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Abstract

Due to the requirements for the flexible statistical model to fit the lifetime data, we extended the truncated
exponential topp-leone family due to its bounded interval, and introduced a truncated exponential log
topp-leone generalized family of distributions. we examine some properties including survival function,
hazard rate function, residual lifetime, reverse residual lifetime, moment, moment generating function,
Shannon entropy, quantile, and parameter estimation using maximum likelihood, maximum product
spacing, and bayesian estimation. Two simulation studies were conducted to investigate the properties
(i.e. mean, variance, skewness, and kurtosis), and behavior of the maximum likelihood estimate using
mean, bias, and RMSE. Finally, we apply the data on the survival times of breast cancer patients and
suggest that the family of the proposed distribution outperforms other standard distributions based on
information criteria and goodness of fit.

Keywords: Truncated Exponential Log Topp-Leone-G; Statistical Properties; Estimation; Simula-
tion; Application.

I. Introduction

Lifetime data modeling has become a significant area in many fields, including actuarial science,
economics, life science, engineering, business, and industries, among other [11] scientific fields, as
data sets get more diverse and complicated [21]. This attracts much literature, which requires an
appropriate model for accurate data realization [21]. To overcome such an issue, [22] developed a
new distribution of empirical data with J-shaped histograms. It is a bounded support continuous
distribution that can be used to simulate a distribution’s lifetime. There has been little discussion
prior to its discovery by [15], who examined a few of its properties, including moments and central
moments. The flexibility of its hazard rate function makes Topp-leone a suitable distribution for
modeling lifetime data [14].

In order to extend the existing truncated exponential topp-leone distribution by [6] with a
bounded interval, there is need to modify the existing work of [12] on generalized topp-leone
distribution using the concept of log transformation on log topp-leone [23] to become the log
topp-leone generalized distribution, and incorporate it with truncated exponential as in [6] to
provide a distribution with an unbounded interval.
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Many researchers have introduced a generalization of distribution in relation to topp-leone in-
cluding Topp-Leone Generalized Family of Distribution by [12], A New Topp-Leone Generalized
Family of Distribution by [10], Topp-Leone Exponentiated-Generalized by [20], Sin Topp-Leone
Generalized Distribution by [? ], Exponentiated Topp-Leone Exponentiated-Generalized Disti-
bution by [18], Frechet Topp-Leone Generalized Distribution by [18], Transmuted Topp-Leone
Generalized by [24], New Power Topp-Leone Generated Distribution by [9], Poisson Topp-Leone
Generator of Distribution by [13], truncated exponential topp-leone exponential by [6], truncated
exponential topp-leone rayleigh by [5], among others.

In this paper, we conducted a Monte Carlo simulation to examine the behavior and consistency
of the maximum likelihood estimate on the family of the Truncated exponential log-topp-leone-G
introduced in [1] and also in [2]. The bayesian estimation would also be introduced in this
paper, where the prior, conditional, and posterior distributions are to be discussed, while some
properties were derived in including residual, reverse residual, Shannon entropy, and other
methods of estimation parameters (see [1]), while other properties were already derived in [2].

II. Methods

1. Truncated Exponential Log-topp-leone Generalized Family of Distributions

The proposed Truncated exponential Log Topp-leone Generalized Family of distributions is
drive from the cdf of truncated exponential distribution in [3] and the cdf of Log Topp-Leone-G
distribution (which is an extension to the work of [23]) by integrating the pdf of truncated
exponential distribution in equation with limit from 0 to the cdf of log topp-leone generalized
family, and is drive as follows.

