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Abstract 

The study addresses the challenges of estimating the population mean in two-stage cluster 
sampling, where there is an equal chance of random non-response at the first-stage unit. The 
researchers propose some regression-type imputation schemes and regression-type estimators that 
incorporate measurement error parameters for both the study and supplementary variables. The 
properties of the proposed estimators were derived and numerically compared using a simulated 
sample population. The proposed estimators outperformed the existing estimators consider in the 
study. The researchers conclude that their proposed methodology can be practically applied, using 
the actual responses of the respondents and including the measurement error parameters to estimate 
the finite population mean. 

Keywords: First Stage Unit,Regression-type imputation scheme,Regression-type 
estimators,Random Non-Response 

I. Introduction

In field surveys frequently indicate that it is not always possible to obtain a complete list of 
everyone who is a member of the research population, indicating that selecting a simple random 
sample is difficult.  Cluster sampling can be used to collect data in this scenario because it is 
usually less expensive and does not require a list of all observations in the population [1]. 
Clusters are produced in cluster sampling by dividing the survey area into smaller sub-areas. Then 
using simple random sampling, some of these areas are chosen, and all elements of the chosen 
clusters are counted. 

Assuming we are interested in the academic performance of all 400 level students in a given 
city. Because there is no sampling frame for such units, obtaining a complete list of everyone in the 
research population is extremely difficult. However, a list of university each student attends 
should be available. In these cases it is recommended to select a simple random sample of 400 level 
students from each university. The technique used in this study is two-stage cluster sampling. In 
cluster sampling, better precision is achieved by first selecting a cluster and then enumerating a 
specific number of elements from each cluster. Two-stage cluster sampling refers to the process of 
first picking clusters, which are the sampling units in the first stage, and then selecting a 
predetermined number of elements from each selected cluster, which are the sampling units in the 
second stage. The clusters that constitute the sampling units in the first stage are referred to as First 
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Stage Units (FSUs) or Primary Stage Units. The elements inside these clusters that form the 
sampling units in the second stage are referred to as Second Stage Units (SSUs).The key advantage 
of this two-stage cluster sampling approach is that it can provide better precision in the estimates 
compared to simpler random sampling methods. 

In a sample survey, it is usually assumed that all information is obtained from the study 
population's unit and that the observed variables are obtained without error.   Such an assumption 
is not always met because researchers face the issues of non-response and measurement error. 
Most human population surveys face the problem of non-response, where some units of the study 
population fail to provide the requested information for various reasons, such as refusal, absence, 
lack of interest, or adherence to ethical standards. This non-response causes issues during data 
collection, calculation, and estimation. The problem of non-response in estimating the finite 
population mean was first address by [2]. The typical approach is to return to the field and collect 
the missing values through a call-back method, but this requires additional resources like time, 
people, and money. Three concepts related to non-response: Missing at Random (MAR), Observed 
at Random (OAR), and Parameterized Distribution (PD), were discussed by [3]. According to [3], 
data are MAR when the probability of missing data does not depend on the value of the 
unobserved data. Missing completely at random (MCAR) and missing at random (MAR) was 
distinguished by [4]. Various imputation schemes have been used over time to address the 
problem of estimating unknown parameters in the presence of missing values in sample surveys. 
Imputation involves filling in missing values with specific substitutes so that standard data 
analysis methods can be applied. The regression imputation method is used to replace missing 
value with a linear function. The approach also predicts missing values using regression models 
using the other variables, and the fitted values are entered into the model. It is assumed that the 
value of one variable varies linearly with other variables. Several researchers, including [5-14], and 
many others have proposed imputation methods to handle missing data. However, drawing 
simple random samples is impractical without a full list of every unit in the population. As a 
result, the imputation schemes and their estimators suggested by the previous literature are not 
applicable when the complete list of all population units is not available (as is the case in non-
response). Cluster sampling is a common sampling method when there is no complete list of all 
population units in a survey. Hence the adoption of two-stage cluster sampling method used in 
this study. 

In addition to non-response, survey researchers face the issue of measurement error (ME). 
Several survey researchers work under the assumption that the information they acquire from 
respondents is correct, and some of the estimator attributes (biases and mean square errors) are 
derived from this assumption. The assumption that the observed data accurately represents the 
true values is not always correct, as researchers often face the problem of measurement error. 
Measurement error refers to the discrepancy between the observed values gathered from 
respondents and the real, underlying values. In other words, the observed data may not perfectly 
reflect the true information, and there is an element of error or inaccuracy introduced during the 
data collection process. This measurement error can be problematic and needs to be accounted for 
in the analysis, as relying solely on the observed data may lead to biased or inaccurate results. 
Let’s assume we want to collect information on the cumulative grade point average (CGPA) of 
some students; some may report a CGPA that is lower or higher than their real CGPA. As a result, 
the observed value remains erroneous, because the students did not provide their real CGPA. 
When the measurement error is insignificant, the inferences drawn on the observed value may be 
correct; nevertheless, when the measurement is not insignificantly small, the inferences taken on 
the observed value may have some unanticipated and unpleasant implications.  

Several researchers have examined the issue of measurement error separately in their work, 
including [15-24]. 
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Typically, non-response and ME are investigated separately using known supplementary 
variables. In reality, survey sampling results to simultaneous measurement errors and non-
response. However, in this research, we will study both non-response and measurement errors. 

II. Methods
2. Construction of sample structure

Suppose U  is a finite population be divided into N  FSU represented by ( )1 2, , NU U U    in such a 

way that the quantity of SSU in every first stage unit is M . Assume ijy , 1ijx , and 2ijx be the actual 

values for the character under studyY , first supplementary variable 1X  and second 

supplementary variable 2X , respectively. Also, assume that ( )ij ey , 1 ( )ij ex , 2 ( )ij ex be the observed 

values for Y , 1X , 2X  on the thj second stage units ( )= 1,2,j M in the thi first stage units

( )= 1,2,i N . Let ijU , ijV and ijW be the ME parameters associated with the study variable, first 

supplementary variable, and second supplementary variable respectively. The MEs associated 
with these variables are thus defined as: 
The ME associated with the character under study be  

= − ( )ij ij ij eU y y , ( )σ 20,ij UU N                                                            (1) 

The ME associated with the first supplementary variable be 
= −1 1 ( )ij ij ij eV x x , ( )σ 20,ij VV N    (2) 

The ME associated with the second supplementary variable be 
= −2 2 ( )ij ij ij eW x x , ( )σ 20,ij WW N                                                          (3)

However, in this research work, we take into account a scenario in which the information on 
the first supplementary variable 1X is not known at the level of first stage unit. Hence, information 

on the first supplementary variable 1x  can be gathered using the following strategy: 

STRATEGY: At the level of first stage units, information on the first supplementary variable 1x is 
gathered, and a sample of the first stage unit is chosen using the SRSWOR procedure. 
Moreover, the above-mentioned strategy will be discussed under clusters with equal chance of 
random non-response which is detailed below.  

