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Abstract

Many fields use standard distributions to model lifetime data. However, datasets from areas such as
engineering and medical sciences frequently deviate from these standard distributions. This highlights
the necessity for developing new distribution models that can accommodate significant variations in data
patterns to better align with real-world observations. In this manuscript, we introduce a novel technique
called the PNJ Transformation technique (named using the initials of its authors) for generating probability
distributions. Using this technique, we developed a new and improved version of the Power function
(PF) distribution, named the PNJ Power function (PNJ-PF) distribution. The PNJ-PF distribution offers
superior flexibility compared to PF Distribution in terms of probability density function (pdf) and hazard
rate function. We investigated the statistical properties of the PNJ-PF distribution and describe the
maximum likelihood estimation (MLE) procedure for its parameters. To demonstrate the effectiveness
and adaptability of the PNJ-PF distribution, we apply it to a simulated and two real-life datasets and
compared proposed model fit with the traditional Power function model and other competitive models
based on the various goodness-of-fit measures, such as the Akaike Information Criterion (AIC), Bayesian
Information Criterion(BIC), Corrected AIC, Hannan−Quinn Information Criterion (HQIC) and these
results are also justified graphically, further demonstrating the superiority and flexibility of the PNJ-PF
distribution.

Power function distribution, hazard rate function, survival function, mean residual life, Maximum
likelihood estimation

1. Introduction

Choosing the right statistical distribution is crucial for accurate data analysis across various fields
such as medicine and engineering. While traditional distributions serve as foundational tools,
their limitations in fitting complex real-world data necessities the need for enhanced models.
The world of probability distributions encompasses a variety of extensions, from continuous to
discrete, symmetric to asymmetric, designed to effectively capture the complexities and variability
found in real world datasets. This evolution is paralleled by advancements in data science, which
have transformed our capacity to derive insights from vast datasets. Understanding and utilizing
data science techniques is crucial for meaningful analysis and applications in the context of
probability distributions.

Lee [7] classified transformation techniques as composite methods because they seek to
develop new distributions through the combination of existing ones or by integrating additional
parameters into existing distributions. By adding extra parameters to base distributions, we aim to
boost flexibility and enhance model accuracy, ensuring a better aligning with the characteristics of
real-world data. Many innovative transformation techniques, extensively documented in statistical
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literature, have been devised to introduce novel distributions. Significant contributions include
Exponentiated technique for analyzing bathtub failure rate data using Weibull distribution by
[12] , Alpha power transformation by [9], Tangent exponential transformation by [6], innovative
transformation applied to Weibull distribution by [8], innovative SMP transformation studied on
Lomax distribution by [14], Quadratic Rank Transmutation method (QRTM) proposed by [15].
Despite numerous methods to analyze real-world data, there’s a persistent demand to find new
ways to create different types of distributions. This shows a continued interest in exploring fresh
approaches that can handle the complexities found in real data. This study explores innovative
transformation technique for generating probability distributions, with a focus on improving the
adaptability and practical utility of the Power function distribution. Power function distribution
also called the inverse of Pareto distribution [5] is a simple life time model. And was often
employed in the assessment of reliability of semiconductor devices and electrical components.
Meniconi [11] were the first who proposed the probability density function (pdf) and cumulative
distribution function (cdf) of two parameter PF distribution with scale parameter λ and shape
parameter β and are given respectively as,

f (x, λ, η) =
ηxη−1

λη ; 0 < x < λ, λ > 0, η > 0

F(x, λ, η) =
( x

λ

)η
; 0 < x < λ, λ > 0, η > 0

Various extended models of PF distribution has been proposed in literature, some of them include
Weibull-PF [16], Transmuted-PF [18], Transmuted Weibull-PF [17], Exponentiated-PF [3] ,among
others.

2. PNJ Transformation and its Properties

Let X be a continuous random variable and F(x) be its cumulative distribution function (cdf),
then the cdf of PNJ transformation technique for x ∈ R, is given as follows

FPNJ(x) =

{
elog(ζ)F(x)−S(x)

ζ ; ζ > 1

F(x) ; ζ = 1
(1)

FPNJ(x) is an absolute continuous distribution function, If F(x) is an absolute continuous dis-
tribution function. Clearly, FPNJ(x) is a valid cdf, as it satisfied all the properties of valid cdf
function , such as,

i FPNJ(−∞) = 0 and FPNJ(∞) = 1

ii FPNJ(x) is a monotonically increasing function of x.

iii FPNJ(x) is right continuous.

iv 0 ≤ FPNJ(x) ≤ 1.

