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Abstract 

Robust missing observations have emerged as a crucial study area in statistical research. Response 

Surface Methodology (RSM), a recognized and extensively utilized area in experimental design, has 

determined that the absence of observations in an experiment can introduce complexity and 

interfere with the estimation of parameters. Previous literature reviews reveal that most studies on 

missing Central Composite Design (CCD) data were conducted using optimality and minimax loss 

criteria. Our study explores the spherical region of interest in the missing observation of CCD, 

represented through Variance Dispersion Graph (VDG) and Fraction of Design Space (FDS) 

graphs. Practitioners primarily focus on the region of interest rather than employing various alpha 

values. We investigate the predictive capabilities of each factorial, axial, and center missing design 

point against different radii(r) and fractions of the design space region, and we also measure relative 

G- and D- efficiency. We scrutinize various factors (k) from two to seven, including five center

runs. Our research explores the region of interest in operating the experiment under robust

conditions through visual aids of VDG and FDS graphs.

Keywords: Central Composite Design, Fraction of Design Space, Scaled 

Prediction Variance, Optimality, Variance Dispersion Graph 

I. Introduction

Response Surface Methodology is a potent combination of statistical and mathematical techniques 

used for model building. It’s specifically designed to evaluate the effects of several independent 

variables and determine their optimal values to achieve the most favorable results. This 

methodology is particularly beneficial when the goal is to optimize a product or process. It allows 

for a comprehensive understanding of the relationships between different variables and the 

response, facilitating efficient and effective optimization. The empirical model is constructed using 

data gathered directly from the system or process under study. RSM involves building empirical 

models using multiple linear regression and statistical techniques [12] In the literature review, 

various authors have conducted studies on the missing data of second-order composite designs. 

The details of these studies will be briefly discussed sequentially. Draper [8]  examined the studies 

on sturdy methods for handling missing observations in response surface design and 

acknowledged the pioneer who formulated the parameter estimation equation. Indeed, Akhtar et 
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al. [2] introduced a minimax loss criterion to assess missing observations. This approach has 

become the most used method in response surface designs. It’s a significant contribution to the 

field as it provides a robust and effective way to handle missing data, thereby improving the 

accuracy and reliability of the designs. Alrweili et al. [4] discussed the minimax loss criterion to 

develop more resilient models for missing data. They achieve this by integrating the most recent 

CCDs from GSA and AEK, both novel designs. Hayat et al. [10] delved into designs derived from 

regular and irregular structure subsets. They evaluate how these designs handle missing points 

using the minimax loss criterion. Furthermore, they scrutinize their alphabetic optimality and 

predictive capabilities through FDS plots depicting the variance in response difference. Alanazi et 

al. [3] introduced closed-form expressions that account for two missing observations. These 

expressions are based on 𝛼, the axial value utilized in CCDs that handle up to 10 factors. 

Hemavathi et al.[11]  examined the ability of sequential third-order rotatable design to manage 

missing data without significant information loss. Additionally, the study quantifies the loss of 

information from one or two absent experimental runs at varying distances from the design’s 

center. Park et al. [14] compared CCD, SCD, and MinResV designs. They focus on spherical regions 

with k = 3 to 7 factors, using the optimality criteria and the variance dispersion graph as 

benchmarks. Interestingly, their findings reveal that none of these designs consistently 

outperforms others. Li et al. [13] evaluated various CCD, SCD, and MinResV designs. These 

designs are applied to spherical and cuboidal regions with different axial values. To analyze the 

prediction variance properties of these designs, they use FDS plots and box plots. Onwuamaeze 

[15] employed graphical techniques like VDG and FDS plots. They use these methods to assess the

prediction variance performance of CCD, SCD, and MinResV designs within the hypercube region.

Ahmad et al. [1] compared Augmented Pairs (AP) designs and Subset designs based on standard

optimality criteria and graphical criteria in spherical and cuboidal regions of experimentation,

which provide more insight into the prediction performance of the designs. The article [17]

employed VDG and FDS plots to depict the scaled prediction variance attributes of the second-

order design and G- and I- optimality designs within a cuboidal area of interest.  The study by G.