2.1. Clusters with equal chance of random non-response 
2.1.1. Strategy: When supplementary information is gathered at Level of First 
Stage Unit 

We take into account a situation where the population mean 1··X of the first supplementary variable 

1x   is unknown at the level of first stage unit, so we used a two-phase or double sampling strategy 

to furnish the estimate. However, information on the second supplementary variable 2x is known 
for every unit of the population. In order to estimate the population mean   ofY , a first phase 
sample ( )⊂' 'n nS S U   of size 'n first stage unit is taken out of N FSU from the population using 

SRSWOR method followed by a second phase sample 1S of size  n  FSU ( )< 'n n taken based on the

subsequent two cases by using the SRSWOR technique to observe the character under studyY . 
Case A: To create a 1S , a subsample of ( )⊂' 1 'n nS S S is taken. 

Case B: In this case, 1S  is drawn independently of 'nS . 

Furthermore, in order to estimate the population mean ofY , a second stage sample 2S  is 
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obtained by selecting a portion of m second stage unit from M  second stage unit for every one of 
the n chosen first stage unit in 1S   utilizing SRSWOR scheme. 
At the second stage, it is assumed that the study variable y and the first supplementary variable 

1x have random failure to respond, but the sampled unit has full response for the second 

supplementary variable 2x . For such random non-response conditions, we consider the following 
probability model shown in section (2.1.1.1). 

2.1.1.1. Probability of Non-Response Model 

Since, we assume the occurrence of random non-response conditions on the study variable y and 
the first supplementary variable 1x from the second stage sample; therefore, we are going to 

investigate random non-response conditions from the second stage sample 2S . Let 

( ){ }= −0,1, , 2r r m  represents the number of second stage sampling units that did not respond.

Accordingly, we write rA and c
rA to represent the collection of respondent unit and non-respondent 

unit, respectively. The observations of the corresponding variables in which random non-response 
occurs could be obtained from the rest of the ( )−m r unit of each of the n first stage unit of the

second stage sample (SSS).  
We further suppose that if p represents the probability of random failure to respond among 

( )−2m possible failure to respond cases, and then r follows the probability distribution shown in

equation (4): 
− − −−

=
+

( 2) 2( )
2

m r m r
r

m rP r C p q
mq p

 ; ( )= −0,1, 2r m           (4) 

For example, see the work of [25-27], where = −1q p and −( 2)m
rC represent the overall possible 

methods to provide r  failure to respond from ( )−2m total non-response.

Henceforth, the following notations will be used: 

= =

= ∑∑..
1 1

1 N M

ij
i j

Y Y
NM

, Population average of the study variable y . 

= =

= ∑∑1.. 1
1 1

1 N M

ij
i j

X X
NM

, Population average of the first supplementary variable 1x . 

= =

= ∑∑2.. 2
1 1

1 N M

ij
i j

X X
NM

, Population average of the second supplementary variable 2x . 

=

= ∑*
( ) ( )

1

1 m

i e ij e
j

y y
m

, Sample average of the character under study on thi FSU in 2S . 

−

−
=

=
− ∑*

( )( ) ( )
1

1 m r

i m r e ij e
j

y y
m r

, Sample mean of y based on the respondent region of thi FSU in 2S . 

=

= ∑*
1 ( ) 1 ( )

1

1 m

i e ij e
j

x x
m

, Sample average of the first supplementary variable on thi FSU in 2S . 

−

−
=

=
− ∑*

1 ( )( ) 1 ( )
1

1 m r

i m r e ij e
j

x x
m r

, Sample mean of 1x based on the respondent region of thi FSU in 2S . 

=

= ∑*
2 ( ) 2 ( )

1

1 m

i e ij e
j

x x
m

, Sample average of 2x on thi FSU in 2S . 

−
=

= ∑** *
( )( ) ( )

1

1 n

n m r e i e
i

y y
n

, Sample average of the n FSU of the character under study. 
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−
=

= ∑** *
1 ( )( ) 1 ( )

1

1 n

n m r e i e
i

x x
n

, Sample average of the n  FSU of the first variable. 

=

= ∑** *
2 ( ) 2 ( )

1

1 n

nm e i e
i

x x
n

, Sample average of the n  FSU of the second supplementary variable. 

= 2

2
2..

X
X

S
C

X
, Coefficient of variation of the second supplementary variable. 

2XS , Standard deviation of the second supplementary variable. 

( )1 2B X , Population coefficient of skewness of the second supplementary variable. 

( )2 2B X , Population coefficient of skewness of the second supplementary variable. 

2.1.1.2 Proposed Imputation Schemes and Estimators 

We assumed that the second supplementary variable was generally accessible all through the 
populationU . Inspired by the imputation schemes given by [28], we propose the following 
regression-type imputation schemes based on responding and non-responding units of the second 
stage sample 2S to estimate population parameter under study ..Y as: 

( ) ( )−

 ∈

=  + ∈

+



= …2

2 2

2 2

( )

( )( ) ( ) 2·· 2 ( )
( ) 2··

2 ( )

; ( 1,  

,
y + -

  , 2, , )  

ij e r

i m r e yx e nm e c
ij e x x r

x nm e x

y if j A
b X xy A X B if j A

A x
n

B
i   (5) 

where 
2xA and 

2xB are available functions of supplementary variable like coefficient of skewness, 

kurtosis, variation, standard deviation, 
∈ ∈
∑ ∑

2 ( ) ( ) 2 ( )=
r r

yx e ij e ij e
j A j A

b y x ,
∈ ∈
∑ ∑

1 2 ( ) 1 ( ) 2 ( )=
r r

x x e ij e ij e
j A j A

b x x . 