FTELTL−G(y, β) =
∫ (1−e−2H(y,ψ))θ

0

βe−βy

1 − e−β
dy =

1 − e−β(1−e−2H(y,ψ))θ

1 − e−β
(1)

Therefore

F(y, β, θ) =
1 − e−β(1−e−2H(y,ψ))θ

1 − e−β
(2)

And we can find the probability density function by differentiating the Cdf using quotient rule.
Let The cumulative distribution and probability density function of the truncated exponential
Log Topp-leone-G family are given by

fTELTL−G(y, β, θ, ψ) =
2βθh(y, ψ)e−2H(y,ψ)(1 − e−2H(y,ψ))θ−1e−β(1−e−2H(y,ψ))θ

1 − e−β
y, θ, β > 0 (3)

2. Mathematical properties of TELTL-G

In this part, we discussed some mathematical properties of TELTL-G as follows:

2.1 Survival function and Hazard rate function of TELTL-G

The Survival function S(Y) of a TELTL-G as one of the important tools for measuring the failure
time of a system is given by

S(y) =
e−β(1−e−2H(y,ψ))θ − e−β

1 − e−β
(4)

The hazard rate function H(Y) of a TELTL-G is given by

H(y) =
2βθg(t, ψ)e−2H(y,ψ)(1 − e−2H(y,ψ))θ−1e−β(1−e−2H(y,ψ))θ

e−β(1−e−2H(y,ψ))θ − e−β
(5)
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2.2 Residual and Reverse residual of TELTL-G

one of the tools with application in acturial science, biometry, risk management, survival analysis
is residual and reverse residual life. The residual and reverse residual life denoted by rt(y) and
r̄t(y) in the following equation.

rt(y) =
S(y + t)

S(t)
=

e−β(1−e−2H(y+t,ψ))θ − e−β

e−β(1−e−2H(t,ψ))θ − e−β
(6)

r̄t(y) =
S(y − t)

S(t)
=

e−β(1−e−2H(y−t,ψ))θ − e−β

e−β(1−e−2H(t,ψ))θ − e−β
(7)

2.3 Moment and moment generating function

Moments is a crucial part of any statistical study [10]. They may be used to characterize key
distributional features and forms, such as dispersion and spread as determined by mean and
variance and peakiness of the distribution as determined by kurtosis. They can also be used to
look at the symmetry of the distribution’s shape as determined by skewness. Using the pdf from
(3), the rth moment of a TELTL-Gdistribution is given by,

E(yr) = µr
∫ ∞

−∞
yr f (y, β, θ, ψ)dy (8)

⇒ µr =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

∞

∑
e=0

∫ ∞

0
κyrh(y, ψ)(H(y, ψ))j+pdy (9)

⇒ µr =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

∞

∑
e=0

κ∆ (10)

Where

κ =

(
θ − 1

i

)(
kθ

m

)
(−1)i+j+k+p2i+P+1(i + 1)jβk+1θmpte

j!k!p!e!(1 − e−β)
(11)

And
∆ =

∫ ∞

0
yrh(y, ψ)(H(y, ψ))j+pdy (12)

The MGF of the random variable that follows TELTL-G having pdf in equation (3) is drive as.

E(ety) = My(t) =
∫ ∞

−∞
ety f (y, β, θ, ψ)dy (13)

My(t) =
∫ ∞

0
τye+1h(y, ψ)(H(y, ψ))j+pdy (14)

⇒ My(t) =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

∞

∑
e=0

τϱ (15)

where

τ =

(
θ − 1

i

)(
kθ

m

)
(−1)i+j+k+p2i+P+1(i + 1)jβk+1θmpte

j!k!p!e!(1 − e−β)
(16)

And
ϱ =

∫ ∞

0
ye+1h(y, ψ)(H(y, ψ))j+pdy (17)
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2.4 Quantile function and Shannon Entropy

The Quantile of TELTL-G is derived as,

⇒ yu = −1
2

ln

1 −
[
−log(1 − u(1 − e−β))

β

] 1
β

 (18)

Shannon entropy is a concept from information theory, introduced by [19]. It measures the
amount of uncertainty or randomness in a probability distribution. The Shannon entropy is
calculated as

γy = E(−log( f (y))) (19)

Implies that

log( f (y)) = log

[
2βθh(y, ψ)e−2H(y,ψ)(1 − e−2H(y,ψ))θ−1e−β(1−e−2H(y,ψ))θ

1 − e−β

]
(20)

= log
2βθ

1 − e−β
+ log

(
h(y, ψ)e−2H(y,ψ)(1 − e−2H(y,ψ))θ−1e−β(1−e−2H(y,ψ))θ

1 − e−β

)
(21)

