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Abstract

In this manuscript, we have introduced a new model of the Kumaraswamy distribution known as SMP
Kumaraswamy (SMPK) distribution using SMP technique. The SMPK distribution has the desirable
feature of allowing greater flexibility than some of its well-known extensions. A comprehensive account
of statistical properties along with the estimation of parameters using classical estimation method is
presented. Furthermore, a simulation study is carried out to assess the behavior of estimators based on
their biases and mean square errors. Finally, we consider two real-life data sets; we observe that the
proposed model outperforms other competing models using goodness of fit measures.

Keywords: Entropy, SMP transformation, Kumaraswamy distribution, Order statistics, Maximum
likelihood estimation.

1. Introduction

Probability models offer a decisive role in data analysis, so researchers aim to create novel
probability models to handle large data sets in many different domains. Statistical illustration is
crucial in real-data studies because novel applications and phenomena is steady, necessitating
the continuous construction of probability distributions. Despite the fact that there are many
traditional distributions for dealing with data, new distributions are required to overcome
inadequacies of these distributions and solve the problems more effectively and precisely. Several
techniques of generalizing distributions have been introduced to increase the adaptability of
traditional distributions by introducing extra parameters. Suppose the random variable X has the
Kumaraswamy distribution with parameters β and λ respectively, then its probability density
function (PDF) and cumulative distribution function (CDF) are respectively given by:

g(x; β, λ) = βλxλ−1(1 − xλ)β−1; 0 < x < 1, β > 0, λ > 0 (1)

G(x; β, λ) = 1 − (1 − xλ)β; 0 < x < 1, β > 0, λ > 0 (2)

A two-parameter Kumaraswamy distribution for modeling hydrological data was introduced
by [9]. Moreover, several new families of probability distributions have been introduced for
modeling such type of data based on Kumaraswamy distribution, for example [3] introduced
the Kumaraswamy Weibull distribution with application to failure data. A generalization of the
Kumaraswamy distribution was proposed by [10] and derived some of its statistical properties
and referred to it as the Exponentiated Kumaraswamy distribution and its log-transform. A
new distribution using quadratic rank transmutation map was developed by [7] and named
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the distribution as Transmuted Kumaraswamy distribution. DUS-Kumaraswamy distribution
having same domain as Kumaraswamy distribution introduced by [6] . A new continuous
probability density function for a non-negative random variable as an alternative to some
bounded domain distributions named Log-Kumaraswamy distribution was introduced by [4] .
Kumaraswamy-Gull Alpha Power Rayleigh distribution was proposed by [8] . A generalization
of the Exponentiated Kumaraswamy distribution was put forward by [5] and referred to it as the
Transmuted Exponentiated Kumaraswamy distribution. A new distribution called Generalized
Inverted Kumaraswamy-Rayleigh Distribution was proposed by [11]. A new distribution called
the cubic transmuted Log-Logistic distribution was proposed by [15]. An innovative technique
for generating probability distributions was proposed by [16] and named it as SMP technique.
The CDF and PDF of SMP distribution are respectively given as

GSMP(x) =

{
elog αF̄(x)−α

1−α ; α ̸= 1, α > 0
F(x); α = 1

(3)

gSMP(x) =

{
elog αF̄(x) log α f (x)

α−1 ; α ̸= 1, α > 0
f (x); α = 1

(4)

where F̄(x) = 1 − F(x) and for x ∈ R, F(x) is the CDF and f(x) is the PDF of the distribution to be
extended.
GSMP(x) is a valid CDF. It satisfies the following properties:

1. GSMP(−∞) = 0; GSMP(∞) = 1

2. GSMP(x)is monotonic increasing function of x.

3. GSMP(x) is right continuous.

4. 0 ≤ GSMP(x) ≤ 1

In the present manuscript, we investigate a novel extension of Kumaraswamy distribution using
SMP method. The proposed distribution is named as SMP Kumaraswamy (SMPK) distribution.
The primary rationale for contemplating SMPK distribution may be summarized as follows:

• The extension will involve the incorporation of additional parameters to capture more
complex data patterns.