G. Vining et al. [18]) involved a graphical method that plots the maximum and average mean

squared prediction error across spheres of different radii within the design space.

This study thoroughly investigates the impact of missing data on the central composite design 

within a spherical region of interest. Utilizing VDG and FDS determines the robustness of the 

design in various regions based on missing factorial, axial, and center design points. The paper is 

segmented into various parts. The methodology is detailed in Section 2. Section 3 presents the 

findings and discussions, including the interpretation of VDG and FDS plots using spherical and 

rotatable alpha values and Section 4 concludes the study. 

II. Methodology

I. Description of Second-Order Central Composite Design

In many cases where we apply RSM, the relationship between the predictor variables and the 

response might be unclear. A first-order model, while applicable in some cases, might not be able 

to accurately capture the curvature of the response function due to its linear nature. This is where 

higher-degree polynomial models, such as second-order models, come into play. These models can 

capture more complex relationships and better evaluate curvature in optimization experiments. 

They provide a more nuanced understanding of the data, allowing for more accurate predictions 

and more effective optimization. 
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For 𝑘 quantitative factors denoted by 𝑥1, 𝑥2, … , 𝑥𝑘, a second-order model is 

𝑦 = 𝛽0 + ∑𝑖=1
𝑘 𝛽𝑖𝑥𝑖 + ∑𝑖=1

𝑘 𝛽𝑖𝑖𝑥𝑖
2 + ∑𝑖=1

𝑘−1∑𝑗=𝑖+1
𝑘 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜀     (1) 

In this context, 𝛽0, 𝛽𝑖 , 𝛽𝑖𝑖 , and 𝛽𝑖𝑗represent the intercept, linear, quadratic, and bilinear 

coefficients, respectively. 𝜖𝑖 is a random error term with a mean of zero, a variance of 𝜎2, and is

independent for each pair of runs. The total number of parameters that need to be estimated, 

denoted as p, is calculated as𝑝 = 𝑘 + 𝑘 + (
𝑘
2

) + 1. To ensure enough degrees of freedom to estimate 

these model coefficients, the number of runs, represented as n, must equal or exceed p. 

CCD is extensively utilized to estimate second-order response surfaces. Since its introduction 

by [7], the CCD has been the subject of numerous studies and has seen widespread use in various 

fields. The flexibility in utilizing the CCD lies in choosing alpha (α) , which represents the axial 

distance and 𝑛𝑐, denoting the number of centre runs. The selection of these two parameters can be 

crucial. The operational region and the area of interest largely influence the determination of α. 

Here, we use spherical and rotatable α values, where the spherical value of α is set to the square 

root of the number of factors, represented as 𝛼𝑆 = 𝑘1/2. Indeed, in αS, all the design points are

situated on a common geometric sphere, and it is nearly rotatable, and Box et al. [6] suggested a 

value, 𝛼𝑅 = 𝐹1/4, called rotatable α, where 𝐹 is the number of factorial runs in a design. Indeed, a

design is rotatable if the variance remains the same for all points that are an equal distance from 

the design's center. 

II. Scaled Prediction Variance and Relative G- and D- Efficiency

Borkoski [5] have developed an analytical form for calculating scaled prediction variance values of 

CCD and Box-Behnken design (BBD). Spherical Prediction Variance (SPV) enables accurate 

prediction of response variables at different points of interest within the experimental area. The 

prediction variance at a point x is given by  

𝑣(𝑥) =
𝑛⋅𝑣𝑎𝑟[�̂�(𝑥)]

𝜎2 = 𝑛 ⋅ 𝑋(𝑚)′
(𝑋′𝑋)−1𝑋(𝑚)     (2) 

The vector
( )hX represents the array of coordinates of a point in the design space that has been

magnified to align with the model form, where n is the quantity of experimental runs design, and 

σ2 is the observation error.  

G- optimality is a standard that seeks to reduce the highest possible variance in any forecasted

value across the entire experimental domain. This efficiency can be understood as the proportion 

between the determinant of the information matrix for a specific design and the determinant of the 

information matrix for the best optimal design. 