The corresponding probability density function (pdf) of FPNJ(x) for x ∈ R is given as follows

fPNJ(x) =

{
f (x
ζ {log(ζ)elog(ζ)F(x) + 1} ; ζ > 1

f (x) ; ζ = 1
(2)

The survival function SPNJ(x) for PNJ transformation is given by

SPNJ(x) =
(ζ + S(x))− elog(ζ)F(x)

ζ
; ζ > 1 (3)
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The hazard rate function hPNJ(x) for PNJ transformation is given by

hPNJ(x) =
f (x)(log(ζ)elog(ζ)F(x) + 1)

ζ + S(x)− elog(ζ)F(x)
; ζ > 1 (4)

The hPNJ(x) of PNJ transformation in terms of survival S(x) and hazard rate function h(x) of f
can be written as

hPNJ(x) = h(x) ¯F(x)
(log(ζ)elog(ζ)F(x) + 1)
ζ + S(x)− elog(ζ)F(x)

; ζ > 1 (5)

The PNJ transformation technique, represented by the cumulative distribution function: (1) ,
maintains consistency with base distributions when ζ = 1, ensuring no added complexity.
One of its primary advantages of PNJ transformation technique is the flexibility and adaptability
introduced by the parameter ζ, which allows the transformation to smoothly adjust to different
dataset characteristics. This adaptability is crucial in dealing with varied and complex data in
applied sciences. Additionally, by manipulating ζ, new distributions can be generated to match
specific real-world data characteristics. The innovative parameterization of ζ influences the shape
and characteristics of the resulting distribution, making it customizable for specific modeling
needs. Theoretical foundation, the technique preserves the essential properties of a cdf, ensuring
reliability in statistical analysis.

3. PNJ Power function distribution and its properties

The cdf of PNJ-PF distribution can be obtained from (1) by taking F(x) = F(x, λ, η), the cdf of
the PF distribution, and is given by

FPNJ(x, Θ) =
1
ζ
{elog(ζ)( x

λ )
η

+
( x

λ

)η
− 1} ; ζ > 1 (6)

and the corresponding pdf of PNJ-PF distribution is given by

fPNJ(x, Θ) =
ηxη−1

ζλη {log(ζ)elog(ζ)( x
λ )

η

+ 1} ; ζ > 1 (7)

where, 0 < x < λ, Θ = (ζ, λ, η) ,λ > 0 is a scale parameter and ζ > 1, η > 0 are shape parameter.
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Figure 1: Plots of the PNJ-PF density for various combinations of ζ and η and λ.
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Figure 1 depicts some different curves of the Pdf for different combination of PNJ-PF parame-
ters ζ, η and λ. It is noted from figure (1) that the density curves for PNJ-PF distribution can be
decreasing, decreasing-increasing, and increasing.
The survival function SPNJ(x, Θ) and the hazard rate function hPNJ(x, Θ) for 0 < x < λ are,
respectively, given by

SPNJ(x, Θ) =
1
ζ
{1 + ζ −

( x
λ

)η
− elog(ζ)( x

λ )
η

} ; ζ > 1 (8)

hPNJ(x, Θ) =
ηxη−1{log(ζ)elog(ζ)( x

λ )
η

+ 1}
λη{1 + ζ −

( x
λ

)η − elog(ζ)( x
λ )

η

}
; ζ > 1 (9)

The Plots of the hazard rate function of the PNJ-PF distribution for selected parameter values are
displayed in Figure (2). It is noted that the PNJ-PF distribution possesses increasing, J-shaped,
decreasing, constant ,and bathtub shape hazard rate function.
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Figure 2: Plots of the PNJ-PF hazard rate function for various combinations of ζ and η and λ.

Colorary I: (Stochasting Ordering) The ratio of the densities of transformed variable XPNJ
and original random variable (i.e. PF X) is given by

R(x) =
1
ζ
{log(ζ)elog(ζ)( x

λ )
η

+ 1} (10)

and the first order derivative of R(x) is given by

R‘(x) =
ηxη−1

ζλη {log(ζ)e(log(ζ))2( x
λ )

η

} (11)

This expression R‘(x) is always positive for x > 0, ζ > 1, η > 0 and λ > 0, which implies XPNJ
exhibits higher likelihood ratio than the original variable X i.e, XPNJ ≥lr X. Based on the chain
of implications within various stochastic orders, it can concluded that XPNJ ≥hr X and hence
XPNJ ≥mlr X.
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4. Statistical properties of PNJ-PF distribution

In this section, the essential probabilistic and statistical characteristics of the proposed model are
presented.