Remark 1: Note that  ≠
2 2

x xA B  and ≠
2

0xA

Under this approach, we derived the sample means of y  on the thi first stage units in 2S denoted 

by *
( )i ey  as: 

( ) ( ) ( )
= ∈ ∈

 
= = + 

  
∑ ∑ ∑*

( )
1

1 1
c

r r

m

i e ij e ij e ij e
j j A j A

y y y y
m m          (6) 

( )
( ) ( )−

−
=

    = = − + +   +   
∑ 



2

2 2

2 2

( )( ) ( ) 2 2 ( )*
( ) ( ) 2( )

1 2 ( )

y + -1 1
m i m r e yx e nm e

i e ij e x xi m r e
j x nm e x

b X xr ry y y A X B
m m m A x B

  (7) 

In 2S , the mean of n  first stage unit of y  is now: 

( ) ( )
( ) ( )−

− −
=

    = = − + +   +   
∑ 



2

2 2

2 2

( )( ) ( ) 2 2 ( )** *
( ) 2( ) ( )

1 2 ( )

y + -1 1
n n m r e yx e mn e

i e x xn m r e n m r e
i x mn e x

b X xr ry y y A X B
n m m A x B

   (8) 

Likewise, for each unit in the second stage 
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( ) ( )−

 ∈

= = … + ∈

+







1 2

2 2

2 2

1 ( )

1 ( )( ) ( ) 2 2 ( )
1 ( ) 2

2 ( )

,         
+ -

    ; ( 1,  2, , )      ,     

ij e r

i m r e x x e nm e c
ij e x x r

x nm e x

x j A
x b X xx i nA X B j A

A x B
        (9) 

Under this approach, we derived the sample means of 1ix  on the thi first stage units in 2S denoted 

by *
1 ( )i ex  as: 

( ) ( ) ( )
= ∈ ∈

 
= = + 

  
∑ ∑ ∑*

1 ( ) 1 1 1
1

1 1
c

r r

m

i e ij e ij e ij e
j j A j A

x x x x
m m          (10) 

( )
( ) ( )−

−
=

    = = − + +   +   
∑ 1 2

2 2

2 2

1 ( )( ) ( ) 2·· 2 ( )*
1 ( ) 1 ( ) 2··1 ( )

1 2 ( )

+ -1 1
m

i m r e x x e nm e
i e ij e x xi m r e

j x nm e x

x b X xr rx x x A X B
m m m A x B

  (11) 

In 2S , the mean of n  first stage unit of ( )1 ex  is now:

( ) ( )
( ) ( )−

− −
=

    = = − + +   +   
∑ 1 2

2 2

2 2

1 ( )( ) ( ) 2·· 2 ( )** *
1 ( ) 2··1 ( ) 1 ( )

1 2 ( )

+ -1 1
n n m r e x x e mn e

i e x xn m r e n m r e
i x mn e x

x b X xr rx x x A X B
n m m A x B

(12) 

Hence the proposed estimator denoted by τ *  under the above proposed imputation scheme is 

obtained as: 

( ) ( )τ ′− −= + −* ** * **
( )( ) 1 ( ) 1 ( )( )yn m r e n M e n m r eeb x x  (13) 

Where ( )
*
eb is a suitable constant chosen to minimize the mean square error of the proposed 

estimatorτ * . 

2.1.1.3 Properties of the Proposed Estimators 

Sinceτ * is regression-type estimator, it is biased for ..Y the bias and mean square of τ * up to the first 
order of approximations are derived under large sample approximations (ignoring f.p.c) using the 
following assumptions: 

( )( ) ( )( )−
= + ∆.. 01n m r e ey Y , ( )( ) ( )( )−

= + ∆1..1 11n m r e ex X , ( ) ( )( )′ = + ∆1..1 21n M e ex X , ( ) ( )( )= + ∆2..2 31nm e ex X

Such that ( )∆ = 0iE and ∆ <1i  for all = 0,1,2,3i . 

Express ( )τ * in terms of errors ( )∆0 e , ( )∆1 e , ( )∆2 e and ( )∆3 e . 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

τ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ∗

= + ∆ − + ∆ + + + ∆ − + ∆ ∆ +

+ ∆ − + ∆ − + ∆ + + + ∆ − + ∆ ∆

 
 
   

  
  



 

 2 2
1 0 3 3 0 3

2 2
2 1 1 1 3 3 1 3

1 1 1 1

1 1 1 1 1

e X e X X e X e e

e e X e X X e X e ee

r rY
m m

r r rb X X
m m m

(14)
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

τ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ∗

 
− = ∆ − + ∆ + + + ∆ − + ∆ ∆ + 

  
∆ − ∆ + + ∆ − + + ∆ + + ∆ ∆ 
 

 



 2 2
1 30 3 0 3

2 2
1 32 1 3 1 3

1 1 1

1 1 1

X X X Xe e e e e

X X X Xe e e e e e e

r rY Y
m m

r r rb X
m m m

(15) 

Where,  ϑ
 
 =
 + 

2

2 2

2··

2··

x
X

x x

A X
A X B

We have separately derived the bias and mean square error of the estimatorτ *  for Cases A 
and B of the two-phase sampling structure defined in Section 2, and these are presented below. 
Case A: To create a 1S , a subsample of ( )⊂' 1 'n nS S S is taken. 

To obtain the expressions for the bias and mean square error in this situation, we will consider the 
following expected values of the sample statistics. 