  𝐺eff =
𝑝

𝑛⋅𝑀𝐴𝑋𝑋∈𝑅𝑣(𝑥)
 (3) 

In this context, p represents the estimated model's parameters, and n denotes the number of 

observations in the corresponding design. The term 𝑀𝐴𝑋𝑋∈𝑅𝜈(𝑥)signifies the maximum value of the 

variance of the predicted response. As a result, the relative G-efficiency, denoted as 𝑅𝐸𝐺 , is 

determined by the ratio of the 𝐺𝑒𝑓𝑓for the reduced design to the 𝐺𝑒𝑓𝑓  for the complete design. 
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𝑅𝐸𝐺 =
𝐺eff ( reduced )

𝐺eff
=

𝑛⋅𝑀𝐴𝑋𝑋∈𝑅𝜈(𝑥)

𝑛𝑟⋅𝑀𝐴𝑋𝑋∈𝑅𝜈(𝑥)reduced
 (4)   

In this scenario, 𝑛 represents the size of the complete design, while 𝑛𝑟 denotes the size of the 

reduced design. Based on the definition of 𝑅𝐸𝐺, a design that yields a higher value of 𝑅𝐸𝐺  would 

be more desirable. This is because a higher 𝑅𝐸𝐺value indicates a more efficient design relative to 

the complete design. By utilizing equations (3) and (4), we are able to compute the relative G-

efficiency value. These values are then presented in tables 1 and 2. 

D efficiency is defined as maximizing the determinant of the information matrix minimizing 

the determinant of the inverse of the information matrix. Thus, relative 𝐷- efficiency is given as 

𝑅𝐸𝐷 = (
|𝑋′𝑋|

reduced 

|𝑋′𝑋|
)

1

𝑝

 (5) 

Where, 𝑝 is the number of parameters of the model to be estimated, |𝑋′𝑋|reduced  is the

determinant of the information matrix of reduced design and |𝑋′𝑋| is the determinant of the 

complete design matrix. A value approaching one will represent a minor loss, whereas a value 

below one will represent a more significant loss in model estimation. Through the application of 

equation (5), we are able to determine the relative D-efficiency value. These computed values are 

then listed in tables 1 and 2. 

III. Variance Dispersion Graph and Fraction of Design Space

Giovannetti-Jensen and Myers [9] presented the concept of variance dispersion graphs to evaluate 

the comprehensive predictive capability of a RSM within a region of interest. A variance 

dispersion graph allows one to visualize the uniformity of the scaled variance of a predicted value 

in multidimensional space. It consists of three curves: the maximum, the minimum and the 

average scaled variance of a predicted value on a hypersphere.  However, these VDG plots do not 

consider the fraction of the total design space between concentric spheres of radius r at different 

distances from the center of the design space. Variance Dispersion Graph handle the SPV on a 

sphere with radius r, but they overlook the volume related to this information. To gain insight into 

the complete picture of the prediction performance of a design, one should consider the volume. 

An FDS plot [16] is generated by taking a substantial number of samples, represented as n, from 

the entire design area and calculating the associated SPV values. The underlying concept is that the 

design quality improves if a greater portion of the design space is near the minimum SPV value. 

Furthermore, a flatter line indicates a more stable design. The FDS plot effectively 

encapsulates the range and distribution of SPV values in the design space, facilitating the 

comparison of designs through a single curve. Furthermore, it [19] equips the investigator with a 

unique graph for contrasting designs or examining the characteristics of a particular design. 

III. Result and Discussion

I. Relative D- and G- efficiency of CCD k = 2 to 7 using spherical and rotatable α

When a data point is missing in a Central Composite Design (CCD) with factor k = 5 and a factorial 

(1,1,-1,1,-1) run, the relative G efficiency is poorest. G-efficiency measures the precision of 

parameter estimates in a design. Specifically, relative G efficiency compares the efficiency of a 

design with missing observations to the efficiency of the same design without any missing data. 

