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Abstract

Heavy-tailed data are commonly encountered in various real-world applications, particularly in finance,
insurance, and reliability engineering. This study focuses on the Lomax distribution, a powerful tool for
modeling heavy-tailed phenomena. We investigate the estimation of parameters in two Lomax populations
characterized by a common shape parameter and distinct scale parameters. Our analysis employs both
Maximum Likelihood Estimation (MLE) and Bayesian estimation techniques, recognizing the absence
of closed-form solutions for the estimators. We utilize the Newton-Raphson method for numerical
evaluation of the MLE and implement Lindley’s approximation for Bayesian estimators with different
priors, under symmetric loss function. Additionally, we estimate posterior densities using Gibbs sampling
and bootstrapping methods to manage uncertainty. A Monte Carlo simulation study is conducted to
assess the performance of the proposed estimators, providing insights into their behavior under various
scenarios. This paper also discusses the application of these methodologies through a real-life example,
demonstrating the practical utility of the proposed estimation techniques for analyzing heavy-tailed data.

Keywords: Lomax Distribution, Bayes estimation, Lindley’s Approximation, Gibbs Sampling,
Bootstrapping.

1. Introduction

In many real-world applications, data often exhibit heavy tails, meaning extreme values occur
more frequently than predicted by normal distributions, impacting risk assessment and decision-
making in fields such as finance, insurance, and reliability engineering. To accurately model
these datasets, the Lomax distribution, also known as the Pareto Type II distribution proposed by
Lomax [1], is particularly effective. Its suitability for heavy-tailed data is highlighted by Bryson
[2], who emphasized its superiority over traditional distributions like the Exponential, Gamma,
or Weibull. The Lomax distribution’s flexibility and capacity to model various tail behaviors have
led to its widespread use, as demonstrated by Hassan et al. [3] and Aljohani [4] in optimal step
stress accelerated life testing and Ijaz [5] in characterizing electronic device lifespans. Moreover,
Chakraborty et al. [6] proposed Generalized Lomax Models (GLM) to capture the non-linearities
and heavy-tailed nature of complex network degree distributions, further underscoring the Lomax
distribution’s versatility in addressing real-world challenges.

Building on the importance of the Lomax distribution, researchers have extensively explored
the estimation of its parameters using various methodologies. Okasha [7] utilized Bayesian
and E-Bayesian methods for estimating the shape parameter, reliability, and hazard functions
based on type-II censored data. Fitrilia et al. [8] employed Bayesian and E-Bayesian methods
under the balanced square error loss function for estimating the shape parameter with right-
censored data. Ellah [9] applied Maximum Likelihood Estimation (MLE) and Bayesian methods,
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considering symmetric and asymmetric loss functions, to estimate both parameters, reliability,
and hazard functions from recorded values. Hasanain et al. [10] implemented MLE and Bayesian
estimation with three distinct loss functions for parameter estimation. Al-Bossly [11] employed
MLE, Bayesian, and E-Bayesian methods for estimating the shape parameter while considering
six different loss functions. Additionally, Kumari et al. [12] utilized MLE and Bayesian estimation
under entropy and precautionary loss functions. These studies collectively contribute to enhancing
our understanding of parameter estimation in the context of the Lomax distribution, showcasing
a variety of approaches and methodologies.

Despite significant advancements in parameter estimation for single-population models, a
notable gap persists in extending these methodologies to more complex scenarios involving two
or more Lomax populations. Estimating a common parameter across two or more populations is
a widely employed statistical method with diverse applications, aiding in comparative analyses
and supporting risk assessment by identifying similarities or differences in variable distributions.
The pioneering investigation into estimating the common mean of two normal populations
was conducted by Graybill and Deal [13], who introduced a combined estimator that surpasses
individual sample means concerning variance, subject to certain constraints on sample sizes.
For further insights into estimating the common mean of two or more normal populations,
one can refer to Moore and Krishnamoorthy [14], Tripathy and Kumar [15], and the relevant
citations therein, which provide valuable perspectives from both classical and decision-theoretic
standpoints.