( )( ) ϕ ϕ
+ +

∆ = +
 

*2 *2 2 2
2
0 , ,2 2

1 ,y u y u
n N m re

S S S S
E

nY Y ( )( ) ϕ ϕ
+ +

∆ = +
 

1 1

*2 *2 2 2
2
1 , ,2 2

1 1

1 ,x v x v
n N m re

S S S S
E

nX X
 

( )( ) ϕ ′

+
∆ =



1

*2 *2
2
2 , 2

1

,x v
n Ne

S S
E

X ( )( ) ϕ ϕ
+ +

∆ = +
 

2 2

*2 *2 2 2
2
3 , ,2 2

2 2

1 ,x w x w
n N m Me

S S S S
E

nX X
 

( ) ( )( ) ϕ ϕ
+ +

∆ ∆ = +
   

1 1

* *

, ,0 1
1 1

1 ,yx uv yx uv
n N m re e

S S S S
E

Y X n Y X ( ) ( )( ) ϕ ′

+
∆ ∆ =

 

1

* *

,0 2
1

,yx uv
n Ne e

S S
E

Y X

( ) ( )( ) ϕ ϕ
+ +

∆ ∆ = +
   

2 2

* *

, ,0 3
2 2

1 ,yx uw yx uw
n N m Me e

S S S S
E

Y X n Y X ( ) ( )( ) ( )( )ϕ ′

+
∆ ∆ = = ∆



1

*2 *2
2

, 21 2 2
1

,x v
n Ne e e

S S
E E

X
 

( ) ( )( ) ϕ ϕ
+ +

∆ ∆ = +
   

1 2 1 2

* *

, ,1 3
1 2 1 2

1 ,x x vw x x vw
n N m Me e

S S S S
E

X X n X X ( ) ( )( ) ϕ ′

+
∆ ∆ =

 

1 2

* *

,2 3
1 2

x x vw
n Ne e

S S
E

X X
For simplicity we let 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

ζ ζ ζ

ζ ζ ζ

ζ ζ ζ



= ∆ = ∆ = ∆ = ∆ ∆
= ∆ = ∆ ∆ = ∆ ∆ 


= ∆ ∆ = ∆ ∆ = ∆ ∆ 



2 2 2
0 1 20 1 2 1 2

2
33 4 0 1 5 0 2

6 0 3 7 1 3 8 2 3

, , ,

, , ,

, ,

e e e e e e e e

e e e e e e e e

e e e e e e e e e

E E E E

E E E

E E E

  (16) 

The following notations and expectation will be use under this strategy, when measurement error 
is not taking into account.  

( ) ϕ ϕ∆ = +
 

*2 2
2
0 , ,2 2

1 ,y y
n N m r

S S
E

nY Y ( ) ϕ ϕ∆ = +
 

1 1

*2 2
2
1 , ,2 2

1 1

1 ,x x
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S S
E

nX X ( ) ϕ ′∆ =


1

*2
2
2 , 2

1

,x
n N

S
E

X

( ) ϕ ϕ∆ = +
 

2 2

*2 2
2
3 , ,2 2

2 2

1 ,x x
n N m M

S S
E

nX X
( ) ϕ ϕ∆ ∆ = +

   

1 1

*

0 1 , ,
1 1

1 ,yx yx
n N m r

S S
E

Y X n Y X ( ) ϕ ′∆ ∆ =
 

1

*

0 2 ,
1

,yx
n N

S
E

Y X

( ) ϕ ϕ∆ ∆ = +
   

2 2

*

0 3 , ,
2 2

1 ,yx yx
n N m M

S S
E

Y X n Y X ( ) ( )ϕ ′∆ ∆ = = ∆


1

*2
2

1 2 , 22
1

,x
n N

S
E E

X

( ) ϕ ϕ∆ ∆ = +
   

1 2 1 2

*

1 3 , ,
1 2 1 2

1 ,x x x x
n N m M

S S
E

X X n X X ( ) ϕ ′∆ ∆ =
 

1 2

*

2 3 ,
1 2

x x
n N

S
E

X X
Similarly, for simplicity we let 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2
0 0 1 1 2 2 1 2 3 3 4 0 1

5 0 2 6 0 3 7 1 3 8 2 3

, , , , ,
, , ,
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E E E E

ζ ζ ζ ζ ζ
ζ ζ ζ ζ

= ∆ = ∆ = ∆ = ∆ ∆ = ∆ = ∆ ∆
= ∆ ∆ = ∆ ∆ = ∆ ∆ = ∆ ∆ 
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Where 

1 1 1 1 2 2 2 2
1 1 1 1 1 1

1 1 1 1 1 1, , , , , ,
N M N M N M

i i ij i i ij i i ij
i j i j i j

Y Y Y y X X X x X X X x
N M N M N M= = = = = =

= = = = = =∑ ∑ ∑ ∑ ∑ ∑        
 

( ) ( )
.

2 2
*2 2 2 2

1 1 1

1 1 1, ,
1 1i i

N N M

y i y y y ij i
i i j

S Y Y S S S y Y
N N M= = =

= − = = −
− −∑ ∑ ∑  

 

( ) ( )
1 1 1 1

2 2
*2 2 2 2

1 1 1 1
1 1 1

1 1 1, ,
1 1i i

N N M

x i x x x ij i
i i j

S X X S S S x X
N N M= = =

= − = = −
− −∑ ∑ ∑  

 

( ) ( )
2 2 2 2

2 2
*2 2 2 2

2 2 2 2
1 1 1

1 1 1, ,
1 1i i

N N M

x i x x x ij i
i i j

S X X S S S x X
N N M= = =

= − = = −
− −∑ ∑ ∑  

 

( )( ) ( )( )
1 1 1 1

*
1 1 1 1

1 1 1

1 1 1, ,
1 1i i

N N M

yx i i yx yx yx ij i ij i
i i j

S Y Y X X S S S y Y x X
N N M= = =

= − − = = − −
− −∑ ∑ ∑     

 

( )( ) ( )( )
2 2 2 2

*
2 2 2 2

1 1 1

1 1 1, ,
1 1i i

N N M

yx i i yx yx yx ij i ij i
i i j

S Y Y X X S S S y Y x X
N N M= = =

= − − = = − −
− −∑ ∑ ∑     

 

( )( ) ( )( )
1 2 1 2 1 2 1 2

*
1 1 2 2 1 1 2 2

1 1 1

1 1 1, ,
1 1i i

N N M

x x i i x x x x x x ij i ij i
i i j

S X X X X S S S x X x X
N N M= = =

= − − = = − −
− −∑ ∑ ∑     

 

. .
1 1 1 1 1 1

1 1 1 1 1 1, , , , ,
N M N M N M

i i ij i i ij i i ij
i j i j i j

U U U u V V V v W W W w
N M N M N M= = = = = =

= = = = = =∑ ∑ ∑ ∑ ∑ ∑      
 

( ) ( )
.

