0.1107 0.1716 41.2916 16.4773 9.0355 5.8291
0.75 0.0720 0.2051 0.3690 0.5311 13.8877 4.8759 2.7098 1.8830
1.00 0.1716 0.4609 0.7102 0.8652 5.8291 2.1695 1.4080 1.1558
1.50 0.5311 0.9119 0.9901 0.9992 1.8830 1.0966 1.0100 1.0008
2.00 0.8652 0.9975 1.0000 1.0000 1.1558 1.0025 1.0000 1.0000

Mh

0.00 0.0027 0.0027 0.0027 0.0027 370.3983 370.3983 370.3983 370.3983
0.25 0.0075 0.0136 0.0211 0.0299 133.1594 73.2735 47.3362 33.4008
0.50 0.0299 0.0780 0.1438 0.2225 33.4008 12.8251 6.9553 4.4953
0.75 0.0929 0.2649 0.4621 0.6384 10.7611 3.7749 2.1643 1.5665
1.00 0.2225 0.5645 0.8087 0.9295 4.4953 1.7716 1.2366 1.0758
1.50 0.6384 0.9594 0.9975 0.9999 1.5665 1.0424 1.0025 1.0001
2.00 0.9295 0.9996 1.0000 1.0000 1.0758 1.0004 1.0000 1.0000

MD3

0.00 0.0027 0.0027 0.0027 0.0027 370.3983 370.3983 370.3983 370.3983
0.25 0.0081 0.0151 0.0238 0.0340 123.5647 66.1805 42.0789 29.3723
0.50 0.0340 0.0905 0.1675 0.2581 29.3723 11.0505 5.9706 3.8744
0.75 0.1081 0.3062 0.5214 0.7006 9.2538 3.2656 1.9177 1.4273
1.00 0.2581 0.6272 0.8581 0.9556 3.8744 1.5943 1.1654 1.0465
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1.50 0.7006 0.9765 0.9991 1.0000 1.4273 1.0240 1.0009 1.0000
2.00 0.9556 0.9999 1.0000 1.0000 1.0465 1.0001 1.0000 1.0000

MD4

0.00 0.0027 0.0027 0.0027 0.0027 370.3983 370.3983 370.3983 370.3983
0.25 0.0083 0.0156 0.0247 0.0356 120.4118 63.9092 40.4202 28.1145
0.50 0.0356 0.0952 0.1762 0.2711 28.1145 10.5096 5.6742 3.6889
0.75 0.1137 0.3211 0.5419 0.7210 8.7961 3.1140 1.8453 1.3870
1.00 0.2711 0.6483 0.8729 0.9625 3.6889 1.5426 1.1456 1.0389
1.50 0.7210 0.9808 0.9993 1.0000 1.3870 1.0196 1.0007 1.0000
2.00 0.9625 0.9999 1.0000 1.0000 1.0389 1.0001 1.0000 1.0000

Table 2: MRLM∗
r

and SDRLM∗
r

of various control charts

Statistic
a

n 5 10 15 20 5 10 15 20
MRLMr∗ SDRLMr∗

MD1

0.00 256.3938 256.3938 256.3938 256.3938 369.8980 369.8980 369.8980 369.8980
0.25 150.3300 102.4642 75.5962 58.6064 216.8802 147.8243 109.0618 84.5507
0.50 58.6064 27.6686 16.3037 10.7835 84.5507 39.9164 23.5195 15.5546
0.75 23.8880 9.0281 4.7410 2.9305 34.4619 13.0216 6.8337 4.2179
1.00 10.7835 3.5752 1.7895 1.0879 15.5546 5.1498 2.5657 1.5433
1.50 2.9305 0.8878 0.4454 0.2772 4.2179 1.2489 0.5820 0.3120
2.00 1.0879 0.3360 0.1753 0.1128 1.5433 0.4083 0.1412 0.0465

MD2

0.00 256.3938 256.3938 256.3938 256.3938 369.8980 369.8980 369.8980 369.8980
0.25 103.6882 59.5891 39.4516 28.2732 149.5902 85.9683 56.9159 40.7885
0.50 28.2732 11.0710 5.9096 3.6830 40.7885 15.9695 8.5208 5.3056
0.75 9.2753 3.0199 1.5052 0.9153 13.3784 4.3472 2.1525 1.2895
1.00 3.6830 1.1218 0.5596 0.3459 5.3056 1.5929 0.7579 0.4244
1.50 0.9153 0.2853 0.1501 0.0972 1.2895 0.3254 0.1004 0.0283
2.00 0.3459 0.1159 0.0640 0.0429 0.4244 0.0504 0.0045 0.0003