In addition to normally distributed populations, researchers have extensively explored esti-
mating common parameters for non-normally distributed populations. For instance, Ghosh and
Razmpour [16] considered two exponential distributions and examined a common location param-
eter using UMVUE (Uniformly Minimum Variance Unbiased Estimator), Maximum Likelihood
Estimation (MLE), and modified MLE approaches. Similarly, Jin and Pal [17] introduced en-
hanced estimators that surpassed MLE for estimating common location parameters of exponential
distributions, utilizing convex loss functions. Azhad et al. [18] delved into several heterogeneous
exponential distributions, estimating common location parameters through UMVUE, MLE, and
modified MLE approaches. Additionally, Nagamani and Tripathy [19] investigated the estimation
of common scale parameters for two Gamma populations, employing both MLE and Bayesian
estimation methods, including simulation studies to assess the performance of the proposed
methods. In a different context, Nagamani et al. [20] addressed two inverse Gaussian populations
and estimated the common dispersion parameter, conducting simulation studies to evaluate their
results. These studies collectively contribute to advancing parameter estimation methodologies
across diverse distributional settings, offering valuable insights for analyzing various types of
data.

In our study, we focus on two Lomax populations characterized by a common shape parameter
but distinct scale parameters. To estimate the parameters, we employ both Maximum Likelihood
and Bayesian estimation techniques, as closed-form estimators do not exist in our scenario. The
numerical evaluation of these estimators is facilitated by the Newton-Raphson technique for
Maximum Likelihood Estimation. For Bayesian estimations, we utilize Lindley’s approximation
with different priors, under symmetric loss function. Additionally, we estimate the posterior
densities of Bayesian estimators using Gibbs and bootstrapping sampling methods. Gibbs
sampling, a technique for generating samples from a joint distribution, is particularly valuable
in Bayesian statistics for handling complex posterior distributions. Conversely, bootstrapping, a
resampling method, aids in estimating the sampling distribution of a statistic and can be adapted
to the Bayesian context for uncertainty estimation. Both Gibbs sampling and bootstrapping play
crucial roles in Bayesian data analysis, offering essential tools for managing complex models and
estimating uncertainties. To assess the behavior of various estimates, we conduct a Monte Carlo
simulation study employing a well-constructed algorithm.

The writing is organized as follows: In Section 2, we derive the Maximum Likelihood Estimates
(MLE) and asymptotic confidence intervals for the scale parameters δ1, δ2, and the common shape
parameter λ. Section 3 discusses Bayesian estimators for the parameters under symmetric and
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asymmetric loss functions, deriving the Bayes estimators using vague priors, Jeffreys priors, and
conjugate priors. It is worth noting that none of these estimators has a closed-form expression. To
approximate Bayes estimators, we utilize an approximation for the ratio of integrals suggested by
Lindley. Sections 4 and 5 cover the generation of posterior densities using Gibbs and bootstrapping
algorithms, respectively. Section 6 presents the numerical results and discusses the rigorous
simulation analysis comparing all the offered estimators. In Section 7, we provide a real-life
example to illustrate the estimation methods for estimating parameters. Finally, in Section 8, the
study concludes with some remarks.

2. Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a widely employed method for parameter estimation
and inference within statistics. The principal aim of MLE is to identify the parameters that
maximize the probability or likelihood of the sample data. This section is dedicated to acquiring
the Maximum Likelihood Estimates (MLEs) for the model parameters.

Let us assume that two independent random samples are drawn from two Lomax populations
X1 = (x11, x12, . . . , x1m) and X2 = (x21, x22, . . . , x2n), of sizes m and n, respectively. These samples
share a common shape parameter λ but may have different scale parameters, denoted as δ1 and
δ2. The two populations are represented as L(λ, δ1) and L(λ, δ2), respectively. The corresponding
probability density functions are given as:

f (x1i, λ, δ1) =
λ

δ1

(
1 +

x1i
δ1

)−(λ+1)
, x1i > 0, λ > 0, δ1 > 0, (1)

f (x2j, λ, δ2) =
λ

δ2

(
1 +

x2j

δ2

)−(λ+1)
, x2j > 0, λ > 0, δ2 > 0. (2)

From equations (1) and (2), the joint likelihood function is obtained as:

l(λ, δ1, δ2|X1, X2) =
λm+n

δm
1 δn

2

m

∏
i=1

(
1 +

x1i
δ1

)−(λ+1) n

∏
j=1

(
1 +

x2j

δ2

)−(λ+1)

Taking the logarithm of the likelihood function, we obtain the log-likelihood function:

L = (m + n) log λ − m log δ1 − n log δ2 − (λ + 1)

[
m

∑
i=1

log
(

1 +
x1i
δ1

)
+

n

∑
j=1

log
(

1 +
x2j

δ2

)]
. (3)

To find the Maximum Likelihood (ML) estimates of the parameters λ, δ1, and δ2, we differen-
tiate the log-likelihood function with respect to each parameter and set the derivatives to zero.
This yields a system of three non-linear equations:

∂L
∂λ

=
m + n

λ
− T1 − T2 = 0,

∂L
∂δ1

= −m
δ1

− (λ + 1)T′
1 = 0,

∂L
∂δ2

= − n
δ2

− (λ + 1)T′
2 = 0.