2 2
*2 2 2 2

1 1 1

1 1 1, ,
1 1i i

N N M

u i u u u ij i
i i j

S U U S S S u U
N N M= = =

= − = = −
− −∑ ∑ ∑  

 

( ) ( )
2 2

*2 2 2 2

1 1 1

1 1 1, ,
1 1i i

N N M

v i v v v ij i
i i j

S V V S S S v V
N N M= = =

= − = = −
− −∑ ∑ ∑  

 

( ) ( )
2 2

*2 2 2 2

1 1 1

1 1 1, ,
1 1i i

N N M

w i w w w ij i
i i j

S W W S S S w W
N N M= = =

= − = = −
− −∑ ∑ ∑  

 

( )( ) ( )( )*

1 1 1

1 1 1, ,
1 1i i

N N M

uv i i uv uv uv ij i ij i
i i j

S U U V V S S S u U v V
N N M= = =

= − − = = − −
− −∑ ∑ ∑     

 

( )( ) ( )( )*

1 1 1

1 1 1, ,
1 1i i

N N M

uw i i uw uw uw ij i ij i
i i j

S U U W W S S S u U w W
N N M= = =

= − − = = − −
− −∑ ∑ ∑     

 

( )( ) ( )( )*

1 1 1

1 1 1, ,
1 1i i

N N M

vw i i vw vw vw ij i ij i
i i j

S V V W W S S S v V w W
N N M= = =

= − − = = − −
− −∑ ∑ ∑     

 

( ) ( ) ( ) ( ) ( ) ( )2 22 22 2 2 2
..

1 1 1 1

1 1 1 1 1 1, , ,
1 1

N N M N N M

b i w ij i i ij ib U w U
i i j i i i j i

S y Y S y y S U U S U U
N N M N N M= = = = = =

      = − = − = − = −   
− −      

∑ ∑ ∑ ∑ ∑ ∑
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, ', , ,

1 1 1 1 1 1 1 1, , ,
' 2n N n N m M m rn N n N m M mq p M

ϕ ϕ ϕ ϕ
       

= − = − = − = −       +       

Taking expectation on both sides of (15) and applying the results of (16) we obtain the bias of *τ  as: 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )2
1 1 13 6 71 1X X Xe e e e eI

rB Y b X Y b X
m

τ ϑ ϑ ζ ϑ ζ ζ∗ ∗ = + + − − + − −     

         (18) 

The mean square error (MSE) of *τ is obtained by taking expectation and square on both sides of 
(15) and applying the results of (16)

( ) ( ) ( )
( ) ( )( )

( ) ( )( )

2 22
·· 0( ) 3( ) 6( )2

2 2*
( ) ·· 1·· 3( ) 4( ) 5( ) 6( ) 7( ) 8( )2

2 2*2 2
( ) 1·· 1( ) 2( ) 3( ) 7( ) 8(

*

)2

1 2 1

2 1 1

1 2 1

e X e X eI

e X e e e X e e e

e e e X e X e e

r rMSE Y
mm

r rb Y X
mm

r rb X
mm

ζ ϑ ζ ϑ ζ

ϑ ζ ζ ζ ϑ ζ ζ ζ

ζ ζ ϑ ζ ϑ ζ ζ

τ
 

= + + − + − 
  

+ + − − + + − + 
 

− + + − + −


 
 

(19) 

To obtain expression for 
*
( )eb

that minimize ( )*

I
MSE τ , differentiate (19) partially with respect to *

( )eb

and equate the result to zero. 

( ) ( )( )

( ) ( )( )

2 2

3( ) 4( ) 5( ) 6( ) 7( ) 8( )2

( ) 2 2

1 1( ) 2( ) 3( ) 7( ) 8( )2

1 1

1 2 1

X e e e X e e e

e opt

e e X e X e e

r rY
mm

b
r rX

mm

ϑ ζ ζ ζ ϑ ζ ζ ζ

ζ ζ ϑ ζ ϑ ζ ζ

∗

 
+ + − − + + − 

 =
 

− + + − + − 
 





       (20) 

Substituting the value of *
( )opt eb  in (19), gives the minimum value of ( )*

I
MSE τ as: 

( ) ( ) ( )
( ) ( )( )

( ) ( )( )

2 22
min ·· 0( ) 3( ) 6( )2

2 2*
( ) ·· 1·· 3( ) 4( ) 5( ) 6( ) 7( ) 8( )2

2 2*2 2
( ) 1·· 1( ) 2( ) 3(

*

) 7( ) 8( )2

1 2 1

2 1 1

1 2 1

e X e X eI

opt e X e e e X e e e

opt e e e X e X e e

r rMSE Y
mm

r rb Y X
mm

r rb X
mm

ζ ϑ ζ ϑ ζ

ϑ ζ ζ ζ ϑ

τ

ζ ζ ζ

ζ ζ ϑ ζ ϑ ζ ζ

 
= + + − + − 

  
+ + − − + + − + 

 
− + + − + −

 
 
 

    (21) 

The mean square error without measurement error is given by: 

( ) ( ) ( )
( ) ( )( )

( ) ( )( )

2 22
min ·· 0 3 62

2 2*
·· 1·· 3 4 5 6 7 82

2 2*2 2
1·· 1 2 3 7 82

1 2 1

2 1 1

1 2 1

X XI

opt X X

opt X X

r rMSE Y
mm

r rb Y X
mm

r rb X
mm

ζ ϑ ζ ϑ ζ

ϑ ζ ζ ζ ϑ ζ ζ ζ

ζ ζ ϑ ζ ϑ ζ ζ

τ
 

= + + − + − 
  

+ + − − + + − + 
 
− + + − + −

 
 
 

    (22) 

where, 

( ) ( )( )

( ) ( )( )

2 2

3 4 5 6 7 82

2 2

1 1 2 3 7 82

1 1

1 2 1

X X

opt

X X

r rY
mmb

r rX
mm

ϑ ζ ζ ζ ϑ ζ ζ ζ

ζ ζ ϑ ζ ϑ ζ ζ

∗

 
+ + − − + + − 

 =
 

− + + − + − 
 





      (23) 

Case B: In this case, 1S  is drawn independently of 'nS . 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )0 2 1 2 2 3 0e e e e e eE E E∆ ∆ = ∆ ∆ = ∆ ∆ = , and other expectation are the same as stated in Case 