When a data point is missing, the relative G efficiency decreases, indicating reduced precision in 

estimating model parameters. 
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Additionally, relative D efficiency approaches 1 in this scenario, indicating maximum 

determinant value. D-efficiency is related to the determinant of the information matrix (also 

known as the Fisher information matrix). Relative D efficiency compares the determinant of the 

information matrix for a design with missing observations to the determinant for the complete 

design. A value closer to 1 indicates better efficiency in terms of information content. 

Axial missing points outperform factorial points in terms of both relative G and D efficiency. 

Interestingly, missing a center run has minimal impact compared to the no-missing scenario, 

except for relative G efficiency when k = 2. Overall, relative G and D efficiency provide valuable 

insights for comparing missing and complete designs 

Table 1: Relative D and G efficiency of CCD of factors k = 2 to 7 using spherical α 

Factors Number of 

runs 

Types of Missing 

runs 

Alpha 

value (𝛼𝑆) 

Relative G 

efficiency 

(𝑅𝐸𝐺) 

Relative 

D 

efficiency 

(𝑅𝐸𝐷) 

K=2 13 None 1.41421 1.0000 1.0000 

12 Factorial (-1,1) 0.4062 0.8492 

Axial (0,1.41421) 0.4062 0.8492 

Centre (0,0) 0.3008 0.9635 

K=3 19 None 1.73205 1.0000 1.0000 

18 Factorial (-1, -1,1) 0.3581 0.8975 

Axial (0,1.73205,0) 0.4292 0.9080 

Centre (0,0,0,) 1.0555 0.9779 

K = 4 29 None 2 1.0000 1.0000 

28 Factorial (-1,1,1,1) 0.4316 0.9433 

Axial (0,-2,0,0) 0.4316 0.9433 

Centre (0,0,0,0) 1.0358 0.9852 

K = 5 31 None 2.23607 1.0000 1.0000 

30 Factorial (1,1,-1,1,-1) 0.1491 0.9120 

Axial (0,0,0,2.23607,0) 0.5177 0.9537 

Centre (0,0,0,0,0) 1.0334 0.9894 

K = 6 49 None 2.4495 1.0000 1.0000 

48 Factorial (-1,-1,-1,1,1,-

1) 

0.3800 0.9653 

Axial 

(0,0,0,2.44949,0,0) 

0.4723 0.9699 

Centre (0,0,0,0,0,0) 1.0209 0.9921 

K = 7 83 None 2.64575 1.0000 1.0000 

82 Factorial (1,-1,-1,-

1,1,1,-1) 

0.7106 0.9845 

Axial 

(0,0,0,0,2.64575,0,0) 

0.4747 0.9792 

Centre (0,0,0,0,0,0,0) 1.0122 0.9938 
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Table 2 : Relative D and G efficiency of CCD of factors k =3,4,5 and 7 using rotatable α 

Factors Number of 

runs 

Types of Missing runs Alpha 

value (𝛼𝑆) 

Relative G 

efficiency 

(𝑅𝐸𝐺) 

Relative 

D 

efficiency 

(𝑅𝐸𝐷) 

K = 3 19 None 1.68179 1.0000 1.0000 

18 Factorial (-1,-1,1) 0.3486 0.8951 

Axial (0,1.68179,0) 0.4178 0.9108 

Centre (0,0,0,) 1.0555 0.9780 

K = 5 31 None 2 1.0000 1.0000 

30 Factorial (1,1,-1,1,-1) 0.1251 0.9044 

Axial (0,0,0,2,0) 0.4722 0.9574 

Centre (0,0,0,0,0) 1.0331 0.9901 

K = 6 49 None 2.37841 1.0000 1.0000 

48 Factorial (-1,-1,-1,1,1,-1) 0.3770 0.9651 

Axial (0,0,0,2.37841,0,0) 0.4888 0.9704 

Centre (0,0,0,0,0,0) 1.0209 0.9921 

K = 7 83 None 2.82843 1.0000 1.0000 

82 Factorial (1,-1,-1,-1,1,1,-

1) 
0.5790 

0.9457 

Axial(0,0,0,0, 2.82843,0,0) 0.5340 0.9239 

Centre (0,0,0,0,0,0,0) 1.0121 0.9790 

II. Interpretation of VDG of factors k = 2 to 7 of spherical √𝑘 alpha value

Figure 1 depicts all the factors of SPV distribution against radius; when k = 2, the trajectory of the 

maximum, average, and minimum SPV for both factorial and axial design points with missing 

observations is identical. This trajectory remains consistent for each design point, beginning at a 

radius of 0 and extending to √2, resulting in a maxSPV value of 24.13. In this case, both the original 

and missing center design points exhibit the same maximum, minimum, and average prediction 

variance across all radii.  

