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Abstract 

Preventive maintenance policies are essential practical guide for effective maintenance of industrial 

machines. In this study, system reliability is estimated and used as the condition variable on 

reliability-based preventive maintenance models to formulate preventive maintenance policies for 

Table Saw machine which has an increasing hazard rate. Inventory holding cost is introduced as part 

of the repair cost to complement the actual cost of maintenance. The inter-failure times of the machine 

was modeled as Weibull distribution and the shape parameters estimate were obtained. Three 

preventive maintenance policies were obtained for the machine from respective preventive 

maintenance models with predetermined fixed level of reliability, variable reliability and a 

combination of both.  Result from the third policy with critical reliability level which combines both 

fixed and unfixed reliability levels is noted as the optimal preventive maintenance policy for the 

machine in terms of extended lifespan and minimum maintenance cost. 

Keywords: Reliability threshold, Preventive Maintenance, Weibull distribution, 

Table Saw machine, failure distribution. 

I. Introduction

Maintenance encompasses a range of activities carried out on facilities or equipment to either restore 

them to good working condition or to ensure they remain in an acceptable working state. It includes 

technical procedures aimed at achieving/maintaining satisfactory operation of machines or parts. It 

serves the primary purpose of ensuring that equipment and facilities can perform their designated 

tasks as scheduled and under specified conditions. It also helps in preventing unexpected failures 

and disruptions in operations. Maintenance is vital for the operational efficiency and reliability of 

facilities and equipment. Neglecting maintenance can lead to increased downtime, decreased 

performance, and higher repair costs, among others. Therefore, it is essential to prioritize 

maintenance in the overall strategy of any facility or system, noting that industrial facilities and 

equipment could be preventively or correctively maintained. Preventive Maintenance is proactive and 

aims to prevent breakdowns and failures. It involves scheduled inspections, repairs, and 

replacements to keep equipment in good condition while Corrective Maintenance (Repair) is reactive 

and focuses on fixing equipment after a failure or breakdown has occurred. Its goal is to restore 

equipment to working condition as quickly as possible. Maintenance can be classified as Perfect 

Maintenance (As-Good-as-New) which suggests that after maintenance, equipment is restored to a 

state identical to when it was new. In reality, achieving this level of restoration is either impracticable 
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or costly. Imperfect Maintenance which includes Better-than-Old or Worse-than-New acknowledges that 

maintenance efforts generally result in equipment being in a better condition than it was before the 

maintenance but not as good as when it was brand new, same-as-old ensures that equipment are 

restored to performance level before maintenance. While Worse-than-Old implies that maintenance 

does not improve the equipment's condition, but left it in a rather worse state than it was before 

maintenance. Hence, maintenance falls between perfect maintenance and Worse-than-Old, [1]. This 

is because the failure nature of repairable systems depends on the repair history of the system, [2]. 

In summary, maintenance is a critical aspect of facility and equipment management that can 

significantly impact the overall performance and longevity of assets. The choice between preventive 

and corrective maintenance strategies depends on the specific needs and goals of a facility. 

Accordingly, [3] proposed a reliability assessment approach based on multi-deterioration 

measurement and failure analysis for effective maintenance while [4] proposed a reliability centered 

predictive maintenance policy using reliability threshold.  

PM models are utilized to obtain two kinds of maintenance policies according to their 

maintenance criteria; the time-dependent PM policy, which determines a PM schedule based on the 

system age and as concepts of minimal repair and imperfect maintenance; [5] [6] and [7]. For 

instance, [8] constructed a PM model and applied to selective PM  manufacturing system to ensure 

reliability and minimize the total cost of maintenance and failure losses. While the applicability of 

the competitive failure model with multiple shock types in the degradation process based on 

threshold variation was undertaken by [9]. In [10], the lifetime-reward-maximizing maintenance 

policies under perfect and imperfect maintenance conditions was analyzed and the tradeoff between 

the system’s virtual age and the decision maker’s reward rate was investigated. The concept of age 

reduction factor to formulate imperfect PM policies has been widely used; see, [8], [12]and [13]. 

Accordingly, [14] investigated the failure data of a marine diesel engine to estimate the reliability of 

the cylinder liner which was then utilized to develop a reliability-based PM strategy for the diesel 

engine. The use of estimated reliability as the condition variable to develop three reliability-based 

PM models with consideration of different scenarios which can assist in evaluating the maintenance 

cost for each scenario was undertaken by [13]. The proposed approach provides optimal reliability 

thresholds and PM schedules in advance by which the system availability and quality can be ensured 

and the organizational resources can be well prepared and managed. In [15], a sequential preventive 

maintenance was obtained for 8hp-pml gold engine cassava grinding machine with a two parameter 

Weibull failure distribution. The resulting PM and replacement plan provide effective maintenance 

schedule that guarantees optimum performance of the machine at specified cost levels., 

Furthermore, [16] formulated a geometric imperfect preventive maintenance and replacement 

(GIPMAR) model for aging repairable systems due to age and prolong usage that would meet users 

need in three phases: within average life span, beyond average life span and beyond initial 

replacement age of system. The work extended the PM model of [17] to provide PM/replacement 

schedules for aging repairable systems which was not provided for in earlier models. In another 

development, [18] proposed a knowledge-based framework that exploits fuzzy logic to generate 

precise cost implication decisions from an optimal maintenance and replacement schedule using 

data from a locally fabricated 8HP-PML Gold engine cassava grinding machine whose failure 

distribution followed the Weibull distribution function, while in the same year, [19] relaxed the 

assumption of an information-symmetric system, where both the manufacturer’s expected profit 

and the system’s expected profit are maximize. Also, [20] studied the stress–strength reliability of a 

failure profile in which the components of the system are affected by the internal environmental 

factors and their effect under various scenarios. 