4.1. Moments and associated measures

Theorem I: Let X follow the PNJ-PF distribution with parameters ζ > 1,η > 0 and λ > 0; then,
the r-th ordinary moment E(xr) of X has the form

E(Xr) =
ηλr

ζ
{

∞

∑
j=0

(log(ζ))j+1

j!(r + η(j + 1))
+

1
η + r

} (12)

Proof:

E(Xr) =

λ∫
0

xr fPNJ(x)dx

E(Xr) =
η

ζλn

λ∫
0

xr+η−1{log(ζ)elog(ζ)( x
λ )

η

+ 1}dx

After some algebra, the r-th ordinary moment of X reduces to

E(Xr) =
ηλr

ζ
{

∞

∑
j=0

(log(ζ))j+1

j!(r + η(j + 1))
+

1
η + r

}

Corollary II: The first and second ordinary moments can be obtained by substituting r = 1, 2, in
(12), respectively. The expressions for the mean E(X) and variance of PNJ-PF distribution are
given, respectively, by

E(X) =
ηλ

ζ
{

∞

∑
j=0

(log(ζ))j+1

j!(1 + η(j + 1))
+

1
η + 1

}

and,

V(X) =
ηλ2

ζ

[
{

∞

∑
j=0

(log(ζ))j+1

j!(2 + η(j + 1))
+

1
η + 2

} − η

ζ
{

∞

∑
j=0

(log(ζ))j+1

j!(1 + η(j + 1))
+

1
η + 1

}2

]

Theorem II: Let X ∼ PNJ − PF(ζ, η, λ), then r-th incomplete moment Ir(x) of X are

Ir(x) =
ηtη+r

ζλη {( t
λ
)η j

∞

∑
j=0

(log(ζ))j+1

j!(r + η(j + 1))
+

1
η + r

} (13)

Proof: The r-th incomplete moments Ir(x) are defined as

Ir(x) =
t∫

0

xr fPNJ(x)dx

Ir(x) =
t∫

0

xr ηxη−1

ζλη {log(ζ)elog(ζ)( x
λ )

η

+ 1}dx

through algebraic simplification, the r-th incomplete moment Ir(x) of X can be expressed as

Ir(x) =
ηtη+r

ζλη {( t
λ
)η j

∞

∑
j=0

(log(ζ))j+1

j!(r + η(j + 1))
+

1
η + r

}
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Corollary III: The first incomplete moments I(x) can be obtained by substituting r = 1, in (18),
as

I(x) =
ηtη+1

ζλη {( t
λ
)η j

∞

∑
j=0

(log(ζ))j+1

j!(1 + η(j + 1))
+

1
η + 1

}

Theorem III: If X ∼ PNJ − PF(ζ, η, λ), then the MGF (MX(t)) of X is given by

MX(t) =
η

ζλη

∞

∑
k=0

λη+ktk

k!
{

∞

∑
j=0

(log(ζ))j+1

j!(k + η(j + 1))
+

1
η + k

} (14)

Proof: The MGF (MX(t)) is defined as

MX(t) =
λ∫

0

etx fPNJ(x)dx

using 7, we have

MX(t) =
λ∫

0

etx ηxη−1

ζλη {log(ζ)elog(ζ)( x
λ )

η

+ 1}dx

after simplifying by using the series expansion eax and some algebraic calculations, we get the
final expression for MGF as

MX(t) =
η

ζλη

∞

∑
k=0

λη+ktk

k!
{

∞

∑
j=0

(log(ζ))j+1

j!(k + η(j + 1))
+

1
η + k

}

4.2. Mean residual life and mean waiting time

Theorem IV: Let X ∼ PNJ − PF(ζ, η, λ), then The mean residual life function, say µ(t) of x , is
given by

µ(t) =
η

1 + ζ −
( x

λ

)η − elog(ζ)( x
λ )

η {
∞

∑
j=0

(log(ζ))j+1

j!(1 + η(j + 1))
(λ − tη(j+1)+1

λη(j+1)
)− 1

η + 1
(λ − tη+1

λη )} − t

(15)
Proof: The mean RLF is defined as

µ(t) =
1

SPNJ(t)