= log
2βθ

1 − e−β
+ loge−2H(y,ψ) + log

(
h(y, ψ)(1 − e−2H(y,ψ))θ−1

)
− β(1 − e−2H(y,ψ))θ (22)

= log
2βθ

1 − e−β
− 2H(y, ψ) + log(h(y, ψ)) + log(1 − e−2H(y,ψ))θ−1 − β(1 − e−2H(y,ψ))θ (23)

E(−log( f (y))) = E
[
−log 2βθ

1−e−β

]
+ 2E [H(y, ψ)]− E [log(h(y, ψ))]−

E
[
log(1 − e−2H(y,ψ))θ−1

]
+ βE

[
(1 − e−2H(y,ψ))θ

]
(24)

2.5 Order statistics

Let y1, y2..., yn be a random sample from the TELTL-G distribution and let y(1), . . . , y(n) be the
corresponding order statistics. The pdf of nth order statistic can be written as

f(i,n)(y) =
n!(−1)j

(i − 1)(n − i − j)!j!

n−i

∑
j=0

(
n − i

j

)
f (y)[F(y)]i+j−1 (25)

f(i,n)(y) =
n−i

∑
j=0

(
n − i

j

)
n!(−1)jη(1 − e−β(1−e−2H(y,ψ))θ

)j+i−1

(i − 1)(n − i − j)!j!(1 − e−β)j+i (26)

where η = 2βθh(y, ψ)e−2H(y,ψ)(1 − e−2H(y,ψ))θ−1e−β(1−e−2H(y,ψ))θ

3. Estimation of Parameters

3.1 Maximum likelihood estimation (MLE)

Let y1, y2, ..., yn be a random sample from the TELTL-G family of distribution with pdf in equation
(3) with ω̄ = (β, θ, ψ), the TELTL-G’s n sample log-likelihood is drive as:

l = logl(y/ω̄) = log
n

∏
i=1

f (y/ω̄) (27)
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l(ω̄) =
n

∏
i=1

2βθh(y, ψ)e−2H(y,ψ)(1 − e−2H(y,ψ))θ−1e−β(1−e−2H(y,ψ))θ

1 − e−β
(28)

l(ω̄) = nlog(2) + nlog(β) + nlog(θ) + ∑n
i=1 logh(y, ψ)− 2 ∑n

i−1 H(y, ψ)+

(nθ − n)log(1 − e−2H(y,ψ))− β
n

∑
i=1

(1 − e−2H(y,ψ)θ + nlog(1)− nlog(1 − e−β) (29)

By differentiating the log likelihood with respect to β, θ, and ψ, we have:

dl
dβ

=
n
β
− ne−β

(1 − e−β)
−

n

∑
i=1

(1 − e−2H(y,ψ))θ (30)

dl
dθ

=
n
θ
+ nlog(1 − e−2H(y,ψ))− θβ

n

∑
i=1

{
1 − e−2H(y,ψ)

}θ−1
(31)

dl
dψ = ∑n

i=1
dh(y,ψ)/dψ

h(y,ψ) + 2(nθ−n)h(y,ψ)e−2H(y,ψ)

(1−e−2H(y,ψ))
− 2 ∑n

i=1 h(y, ψ)−

2θβ
n

∑
i=1

{
1 − e−2H(y,ψ)

}θ−1
h(y, ψ)e−2H(y,ψ) (32)

Where dH(y,ψ)
dψ = h(y, ψ)

The 3x3 observed information matrix J(ω) will be obtain for the interval estimation of β,θ, and ψ
and test of hypothesis for the parameters.