When k = 3, excluding Fmax and Amax, all other design points for maximum, average, and 

minimum prediction variance display a certain level of consistency in their SPV values below 5 up 

to a radius r ≤ 1.20. Past a radius of about 1.20, the curve steadily rises until the radius hits √3. 

Fmax can achieve an SPV as elevated as 39.40, while Amax can attain an SPV as high as 33.40. For 

factor k = 4, a center run is missing at the radius origin, exhibiting an SPV value of 7.03. As the 

radius extends to r = 1, this SPV value decreases to 5.87. Beyond r = 1, the SPV value escalates with 

the radius, reaching a maxSPV of 16.26. A factorial and an axial design point are absent, with a 

maxSPV of 37.98 at a radius √4. The pattern followed by factor k = 4 resembles factor k = 2. 

For factor k = 5, the lack of a factorial observation leads to a significant SPV value of 190.2 at 

the radius √5. This suggests that insufficient data under these conditions leads to subpar 

predictive performance in the experiment. The axial design point's maximum prediction variance 

is 52.39 at the radius √5. The None-max, None-avg, Cmax, Cavg, and Aavg of all these prediction 

variance design points are almost identical for all radii with an SPV of ~ 26.15 or less, except for 

Favg SPV, which slightly deviates from another curve from a radius of 1.30. Despite 

misinformation, minSPVs follow the same path for all design points. 

When k = 6, the absence of a factorial and an axial observation result in the maximum SPV 

staying below 10 from a radius of 0 ≤ r ≤ 1.20. However, as the radius increases beyond 1.20, the 

SPV value rises, reaching a maximum SPV of 73.90 for factorial and 63.20 for axial at radius √6. 
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Specifically, we can observe that the SPV design points Favg, Fmin, Aavg, and Amin follow the 

same trajectory from a radius of 0 ≤ r ≤ 1.40, with an SPV of less than 8.65. Beyond a radius of 1.40, 

the minSPVs diverge from the path, reaching a minSPV of 29.40. A similar pattern is observed for 

None-max, avg, min and Cmax, avg, min, but they start from different SPV values at radius 0 and 

travel closely up to a radius of approximately 1.40. Beyond a radius of 1.40, the minSPVs diverge 

up to a radius of √6. 

For factor k = 7, the lack of an axial design point leads to a predictive performance that is 

inferior to the factorial. The axial design point has an SPV of 71.85, while the factorial design point 

has an SPV of 53.75 at the radius √7. Excluding the center design point SPV, all other points start 

with an SPV of 16.20 at a radius of 0 and maintain the same path up to a radius slightly less than 

1.0. Beyond a radius of 1.0, the prediction variances of each design point diverge from each other. 

It can be observed that the average and minimum SPV of various design points falls within an SPV 

interval of 35.31 to 33.50 at radius √7. 

Figure 1: (a) VDG for CCD K = 2. (b) VDG for CCD K = 3. (c) VDG for CCD K = 4. (d) VDG for CCD K = 5. (e) VDG 

for CCD K = 6. (F) VDG for CCD K = 7 
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III. Interpretation of VDG of factors K = 3, 5, 6 and 7 of rotatable alpha value

Figure 2 depicts all the factors of SPV distribution against radius; For the factor k = 3, the absence 

of a center run results in the lowest maxSPV of 11.18. Excluding Fmax and Amax, which have SPVs 

of 34.11 and 28.76, respectively, all other average and minimum SPVs and design points with no 

missing data maintain an SPV value of less than 3.63 up to a radius of less than 1.00. Beyond a 

radius of 1.00, these design points begin to diverge slightly from each other.  