Here, T1 and T2 represent the summation terms involving the samples from populations X1 and
X2, and T′

1 and T′
2 are their first derivatives with respect to δ1 and δ2, respectively. Full expressions

for T1, T2, T′
1, and T′

2 are provided in Appendix A.
As the system of non-linear equations cannot be solved analytically, we employ the Newton-

Raphson method to obtain numerical solutions. The MLE results after solving these equations
are presented in Section 6.
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Following this, we calculate the Fisher information matrix for the model parameters λ, δ1, and
δ2:

I(λ, δ1, δ2) =


−(m+n)

λ2 −T′
1 −T′

2
−T′

1
m
δ2

1
− (λ + 1)T′′

1 0

−T′
2 0 n

δ2
2
− (λ + 1)T′′

2

 .

Here, T′′
1 and T′′

2 denote the second derivatives of T1 with respect to δ1 and T2 with respect to δ2,
respectively. Detailed expressions for T′′

1 , T′′
2 , and d are also provided in Appendix A.

Using the information matrix, we construct 95% asymptotic confidence intervals for the model
parameters as follows:

λ̂ML ± 1.96

√√√√1
d

(
m
δ2

1
− (λ + 1)T′′

1

)(
n
δ2

2
− (λ + 1)T′′

2

)
,

δ̂1ML ± 1.96

√√√√1
d

[
m + n

λ2

(
n
δ2

2
− (λ + 1)T′′

2

)
+ (T′

2)
2

]
,

δ̂2ML ± 1.96

√√√√1
d

[
m + n

λ2

(
m
δ2

1
− (λ + 1)T′′

1

)
+ (T′

1)
2

]
.

Numerical results for these confidence intervals, obtained using fixed sample sizes, are
presented in Section 6.

3. Bayesian Study

In recent decades, the Bayesian perspective has gained significant attention for statistical inference,
offering a powerful and valid alternative to classical statistical methods. This section considers the
Bayesian estimation of the model’s parameters. The Bayes estimator is particularly useful when
there is prior knowledge about the distribution of parameters. Let ρ1(λ) be the prior density
function of the shape parameter λ, and let ρ2(δ1) and ρ3(δ2) be the prior densities for the scale
parameters δ1 and δ2, respectively.

The likelihood function of (λ, δ1, δ2) for the given data (X1, X2) is obtained as:

l(λ, δ1, δ2|X1, X2) =
λm+n

δm
1 δn

2

m

∏
i=1

(
1 +

x1i
δ1

)−(λ+1) n

∏
j=1

(
1 +

x2j

δ2

)−(λ+1)
.

We can obtain the joint density function of (λ, δ1, δ2, X1, X2) by combining the likelihood and
the priors, as follows:

f (λ, δ1, δ2, X1, X2) =
λm+n

δm
1 δn

2

m

∏
i=1

(
1 +

x1i
δ1

)−(λ+1) n

∏
j=1

(
1 +

x2j

δ2

)−(λ+1)
ρ1(λ)ρ2(δ1)ρ3(δ2).

The posterior joint density function of (λ, δ1, δ2) for (X1, X2) is:

f (λ, δ1, δ2|X1, X2) =
f (λ, δ1, δ2, x1, x2)∫ ∞

0

∫ ∞
0

∫ ∞
0 f (λ, δ1, δ2, x1, x2)dλdδ1dδ2

.

The posterior expectation of g(λ, δ1, δ2) is given by:

E[g(λ, δ1, δ2)|X1, X2] =

∫ ∞
0

∫ ∞
0

∫ ∞
0 g(λ, δ1, δ2) f (λ, δ1, δ2, x1, x2)dλdδ1dδ2∫ ∞

0

∫ ∞
0

∫ ∞
0 f (λ, δ1, δ2, x1, x2)dλdδ1dδ2

. (4)
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It is challenging to calculate the ratio of integrals in equation (4) using analytical methods.
However, certain approximations can be used to obtain a numerical value. To calculate the ratio,
we employ the method proposed by Lindley [21], which is explained in detail below. Moreover,
by using different priors and loss functions for the parameters, Bayes estimators can be derived.