Following from [9] and [13], this work seeks to formulate PM and replacement policies for 

mechanically repairable systems with increasing hazard rate considering three cases with a view to 

determining an optimal policy that minimizes total cost and extended life cycle of the machine. 
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II. Methods

2.1 Notations and meaning 

𝜃 -  shape parameter of Hazard intensity function, 𝜃 > 0 of the Weibull distribution 

𝜆  -  Deteriorating parameter of hazard intensity function, where  𝜆 > 0 of the Weibull distribution 

𝛼𝑗 -  Age reduction factor, where 𝛼 ∈ (0,1) 

𝑅(𝑡)- Reliability function without PM at time, t  

𝑦𝑗   -  PM interval between successive PM actions, where 𝑗 = 1, 2, … , 𝑁 − 1 

𝑍𝑗   -  Effective age of the system after jth PM action, 𝑗 = 1, 2, … , 𝑁 

𝑇𝑤  -  System lifetime until replacement, where 𝑇𝑤 = ∑ 𝑦𝑗
𝑁
𝑗=1  

𝑅𝑇
∗   - The optimal reliability threshold for performing the jth PM action in policy 2 

𝑁  -  The number of scheduled PM actions for models 1, 2 and 3 

𝑁𝑟  -  Number of minimal repair actions until system replacement 

𝐶𝑟  -   Cost of minimal repair action 

𝐶ℎ  -   Cost of holding spare parts (inventory cost) 

𝐶𝑟∗ -  Joint cost for minimal repair action and holding cost of spare part 

𝐶𝑚  -  Cost of preventive maintenance action 

𝐶𝑖   -  Cost of system replacement 

2.2 Assumptions of the model 

• The machine fails randomly

• Failure occurs at the end of time, t given the lifetime distribution of the machine, f(t).

• Spare parts of the machine are readily available in the warehouse with holding cost, 𝐶ℎ
• Failure process is an increasing failure rate

• The required time for PM activities and minimal repairs is negligible

• The cost parameters 𝐶𝑖, 𝐶𝑟 , 𝐶𝑚 are constants

• PM activities restore the system to “better-than-old” state.

•

2.3 Choice of failure distribution function 

There are several probability distributions for modeling the failure rate of repairable systems 

depending on the failure mechanism. Theoretical consideration is given to both the probabilistic 

arguments of the failure mode and failure mechanism and practically, the success of modeling 

empirical failure data through Goodness-of -fit test. 

2.3.1 Goodness- of- fit test 

There are various tests for assessing the goodness- of- fit of a probability distribution to sample data. 

These include Chi-square test, kolmogorov Smirnov test, Anderson-Darling test, Cramer-Von Mises 

test and Mann-Scheuer-Fertig test, etc. This study uses Easyfit software to perform the Chi-squared 

Goodness-of-fit test because of its simplicity and adaptability. The Easyfit software result in Table 

2.1 shows that the 2-parameter Weibull distribution with rank 1 is the best-fit model for the data set. 
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Table 2.1: Extract of Goodness-of-fit test of Probability Distributions of Interest 

Distribution Kolmogorov Smirnov Anderson Darling Chi-squared 

Statistic Rank Statistic Rank Statistic Rank 

Weibull 0.10264 2 0.87318 1 0.62162 1 

Gen. Pareto 0.11014 1 0.87596 2 0.7244 2 

Uniform 0.11057 3 0.90513 3 N/A 

Levy (2P) 0.11093 4 0.9133 4 0.9851 3 

2.4 The two-parameter Weibull distribution 
2.4.1 The density function 

The probability distribution function of a two-parameter Weibull distribution is given by; 

𝑓(𝑧; 𝜃, 𝜆) =
𝜆

𝜃
(
𝑧

𝜃
)
𝜆−1

𝑒−
(
𝑧

𝜃
)
𝜆

, 𝜆 > 0, 𝜃 > 0, 𝑍 > 0    (1) 

Where𝜃 = scale parameter, 𝜆 =shape parameter 

2.4.2 Reliability function, 𝑅(𝑡) 

The reliability function of the two-parameter Weibull distribution is given by; 

  𝑅(𝑡) = −𝑃(𝑇 ≤ 𝑡) = 𝑃(𝑇 > 𝑡) = 1 − ∫ 𝑓(𝑡)𝑑𝑡
𝑡

0
  (2) 

Substituting for 𝑓(𝑡) in Eq (2), we have; 

𝑅(𝑡) = 1 − ∫ (
𝜆

𝜃
) (

𝑡

𝜃
)
𝜆−1

𝑒−
(
𝑡

𝜃
)
𝜆

𝑡

0
𝑑𝑡 = 1 − (

𝜆

𝜃
)∫ (

𝑡

𝜃
)
𝜆−1𝑡

0
𝑒−

(
𝑡

𝜃
)
𝜆

𝑑𝑡 

Since 𝐹(𝑡) = 1 − 𝑒−
(
𝑡

𝜃
)
𝜆

𝑅(𝑡) = 1 − 𝐹(𝑡) = 1 − (1 − 𝑒−
(
𝑡
𝜃
)
𝜆

) 

∴ 𝑅(𝑡) = 𝑒−
(
𝑡

𝜃
)
𝜆

         (3) 

2.4.3 Failure rate, h(t) of two-parameter Weibull distribution 

The failure rate, h(t) during a given interval of time 𝑡 = [𝑡1, 𝑡2] shows the probability that a failure 

per unit time occurs in the interval (𝑡1, 𝑡2), conditioned on the event that no failure has occurred at 

or before time, 𝑡1. This means that 𝑇 > 𝑡1.. The failure rate can be defined as follows: 

ℎ(𝑡) =
𝑅(𝑡1)−𝑅(𝑡2)

(𝑡2−𝑡1)𝑅(𝑡1)
=

𝐹(𝑡2)−𝐹(𝑡1)

(𝑡2−𝑡1)𝑅(𝑡1)
       (4) 

Taking the limit of the failure rate at the interval, (𝑡1,𝛥𝑡 + 1) as 𝛥𝑡 approaches zero, where 𝑡 =

𝑡1and (𝑡 + 𝛥𝑡) = 𝑡2 gives the hazard function, ℎ(𝑡), as follows;