J(ω) =

 Jββ(ω) Jβθ(ω) Jβψ(ω)
Jθβ(ω) Jθθ(ω) Jβψ(ω)
Jψβ(ω) Jψθ(ω) Jψψ(ω)

 (33)

Where the element are

Jββ =
−n
β2 − e−β

(1 − e−β)2 (34)

Jθθ =
−n
θ2 − β ∑(1 − e−2H(y,ψ))θ−1 − βθ(θ − 1)∑(1 − e−2H(y,ψ))θ−1 (35)

Jψψ = h(y,ψ)h
′′
(y,ψ)−(h′(y,ψ))2

(h(y,ψ))2 + 2(nθ − n) d
dψ

(
h(y,ψ)e−2H(y,ψ)

1−e−2H(y,ψ) − 2 ∑ h′(y, ψ)

)
−

2θβ
d

dψ

(
∑(1 − e−2H(y,ψ))θ−1h(y, ψ)e−2H(y,ψ)

)
(36)

Jβθ = −∑(1 − e−2H(y,ψ))θ−1log(1 − e−2H(y,ψ)) (37)

Jβψ = −2θh(y, ψ)e−2H(y,ψ) ∑(1 − e−2H(y,ψ))θ−1 (38)

Jθψ =
−2nh(y, ψ)e−2H(y,ψ)

1 − e−2H(y,ψ)
− 2βθ(θ − 1)∑ h(y, ψ)e−2H(y,ψ)(1 − e−2H(y,ψ))θ−2 (39)

3.2 Maximum Product Spacing

The method of maximum product spacing (MPS) is a technique used in statistics and data analysis
to estimate the parameters of a distribution. It is a alternative method to maximum likelihood
estimation (MLE) and method of moments. In MPS, the goal is to find the parameter values that
maximize the product of the spacings between the order statistics of the data. Order statistics
are the values in the data set arranged in increasing order. The MPS estimate can be obtained

RT&A, No 4(80)

Volume 19, December, 2024

180



Usman Abubakar, Abdulhameed A. Osi, Ahmed Shuaibu, liyasu A. salisu
SIMULATION AND BAYESIAN ESTIMATION OF TELTL-G

by maximizing the geometric mean of the spacings between the order statistics, rather than the
product of the spacings.

GM =

(
n+1

∏
j=1

Kj

) 1
n+1

j = 1, 2, 3...., n + 1 (40)

Where the jth difference Kj is define as

Kj =
∫ y(j)

y(j−1)
f (y, β, θ, ψ)dy (41)

Where f (y(0), β, θ, ψ) = 0 and f (y(n + 1), β, θ, ψ) = 1. Therefore, the mps of β, θ, andψ are the
result of maximizing the GM of difference.

logGM =
1

n + 1

n+1

∑
j=1

log [H(y(j); β, θ, ψ)− H(y(j − 1); β, θ, ψ)] (42)

dlogGM
dβ

=
1

n + 1

n+1

∑
j=1

d [H(y(j); β, θ, ψ)− H(y(j − 1); β, θ, ψ)] /dβ

[H(y(j); β, θ, ψ)− H(y(j − 1); β, θ, ψ)]
(43)

dlogGM
dθ

=
1

n + 1

n+1

∑
j=1

d [H(y(j); β, θ, ψ)− H(y(j − 1); β, θ, ψ)] /dθ

[H(y(j); β, θ, ψ)− H(y(j − 1); β, θ, ψ)]
(44)

dlogGM
dψ

=
1

n + 1

n+1

∑
j=1

d [H(y(j); β, θ, ψ)− H(y(j − 1); β, θ, ψ)] /dψ

[H(y(j); β, θ, ψ)− H(y(j − 1); β, θ, ψ)]
(45)

3.3 Bayesian Estimation of TELTL-G

Supposed that β ∼ Γ(a, b), θ ∼ Γ(c, d), and ψ ∼ Γ(m, l) respectively, where a,b,c,d,l,m are positive
constant. The Gamma prior of β, θ, ψ take the forms

τ1(β) =
ba

Γ(a)
βa−1e−bβ β, a, b > 0 (46)

τ2(θ) =
dc

Γ(c)
θc−1e−dθ θ, c, d > 0 (47)

τ3(ψ) =
lm

Γ(m)
ψm−1e−lψ ψ, m, l > 0 (48)