E(t)−
t∫

0

x fPNJ(x)dx

− t (16)

where

E(t) =
ηλ

ζ
{

∞

∑
j=0

(log(ζ))j+1

j!(1 + η(j + 1))
+

1
η + 1

} (17)

and

t∫
0

x fPNJ(x)dx =
ηtη+1

ζλη {( t
λ
)η j

∞

∑
j=0

(log(ζ))j+1

j!(1 + η(j + 1))
+

1
η + 1

} (18)

Substituting (8), (17) and (18) in (16), we get final expression for µ(t) as

µ(t) =
η

1 + ζ −
( t

λ

)η − elog(ζ)( t
λ )

η {
∞

∑
j=0

(log(ζ))j+1

j!(1 + η(j + 1))
(λ − tη(j+1)+1

λη(j+1)
)− 1

η + 1
(λ − tη+1

λη )} − t
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Theorem V: Let X ∼ PNJ − PF(ζ, η, λ), then the mean waiting time of X, say µ̄(t), is

µ̄(t) = t − ηtη+1

λη(elog(ζ)( t
λ )

η

+
( t

λ

)η − 1)
{( t

λ
)η j

∞

∑
j=0

(log(ζ))j+1

j!(1 + η(j + 1))
+

1
η + 1

} (19)

Proof: the µ̄(t), is defined as

µ̄(t) = t − 1
FPNJ(t)

t∫
0

x fPNJ(x)dx. (20)

Substituting (6) and (18) in (20), we get

µ̄(t) = t − ηtη+1

λη(elog(ζ)( t
λ )

η

+
( t

λ

)η − 1)
{( t

λ
)η j

∞

∑
j=0

(log(ζ))j+1

j!(1 + η(j + 1))
+

1
η + 1

}

4.3. Entropy

Theorem VI: Let X ∼ PNJ − PF(ζ, λ, η), then the Renyi entropy of X is

HR(x) =
1

1 − ν
log

[(
η

ζλη

)ν λν(η−1)

ν(η − 1) + 1

∞

∑
k=0

(νCk)logk(ζ)
∞

∑
j=0

(klog(ζ))j

j!

]
; ν > 0, ν ̸= 1

(21)

Proof: The Renyi entropy of X is defined as

HR(x) =
1

1 − ν
log

λ∫
0

f ν
PNJ(x)dx

using (7) ,we have

HR(x) =
1

1 − ν
log

λ∫
0

(
ηxη−1

ζλη )ν{log(ζ)elog(ζ)( x
λ )

η

+ 1}νdx

after integrating, the Renyi entropy reduces to

HR(x) =
1

1 − ν
log

[(
η

ζλη

)ν λν(η−1)

ν(η − 1) + 1

∞

∑
k=0

(νCk)logk(ζ)
∞

∑
j=0

(klog(ζ))j

j!

]

Collorary IV: The renyi entropy (21) is useful for computing the entropy measures of Havrda and
Charvat HH(x), as well as Arimoto entropy HA(x). And the final expressions for these entropy
measures are respectively given by

HH(x) =
1

1 − ν

[(
η

ζλη

)ν λν(η−1)

ν(η − 1) + 1

∞

∑
k=0

(νCk)logk(ζ)
∞

∑
j=0

(klog(ζ))j

j!
− 1

]

and

HA(x) =
1

2ν−1 − 1

( η

ζλη

) 1
ν νλ

(η−1)
ν

(η − 1) + ν

∞

∑
k=0

(
1
ν Ck)logk(ζ)

∞

∑
j=0

(klog(ζ))j

j!
− 1
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4.4. Order Statistics

Let X1, X2, ..., Xm be a random sample of size m from NPJ-PF, and let Xr:m denote the rth order
statistic, then, the pdf of Xr:m, say fr:m(x) is given by

fr:m(x) =
m!