A. 
Following the procedure used in Case A, we have obtained the minimum mean square error of *τ  
as: 
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( ) ( ) ( )
( ) ( )( )

( ) ( )

2 22
min ·· 0( ) 3( ) 6( )2

2 2*
( ) ·· 1·· 3( ) 4( ) 6( ) 7( )2

2 2*2 2
( ) 1·· 1( ) 2( ) 3( ) 7( )2

* 1 2 1

2 1 1

1 2 1

e X e X eII

opt e X e e X e e

opt e e e X e X e

r rMSE Y
mm

r rb Y X
mm

r rb X
mm

ζ ϑ ζ ϑ ζ

ϑ ζ ζ ϑ ζ ζ

ζ ζ ϑ ζ ϑ

τ

ζ

 
= + + − + − 

  
+ + − + + + 

 
+


 


+ + +


−

     (24) 

Where, 

( ) ( )( )

( ) ( )

2 2

·· 3( ) 4( ) 6( ) 7( )2
*

( ) 2 2

1·· 1( ) 2( ) 3( ) 7( )2

1 1

1 2 1

X e e X e e

opt e

e e X e X e

r rY
mm

b
r rX

mm

ϑ ζ ζ ϑ ζ ζ

ζ ζ ϑ ζ ϑ ζ

 
+ + − + + 

 =
 

+ + + − + 
 

      (25) 

The mean square error without measurement error is given by: 

( ) ( ) ( )
( ) ( )( )

( ) ( )

2 22
min ·· 0 3 62

2 2*
·· 1·· 3 4 6 72

2 2*2 2
1·· 1 2 3 72

1 2 1

2 1 1

1 2 1

X XII

opt X X

opt X X

r rMSE Y
mm

r rb Y X
mm

r rb X
mm

ζ ϑ ζ ϑ ζ

ϑ ζ ζ ϑ ζ ζ

ζ ζ ϑ ζ

τ

ϑ ζ

 
= + + − + − 

  
+ + − + + + 

 
+ +

 
 


− +


+

            (26) 

Where, 

( ) ( )( )

( ) ( )

2 2

·· 3 4 6 72
*

2 2

1·· 1 2 3 72

1 1

1 2 1

X X

opt

X X

r rY
mm

b
r rX

mm

ϑ ζ ζ ϑ ζ ζ

ζ ζ ϑ ζ ϑ ζ

 
+ + − + + 

 =
 

+ + + − + 
 

   (27) 

2.1.1.4 Efficiency comparison 

To evaluate the efficiency of the proposed estimators, we compare them with the usual mean per 
unit estimator without supplementary information and with the [29] estimators of the population 
mean in a two-stage cluster sampling scheme, using the strategy discussed in Section 2.1.1. 
The mean per unit estimator *

0τ  and its variance in the presence of measurement error are given 
by: 

( )
*
0 nm eyτ =        (28) 

( ) ( )( ) ( )( )* 2 2 2 2
0 , ,

1
n N b m M wb U w UV S S S S

n
τ ϕ ϕ= + + +      (29) 

The mean per unit estimator 0τ  and its variance in the absence of measurement error are given by: 

0 nmyτ =     (30) 

( ) 2 2
0 , ,

1
n N b m M wV S S

n
τ ϕ ϕ= +                            (31) 

The following estimators of population and their mean square error under case A and case B in the 
absence of measurement error were proposed by [29]. 

( )( ) ( ) ( )( )( )1 1MSB n m r e n M e n m r ey B x xτ ∗ ∗
′− −

= + −     (32) 

The ( )min MSBMSE τ , for both Case A and Case B are given by: 

Case A 
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( ) 2
min ·· 0 3 6 ·· 1·· 3 6 8 7 5 4

2 2
1·· 3 1 2 8 7

1 1 1 1 12
4 4 2 2 2

1
4

MSB optI

opt

MSE Y B Y X

B X

τ ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

   
= + − − − + − − + +   

    
+ − + − 

 

 (33) 

Where, 

·· 3 6 8 7 5 4

1·· 3 1 2 8 7

1 1 1 1
4 2 2 2

1
4

opt

Y
B

X

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

 
− + − − + 

 =
 

+ − + − 
 

  (34) 

Case B 

( ) 2
min ·· 0 3 6 1 ·· 1·· 3 6 7 4

2 2
1 1 3 1 2 7

1 1 1 12
4 4 2 2
1
4

MSB optII

opt

MSE Y B Y X

B X

τ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ

   
= + − − − − + +   

    
+ + − 

 
        (35) 

Where, 

·· 3 6 7 4

1·· 3 1 2 7

1 1 1
4 2 2

1
4

opt

Y
B

X

ζ ζ ζ ζ

ζ ζ ζ ζ

 
− − + 

 =
 

+ + − 
 

(36) 

To compare it with our proposed estimator in the presence of measurement, we include the 
contribution of measurement error parameters in the [29] estimators.  

The mean square error, accounting for measurement error, for both Case A and Case B, is as 
follows: 
Case A 

( )* 2
min ·· 0( ) 3( ) 6( ) 1 ( ) ·· 1·· 3( ) 6( ) 8( ) 7( ) 5( ) 4( )

2 2
( ) 1·· 3( ) 1( ) 2( ) 8( ) 7( )

1 1 1 1 12
4 4 2 2 2

1
4

MSB e e e opt e e e e e e eI

opt e e e e e e

MSE Y B Y X

B X

τ ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

   
= + − − − + − − + +   

    
+ − + − 

 

(37) 
where, 

·· 3( ) 6( ) 8( ) 7( ) 5( ) 4( )

( )

1·· 3( ) 1( ) 2( ) 8( ) 7( )

1 1 1 1
4 2 2 2

1
4

e e e e e e

e opt

e e e e e

Y
B

X

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

 
− + − − + 

 =
 

+ − + − 
 

(38) 

Case B 

( )* 2
min ·· 0( ) 3( ) 6( ) ( ) ·· 1·· 3( ) 6( ) 7( ) 4( )

2 2
( ) 1 3( ) 1( ) 2( ) 7( )

1 1 1 12
4 4 2 2

1
4

MSB e e e opt e e e e eII

opt e e e e e

MSE Y B Y X

B X

τ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ

   
= + − − − − + +   

    
+ − − 

 