3.1. Lindley’s Approximation

In Bayesian analysis, we frequently encounter the problem of the ratio of integrals. Lindley [21]
proposed an asymptotic solution for the ratio of two integrals. We use this method to evaluate
the expression in equation (4). Lindley’s method allows us to approximate expressions such as:

I =
∫

µ(θ)v(θ) exp L(θ)dθ∫
v(θ) exp L(θ)dθ

= E [µ(θ)|x] , (5)

where L(θ) is the log-likelihood function of the data X = (x1, x2, ..., xn), θ = (θ1, θ2, ..., θm), µ(θ) is
any function of θ, and v(θ) is the prior function of θ. Lindley’s approximation to equation (5) is
given by:

E [µ(θ)|x] =
[

µ +
1
2 ∑

i
∑

j
(µij + 2µiρj)σij +

1
2 ∑

i
∑

j
∑
k

∑
r

Lijkσijσkrµr

]
θ̂ML

+ O
(

1
n2

)
, (6)

where µ or µ(θ) is any function of θ, µi is the partial derivative of µ with respect to θi, µij
represents the second partial derivative of the function µ with respect to the parameters θi and θj,
Lijk represents the third partial derivative of the function L with respect to the parameters θi, θj,
and θk, σij represents the (i, j)th element of the matrix [−Lij]

−1, and θ̂ is the MLE of θ. All terms
are evaluated at the MLEs of θ. Further, ρ(θ) = log[v(θ)] and ρj is the partial derivative of ρ with
respect to θj.

In the subsequent section, Lindley’s approximation method is employed to derive Bayes
estimators for the parameters λ, δ1, and δ2 under symmetric loss function. The primary role of a
loss function is to assess the efficacy of a model by assigning penalties based on the extent of
deviation between predictions and true values. Using equation (6), we can obtain Bayes estimators
for the parameters (λ, δ1, δ2) under symmetric (Squared Error) loss function.

3.2. Symmetric loss function

In this section, we obtain the Bayes estimators under the Symmetric(SE) Loss function, after
ignoring the terms of order 1

(m+n)2 and smaller, the expression in (6), reduces to

E[µ(θ)|(x1, x2)] = µ + µ1a1 + µ2a2 + µ3a3 + a4 + a5 +
1
2
[A(µ1σ11 + µ2σ12 + µ3σ13)

+B(µ1σ21 + µ2σ22 + µ3σ23) + D(µ1σ31 + µ2σ32 + µ3σ33)]. (7)

In our notation, we have θ = (θ1, θ2, θ3) = (λ, δ1, δ2). For more details, refer to Tripathy, &
Nagamani[22]. We obtain the Bayesian estimators of the parameters using various priors under
symmetric loss function in the subsequent sections.

3.2.1 Vague Prior

We use Vague prior for the parameters λ, δ1, and δ2 to estimate the Bayesian estimators. The prior
densities shape λ and scale δ1 and δ2 parameters is considered as.

ρ1(λ) = 1, ρ2(δ1) =
1
δ2

1
, ρ3(δ2) =

1
δ2

2
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We can derive the joint prior density for the parameters λ, δ1, and δ2 by combining their
individual prior densities. This can be expressed as follows:

vV(λ, δ1, δ2) =
1

δ2
1δ2

2

ρ(θ) = logv(θ) = −2logδ1 − 2logδ2.

From ρ(θ) we get ρ1, ρ2, ρ3, a1, a2, a3 and the details of the notations are provided in Appendix
[B]

Let µ(θ) = λ; then µ1 = 1, µ2 = µ3 = 0, µij = 0, i, j = 1, 2, 3, a4 = 0, a5 = 0. These values, when
substituted into (7), give the Bayes estimator for λ.