• This work will include theoretical derivations, properties of the new distributions, and
comparisons with the existing models.

• The proposed model will offer greater flexibility and provide better fit than the other
competing models.

• The proposed model offers more flexible shapes of hazard and density plots.

• The proposed model can be used to model various datasets.

• The model considers classical estimation methodologies for parameter estimation.

• Applications of the extended distributions in real-world data analysis will be demonstrated
to highlight their practical utility.

The rest of the paper is presented as follows. Section 2 introduces the SMP Kumaraswamy
distribution; Section 3 and 4 unfolds reliability analysis and statistical properties, while section 5
focuses on the estimation of unknown parameters using the maximum likelihood approach for
the proposed model. Section 6 and 7 presents simulation study and real-life applications. The
conclusion of the study is given in Section 8.
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2. Smpk Distribution

The CDF and PDF of the proposed SMPK distribution is given by

GSMPK(x; α, β, λ) =

{
elog α(1−xλ)β−α

1−α ; α ̸= 1, α > 0
1 − (1 − xλ)β; α = 1

(5)

gSMPK(x; α, β, λ) =

 λβ log αxλ−1(1−xλ)β−1elog α(1−xλ)β

α−1 ; α ̸= 0, α > 0
λβxλ−1(1 − xλ)β−1; α = 1

(6)

The density function plots of SMPK distribution for different combinations of parameters are
presented in figure 1. From these plots it is evident that the proposed distribution is unimodal,
symmetric, and negatively skewed.
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Figure 1: Plots of the PDF of SMPK distribution.
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Figure 2: Plots of the CDF of SMPK DISTRIBUTION.

RT&A, No 4(80)

Volume 19, December, 2024

656



Mahvish Jan, S.P.Ahmad
A NEW EXTENSION OF KUMARASWAMY DISTRIBUTION FOR
IMPROVED DATA MODELING :PROPERTIES AND APPLICATIONS

3. Reliability Analysis Of the SMPKumaraswamy Distribution

This section focuses on reliability analysis of the SMPK distribution.

3.1. Survival Function

The survival function for the SMPK distribution is given as

R(x; α, β, λ) = 1 − G(x; α, β, λ) =
1 − elog α(1−xλ)β

1 − α
; α ̸= 1

3.2. Hazard Rate

The expression for the hazard rate of the SMPK distribution is obtained as

h(x; α, β, λ) =
g(x; α, β, λ)

R(x; α, β, λ)
=

log αλβxλ−1(1 − xλ)β−1elog α(1−xλ)β

elog α(1−xλ)β − 1
, α ̸= 1

From figure 3 it is clear that model has varying shapes like constant, decreasing, increasing and
J-shaped for different values of parameters. Accordingly, the proposed model can be used to
model datasets with such failure rates.

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

x

λ(
x)

α = 0.5,  β = 0.01,  λ = 0.2
α = 0.8,     β = 2.1,  λ = 0.5
α = 5,     β = 9,  λ = 12
α = 2.5,     β = 3.2,  λ = 3.5

Figure 3: Plots of the hazard rate of SMPK distribution.

3.3. Reverse Hazard Function

The reverse hazard rate is defined as the ratio of the probability density function and the
corresponding distribution function. It is given as

hr(x; α, β, λ) =
g(x; α, β, λ)

G(x; α, β, λ)
=

log αλβxλ−1(1 − xλ)β−1elog α(1−xλ)β

α − elog α(1−xλ)β
, α ̸= 1

4. Statistical Properties of the SMPK Distribution

In this section, some important statistical properties of the SMPK distribution are presented.
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4.1. Quantile function

Theorem 1: If X ∼ SMPK (α, β, λ) distribution, then the quantile function of X is given as

x =

[
1 −

(
log [u(1 − α) + α]

log α

) 1
β

] 1
λ

(7)