The joint density function were given based on conditional distribution of β, θ, andψ given by

f (β/θ, ψ, y) ∝ βa+n−1
n

∏
i=1

(2h(y, ψ)(1 − e−β)−1(1 − e−2H(y,ψ))θ)e−bβ−2 ∑ H(y,ψ)−β ∑(1−e−2H(y,ψ))θ

(49)

f (θ/β, ψ, y) ∝ θc+n−1
n

∏
i=1

(2h(y, ψ)(1 − e−β)−1((1 − e−2H(y,ψ))θ)e−dθ−2 ∑ H(y,ψ)−β ∑(1−e−2H(y,ψ))θ

(50)

f (ψ/β, θ, y) ∝ ψm−1
n

∏
i=1

(2h(y, ψ)(1 − e−β)−1(1 − e−2H(y,ψ))θ)e−lψ−2 ∑ H(y,ψ)−β ∑(1−e−2H(y,ψ))θ
(51)

And the posterior distribution is given by

τ ∗ (β, θ, ψ|y) =∝ τ(β, θ, ψ)
n

∏
i=1

f (y; β, θ, ψ) (52)

f (ω/y) ∝ βa+n−1θc+n−1ψm−1 ∏n
i=1

(
2h(y, ψ)(1 − e−β)−1(1 − e−2H(y,ψ))θ

)
×

e−bβ−dθ−lψ−2 ∑ H(y,ψ)−β ∑(1−e−2H(y,ψ))θ
(53)
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4. Sub-model of TELTL-G

The TELTL-G family’s unique sub-models, the Truncated exponential log topp-leone Pareto
Distribution (TELTL-PD) and the Truncated exponential log topp-leone lomax Distribution
(TELTL-LD), are addressed in this section.

4.1 Truncated exponential log topp-leone pareto distribution

Let H(y; ψ) be cdf of the pareto random variable given by H(y; ψ) = 1 − (ω
y )

α, y, α, ω > 0, and

h(y; ψ) = αωα

yα+1 . Then, the cdf, pdf, and quantile of the TELTL-P distribution is given as,

F(y, β, θ, α, ω) =
1 − e−β(1−e−2(1−( ω

y )α)
)θ

1 − e−β
(54)

f (y, β, θ, α, ω) =
2αβθωαy−α−1(1 − e−2(1−( ω

y )
α)
)θ−1e−2(1−( ω

y )
α)e−β(1−e−2(1−( ω

y )α)
)θ

1 − e−β
y, θ, β, α, ω > 0

(55)

yu =

 1
ωα

(
1 +

1
2

log
(

1 −
(
−log(1 − u(1 − e−β))

β

))) 1
θ

−1
α

(56)

Figure 1: CDF, PDF, survival and Hazard plot of TELTL-Pareto for values of parameters

4.2 Truncated exponential log top-leone lomax Distribution

Let H(y; δ, σ) be cdf of the lomax random variable given by H(y; δ, σ) = 1 − ( δ
δ+y )

σ, y, δ, σ > 0,

and h(y; δ, σ) = σδσ

(δ+y)σ . Then, the cdf, pdf, and quantile of the TELTL-L distribution is given as,

F(y, β, θ, δ, σ) =
1 − e−β(1−e

−2(1−( δ
δ+y )σ))

)θ

1 − e−β
(57)
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f (y, β, θ, δ, σ) =
2σβθδσδ(1 − e−2(1−( δ

δ+y )
σ))

)θ−1e−2(1−( δ
δ+y )

σ))e−β(1−e
−2(1−( δ

δ+y )σ))
)θ

1 − e−β
y, θ, β, δ, σ > 0

(58)

yu = δ −

 1
δσ

(
1 +

1
2

log
(

1 −
(
−log(1 − u(1 − e−β))

β

))) 1
θ

−1
σ

(59)

Figure 2: CDF, PDF, survival and Hazard rate plot of TELTL-Lomax for some values of parameters

III. Results

1. Simulation study

The simulations on TELTL-Pr and TELTL-Lmx were conducted to examine the behavior of the
distribution. The consistency of the maximum likelihood of TELTL-Pr and TELTL-Lmx for set
values (i.e. α = 1.9, β = 2.2, θ = 3.3, ω = 4.1 ), while for TELTL-Lmx with four parameters
(β = 3.6, θ = 1.2, δ = 2.5, σ == 4.1) were investigated using a finite sample of n=20, 50, 150, 250,
500, and 1000 were created. The random numbers for the TELTL-Pr were generated using the
quantile function. For 1000 repeated samples. The Means, Bias, and RMSE were then calculated.
Table 2 and 3 presents the outcomes of the simulation. It is concluded that the family member
TELTL-G yields consistent results when predicting parameters for the mode based on the results
of the monte-carlo simulation. Likewise, some properties including the mean, variance, skewness,
and kurtosis were obtained from the simulation for a specific values of parameters as in Table 1.
The bias and root mean square error (RMSE) are given by the following equation.