ℎ(𝑡) = lim
∆𝑡→0

𝑅(𝑡)−𝑅(𝑡+∆𝑡)

(∆𝑡)×𝑅(𝑡)

       (5)

= lim
∆𝑡→0

𝐹(𝑡+∆𝑡)−𝐹(𝑡)

(∆𝑡)
×

1

𝑅(𝑡)

       (6) 

But ℎ(𝑡) = lim
∆𝑡→0

𝐹(𝑡+∆𝑡)−𝐹(𝑡)

(∆𝑡)
= 𝑓(𝑡) 

∴ ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)

Where 𝑓(𝑡) = (
𝜆

𝜃
) (

𝑡

𝜃
)
𝜆−1

𝑒−
(
𝑡

𝜃
)
𝜆
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𝑅(𝑡) = 𝑒−
(
𝑡
𝜃
)
𝜆

ℎ(𝑡) =
(
𝜆
𝜃
) (
𝑡
𝜃
)
𝜆−1

𝑒−
(
𝑡
𝜃
)
𝜆

𝑒−
(
𝑡
𝜃
)
𝜆

∴ ℎ(𝑡) = 𝜆𝜃−𝜆𝑡𝜆−1          (7) 

And the cumulative hazard rate is given as; 

𝐻(𝑡) = ∫ ℎ(𝑡)𝑑𝑡
𝑡

0
= ∫ 𝜆𝜃−𝜆𝑡𝜆−1𝑑𝑡

𝑡

0
= 𝜃−𝜆𝑡𝜆          (8) 

2.4.4 Estimating the parameters of Weibull distribution  

Easyfit software will be used to determine the appropriate failure function from the observed data 

and also obtain the parameters estimates of the fit distribution. 

2.4.5 Evaluation of the Weibull parameters 

As part of the preliminary analysis, the scale and shape parameters estimate of the Weibull 

distribution were also obtained for the failure data of Table Saw machine with the aid of the Easyfit 

software as; 𝜆 = 3.8548 and 𝜃 = 202.92.  

2.5 Preventive maintenance policies 

We seek to modify and adapt the models in [13] to obtain suitable maintenance policies for 

mechanically repairable systems with increasing hazard rate using Table Saw machine as case study. 

2.5.1 Policy 1: System undergoes PM activity whenever the reliability reaches the predetermined 

          threshold      

Let the effective age of the system just before the jth PM activity be given as; 

𝑍𝑗 = 𝑦𝑗 + 𝛼𝑗−1𝑍𝑗−1;  𝑗 = 1, 2, … , 𝑁          (9) 

Where, 

𝑍𝑗 is the effective age of the system 

𝑦𝑗 is the interval between successive PM activities 

𝛼𝑗−1 is the age reduction factor; 0 < 𝛼0 < 𝛼1 < ⋯ < 𝛼𝑁 

𝛼𝑗𝑍𝑗 denotes the effective age of the system immediately after the jth PM activity. 

Let the associated expected cost rate per unit time for performing PM activities according to [13] be 

given as;  

𝐶(𝑁) =
1

𝑇𝑤
[𝐶𝑖 + 𝐶𝑟𝑁𝑟 + (𝑁 − 1)𝐶𝑚]        (10) 

𝑇𝑤 =∑𝑦𝑗 =

𝑁

𝑗=1

∑𝑍𝑗 −∑𝛼𝑗−1𝑍𝑗−1

𝑁

𝑗=1

𝑁

𝑗=1

= (𝑍𝑁 +∑𝑍𝑗

𝑁−1

𝑗=1

) −∑𝛼𝑗𝑍𝑗

𝑁−1

𝑗=1

= 𝑍𝑁 +∑(1 − 𝛼𝑗)𝑍𝑗

𝑁−1

𝑗=1

 

and  𝑁𝑟 = ∑ ∫ ℎ(𝑡)
𝑍

𝛼𝑗−1𝑍𝑗−1
= ∑ [𝐻(𝑡)]𝛼𝑗−1𝑍𝑗−1

𝑍𝑗𝑁
𝑗=1

𝑁
𝑗=1

Therefore, 

𝐶(𝑁) =
𝐶𝑖+(𝑁−1)𝐶𝑚+𝐶𝑟 ∑ ∫ ℎ(𝑡)

𝑍𝑗
𝛼𝑗−1𝑍𝑗−1

𝑁
𝑗=1

𝑍𝑁+∑ (1−𝛼𝑗)𝑍𝑗
𝑁−1
𝑗=1

      (11) 

Let the reliability threshold at the end of each PM cycle be: 

𝑅𝑇 = 𝑅(𝛼𝑗−1𝑍𝑗−1)𝑅𝑚 (𝑍𝑗|𝑍𝑗−1) 
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This is on the assumption that the system age can be proportionally reduced by imperfect PM 

actions to 𝛼𝑗−1𝑍𝑗−1immediately after the (j-1)th PM activity, [21]. 𝑅𝑚(𝑍𝑗|𝑍𝑗−1) is the reliability of jth 

PM cycle at age, t given that the system was maintained at 𝑍𝑗−1. This is equivalent to the product of 

probability of survival until 𝛼𝑗−1𝑍𝑗−1. 

The optimization problem is to minimize:  

        𝐶(𝑁) =
𝐶𝑖+(𝑁−1)𝐶𝑚+𝐶𝑟 ∑ ∫ ℎ(𝑡)

𝑍𝑗
𝛼𝑗−1𝑍𝑗−1

𝑁
𝑗=1

𝑍𝑁+∑ (1−𝛼𝑗)𝑍𝑗
𝑁−1
𝑗=1

       (12) 

Subject to:  𝑅(𝛼𝑗−1𝑍𝑗−1)𝑅𝑚 (𝑍𝑗|𝑍𝑗−1). 

According to [22], the reliability function of an initial system is given as; 𝑅(𝑡) = 𝑒−∫ ℎ(𝑡)𝑑𝑡
𝑡
0 . 