(39) 
Where, 

·· 3( ) 6( ) 7( ) 4( )

( )

1·· 3( ) 1( ) 2( ) 7( )

1 1 1
4 2 2

1
4

e e e e

e opt

e e e e

Y
B

X

ζ ζ ζ ζ

ζ ζ ζ ζ

 
− − + 

 =
 

+ − − 
 

(40)
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To demonstrate the performance of our suggested estimators, we compared their percentage 
relative efficiency (PRE) to the traditional mean per unit estimator, which is based on the normal 
two-stage design technique without supplementary information, as well as [29] estimators. The 
empirical study was carried out employing simulated population data sets.  
The PRE of an estimator *τ relative to the natural mean per unit estimator *

0τ is defined as: 

( )( )
( )

*
0

*
min

100
V

PRE
MSE

τ

τ
= ×   (41) 

III. Results

3.1. Study Using Artificially Generated Population 

An important aspect of simulation is that one builds a simulation model to replicate the actual 
system. Simulation allows comparison of analytical techniques and helps in concluding whether a 
newly developed technique is better than the existing ones. Motivated by [6], [30], and [29], who 
used artificial population generation techniques.   

3.1.1. Simulation Results 

This simulation exercise consists of the following steps: 
1. Six independent variables (normally distributed) are simulated (a total of N  times M )
2. The simulated data is then split into M  distinct clusters each of size N . The variablesY ,

1X and 2X are constructed following the relationship defined in the work of [29] only that 

here, the error component is added. 
3. A random sample of m  (or 'm  then m ) clusters is selected out of the M  total clusters.

This is called the first sample units (fsu).
4. A random sample of n  (or 'n  then n ) units are sampled from each of m  selected clusters.

This is called the second sample units (ssu).
5. All the different estimators of the Mean Square Error are calculated based on the observed

data and compared.
6. Steps 3 to 5 are repeated a hundred times for each specific case and the estimates of Mean

Square Error are all saved in arrays after which the means are calculated and compared.

3.2. Numerical Illustration using Artificial Population 

Population 1 

( )1 1

2,2 1 ,1y y x y x yY pop pop Uµ σ ρ ρ   = + × + − × +    ,
1 11 ,2x xX pop Vµ σ  = + × + 

( )2 2 1 2 1 2

2
2 ,2 1 ,1x x x x x xX pop pop Wµ σ ρ ρ   = + × + − +    ,

( )0,3U N , ( )0,8V N , ( )0,12W N ,
1

0.7x yρ = , 
1 2

0.6x xρ = , 2 5yσ = , 
1

2 12xσ = , 
2

2 9xσ = , 20yµ = , 

1
50xµ = , 

2
40xµ = , 10N = , 10M = , ' 9n = , 5n = , 7m = . 
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Table 1: Percentage Relative Efficiency (PRE) of Estimators in the Presence of Measurement Error, under Case A. 

Estimators Auxiliary parameter P=0.05 
q=0.95 

P=0.1 
q=0.9 

P=0.15 
q=0.85 

P=0.2 
q=0.8 

*
0τ  Not applicable 100.00 100.00 100.00 100.00 
*
MSBτ Not applicable 199.88 192.13 184.52 177.02 
*
1τ  

2 2
1, 0x xA B= =  201.78 194.51 186.67 178.33 

*
2τ  ( )

2 2 1 11,x xA B B X= =  201.78 194.51 186.66 178.32 

*
3τ  ( )

2 2 2 21,x xA B B X= =  201.77 194.5 186.67 178.34 

*
4τ  

2 2 2
1,x x XA B C= =  201.78 194.51 186.67 178.33 

*
5τ  

2 2 2
1,x x XA B S= =  201.76 194.5 186.69 178.41 

*
6τ  ( ) ( )

2 21 2 2 2,x xA B X B B X= =  201.79 194.52 186.68 178.33 

*
7τ  ( )

2 2 21 2 ,x x XA B X B C= =  201.78 194.51 186.67 178.33 

*
8τ  ( )

2 2 21 2 ,x x XA B X B S= =  201.68 194.09 186.05 177.58 

*
9τ  ( ) ( )

2 22 2 1 2,x xA B X B B X= =  201.78 194.51 186.66 178.32 

*
10τ ( )

2 2 22 2 ,x x XA B X B C= =  201.78 194.51 186.67 178.33 

*
11τ ( )

2 2 22 2 ,x x XA B X B S= =  201.77 194.51 186.69 178.38 

*
12τ ( )

2 2 2 1 2,x X xA C B B X= =  201.77 194.48 186.62 178.24 

*
13τ ( )

2 2 2 2 2,x X xA C B B X= =  201.70 194.44 186.72 178.59 

*
14τ

2 2 2 2
,x X x XA C B S= =  201.60 194.40 186.88 179.10 

*
15τ ( )

2 2 2 1 2,x X xA S B B X= =  201.78 194.51 186.67 178.33 

*
16τ ( )

2 2 2 2 2,x X xA S B B X= =  201.78 194.51 186.67 178.33 

*
17τ

2 2 2 2
,x X x XA S B C= =  201.78 194.51 186.67 178.33 
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Table 2: Percentage Relative Efficiency (PRE) of Estimators in the Presence of Measurement Error, under Case B. 

Estimators Auxiliary parameter P=0.05 
q=0.95 

P=0.1 
q=0.9 

P=0.15 
q=0.85 

P=0.2 
q=0.8 

*
0τ  Not applicable 100.00 100.00 100.00 100.00 

*
MSBτ Not applicable 214.13 206.07 198.13 190.28 
*
1τ  

2 2
1, 0x xA B= =  217.60 209.49 200.87 191.83 

*
2τ  ( )

2 2 1 11,x xA B B X= =  217.60 209.49 200.87 191.83 

*
3τ  ( )

2 2 2 21,x xA B B X= =  217.60 209.49 200.88 191.85 

*
4τ  

2 2 2
1,x x XA B C= =  217.60 209.49 200.87 191.83 

*
5τ  

2 2 2
1,x x XA B S= =  217.60 209.50 200.92 191.94 

*
6τ  ( ) ( )

2 21 2 2 2,x xA B X B B X= =  217.63 209.53 200.91 191.85 

*
7τ  ( )