E(λ|(x1i, x2j)) = λ̂ML −
[

2
δ̂1ML

σ12 +
2

δ̂2ML
σ13

]
+

1
2
[Aσ11 + Bσ21 + Dσ31] (8)

Consider µ(θ) = δ1; then µ2 = 1, µ1 = µ3 = 0, µij = 0, i, j = 1, 2, 3, and a4 = 0, a5 = 0. We can obtain
the Bayesian estimator for δ1 by substituting these values into (7) as follows:

E(δ1|(x1i, x2j)) = δ̂1ML −
[

2
δ̂1ML

σ22 +
2

δ̂2ML
σ23

]
+

1
2
[Aσ12 + Bσ22 + Dσ32] (9)

Again, consider µ(θ) = δ2; then µ3 = 1, µ1 = µ2 = 0, µij = 0, i, j = 1, 2, 3, and a4 = 0, a5 = 0. We can
obtain the Bayesian estimator for δ2 by substituting these values into (7) as follows:

E(δ2|(x1i, x2j)) = δ̂2ML −
[

2
δ̂1ML

σ32 +
2

δ̂2ML
σ33

]
+

1
2
[Aσ13 + Bσ23 + Dσ33] (10)

All the terms A, B, D, and σij’s are provided in Appendix [B], and these notations remain
consistent throughout the subsequent derivations.

3.2.2 Jeffrey’s Prior

Here, we utilize Jeffrey’s prior to formulate Bayes estimators for the parameters λ, δ1, and δ2.
Jeffrey initially developed this prior using the Fisher information matrix, denoted as I(λ, δ1, δ2),
and it is expressed as:

vJ(λ, δ1, δ2) ∝
√

det(I(λ, δ1, δ2)),

vJ =

√(
−d1d2(m + n)

λ2 − d1(T′
2)

2 − d2(T′
1)

2
)

,

ρ(θ) =
1
2

log
[
−d1d2(m + n)

λ2 − d1(T′
2)

2 − d2(T′
1)

2
]

,

From ρ(θ), we obtain ρ1, ρ2, and ρ3. The notations d1, d2, ρ1, ρ2, and ρ3 are given in Appendix
[C].

Let µ(θ) = λ; then µ1 = 1, µ2 = µ3 = 0, µij = 0 for i, j = 1, 2, 3, a4 = 0, a5 = 0. These values,
when substituted into (7), give the Bayes estimator for λ:

E(λ|(x1i, x2j)) = λ̂ML + [p1σ11 + p2σ12 + p3σ13] +
1
2
[Aσ11 + Bσ21 + Dσ31] (11)

Next, consider µ(θ) = δ1; then µ2 = 1, µ1 = µ3 = 0, µij = 0 for i, j = 1, 2, 3, and a4 = 0, a5 = 0.
Substituting these values into (7) gives the Bayes estimator for δ1:

E(δ1|(x1i, x2j)) = δ̂1ML + [p1σ21 + p2σ22 + p3σ23] +
1
2
[Aσ12 + Bσ22 + Dσ32] (12)

Finally, for µ(θ) = δ2, with µ3 = 1, µ1 = µ2 = 0, µij = 0 for i, j = 1, 2, 3, and a4 = 0, a5 = 0,
the Bayes estimator for δ2 is obtained as follows:

E(δ2|(x1i, x2j)) = δ̂2ML + [p1σ31 + p2σ32 + p3σ33] +
1
2
[Aσ13 + Bσ23 + Dσ33] (13)
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3.2.3 Conjugate Prior

In this context, for the parameters λ, δ1, and δ2 we estimate Byes estimators using conjugate
priors. For the shape parameter, we employ a gamma prior, and for the scale parameters, we
employ inverse gamma priors, with their respective probability density functions given below:

ρ1(λ) =
bc1

1
Γ(c1)

λc1−1e−b1λ, ρ2(δ1) =
bc2

2
Γ(c2)

δ
−(c2+1)
1 e

−b2
δ1 , ρ3(δ2) =

bc3
3

Γ(c3)
δ
−(c3+1)
2 e

−b3
δ2

We can derive the joint prior density for the parameters λ, δ1, and δ2 by combining their individual
prior densities. This can be expressed as follows:

vC(λ, δ1, δ2) =
bc2

2
Γ(c2)

bc2
2

Γ(c2)

bc3
3

Γ(c3)
λc1−1δ

−(c2+1)
1 δ

−(c3+1)
2 e−b1λ− b2

δ1
− b3

δ2

ρ(θ) = logv(θ) = c1logb1 + c2logb2 + c3logb3 − logΓ(c1)− logΓ(c2)− logΓ(c3)

+(c1 − 1)logλ − (c2 − 1)logδ1 − (c3 − 1)logδ2 − b1λ − b2

δ1
− b3

δ2

From ρ(θ) we get ρ1, ρ2, and ρ3. The detailed notations for ρ1, ρ2, and ρ3, a1, a2, a3 are given
in [D]

Let µ(θ) = λ; then µ1 = 1, µ2 = µ3 = 0, µij = 0, i, j = 1, 2, 3, a4 = 0, a5 = 0. These values, then
substituted into (7), give the Bayes estimator for λ.