The failure density, 𝑓(𝑡) and the reliability function, 𝑅(𝑡) can be derived from the knowledge of 

the hazard function, ℎ(𝑡). Then, 𝑅(𝑡) = 𝑒𝑥𝑝 [−∫ ℎ(𝑡)𝑑𝑡
𝑡

0
] and 𝑓(𝑡) = ℎ(𝑡) × 𝑅(𝑡). Since 

𝑅(𝑡) = 1 − 𝐹(𝑡), 𝑅′(𝑡) = −𝐹′(𝑡) (by differentiating both sides). Therefore, 

ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
=
𝐹′(𝑡)

𝑅(𝑡)
=
−𝑅′(𝑡)

𝑅(𝑡)

Integrating both sides, we have; 

∫ ℎ(𝑡)𝑑𝑡
𝑡

0
= −∫

𝑅′(𝑡)

𝑅(𝑡)
𝑑𝑡

𝑡

0
= −[𝑙𝑛 𝑅 (𝑡) − 𝑙𝑛 𝑅 (0)], under the boundary condition, 𝑅(0) = 1, since the 

component will not fail before time 𝑡 = 0, once it is put into operation. 

Since ln 𝑅(0) = ln 1 = 0, we see that −∫ ℎ(𝑡)𝑑𝑡 = 𝑙𝑛 𝑅 (𝑡) ⇒
𝑡

0
∫ ℎ(𝑡)𝑑𝑡 = 𝑙𝑛 𝑅 (𝑡)
𝑡

0
. Taking exponent 

of both sides, 

𝑒−∫ ℎ(𝑡)𝑑𝑡
𝑡
0 = 𝑒𝑙𝑛 𝑅(𝑡) ⇒ 𝑒−∫ ℎ(𝑡)𝑑𝑡

𝑡
0 = 𝑅(𝑡) 

Since the cumulative hazard intensity at time, t is given as 𝐻(𝑡) = ∫ ℎ(𝑡)𝑑𝑡
𝑡

0
, we can say that 

𝑅(𝑡) = 𝑅𝑇 = 𝑒
−𝐻(𝑍𝑗)     (13) 

Substitute Eq (8) in (13), we have;  𝑅𝑇 = 𝑒−𝜃
−𝜆𝑍𝜆

Taking the 𝑙𝑛 of both sides, we have,  

𝑙𝑛(𝑅𝑇) = −𝜃−𝜆𝑍−𝜆  ⟹ [
−𝑙𝑛(𝑅𝑇)

𝜃−𝜆
]
1
𝜆⁄
= 𝜃[𝑙𝑛(𝑅𝑇)]

1
𝜆⁄        (14) 

Considering the jth PM action, 

𝑍𝑗 = 𝑦𝑗 + 𝛼𝑗𝑍𝑗 ⇒ 𝑦𝑗 = 𝑍𝑗 − 𝛼𝑗𝑍𝑗 ⇒ 𝑦𝑗 = 𝑍𝑗(1 − 𝛼𝑗)   (15) 

2.5.2 Policy 2: System with non-fixed Reliability Threshold considered as a decision variable 

This policy states that a reliability threshold is not predetermined but considered as a decision 

variable with additional inventory holding cost 

Let R be the reliability threshold which is a decision variable, then the cost function is; 

𝐶(𝑁, 𝑅) =
𝐶𝑖+(𝑁−1)𝐶𝑚+𝐶𝑟 ∑ ∫ ℎ(𝑡)

𝑍𝑗
𝛼𝑗−1𝑍𝑗−1

𝑁
𝑗=1

∑ 𝑦𝑗
𝑁
𝑗=1

    (16) 

We introduce inventory cost, 𝐶ℎ, which is the cost of holding spare parts of the machine readily 
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available in the warehouse. This will reduce the time of ordering spare part which increases 

downtime and reduces the operational time of the machine, hence, productivity. Therefore, our new 

cost of minimal repair is 𝐶𝑟∗ = 𝐶𝑟 + 𝐶ℎ. Eq (16) becomes; 

𝐶(𝑁, 𝑅) =
𝐶𝑖 + (𝑁 − 1)𝐶𝑚 + 𝐶𝑟∗ ∑ ∫ ℎ(𝑡)

𝑍𝑗
𝛼𝑗−1𝑍𝑗−1

𝑁
𝑗=1

∑ 𝑦𝑗
𝑁
𝑗=1

=
𝐶𝑖+(𝑁−1)𝐶𝑚+𝐶𝑟∗ ∑ [𝐻(𝑍𝑗)−𝐻(𝛼𝑗−1𝑍𝑗−1)]

𝑁
𝑗=1

𝑍𝑁+∑ (1−𝛼𝑗)𝑍𝑗
𝑁−1
𝑗=1

        (17) 

The term under summation sign in the numerator of (Eq 17) can be written as follows; 

= 𝜃−𝜆∑[𝑍𝑗
𝜆 − (𝛼𝑗−1

𝜆 𝑍𝑗−1
𝜆 )]

𝑁

𝑗=1

= 𝜃−𝜆 [∑𝑍𝑗
𝜆

𝑁

𝑗=1

−∑(𝛼𝑗−1
𝜆 𝑍𝑗−1

𝜆 )

𝑁

𝑗=1

] = 𝜃−𝜆 [(𝑍𝑁
𝜆 +∑𝑍𝑗

𝜆

𝑁−1

𝑗=1

) −∑(𝛼𝑗
𝜆𝑍𝑗

𝜆)

𝑁−1

𝑗=1

] 

= 𝜃−𝜆 [(𝑍𝑁
𝜆 +∑𝑍𝑗

𝜆

𝑁−1

𝑗=1

) −∑(𝛼𝑗
𝜆𝑍𝑗

𝜆)

𝑁−1

𝑗=1

] = 𝜃−𝜆𝑍𝑁
𝜆 +∑ 𝜃−𝜆𝑍𝑗

𝜆

𝑁−1

𝑗=1

− 𝜃−𝜆 ∑(𝛼𝑗
𝜆𝑍𝑙𝑗

𝜆 )