2 2 21 2 ,x x XA B X B C= =  217.60 209.50 200.87 191.83 

*
8τ  ( )

2 2 21 2 ,x x XA B X B S= =  217.64 209.42 200.49 191.14 

*
9τ  ( ) ( )

2 22 2 1 2,x xA B X B B X= =  217.60 209.49 200.87 191.83 

*
10τ ( )

2 2 22 2 ,x x XA B X B C= =  217.60 209.49 200.87 191.83 

*
11τ ( )

2 2 22 2 ,x x XA B X B S= =  217.60 209.50 200.90 191.89 

*
12τ ( )

2 2 2 1 2,x X xA C B B X= =  217.61 209.50 200.85 191.78 

*
13τ ( )

2 2 2 2 2,x X xA C B B X= =  217.56 209.50 201.03 192.21 

*
14τ

2 2 2 2
,x X x XA C B S= =  217.51 209.56 201.33 192.87 

*
15τ ( )

2 2 2 1 2,x X xA S B B X= =  217.60 209.49 200.87 191.83 

*
16τ ( )

2 2 2 2 2,x X xA S B B X= =  217.60 209.49 200.87 191.83 

*
17τ

2 2 2 2
,x X x XA S B C= =  217.60 209.49 200.87 191.83 
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Table 3: Percentage Relative Efficiency (PRE) of Estimators in the Absence of Measurement Error, under Case A. 

Estimators Auxiliary parameter P=0.05 
q=0.95 

P=0.1 
q=0.9 

P=0.15 
q=0.85 

P=0.2 
q=0.8 

0τ Not applicable 100.00 100.00 100 100 

MSBτ Not applicable 226.48 217.5 208.73 200.14 

1τ 2 2
1, 0x xA B= =  229.00 220.21 211.02 201.47 

2τ ( )
2 2 1 11,x xA B B X= =  229.00 220.21 211.02 201.47 

3τ ( )
2 2 2 21,x xA B B X= =  229.00 220.21 211.03 201.49 

4τ 2 2 2
1,x x XA B C= =  229.00 220.21 211.02 201.47 

5τ 2 2 2
1,x x XA B S= =  228.99 220.22 211.06 201.56 

6τ ( ) ( )
2 21 2 2 2,x xA B X B B X= =  229.01 220.23 211.04 201.48 

7τ ( )
2 2 21 2 ,x x XA B X B C= =  229.00 220.22 211.02 201.47 

8τ ( )
2 2 21 2 ,x x XA B X B S= =  228.90 219.73 210.29 200.6 

9τ ( ) ( )
2 22 2 1 2,x xA B X B B X= =  229.00 220.21 211.02 201.47 

10τ ( )
2 2 22 2 ,x x XA B X B C= =  229.00 220.21 211.02 201.47 

11τ ( )
2 2 22 2 ,x x XA B X B S= =  229.00 220.22 211.05 201.53 

12τ ( )
2 2 2 1 2,x X xA C B B X= =  228.98 220.18 210.96 201.39 

13τ ( )
2 2 2 2 2,x X xA C B B X= =  228.96 220.20 211.13 201.76 

14τ
2 2 2 2

,x X x XA C B S= =  228.93 220.27 211.41 202.38 

15τ ( )
2 2 2 1 2,x X xA S B B X= =  229.00 220.21 211.02 201.47 

16τ ( )
2 2 2 2 2,x X xA S B B X= =  229.00 220.21 211.02 201.47 

17τ
2 2 2 2

,x X x XA S B C= =  229.00 220.21 211.02 201.47 
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Table 4:  Percentage Relative Efficiency (PRE) of Estimators in the Absence of Measurement Error, under Case B. 

IV. Discussion

From table 1, table 2, table 3 and table 4, it can be observed that our proposed estimator, which 
utilizes the second supplementary variable parameter, is more efficient, with higher percentage 
relative efficiencies (PREs) than the usual mean per unit estimator without supplementary 
information and the [29] estimator in both cases scenario for all choices of probabilities. Therefore, 
it can be concluded that our proposed methodology can be practically applied, utilizing the actual 
responses of the respondents and including the measurement error parameters in estimating the 
finite population mean. 

Estimators Auxiliary parameter P=0.05 
q=0.95 

P=0.1 
q=0.9 

P=0.15 
q=0.85 

P=0.2 
q=0.8 

0τ Not applicable 100.00 100.00 100.00 100.00 

MSBτ Not applicable 242.19 232.93 223.84 214.91 

1τ 2 2
1, 0x xA B= =  246.09 236.61 226.72 216.51 

2τ ( )
2 2 1 11,x xA B B X= =  246.09 236.61 226.72 216.51 

3τ ( )
2 2 2 21,x xA B B X= =  246.08 236.62 226.74 216.54 

4τ 2 2 2
1,x x XA B C= =  246.09 236.61 226.72 216.51 

5τ 2 2 2
1,x x XA B S= =  246.08 236.63 226.78 216.63 

6τ ( ) ( )
2 21 2 2 2,x xA B X B B X= =  246.11 236.65 226.77 216.54 

7τ ( )
2 2 21 2 ,x x XA B X B C= =  246.09 236.61 226.73 216.51 

8τ ( )
2 2 21 2 ,x x XA B X B S= =  246.77 237.29 227.05 216.41 

9τ ( ) ( )
2 22 2 1 2,x xA B X B B X= =  246.09 236.61 226.72 216.51 

10τ ( )
2 2 22 2 ,x x XA B X B C= =  246.09 236.61 226.72 216.51 

11τ ( )
2 2 22 2 ,x x XA B X B S= =  246.09 236.63 226.76 216.57 

12τ ( )
2 2 2 1 2,x X xA C B B X= =  246.10 236.62 226.71 216.47 

13τ ( )
2 2 2 2 2,x X xA C B B X= =  246.07 236.66 226.93 216.94 

14τ
2 2 2 2

,x X x XA C B S= =  246.07 236.80 227.32 217.68 

15τ ( )
2 2 2 1 2,x X xA S B B X= =  246.09 236.61 226.72 216.51 

16τ ( )
2 2 2 2 2,x X xA S B B X= =  246.09 236.61 226.73 216.51 

17τ
2 2 2 2

,x X x XA S B C= =  246.09 236.61 226.72 216.51 
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