Where U is a uniform random variable, 0 < u < 1.
Proof: Let G(x; α, β, λ) = u

elog α(1−xλ)β − α

1 − α
= u

x =

[
1 −

(
log [u(1 − α) + α]

log α

) 1
β

] 1
λ

Remark:
The pth quantile is given by

xp =

[
1 −

(
log [p(1 − α) + α]

log α

) 1
β

] 1
λ

4.2. Moments

The rth moment about origin of a random variable X having the SMPK distribution is obtained as

µr′ =
∫ 1

0
xr elog α(1−xλ)

β

log αλβxλ−1 (1 − xλ
)β−1

α − 1
dx

Using the expansion,

ex =
∞

∑
j=0

xj

j!

µ′
r =

1
α − 1

λβ
∞

∑
j=0

(log α)j+1

j!

∫ 1

0
xrxλ−1(1 − xλ)β(j+1)−1 dx

µ′
r =

β

α − 1

∞

∑
j=0

(log α)j+1

j!
B
( r

λ
+ 1, β(j + 1)

)
(8)

B[( r
λ + 1), β(j + 1)] represents the beta function. Substituting r =1, 2, 3, 4 the first four moments

about origin of the SMPK distribution are obtained.

Lemma 1.Suppose a random variable X ∼ SMPK(α, β, λ) distribution with PDF given in Eq.
(6) and let Ir(t) =

∫ t
0 gSMPK(x; α, β, λ) dx denotes the rth incomplete moment, then we have

Ir(t) =
β

α − 1

∞

∑
j=0

(log α)j+1

j!
B
(

tλ;
r
λ
+ 1, β(j + 1)

)
(9)

Proof:

Ir(t) =
∫ t

0
xr gsmpk(x; α, β, λ) dx

Ir(t) =
∫ t

0
xr elog α(1−xλ)β

log αλβxλ−1(1 − xλ)β−1

α − 1
dx
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Ir(t) =
β

α − 1

∞

∑
j=0

(log α)j+1

j!
B
(

tλ;
r
λ
+ 1, β(j + 1)

)
Where B[z; a, b] =

∫ a
0 xb−1(1 − x)c−1 dx is incomplete beta function, setting r=1 in Eq.(9) will yield

first incomplete moment

I1(t) =
β

α − 1

∞

∑
j=0

(log α)j+1

j!
B
(

tλ;
1
λ
+ 1, β(j + 1)

)

4.3. Mean Residual life

Mean residual life is the expected remaining life given that a component has survived up to time
t and is given by

µ(t) =
1

R(t)

(
E(x)−

∫ t

0
xgSMPK(x; α, β, λ) dx

)
− t

Where

E(x) =
β

α − 1

∞

∑
j=0

(log α)j+1

j!
B
(

1
λ
+ 1, β(j + 1)

)
∫ t

0
xg(x; α, β, λ) dx =

β

α − 1

∞

∑
j=0

(log α)j+1

j!
B
(

tλ;
1
λ
+ 1, β(j + 1)

)

µ(t) =
1 − α

1 − elog α·(1−xλ)β

{
β

α − 1

∞

∑
j=0

(log α)j+1

j!

[
B
(

1
λ
+ 1, β(j + 1)

)
− B

(
tλ;

1
λ
+ 1, β(j + 1)

)]}
− t

4.4. Mean Waiting Time

Mean waiting time is the time elapsed since the failure of an item given that the item has failed
in [0, t] and is given by

µ̄(t) = t − 1
G(t)

∫ t

0
x gSMPK(x; α, β, λ) dx

µ̄(t) = t − β

α − elog α(1−tλ)β

∞

∑
j=0

(log α)j+1

j!
B
(

tλ;
1
λ
+ 1, β(j + 1)

)