(r − 1)!(m − r)!
FPNJ(x)r−1 fPNJ(x)(1 − FPNJ(x))m−r. (22)

Substituting (6) and (7) in (22), we get

fr:m(x) =
m!ηxη−1{log(ζ)elog(ζ)( x

λ )
η

+1}

(r − 1)!(m − r)!ληζm

[
{elog(ζ)( x

λ )
η

+
( x

λ

)η
− 1}

]r−1 [
{1 + ζ −

( x
λ

)η
− elog(ζ)( x

λ )
η

}
]m−r

(23)

The minimum and maximum OS densities are obtained, respectively, by substituting r = 1 and
r = m in (23), and the expressions are respectively given by

f1:m(x) =
mηxη−1{log(ζ)elog(ζ)( x

λ )
η

+1}

ληζm

[
{1 + ζ −

( x
λ

)η
− elog(ζ)( x

λ )
η

}
]m−1

and

fm:m(x) =
mηxη−1{log(ζ)elog(ζ)( x

λ )
η

+1}

ληζm

[
{elog(ζ)( x

λ )
η

+
( x

λ

)η
− 1}

]m−1

4.5. Stress Strength Reliability

Theorem VII: let X1 and X2 be independent strength and stress random variables respectively,
where X1 ∼ PNJ − PF(ζ1, η1, , λ) and X2 ∼ PNJ − PF(ζ2, η2, , λ), then the stress strength reliabil-
ity defined as the probability that the strength X1 exceeds the stress X2 P(X1 > X2), say SSR,
is

SSR =
η1

ζ1ζ2

[
∞

∑
j=0

∞

∑
k=0

(log(ζ1))
j+1(log(ζ2))

k

j!k!(η1(j + 1) + η2k)
−

∞

∑
l=0

(log(ζ1))
l+1

l!(η1(l + 1))

+
∞

∑
m=0

(log(ζ1))
m+1

m!(η1(m + 1) + η2)
+

∞

∑
n=0

(log(ζ2))
n

n!(η1 + η2n)
+

1
η1 + η2

(24)

Proof: The stress strength reliability P(X1 > X2), say SSR, is defined as

SSR =

λ∫
0

f1(x)F2(x)dx

using (6) , (7), we have

SSR =
η1

ζ1ζ2(λ)η1

λ∫
0

[
xη1−1{log(ζ1)e

log(ζ1)( x
λ )

η1
+ 1}

] [
elog(ζ2)( x

λ )
η2
+

( x
λ

)η2
− 1

]
dx

after simplifying and using series expansion eax we get the final expression for the stress strength
reliability SSR as

SSR =
η1

ζ1ζ2(λ)η1

[
∞

∑
j=0

∞

∑
k=0

(log(ζ1))
j+1(log(ζ2))

k

j!k!(λ)η1 j(λ)η2k
(λ)η1(j+1)+η2k

η1(j + 1) + η2k
−

∞

∑
l=0

(log(ζ1))
l+1

l!(λ)η1l
(λ)η1(l+1)

η1(l + 1)

+
∞

∑
m=0

(log(ζ1))
m+1

m!(λ)η1m(λ)η2

(λ)η1(m+1)+η2

η1(m + 1) + η2
+

∞

∑
n=0

(log(ζ2))
n

n!(λ)η2n
(λ)η1+η2n

η1 + η2n
+

1
(λ)η2

λη1+η2

η1 + η2
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SSR =
η1

ζ1ζ2

[
∞

∑
j=0

∞

∑
k=0

(log(ζ1))
j+1(log(ζ2))

k

j!k!(η1(j + 1) + η2k)
−

∞
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5. Statistical Inference

5.1. Parameter Estimation

Let X1, X2, ..., Xm be a random sample from PNJ-PF distribution, then the logarithm of the
likelihood function is

l = mlogη − mlog(ζ)− mηlog(λ) + (η − 1)
m

∑
i=1

log(xi) + mlog
[
log(ζ)elog(ζ)( x

λ )
η
+ 1

]
(25)

The MLEs of ζ, λ and η are obtained by partially differentiating (25) with respect to the corre-
sponding parameters and equating to zero, we have

∂l
∂ζ

=
−m

ζ
+

melog(ζ)( x
λ )

η
(log(ζ)( x

λ )
η + 1)

ζ
[
(log(ζ)elog(ζ)( x

λ )
η
+ 1

] (26)

∂l
∂η

=
m
η
− mlogλ +

m

∑
i=1

log(xi) +
mxη(log(ζ))2elog(ζ)( x

λ )
η
log(x)

λη{(log(ζ)elog(ζ)( x
λ )

η
+ 1}

(27)

∂l
∂λ

= −mη

λ
− mη(log(ζ))2elog(ζ)( x

λ )
η
xη

λη+1
[
(log(ζ)elog(ζ)( x

λ )
η
+ 1

] (28)

The above three equations (26),(27) and (28) are not in closed form. Thus, it is difficult to calculate
the values of the parameters ζ, η and λ. However, R software can be used to get the MLE.