Bias(θ̂) = ∑N
i=1 θ̂i

N
− θ (60)
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RMSE(θ̂) =

√
∑N

i=1(θ̂i − θ)2

N
(61)

Table 1: Properties from Simulation result

Distribution α, β, θ, ω Mean Variance Skeweness Kurtosis
TPr (1, 2, 2, 3) 3.057956 2.479738e-03 1.0395213 3.329671

TLmx (1, 2, 1, 3) -5.57991e-02 2.270049e-03 -1.03586576 3.369155
TETL (1, 2, 2) -0.643513 0.07888371 0.7992454 2.510671
TGPr (1, 2, 2) 0.5286839 0.04769423 -0.1457797 1.92661

NHTLmx (1, 2, 2) 0.2232752 0.01735384 0.9802952 4.097517
RP (1, 2, 2) 1.804450 4.221214e+01 -0.56238231 2.394527

Table 2: Simulation result for first set of parameters of TELTL-Pr

Sample Properties α = 1.9 β = 2.2 θ = 3.3 ω = 4.1
n=20 Means 2.3348 4.6704 2.3998 1.3606

Bias 0.4348 2.4704 -0.9002 -2.7394
RMSE 0.6240 2.5323 0.9787 2.7587

n=50 Means 2.2570 4.5514 2.5102 1.2743
Bias 0.3570 2.3514 -0.7898 -2.8257

RMSE 0.4916 2.3813 0.8390 2.8346
n=150 Means 2.1654 4.5406 2.5857 1.2525

Bias 0.2654 2.3406 -0.7143 -2.8475
RMSE 0.3382 2.3540 0.7318 2.8510

n=250 Means 2.1622 4.5524 2.5897 1.2454
Bias 0.2622 2.3524 -0.7103 -2.8546

RMSE 0.3227 2.3672 0.7205 2.8580
n=500 Means 2.1495 4.6217 2.5829 1.2478

Bias 0.2495 2.4217 -0.7171 -2.8522
RMSE 0.3171 2.4407 0.7241 2.8558

n=1000 Means 0.7741 2.5453 3.0949 4.6305
Bias -0.0259 0.0453 0.0949 0.1305

RMSE 0.0713 0.2629 0.2457 0.3592

2. Application to survival times of breast cancer patients data

The dataset was collected from 1929 to 1938, which represents the survival times of breast cancer
patients. The data was used by [16]. The observations are given as 0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3,
6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5,
16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1,
30.0, 31.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0,
41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0, 54.0, 55.0,
56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 78.0, 80.0, 83.0, 88.0,
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Figure 3: Skewness and kurtosis for proposed and existing models
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Table 3: Simulation result for second set of parameters of TELTL-Lmx

Sample Properties β = 3.6 θ = 1.2 δ = 2.5 σ == 4.1
n=20 Means 5.8301 4.1297 2.2794 1.9739

Bias 2.2301 2.9297 -0.2206 -2.1261
RMSE 2.2301 2.9297 -0.2206 -2.1261

n=50 Means 2.2301 2.9297 -0.2206 -2.1261
Bias 1.9216 2.6165 -0.2111 -2.2393

RMSE 2.2505 2.9445 0.2468 2.2915
n=150 Means 5.1789 3.4406 2.2681 1.8987

Bias 1.5789 2.2406 -0.2319 -2.2013
RMSE 1.7777 2.4579 0.2542 2.2292

n=250 Means 5.0407 3.2331 2.2515 1.9199
Bias 1.4407 2.0331 -0.2485 -2.1801

RMSE 1.6257 2.2035 0.2679 2.2058
n=500 Means 4.9989 3.0595 2.2294 1.8953

Bias 1.3989 1.8595 -0.2706 -2.2047
RMSE 1.5425 1.9954 0.2842 2.2245

n=1000 Means 5.0224 2.9238 2.2215 1.8293
Bias 1.4224 1.7238 -0.2785 -2.2707

RMSE 1.5313 1.8206 0.2889 2.2893

89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0,126.0, 127.0, 129.0, 129.0,
139.0, 154.0.