𝑁−1

𝑗=1

= 𝜃−𝜆𝑍𝑁
𝜆 +∑𝐻(𝑍𝑗)

𝑁−1

𝑗=1

− 𝜃−𝜆 ∑(𝛼𝑗
𝜆𝑍𝑗

𝜆)

𝑁−1

𝑗=1

Since the effective age, 𝑍𝑗 at the replacement point, 𝑍𝑁 = 0, then, 𝑍𝑁 vanishes in the numerator and 

the denominator. Hence, Eq (17), becomes; 

𝐶(𝑁, 𝑅) =
𝐶𝑖 + (𝑁 − 1)𝐶𝑚 + 𝐶𝑟∗{∑ [− 𝑙𝑛(𝑅𝑇) + 𝜃

−𝜆𝛼𝑗
𝜆𝑍𝑗

𝜆]𝑁−1
𝑗=1 }

∑ (1 − 𝛼𝑗)𝑍𝑗
𝑁−1
𝑗=1

=
𝐶𝑖 + (𝑁 − 1)𝐶𝑚 + 𝐶𝑟∗{∑ [− 𝑙𝑛(𝑅𝑇) + 𝛼𝑗

𝜆𝐻(𝑍𝑗)]
𝑁−1
𝑗=1 }

∑ (1 − 𝛼𝑗)𝑍𝑗
𝑁−1
𝑗=1

=
𝐶𝑖 + (𝑁 − 1)𝐶𝑚 + 𝐶𝑟∗{∑ [− 𝑙𝑛(𝑅𝑇) + 𝛼𝑗

𝜆 𝑙𝑛(𝑅𝑇)]
𝑁−1
𝑗=1 }

∑ (1 − 𝛼𝑗)𝑍𝑗
𝑁−1
𝑗=1

=
𝐶𝑖 + (𝑁 − 1)𝐶𝑚 − 𝐶𝑟∗ 𝑙𝑛(𝑅𝑇) [∑ (1 − 𝛼𝑗

𝜆)𝑁−1
𝑗=1 ]

∑ (1 − 𝛼𝑗)𝑍𝑗
𝑁−1
𝑗=1

𝐶(𝑁, 𝑅) =
𝐶𝑖+(𝑁−1)𝐶𝑚−𝐶𝑟∗ 𝑙𝑛(𝑅𝑇)[∑ (1−𝛼𝑗

𝜆)𝑁−1
𝑗=1 ]

[
−𝑙𝑛(𝑅𝑇)

𝜃−𝜆
]

1
𝜆⁄

∑ (1−𝛼𝑗)
𝑁−1
𝑗=1

  (18) 

Differentiating Eq (18) w.r.t. 𝑅𝑇, equating it to zero and writing 𝑅𝑇 with respect to other terms, we 

have; 

𝑅𝑇
• = 𝑒𝑥𝑝 {

𝐶𝑖+(𝑁−1)𝐶𝑚

(1−𝜆)𝐶𝑟∗ ∑ (1−𝛼𝑗
𝜆)𝑁−1

𝑗=1

}       (19) 

2.5.3 Policy 3: System with optimal combination of reliability threshold in policies 1 and 2 

The aim of this policy is to combine the PM policy with fixed reliability threshold, 𝑅𝑁 and unfixed 

reliability thresholds, 𝑅𝑗 with a view to obtaining the total minimum cost per unit time compared 

to the previous two models  

By substituting Eq (14) in Eq (16), we have; 

(𝐶, 𝑅𝑁 , 𝑅𝑗) =
𝐶𝑖 + (𝑁 − 1)𝐶𝑚 + 𝐶𝑟∗{∑ [− 𝑙𝑛(𝑅𝑇) − 𝛼𝑗

𝜆𝐻(𝑍𝑗)]
𝑁
𝑗=1 }

𝑍𝑁 + ∑ (1 − 𝛼𝑗)𝑍𝑗
𝑁−1
𝑗=1

=
𝐶𝑖 + (𝑁 − 1)𝐶𝑚 + 𝐶𝑟∗{∑ [− 𝑙𝑛(𝑅𝑇) − 𝛼𝑗

𝜆 𝑙𝑛(𝑅𝑇)]
𝑁
𝑗=1 }

𝑍𝑁 + ∑ (1 − 𝛼𝑗)𝑍𝑗
𝑁−1
𝑗=1
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   =
𝐶𝑖+(𝑁−1)𝐶𝑚−𝐶𝑟∗ ∑ (1−𝛼𝑗

𝜆) 𝑙𝑛(𝑅𝑇)
𝑁
𝑗=1

𝑍𝑁+∑ (1−𝛼𝑗)𝑍𝑗
𝑁−1
𝑗=1

   (20) 

Since ∑ (1 − 𝛼𝑗
𝜆) 𝑙𝑛(𝑅𝑇)

𝑁
𝑗=1 = [𝑙𝑛( 𝑅𝑁) + ∑ (1 − 𝛼𝑗

𝜆) 𝑙𝑛(𝑅𝑇)
𝑁−1
𝑗=1 ] 

and 𝑍𝑗 = [
− 𝑙𝑛(𝑅𝑇)

𝜃−𝜆
]
1
𝜆⁄
= 𝜃[− 𝑙𝑛(𝑅𝑇)]

1
𝜆⁄

Eq (20) will now become; 

𝐶(𝑁,𝑅𝑁 , 𝑅𝑗) =
𝐶𝑖 + (𝑁 − 1)𝐶𝑚 − 𝐶𝑟∗[𝑙𝑛( 𝑅𝑁) + ∑ (1 − 𝛼𝑗

𝜆) 𝑙𝑛(𝑅𝑇)
𝑁−1
𝑗=1 ]

𝑍𝑁 + ∑ (1 − 𝛼𝑗) [
− 𝑙𝑛(𝑅𝑗)