5.2. Simulation study

A simulation study was conducted using R Software to examine the behavior of the Maximum
Likelihood Estimates (MLEs) with varying sample sizes. Three sets of samples (n=25, n=100, and
n=500), each replicated 100 times, were generated from the PNJ-PF distribution with different
parameter values ζ = (1.5, 2) λ = (1.5, 2), and η = (1.5, 2), to effectively check the impact
of small (n = 25), medium (n = 100), and large (n = 500) sample sizes on the accuracy and
precision of the MLEs, demonstrating improved performance with larger sample sizes. For each
configuration, the average MLEs and their corresponding mean squared errors (MSEs) were
computed. The results are summarized in Tables 1.
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Table 1: Average values of MLEs and the corresponding MSEs.

Parameter MLE MSE
n ζ η λ ζ̂ η̂ λ̂ ζ̂ η̂ λ̂

25 1.5 1 1.5 1.4413 0.8666 1.3183 0.9136 0.1296 0.2748
100 1.4621 0.9889 1.4822 0.0992 0.0111 0.0233
500 1.4778 0.9907 1.4845 0.0378 0.0103 0.0228

25 2 1.3489 0.7429 1.5336 1.1309 0.2406 0.9311
100 1.4444 0.933 1.8812 0.2646 0.0625 0.2434
500 1.4963 0.9864 1.9793 0.0515 0.0105 0.0407

25 1.5 1.5 1.4128 1.3403 1.3610 0.4165 0.2194 0.2053
100 1.4768 1.4287 1.4394 0.1824 0.0963 0.0911
500 1.4961 1.483 1.4856 0.0497 0.0245 0.0228

25 2 1.7193 1.2146 1.727 1.9832 0.3490 0.5283
100 1.4868 1.4192 1.9175 0.2886 0.1039 0.1624
500 1.5197 1.4926 1.9991 0.0374 0.0023 0.0001

25 2 1 1.5 1.8251 0.9219 1.3773 0.7054 0.0888 0.1833
100 1.9543 0.9816 1.4667 0.1491 0.0214 0.0457
500 1.9940 0.9887 1.4848 0.0561 0.0104 0.0228

25 2 2.1983 0.9447 2.1166 0.2833 0.0088 0.0378
100 2.0079 0.9652 1.9369 0.2614 0.0325 0.1221
500 2.0035 0.9884 1.9802 0.0686 0.0106 0.0406

25 1.5 1.5 1.8863 1.3938 1.3909 0.7179 0.1897 0.1598
100 1.9681 1.4936 1.4829 0.1917 0.0342 0.0229
500 1.9916 1.5017 1.5001 0.0227 0.0020 0.0000

25 2 2.0949 1.4191 1.9156 1.7986 0.1553 0.1645
100 2.0333 1.4422 1.9402 0.4624 0.0874 0.1218
500 2.0258 1.4913 1.9983 0.0347 0.0034 0.0001

The results of 1 shows that the MLEs are stable and closely approximate the true parameter
values. Additionally, as the sample size increases, the MSE consistently decreases across all
scenarios, indicating enhanced estimate reliability with larger sample sizes.
Additionally, a random sample of 51 observations has been generated from the PNJ-PF distri-
bution with parameters ζ = 15, η = 1, and λ = 20 using R programming language.This sample
representing the quantiles of our proposed model, serves to demonstrate theoretical concepts
and to compare the fit of the proposed model with baseline and several competitive models. The
results are displayed in Table 2 and Table 3 and the resulting simulated dataset, along with its
corresponding R code, is provided below.
> Data<-function(n,m,zeta,eta,lambda)
+ {set.seed(0)
+ library(zipfR)
+ cdf<-function(x,zeta,eta,lambda)
+ {fn<-((1/(zeta))*(exp(log(zeta)*((x/(lambda))(̂eta)))-{1-(x/(lambda))(̂eta)}))}
+ data=c() + U=runif(n,0,1)
+ for(i in 1:length(U)){
+ fn<-function(x){cdf(x,zeta,eta,lambda)-U[i]}
+ uni<-uniroot(fn,c(0,100000))
+ data=c(data,uni$root)}
+ return(data)}
> Simulateddata<-Data(51,1,15,1,20)
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> Simulateddata