4.5. Renyi Entropy

The Renyi entropy was introduced by [17] in 1960 and is expressed as

Iδ(x) =
1

1 − δ
log

∫ ∞

−∞
gδ(x) dx δ > 0, δ ̸= 1

Iδ(x) =
1

1 − δ
log

{
1

(α − 1)δ

∞

∑
j=0

δj(log α)j+δ

j!
βδλδ−1B

[(
1 − 1

λ

)
(δ − 1) + 1, β(j + δ)− δ + 1

]}
Remark: Shannon entropy is a special case of Renyi entropy for δ = 1

4.6. Harvda & Charvat Entropy

The Harvard & Charvat entropy of a random variable X is defined by

Iδ(x) =
1

1 − δ

[
1 −

∫ ∞

0
gδ(x) dx

]
where δ > 0, δ ̸= 1

Iδ(x) =
1

1 − δ

[
1 − 1

(α − 1)δ

∞

∑
j=0

δj (log(α))j+δ

j!
βδλδ−1B

((
1 − 1

λ

)
((δ − 1) + 1) , β(j + δ)− δ + 1

)]
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4.7. Moment Generating Function

The moments of distribution are represented by the moment generating function (MGF). The
following theorem provides the MGF for the SMPK distribution.
Theorem 2: Let X follows SMPK distribution, then the moment generating function Mx(t) is

Mx(t) =
β

α − 1

∞

∑
r=0

∞

∑
j=0

tr log(α)j+1

j!r!
B
( r

λ
+ 1, β(j + 1)

)
(10)

Proof:The moment generating function of SMPK distribution can be obtained using the relation

Mx(t) =
∞

∑
r=0

tr

r!
µ′

r (11)

Using Eq. (8) in Eq. (11) and after necessary calculations, we get

Mx(t) =
β

α − 1

∞

∑
r=0

∞

∑
j=0

tr log(α)j+1

j!r!
B
( r

λ
+ 1, β(j + 1)

)

4.8. Order Statistics

Theorem 3:The PDF of the general order statistics of SMPK distribution is given by

g(t:n)(x) =
n!

(t − 1)!(n − t)!

 elog α(1−xλ)
β

log α λβxλ−1(1 − xλ)β−1

α − 1


×

∞

∑
j=0

(−1)j
(

n − t
j

)[
elog α(1−xλ)β − α

1 − α

]j+t−1

Proof: Let x(1)x(2), ..., x(n) be the order statistics of a random sample derived from SMPK
distribution. Then, the PDF of tth order statistics is given by

g(t:n)(x) =
n!

(t − 1)!(n − t)!
[G(x; α, β, λ)]t−1 [1 − G(x; α, β, λ)]n−t g(x; α, β, λ) (12)

Prior to incorporating Eq.(5) and Eq.(6) in Eq.(12), we use binomial expansion of [1 − G(x; α, β, λ)]n−t

as

[1 − G(x; α, β, λ)]n−t =
∞

∑
j=0

(−1)j
(

n − t
j

)
[G(x; α, β, λ)]j

Thus, we obtain

g(t:n)(x) =
n!

(t − 1)!(n − t)!
g(x; α, β, λ)

∞

∑
j=0

(−1)j
(

n − t
j

)
[G(x; α, β, λ)]j+t−1

g(t:n)(x) =
n!

(t − 1)!(n − t)!

 elog α(1−xλ)
β

log α λβxλ−1(1 − xλ)β−1

α − 1

 (13)

×
∞

∑
j=0

(−1)j
(

n − t
j

)[
elog α(1−xλ)β − α

1 − α

]j+t−1

The expression for PDF of minimum order statistics x(1) and maximum order statistics x(n)
of SMPK distribution are respectively obtained by setting t=1 and t=n in Eq. (13).
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5. Estimation of Parameters

We assume x1, x2, x3, ...xn is a random sample of n observations drawn from the SMPK distribution
with unknown parameters α, β, λ. The likelihood and log-likelihood functions are respectively
given as