𝜃−𝜆
]

1
𝜆⁄

𝑁−1
𝑗=1

=
𝐶𝑖+(𝑁−1)𝐶𝑚−𝐶𝑟∗[𝑙𝑛(𝑅𝑁)+∑ (1−𝛼𝑗

𝜆) 𝑙𝑛(𝑅𝑗)
𝑁−1
𝑗=1 ]

[
−𝑙𝑛(𝑅𝑁)

𝜃−𝜆
]

1
𝜆⁄

+∑ (1−𝛼𝑗)[
− 𝑙𝑛(𝑅𝑗)

𝜃−𝜆
]

1
𝜆⁄

𝑁−1
𝑗=1

   (21) 

Differentiating Eq (21) w.r.t. 𝑅𝑗, equating it to zero and making 𝐶 the subject, we have; 

𝐶 =
𝜆𝐶𝑟∗ ∑ (1−𝛼𝑗

𝜆)𝑁−1
𝑗=1

∑ (1−𝛼𝑗)[
− 𝑙𝑛(𝑅𝑗)

𝜃−𝜆
]

1
𝜆⁄ −1

𝑁−1
𝑗=1

=
𝜆𝐶𝑟∗(1−𝛼𝑗

𝜆)

𝜃(1−𝛼𝑗)[− 𝑙𝑛(𝑅𝑗)]
1
𝜆⁄ −1

    (22) 

Similarly, differentiating Eq (21) w.r.t. 𝑅𝑁 and making 𝐶 the subject, we have; 

𝐶 =
𝜆𝐶𝑟∗

𝜃[− 𝑙𝑛(𝑅𝑁)]
1
𝜆⁄ −1

    (23) 

Equating Eqs (22) and (23), we have; 

𝜆𝐶𝑟∗(1 − 𝛼𝑗
𝜆)

𝜃(1 − 𝛼𝑗)[− 𝑙𝑛(𝑅𝑗)]
1
𝜆⁄ −1

=
𝜆𝐶𝑟∗

𝜃[− 𝑙𝑛(𝑅𝑁)]
1
𝜆⁄ −1

[− 𝑙𝑛(𝑅𝑁)]
1
𝜆⁄ −1 [

1 − 𝛼𝑗
𝜆

1 − 𝛼𝑗
] = [− 𝑙𝑛(𝑅𝑗)]

1
𝜆⁄ −1

 

− 𝑙𝑛(𝑅𝑁) [
1 − 𝛼𝑗

𝜆

1 − 𝛼𝑗
]

𝜆
1−𝜆

= − 𝑙𝑛(𝑅𝑗) 

𝑙𝑛(𝑅𝑗) = 𝑙𝑛(𝑅𝑁) [
1−𝛼𝑗

𝜆

1−𝛼𝑗
]

𝜆

1−𝜆

(24) 

∴ 𝑅𝑗
∗ = 𝑅𝑁 𝑒𝑥𝑝 {[

1−𝛼𝑗
𝜆

1−𝛼𝑗
]

𝜆

1−𝜆

} (25) 

From Eq (21), we have; 

𝐶 {[
− 𝑙𝑛(𝑅𝑁)

𝜃−𝜆
]
1
𝜆⁄
+ ∑ (1 − 𝛼𝑗) [

− 𝑙𝑛(𝑅𝑗)

𝜃−𝜆
]

1
𝜆⁄𝑁−1

𝑗=1 } = 𝐶𝑖 + (𝑁 − 1)𝐶𝑚 − 𝐶𝑟∗[𝑙𝑛( 𝑅𝑁) + ∑ (1 − 𝛼𝑗
𝜆) 𝑙𝑛(𝑅𝑗)

𝑁−1
𝑗=1 ] 

Note that:  [− 𝑙𝑛(𝑅𝑗)]
1
𝜆⁄ −1

= [− 𝑙𝑛(𝑅𝑁)]
1
𝜆⁄ −1 [

1−𝛼𝑗
𝜆

1−𝛼𝑗
] 

[− 𝑙𝑛(𝑅𝑗)]
1
𝜆⁄ = [− 𝑙𝑛(𝑅𝑁)]

1
𝜆⁄ −1 [

1 − 𝛼𝑗
𝜆

1 − 𝛼𝑗
] × [− 𝑙𝑛(𝑅𝑗)] 

Substituting for 𝑙𝑛 𝑅𝑗, we have; 
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[− 𝑙𝑛(𝑅𝑗)]
1
𝜆⁄ = [− 𝑙𝑛(𝑅𝑁)]

1
𝜆⁄ −1 [

1 − 𝛼𝑗
𝜆

1 − 𝛼𝑗
] × [

1 − 𝛼𝑗
𝜆

1 − 𝛼𝑗
]

𝜆
1−𝜆

[− 𝑙𝑛(𝑅𝑁)] 

[− 𝑙𝑛(𝑅𝑗)]
1
𝜆⁄ = [− 𝑙𝑛(𝑅𝑁)]

1
𝜆⁄ [

1−𝛼𝑗
𝜆

1−𝛼𝑗
]

1

1−𝜆

         (26) 

Substituting Eqs (22), (23) and (24) in (26) where necessary, we have; 

𝜆𝐶𝑟∗

𝜃[− 𝑙𝑛(𝑅𝑁)]
1
𝜆⁄ −1

{[
− 𝑙𝑛(𝑅𝑁)

𝜃−𝜆
]

1
𝜆⁄

+∑(1 − 𝛼𝑗) [
− 𝑙𝑛(𝑅𝑁)

𝜃−𝜆
]

1
𝜆⁄

[
1 − 𝛼𝑗

𝜆

1 − 𝛼𝑗
]

1
1−𝜆

𝑁−1

𝑗=1

} = 

𝐶𝑖 + (𝑁 − 1)𝐶𝑚 − 𝐶𝑟∗ [𝑙𝑛( 𝑅𝑁) + 𝑙𝑛( 𝑅𝑁)∑(1 − 𝛼𝑗
𝜆) [

1 − 𝛼𝑗
𝜆

1 − 𝛼𝑗
]