[1] 19.216206 10.997038 13.139771 16.053109 19.307662 9.370801 19.229723
[8] 19.590336 17.049291 16.705115 4.028329 9.491038 8.629201 17.322909
[15] 13.347840 18.127826 15.085951 17.630277 19.941461 13.277794 18.197640
[22] 19.514095 9.660749 16.951754 6.882131 11.036435 13.382222 1.028522
[29] 13.318377 18.997202 12.559603 14.868757 16.369590 15.028740 8.922347
[36] 18.640806 17.130323 18.349609 6.183355 17.690021 13.800205 18.585186
[43] 16.901957 18.247629 15.809617 15.512915 18.305730 1.727778 14.800077
[50] 17.773593 17.381194

Table 2: Maximum Likelihood Estimates (with standard errors in parentheses) for simulated data set.

Estimates
Model ζ̂ η̂ λ̂

PNJ-PF 29.01068 0.99048 19.94143
(0.17446) (0.17443) (0.00003)

ZTP-PF 0.01308 2.38893 19.94143
(0.23971) (0.14642) (0.09328)

EP 3.40437 0.69908 19.94143
(0.12304) (0.12318) (0.00011)

EPF 5.18796 1.15104 19.94171
(0.23553) (0.23563) (0.00010)

PF - 2.37968 19.94143
(NaN) (0.00001)

Table 3: Comparison of PNJ-PF Distribution with other competitive models for simulated data set.

Model −2ll AIC BIC AICC HQIC

PNJ-PF 270.8637 276.8637 282.6592 277.3744 279.0783

ZTP-PF 276.0330 282.0330 287.8285 282.5436 284.2476

EP 275.9709 281.9709 287.7664 282.4816 284.1855

EPF 271.3136 277.3136 283.1090 277.8242 279.5282

PF 275.9709 279.9709 283.8346 280.2209 281.4473
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Figure 3: The relative histogram and the fitted density functions of PNJ-PF and other competing distributions for
simulated data set.

The results of simulated dataset presented in Table 2 and Table 3,clearly demonstrate that the
PNJ-PF distribution exhibits the lowest −2ll, AIC, BIC, AICC, and HQIC values among all the
other competitive models and base line model.These findings are further supported by figure
3. Consequently, our proposed model offers a superior fit and outperforms base model of PF
distribution as well as other mentioned competing models.

6. Applications

In this section, we explore two datasets related to electrical engineering to highlight the rele-
vance and versatility of the PNJ-PF distribution. This analysis will demonstrate how the PNJ-PF
distribution can be effectively utilized to model and interpret various types of data within the
engineering field, illustrating its broad applicability and effectiveness. The data set first represents
the times of 30 electronic components exposed to power-line voltage spikes during electric storms
published first by [10] and is given as follows: 275,13, 147, 23, 181, 30, 65, 10, 300, 173, 106, 300,
300, 212, 300, 300, 300, 2,307 ,261, 293, 88, 247, 28, 143, 300, 23, 300, 80, 245, 266.
The second data set represents the failure times of first 50 electronic devices. which was originally
published by [1], The data is given as follows: 0.1, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 6.0, 7.0, 11.0,
12.0, 18.0, 18.0, 18.0, 18.0, 18.0, 21.0, 32.0, 36.0, 40.0, 45.0, 45.0, 47.0, 50.0, 55.0, 60.0, 63.0, 63.0, 67.0,
67.0, 67.0, 67.0, 72.0, 75.0, 79.0, 82.0, 82.0, 83.0, 84.0, 84.0, 84.0, 85.0, 85.0, 85.0, 85.0, 85.0, 86.0, 86.0.
We compare the fit of the proposed PNJ-PF distribution with its base-model (two parameter
Power function (PF) distribution) and with several more related competitive models, namely
Exponentiated Power function(EPF) [2], Zero Truncated Poisson Power function(ZTP-PF)[13] and
Exponentiated Power(EP) [4] Distribution, their corresponding density functions for 0 < x < λ
are as follows

ZTP-PF f (x) =
ζηxη−1 exp

(
−ζ

( x
λ

)η
)

λη
(

exp
(
−ζ

( x
λ

)η
))

− exp(−ζ)

EPF f (x) =
ζη

λη

1
x1−η

(
1 +

( x
λ

)η)−(1−ζ)

EP f (x) =
ζηxζη−1

λζη
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For comparison, we use criterion of -2log-likelihood(-2ll), along with various information
criteria (AIC, BIC,AICc, HQIC). And the results are displayed in Table 4, Table 5, Table 6 and
Table 7.