Calculations were made to compare the fitted models using the goodness-of-fit metrics, which
include the kolmogrov smirnov, crimer von-mises, and Andason darling. The information log-
likelihood and the information criteria were also examine using Akaike information criteria (AIC),
Bayesian information criteria (BIC), and Akaike information corrected criteria (AICc). The model
with smaller value of information criteria is the model with best fit [8].

Table 4: Competitors Distributions

Distributions Author(s) Year Citation
TETLE Al-noor and Hilal 2021 [? ]
TGPr Al-quraishy et al 2022 [? ]

NHTLmx Reyad et al 2019 [? ]
Rp Al-kadim and Muhammad 2018 [? ]

Table 5: MLE of the parameter(s) using Survival time data

Distributions α̂ β̂ λ̂ θ̂ γ̂

TPr 0.92342 1.1666 7.3870 0.3609 -
TLmx 0.06907 1.643 41.81 19.84 -
TETL -7.8510 0.01562 0.251287 - -
TGPr 1.7716 0.5148 - - -

NHTLmx 20.002471 16.485334 0.123569 0.02324 0.3241
Rp 672.80819 -80.6895 0.0044 - -
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Table 6: Information Criteria for the fitted models

Distributions L̂L AIC AICc BIC
TPr -184.1018 374.2036 374.4087 392.5910

TLmx -194.5029 397.0059 397.3507 408.1891
TETLE -578.8903 1163.781 1163.986 1172.168
TGPr -152.1718 411.2006 412.8517 418.1152

NHTLmx -491.124 924.418 923.181 931.201
RP -989.0158 1972.032 1971.826 1979.644

Table 7: Goodness of fit test for the fitted models

Distributions KS A W P-value
TPr 1.0 0.3242 0.34343 <0.00

TLmx 0.96138 5.6062 0.97944 <0.00
TETL 0.06105 0.38433 0.05142 0.7579
TGPr 0.10742 5.6358 0.10444 0.2132

NHTLmx 0.28944 1.5209 0.26993 <0.00
RP 0.11552 0.41323 0.058538 0.0914

IV. Discussion

The bayesian estimate derived in Section 2.7 gives the prior, conditional, and posterior distributions
for the parameters of TELTL-G, which is an alternative estimation method of parameters. The
first simulation conducted was to observe the behavior of the distribution, and it shows that
the accuracy of the estimate is better as the sample size increases for the TELTL-Pr and for the
TELTL-LMx; the accuracy is decreasing as the sample size is increasing. Likewise, Table 2 shows
the properties for the family of TELTL-G, which includes the mean, variance, skewness, and
kurtosis. As illustrated in the table, the TELTL-P is more skewed positively than competitors
distributions with a value of 1.0395213, but the kurtosis of NHTLmx (4.097517) is greater than
that of the proposed distribution. The TELTL-Lmx is negatively skewed with a value of -1.0358657
and a kurtosis of 3.369155, and these show that the proposed distributions have more skewness
and kurtosis than the existing TETL-E distribution with a skewness of 0.799245 and a kurtosis
of 2.520671. The plots illustrated in Figure 3 show the shape of the proposed and competitors
distributions, while Figures 1 and 2 are the pdf, cdf, survival, and hazard rate functions for the
different values of parameters of the TELTL-Pr and TELTL-Lmx distributions, respectively.

Conclusion

In this paper, we introduce the simulation and bayesian estimation of a truncated exponential log
topp-leone generalized family of distributions with additional properties and estimation methods,
since the properties and other characteristics were examined in our previous study, see [1]. The
family of the proposed distribution demonstrates outstanding performance, and shows how it is
good and flexible in term of fit compared to other standard distributions. Finally, we suggested
that the TELTL-G is an alternative distributions in modeling heavy tail or skewed data set.
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