𝜆
1−𝜆

𝑁−1

𝑗=1

] 

⇒ 𝐶𝑖 + (𝑁 − 1)𝐶𝑚 − 𝐶𝑟∗ 𝑙𝑛(𝑅𝑁) [1 + ∑(1 − 𝛼𝑗
𝜆) [

1 − 𝛼𝑗
𝜆

1 − 𝛼𝑗
]

𝜆
1−𝜆

𝑁−1

𝑗=1

] 

+𝜆𝐶𝑟∗ [1 + ∑(1 − 𝛼𝑗) [
1 − 𝛼𝑗

𝜆

1 − 𝛼𝑗
]

1
1−𝜆

𝑁−1

𝑗=1

] [− 𝑙𝑛(𝑅𝑁)] = 0 

𝐶𝑖 + (𝑁 − 1)𝐶𝑚 − 𝐶𝑟∗ 𝑙𝑛(𝑅𝑁
∗ ) {1 + ∑ [

(1 − 𝛼𝑗)
𝜆

1 − 𝛼𝑗
𝜆
]

1
𝜆−1

− 𝜆 [1 + ∑ [
1 − 𝛼𝑗

𝜆

(1 − 𝛼𝑗)
𝜆
]

1
1−𝜆𝑁−1

𝑗=0

]

𝑁−1

𝑗=0

} = 0 

𝐶𝑖 + (𝑁 − 1)𝐶𝑚 − 𝐶𝑟∗ 𝑙𝑛(𝑅𝑁
∗ ) {(1 − 𝜆)∑ [

(1 − 𝛼𝑗)
𝜆

1 − 𝛼𝑗
𝜆
]

1
𝜆−1𝑁−1

𝑗=0

} = 0 

𝑙𝑛(𝑅𝑁
∗ ) =

𝐶𝑖 + (𝑁 − 1)𝐶𝑚

𝐶𝑟∗(1 − 𝜆)∑ [
(1 − 𝛼𝑗)

𝜆

1 − 𝛼𝑗
𝜆 ]

1
𝜆−1

𝑁−1
𝑗=0

∴ 𝑅𝑁
∗ = 𝑒𝑥𝑝

{

𝐶𝑖+(𝑁−1)𝐶𝑚

𝐶𝑟∗(1−𝜆)∑ [
(1−𝛼𝑗)

𝜆

1−𝛼𝑗
𝜆 ]

1
𝜆−1

𝑁−1
𝑗=0

}

 
 (27) 

Substituting Eq (27) in Eq (25), we have; 

𝑅𝑗
∗ = 𝑒𝑥𝑝

{

𝐶𝑖+(𝑁−1)𝐶𝑚

𝐶𝑟∗(1−𝜆)∑ [
(1−𝛼𝑗)

𝜆

1−𝛼𝑗
𝜆 ]

1
𝜆−1

𝑁−1
𝑗=0

}

 
× 𝑒𝑥𝑝 {[

1−𝛼𝑗
𝜆

1−𝛼𝑗
]

𝜆

1−𝜆

} (28)
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III. Results

Table 3.1: Values of 𝑦𝑗  with fixed reliability threshold 

N 𝛼𝑗 yj Rt 

1 0.3333 0.8281 0.9000 

2 0.4000 0.4047 0.9000 

3 0.4286 0.3101 0.9000 

4 0.4444 0.2852 0.9000 

5 0.4545 0.2583 0.9000 

6 0.4615 0.2189 0.9000 

7 0.4667 0.1943 0.9000 

8 0.4706 0.1744 0.9000 

9 0.4737 0.1626 0.9000 

10 0.4762 0.1610 0.9000 

11 0.4783 0.1587 0.9000 

12 0.4800 0.1516 0.9000 

13 0.4815 0.1511 0.9000 

14 0.4828 0.1508 0.9000 

15 0.4839 0.1491 0.9000 

16 0.4848 0.1489 0.9000 

17 0.4857 0.1484 0.9000 

18 0.4865 0.1475 0.9000 

4.2035 

Table 3.2: Values of 𝑦𝑗  with variable reliability threshold 

N 
 

yj Rt 

1 0.5943 0.5340 0.8586 

2 0.5287 0.4897 0.8979 

3 0.5013 0.4824 0.8970 

4 0.4862 0.4048 0.8985 

5 0.4766 0.3426 0.8947 

6 0.4700 0.3199 0.8783 

7 0.4652 0.3044 0.8662 

8 0.4615 0.2902 0.8569 

9 0.4586 0.2689 0.8496 

10 0.4562 0.2376 0.8437 

11 0.4543 0.2220 0.8389 

12 0.4526 0.2131 0.8368 

13 0.4513 0.1923 0.8320 

14 0.4501 0.1901 0.8312 

15 0.4490 0.1827 0.8307 

16 0.4481 0.1792 0.8992 

17 0.4473 0.1749 0.8989 

18 0.4466 0.1721 0.8987 

5.1920 

1− 𝛼𝑗
𝜆
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Table 3.3: Values of 𝑦𝑗  under the combined policies 

S/N 

 