L(x; α, β, λ) =
elog α ∑n

i=1(1−xλ
i )

β

(log α)n λnβn ∏n
i=1 xλ−1

i
(
1 − xλ

i
)β−1

(α − 1)n

l = n log
[

log α λβ

α − 1

]
+ log α

n

∑
i=1

(1− xλ
i )

β +
n

∑
i=1

[
(λ − 1) log xi + (β − 1) log

(
1 − xλ

i

)]
−n log(α− 1)

∂l
∂α

= n
[

log (log α λβ) α log α − (α + 1)
α log α(α − 1)2

]
+

∑n
i=1

(
1 − xλ

i
)β

α
= 0

∂l
∂β

=
n

α − 1
+

n

∑
i=1

log
(

1 − xλ
i

) [
1 + log α

(
1 − xλ

i

)β
]
= 0

∂l
∂λ

=
n

λ(α − 1)
+

n

∑
i=1

log xi

[
1 − β log α

(
1 − xλ

i

)β−1
xλ

i − (β − 1)
xλ

i
1 − xλ

i

]
= 0

Since, above equations are non-linear, we will use Newton-Raphson method and hence R software
to solve these equations and estimate the parameters.

6. Simulation Study

To assess the performance of the proposed estimation method for the parameters of the SMPK
distribution, we conducted a simulation study. Table 1 shows the true parameter values α, β, λ
fixed at (0.5, 0.20, 0.25) & (1.5, 0.3, 0.4) respectively. Using R software, samples of sizes 20, 50, 125
and 500 were randomly generated based on the quantile function from Eq. (7), with each scenario
replicated 1000 times. For each parameter combination, we computed the MLEs along with their
corresponding bias and mean squared errors (MSEs). The results are summarized in Table 1.

Table 1: MLE, Bias, and MSE for the parameters

Sample size Parameters MLE Bias MSE

n α β λ α̂ β̂ λ̂ α̂ β̂ λ̂ α̂ β̂ λ̂

20 0.5 0.20 0.25 1.552 0.217 0.411 1.337 0.058 0.241 28.782 0.006 0.357
50 0.893 0.201 0.295 0.599 0.037 0.106 2.219 0.003 0.025

125 0.585 0.200 0.260 0.234 0.026 0.059 0.161 0.003 0.008
500 0.514 0.202 0.249 0.085 0.016 0.024 0.026 0.004 0.002

20 1.5 0.3 0.4 1.000 0.240 0.292 0.500 0.060 0.108 3.781 0.016 0.042
50 1.000 0.248 0.333 0.500 0.052 0.067 1.459 0.008 0.018

125 1.080 0.259 0.378 0.428 0.041 0.022 0.865 0.004 0.008
500 1.489 0.295 0.378 0.010 0.005 0.004 0.356 0.001 0.002

From Table 1 it is clear that the MLEs exhibit stability and closely approximate the true
parameter values. As the sample size increases across all parameter combinations, the MSE
decreases, indicating enhanced precision in the estimation of model parameters. Additionally, the
bias of all parameters consistently decreases with larger sample sizes, demonstrating improved
accuracy of the estimation method.
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7. Real Life Applications

In this section, we demonstrate the practical applicability of the SMPK distribution with two
real life data sets. The potentiality of the proposed model is determined by comparing its
performance with several other models, namely Transmuted Kumaraswamy distribution [7],
Kumaraswamy Inverse Exponential distribution [14], Weighted Kumaraswamy distribution
[1] and Kumaraswamy distribution [9] using goodness-of-fit criterions including -2ll, Akaike
Information Criterion (AIC), Akaike Information Criterion Corrected (AICC), Hannan - Quinn
information criterion (HQIC) , Kolmogorov-Smirnov (KS) and P value statistics. The distribution
with the lowest value of -2ll, AIC, AICC, HQIC, K-S and maximum P value is considered the best
fit.
Application 1:Snowfall data
The data set relates to the daily snowfall amounts of 30 observations measured in inches of water,
conducted in the vicinity of Climax by [12].
Application 2:Milk Production data
The data set shows the measurements of the proportion of total milk production in the first birth
of 107 SINDI cows studied by [13]. The data has been previously studied by [2].