Table 4: Maximum Likelihood Estimates (with standard errors in parentheses) for first data set.

Estimates
Model ζ̂ η̂ λ̂

PNJ-PF 9.88183 0.67367 307.01898
(0.10531 ) (0.15274) (0.04681)

ZTP-PF 0.00000 1.01032 307.00001
(0.00047) (0.18195) (0.18121)

EP 1.09892 0.80050 307.00001
(0.39168) (0.28722) (0.10448)

EPF 3.79113 0.66570 307.00001
(0.15531) (0.16302) 0.00719

PF - 1.00657 307.00001
(NaN) (0.00173)

Table 5: Comparison of PNJ-PF Distribution with other competitive models for first data set.

Model −2ll AIC BIC AICC HQIC

PNJ-PF 349.4228 355.4228 359.7247 356.3116 356.8251

ZTP-PF 355.0636 361.0636 365.3656 361.9525 362.4660

EP 355.6021 361.6021 365.9040 362.4909 363.0044

EPF 351.7101 357.7101 362.0120 358.5989 359.1124

PF 355.0632 359.0632 361.9312 359.4918 359.9981

Table 6: Maximum Likelihood Estimates (with standard errors in parentheses) for second dataset.

Estimates
Model ζ̂ η̂ λ̂

PNJ-PF 9.884284 0.478196 86.000000
(0.078434) (0.084724) (0.006096)

ZTP-PF 0.000001 0.739749 86.000003
0.021726 0.102805 0.081023

EP 0.998401 0.728003 86.000003
(0.379407) (0.379788) 0.000197

EPF 3.820468 0.472193 86.000001
(0.168872 ) ( 0.093803) ( 0.075191)

PF - 0.726714 86.000002
(NaN) (0.001117 )
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Table 7: Comparison of PNJ-PF Distribution with other competitive models for second data set.

Model −2ll AIC BIC AICC HQIC

PNJ-PF 431.2207 437.2207 442.9568 437.7424 439.4050

ZTP-PF 439.7738 445.7738 451.5098 446.2955 447.9581

EP 439.7582 445.7582 451.4943 446.2799 447.9425

EPF 434.5294 440.5294 446.2654 441.0511 442.7137

PF 439.7582 443.7582 447.5822 444.0135 445.2144

From Table 4, Table 5, Table 6 and Table 7, it is clearly evident that PNJ-PF distribution has
lowest −2ll, AIC, BIC, AICC and HQIC values among all the other competitive models and base
line model. Therefore provide superior fit and outperforms base model of PF distribution as well
as other mentioned competing models.
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Figure 4: (a) The relative histogram and the fitted density functions of PNJ-PF and other competing distributions for
data set first. (b) The relative histogram and the fitted density functions of PNJ-PF and other competing
distributions for data set second.

The relative histogram and the fitted density functions of PNJ-PF and other competing dis-
tributions of the data set first and second are shown in Figures 4. This graphical representation
clearly validate the results in Tables 4, Table 5, Table 6 and Table 7.

7. Conclusion

This manuscript introduces an innovative and versatile method known as the PNJ method for
generating probability distributions. The PNJ method is specifically tailored to the two-parameter
Power function (PF) distribution, resulting in the development of a new three-parameter PNJ-PF
distribution. The paper thoroughly examines the various statistical and reliability characteristics
of the PNJ-PF model, emphasizing its adaptable and flexible shapes for both density and hazard
functions. To illustrate the PNJ-PF model’s effectiveness, the study applies it to a simulated
and two real-world datasets and conducts a comprehensive comparison with base model and
other competing models using goodness-of-fit analysis. The findings clearly demonstrate that
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the PNJ-PF model outperforms base model and all other competing models in these datasets,
showcasing its superior performance and effectiveness. Also by offering a novel approach that
significantly enhances the accuracy and reliability of hazard rate modeling, this manuscript
positions the PNJ-PF model as an essential tool for researchers and practitioners in engineering
field. The innovative contributions of this study have the potential to bring about substantial
advancements in the field, enabling more precise and effective decision-making based on strong
statistical foundations.
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