Rn Rj yj 

1 0.3507 0.1650 5.4455 0.8987 0.5340 

2 0.2960 0.1505 5.9674 0.8981 0.4816 

3 0.2748 0.1448 6.1969 0.8975 0.4833 

4 0.2636 0.1418 6.3260 0.8970 0.4057 

5 0.2566 0.1399 6.4088 0.8963 0.3436 

6 0.2518 0.1385 6.4664 0.8957 0.3208 

7 0.2483 0.1381 6.5088 0.8988 0.3053 

8 0.2457 0.1364 6.5413 0.8923 0.2912 

9 0.2437 0.1348 6.5671 0.8850 0.2698 

10 0.2420 0.1334 6.5879 0.8791 0.2385 

11 0.2406 0.1324 6.6052 0.8743 0.2229 

12 0.2395 0.1320 6.6197 0.8735 0.2140 

13 0.2385 0.1311 6.6321 0.8695 0.1932 

14 0.2377 0.1354 6.6428 0.8997 0.1910 

15 0.2370 0.1351 6.6521 0.8985 0.1836 

16 0.2363 0.1348 6.6603 0.8980 0.1801 

17 0.2358 0.1346 6.6675 0.8976 0.1758 

18 0.2353 0.1344 6.6740 0.8972 0.1730 

5.2077 

Table 3.4: Optimal solution of system performance under policies 1, 2 and 3 

System performance Policy 1 Policy 2 Policy 3 

System Lifespan 4.2035 5.192 5.2077 

Minimum reliability 0.9000 0.8310 0.8700 

Maintenance cost 6.3248 6.1146 5.5316 

Number of PM actions 18 18 18 

3.1 Application of PM policies with reliability threshold to the maintenance of Table Saw machine 

The distribution of the inter failure times of the Table Saw machine was modeled as a two parameter 

Weibull distribution as given in Eq (1), the shape and scale parameters of the distribution were 

obtained in section 2.4.5 as 𝜃 = 202.92; and 𝜆 = 3.8548, respectively. The results of policies 1, 2 and 

3 are contained in Tables 3.1, 3.2 and 3.3. The yj values are the length of operating time of the machine 

before PM or replacement maintenance (as the case may be) at respective policy.  

3.2 Expected maintenance cost per unit time for policies 1, 2 and 3 

The different maintenance costs ratios were obtained as; 
𝐶𝑟∗

𝐶𝑚
= 8.0  and 

𝐶𝑖

𝐶𝑚
= 2.8. Eqs (18) was used 

to obtain the expected maintenance cost for each policy as; Policy 1: 𝐶(𝑁) = 6.3248, Policy 2: (𝑁) =

6.1146, Policy 3 : 𝐶(𝑁) = 5.5316 

1 − 𝜆

1 − 𝛼𝜆

𝜆
𝜆−11− 𝛼 𝜆

1 − 𝛼𝜆

1
𝜆−1
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IV. Discussion

I. Policy 1:  When the Table Saw machine has a fixed reliability threshold

The fixed reliability threshold for proper functioning of the machine was set at 0.9000. Eqs (9) and 

(14) were used to obtain the operating time (life span) of the machine, 𝑦𝑗 before next PM activity.

The age improvement factor, 𝛼𝑗 =
𝑗

(2𝑗+1)
, ([23] and [8]), increases marginally with the frequency of

PM. The values of 𝛼𝑗, 𝑦𝑗, and 𝑅𝑡 are shown in Table 3.1. The bold last value of 𝑦𝑗 in column 3 is the 

total lifespan of the machine over 18 PM cycles equal 4.2035 years. The column of 𝑅𝑡 is the fixed 

reliability threshold for all maintenance actions. It took 0.8281unit of the operating time before the 

first PM activity, 0.4047 unit of working time before the next PM, and so on. Generally, it is observed 

that the lifespan of the machine keeps decreasing in spite of the fact that the fixed reliability limit is 

not violated. Hence, maintenance engineers need not rely on this policy. 

II. Policy 2: When the Table Saw machine has an unfixed reliability threshold

Eqs (14), (15) and (19) were used to obtained the lifespan of the machine, 𝑦𝑗 after each PM and the 

corresponding reliability index, R(t) which serves as a check for replacement. The total lifespan of 

the machine over 18 PM cycles equal 5.1920 years. The minimum reliability threshold set at 𝑅𝑇 =

0.8310 is always set a value below the fixed reliability (0.9000) used in policy 1, see [13]. The 𝑦𝑗 

column which is the operational time before PM, shows a gradual decrease of PM intervals from 

0.5340 unit time in the first cycle of operation before next PM to 0.4897 unit of operational time before 

the 2nd PM to 0.4824 units of operational time before the third PM activity and so on. The 15th PM 

calls for replacement maintenance of the failed component of the machine because its reliability 

value is below the threshold (0.8310) of the machine. After the replacement maintenance, it is 

observed that the values of the machine’s reliability increase to within the tolerance level again 

illustrating the import of PM actions. 

III. Policy 3: A Combination of policies 1 and 2 for the Table Saw machine

Eqs (9) and (28) were used to obtain the lifespan of the machine, 𝑦𝑗. The minimum reliability 

threshold, 𝑅𝑇 = 0.8700 while the lifespan equals 5.2077 years. Eq (27) gives columns 2 and 3, Eq (28) 

gives columns 4 and 5, while Equations (14) and (15) give the last column, all in Table 3.3. The 𝑦𝑗 

column has 0.5340 unit of operating time before first PM and 0.4816 unit of operating time before 

the 2nd PM, and 0.4833 unit of operating time before the 3rd PM activity, and so on. Replacement 

maintenance is required at the 13th PM because its reliability value is below the threshold (0.8700). It 

is observed that after the appropriate replacement maintenance action, the critical reliability level 

rises to 0.8997, even above the initial level at the beginning of operation. This underscores the need 

for PM and a justification to recommend policy 3 for effective maintenance management. 

The lifespan of the machine with regard to Policies 1, 2 and 3 in Table 3.4 are 4.2035, 5.1920, 

and 5.2077, respectively. The minimum reliability values of these three policies are 0.900, 0.8310 and 

0.8700, respectively, and the associated respective cost of maintaining this machine in a lifecycle of 

18 PM’s are 6.3248, 6.1146 and 5.5316, respectively. These results agree with [22] who showed that 

PM model based on the unfixed reliability threshold led to a lower expected maintenance cost and 

longer system lifespan.  

Therefore, policy 3 which combines fixed predetermined reliability threshold and the 

variable threshold values as decision variable is the recommended optimum maintenance policy for 

the Table Saw machine. It yielded the minimum cost of maintenance as well as the longest lifespan 

of the machine over the PM cycles under consideration. 
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