Table 2: Estimates, -2ll, AIC, AICC, HQIC, K-S statistic, and P-value for Dataset 1.

Model α̂ β̂ λ̂ θ̂ ĉ -2ll AIC AICC HQIC K-S P-value

SMPK 21.014 4.641 1.0648 - - -81.891 -75.891 -74.969 -156.437 0.081 0.991
TKD 0.945 - 0.614 5.819 - -80.794 -74.799 -73.871 -154.244 0.602 0.073
KIED 0.093 0.952 0.294 - - -79.227 -73.227 -72.304 -151.110 0.188 0.240
WKD - 7.810 1.001 - 0.8561 -79.118 -73.118 -72.196 -150.891 0.172 0.002
KUMD 0.861 6.8361 - - - -79.595 -75.595 -75.151 -154.294 0.121 0.774

Table 3: Estimates, -2ll, AIC, AICC, HQIC, K-S statistic, and P-value for Dataset 2.

Model α̂ β̂ λ̂ θ̂ ĉ -2ll AIC AICC HQIC K-S P-value

SMPK 0.066 3.471 1.439 - - -56.842 -50.842 -50.609 -104.434 0.047 0.969
TKD 1.823 - -0.561 3.436 - -54.097 -48.098 -47.865 -98.945 0.060 0.836
KIED 0.574 2.256 0.826 - - 75.946 81.946 82.179 161.143 0.261 0.080
WKD - 3.931 3.048 - 0.001 -52.816 -46.816 -46.582 -96.380 62.586 0.002
KUMD 2.195 3.436 - - - -50.789 -46.789 -46.674 -95.411 0.076 0.562

From Table 2 and Table 3 it is observed that SMPK distribution has least numerical value
of all the comparison criterions and hence fits better to the real dataset as compared to other
competing models.The plots of the fitted models are shown in figures 4 and 5.These plots also
demonstrate that the SMPK distribution offers a close fit to both data sets.Additionally,Q-Q plots
for the two data sets are also given in figures 6 and 7.Furthermore,we extract the shape of the
hazard function from the observed data using the total time on test (TTT) plots given in Figures 8
and 9.The TTT plots for the data sets indicate that the data sets decreasing ,increasing hazard rate.
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Model fitting for data set 1

x

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5

0
5

10
15

20 SMPK
TRK
KIE
WK
KUM

Figure 4: Fitted density plots for dataset 1

Model fitting for data set 2
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Figure 5: Fitted density plots for dataset 2
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Figure 6: Q-Q Plot for dataset 1
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Figure 7: Q-Q Plot for dataset 2
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Figure 8: TTT Plot for data set 1
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Figure 9: TTT Plot for data set 2

8. Conclusion

This study introduces the SMPK distribution as a new extension of the Kumaraswamy distribution,
using the SMP approach. We have examined several statistical characteristics of the proposed
model, including the survival function, hazard rate function, reverse hazard function, moments,
quantile function, mean residual life, mean waiting time, Renyi entropy, Harvda & Charvat
entropy, moment generating function and order statistics The parameter estimation is performed
using the maximum likelihood estimation method. A simulation study is performed to evaluate
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the performance of the maximum likelihood estimator (MLE) in estimating the parameters. The
model’s performance is evaluated using goodness-of-fit statistics. The proposed distribution
is unimodal, symmetric and negatively skewed. Additionally, it displays constant, declining,
rising, and J-shaped failure rates across various parameter values. Accordingly, the proposed
distribution can be used to model datasets with similar failure rates. For practical applicability,
the proposed distribution is applied to two real life datasets and it suggested that the SMPK
model outperforms and provides a better fit than the Competitive models.
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