For factor k = 5, when a factorial observation is absent up to a radius of 0.7, the SPV stays 

below 8.43. However, once the radius surpasses 0.7, the SPV undergoes a substantial increase, 

reaching a peak of 199.90 at √5. The lack of an axial observation results in a maxSPV of 8.41 at a 

radius of 1.00, and as the radius grows, the SPV steadily increases, attaining a maxSPV of 55.23 at 

√5. Apart from the two scenarios mentioned earlier, all other situations, such as no missing design

points, a missing Centre run, average, and minSPVs, lie within the range of 33.71 to 24.81 at a

radius of 2.23.

For factor k = 6, the lack of a factorial and an axial design point in an experimental setup 

results in nearly identical SPV values up to a radius of less than 1.20. Beyond this point, the SPV 

value slowly diverges, reaching 74.79 for factorial and 65.00 for axial at a radius of √6. For the 

factor k = 7, the absence of an axial observation leads to a lower prediction performance than when 

a factorial observation is missing. However, for radii less than 1.60, both design points maintain a 

nearly identical SPV value of 17.27. Factors k = 6 and 7 display the same conditions for no missing 

observation, average, and minSPVs, following the same path across all radii. The absence of a 

center run does not exhibit a consistent increasing trend across all radii; instead, it varies. 

  Figure 2: (a) VDG for CCD K = 3. (b) VDG for CCD K = 5. (c) VDG for CCD K = 6. (d) VDG for CCD K = 7. 
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IV. Interpretation of FDS of factors k = 2 to 7 of spherical √𝑘 alpha value:

Figure 3 of FDS plot depicts that the impact of missing and non-missing observations is not 

significantly different across most factors. For factor k = 2, a missing center run must be distinct 

from all other factorial, axial, and non-missing design points. In contrast, the various observations 

for all other factors follow similar trajectories, staying close to each other within 75% to 85% of the 

design space region. When considering missing factorial and axial observations, it’s notable that 

only for factor k = 7 does the axial observation have the highest SPV. The factorial observation has 

the highest SPV for all other factors, with factor k = 5 showing an exceptional SPV value of 191.86. 

A G-efficiency of 100% is achieved by all factors at various design points when the FDS region is 

approximately 80%. Beyond 85% of the FDS region, all factors experience a significant increase in 

the maximum SPV. 

Figure 3: (a) FDS for CCD K = 2. (b) FDS for CCD K = 3. (c) FDS for CCD K = 4. (d) FDS for CCD K = 5. (e) FDS  for 

CCD K = 6. (F) FDS  for CCD K = 7 
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V. Interpretation of FDS of factors K = 3, 5, 6 and 7 of rotatable alpha value

As the factor increases (such as 5, 6, and 7), the coverage of the FDS region over 100% of the G-
efficiency also increases. Specifically, for factor k = 5, both missing and non-missing observations 
reach the 100% G-efficiency line at 55% of the FDS region. For factor k = 6, they reach this line at 
85% of the FDS region; for factor k = 7, they reach it at 95% of the FDS region 

Figure 4: (a) FDS for CCD K = 3. (b) FDS for CCD K = 5. (c) FDS for CCD K = 6. (d) FDS for CCD K = 7. 

IV. Conclusion

In an experimental setup, the absence of a single observation could potentially influence the 

results. There are diverse design points in a central composite design context, each with unique 

characteristics. In the context of a spherical region of interest or near a rotatable alpha for each 

factor, it’s shown that missing a factorial observation influences the SPV value, leading to a 

maximum variance. Through VDG, we observe that the SPV value begins to rise approximately 

when the radius r ≥1. On the other hand, in the FDS region, factorial data results occupying more 

than 85% of the fraction of the design space exhibit a significant SPV value. The average and 

minimum variances across all factors and various design points tend to remain close to each other. 

The results indicate that the absence of a center run, when compared to scenarios with no missing 

design points, does not influence the experiment's outcome within any spherical region of interest. 

The study highlights the benefits of employing graphical representations when dealing with 

missing observations in the region of interest. This approach can be expanded to include various 

second-order composite, computer-generated, and optimal designs to examine robust scenarios, 

making it a valuable tool in experimental design.  
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