Mh

0.00 256.3938 256.3938 256.3938 256.3938 369.8980 369.8980 369.8980 369.8980
0.25 91.9521 50.4419 32.4632 22.8033 132.6585 72.7718 46.8335 32.8970
0.50 22.8033 8.5384 4.4655 2.7548 32.8970 12.3150 6.4359 3.9639
0.75 7.1068 2.2523 1.1180 0.6815 10.2489 3.2365 1.5874 0.9420
1.00 2.7548 0.8340 0.4191 0.2613 3.9639 1.1692 0.5409 0.2856
1.50 0.6815 0.2164 0.1155 0.0756 0.9420 0.2101 0.0499 0.0102
2.00 0.2613 0.0898 0.0503 0.0340 0.2856 0.0211 0.0010 0.0000

MD3

0.00 256.3938 256.3938 256.3938 256.3938 369.8980 369.8980 369.8980 369.8980
0.25 85.3015 45.5254 28.8189 20.0108 123.0637 65.6786 41.5759 28.8680
0.50 20.0108 7.3076 3.7814 2.3217 28.8680 10.5387 5.4477 3.3371
0.75 6.0611 1.8959 0.9405 0.5747 8.7396 2.7201 1.3267 0.7809
1.00 2.3217 0.7024 0.3550 0.2226 3.3371 0.9734 0.4390 0.2205
1.50 0.5747 0.1847 0.0995 0.0655 0.7809 0.1569 0.0307 0.0050
2.00 0.2226 0.0776 0.0438 0.0297 0.2205 0.0115 0.0004 0.0000

MD4

0.00 256.3938 256.3938 256.3938 256.3938 369.8980 369.8980 369.8980 369.8980
0.25 83.1160 43.9510 27.6691 19.1388 119.9107 63.4073 39.9171 27.6100
0.50 19.1388 6.9323 3.5753 2.1922 27.6100 9.9971 5.1500 3.1495
0.75 5.7435 1.7896 0.8878 0.5431 8.2810 2.5657 1.2489 0.7327
1.00 2.1922 0.6634 0.3360 0.2110 3.1495 0.9149 0.4083 0.2011
1.50 0.5431 0.1753 0.0947 0.0625 0.7327 0.1412 0.0258 0.0039
2.00 0.2110 0.0739 0.0419 0.0285 0.2011 0.0092 0.0003 0.0000
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Table 3: MRLM∗
r

and SDRLM∗
r

of various control charts

a
n 5 10 15 20 5 10 15 20

PMr∗ ARLMr∗
0.00 0.0030 0.0030 0.0030 0.0030 333.3333 333.3333 333.3333 333.3333
0.25 0.0040 0.0040 0.0050 0.0040 250.0000 250.0000 200.0000 250.0000
0.50 0.0060 0.0050 0.0070 0.0080 166.6667 200.0000 142.8571 125.0000
0.75 0.0080 0.0060 0.0080 0.0090 125.0000 166.6667 125.0000 111.1111
1.00 0.0130 0.0080 0.0120 0.0140 76.9231 125.0000 83.3333 71.4286
1.50 0.0280 0.0220 0.0270 0.0380 35.7143 45.4545 37.0370 26.3158
2.00 0.0570 0.0550 0.0560 0.0710 17.5439 18.1818 17.8571 14.0845

MRLM1∗ SDRLM1∗

0.00 230.7023 230.7023 230.7023 230.7023 332.8330 332.8330 332.8330 332.8330
0.25 172.9400 172.9400 138.2826 172.9400 249.4995 249.4995 199.4994 249.4995
0.50 115.1776 138.2826 98.6741 86.2964 166.1659 199.4994 142.3563 124.4990
0.75 86.2964 115.1776 86.2964 76.6693 124.4990 166.1659 124.4990 110.6100
1.00 52.9717 86.2964 57.4150 49.1631 76.4214 124.4990 82.8318 70.9268
1.50 24.4070 31.1588 25.3240 17.8919 35.2107 44.9518 36.5336 25.8109
2.00 11.8105 12.2528 12.0277 9.4118 17.0365 17.6747 17.3499 13.5753
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