E(λ|(x1i, x2j)) = λ̂ML +

[(
c1 − 1

ˆλML
− b1

)
σ11 +

(
b2

δ̂2
1ML

− c2 + 1
δ̂1ML

)
σ12 +

(
b3

δ̂2
2ML

− c3 + 1
δ̂2ML

)
σ13

]

+
1
2
[Aσ11 + Bσ21 + Dσ31] (14)

Consider µ(θ) = δ1; then µ2 = 1, µ1 = µ3 = 0, µij = 0, i, j = 1, 2, 3, and a4 = 0, a5 = 0. These
values, then substituted into (7), give the Bayes estimator for δ1.

E(δ1|(x1i, x2j)) = δ̂1ML +

[(
c1 − 1

ˆλML
− b1

)
σ21 +

(
b2

δ̂2
1ML

− c2 + 1
δ̂1ML

)
σ22 +

(
b3

δ̂2
2ML

− c3 + 1
δ̂2ML

)
σ23

]

+
1
2
[Aσ12 + Bσ22 + Dσ32] (15)

Again, consider µ(θ) = δ2; then µ3 = 1, µ1 = µ2 = 0, µij = 0, i, j = 1, 2, 3, and a4 = 0, a5 = 0.
These values, then substituted into (7), give the Bayes estimator for δ2.

E(δ2|(x1i, x2j)) = ˆδ2ML +

[(
c1 − 1

ˆλML
− b1

)
σ31 +

(
b2

δ̂2
1ML

− c2 + 1
δ̂1ML

)
σ32 +

(
b3

δ̂2
2ML

− c3 + 1
δ̂2ML

)
σ33

]

+
1
2
[Aσ13 + Bσ23 + Dσ33] (16)

4. Gibbs Sampling

Gibbs sampling is a method for generating samples from a joint probability distribution by
iteratively sampling from the conditional distributions of each variable while keeping others
fixed. This technique is particularly useful when direct sampling from the joint distribution is
challenging. Gibbs sampling is prevalent in Bayesian statistics, probabilistic modeling, and fields
requiring sampling from complex multivariate distributions.

Working rule for Gibbs sampling:
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1. Start with initial values for the parameters.

2. Define the Prior, P(λ, δ1, δ2), and the Likelihood, P(λ, δ1, δ2|X1, X2).

3. Generate the Joint Posterior Density function using the defined Prior and Likelihood.

4. Randomly draw parameters from conditional densities as follows:

• Draw λ from P(λ|δ1, δ2, X1, X2) using current values of δ1, δ2, X1, and X2.

• Draw δ1 from P(δ1|λ, δ2, X1, X2) using current values of λ, δ2, X1, and X2.

• Draw δ2 from P(δ2|λ, δ1, X1, X2) using current values of λ, δ1, X1, and X2.

5. Iterate through the above steps for N times to obtain N draws of the parameters.

6. After obtaining N draws, calculate Highest Posterior Density (HPD) intervals for each
parameter, representing the credible range of values.

7. To assess convergence and stability, calculate the average for each parameter and compare it
with the initial values of (λ, δ1, δ2).

5. Bootstrapping

Bootstrapping is a method that involves repeated resampling of a single dataset, allowing the
creation of multiple simulated samples used to compute standard errors, confidence intervals,
and conduct hypothesis tests. In Bayesian statistics, bootstrapping can extend to resampling from
posterior samples obtained through methods like Markov Chain Monte Carlo (MCMC). This
approach provides a means to estimate uncertainty in Bayesian inference by generating simulated
datasets through resampling with replacement. These datasets are then utilized to compute
summary statistics or parameters of interest, such as standard errors or confidence intervals,
enhancing the robustness of uncertainty assessment in Bayesian estimates.

Steps in Bootstrapping:

1. Set the initial values for the parameters (λ, δ1, δ2).

2. Define the data (X1, X2) from Lomax distributions with parameters (λ, δ1, δ2).

3. Choose the number of bootstrap samples N = 10000.

4. Draw N bootstrap samples Dk (for k = 1, 2, . . . , N) by randomly sampling with replacement
from the observed dataset (X1, X2).

5. For each bootstrap sample Dk, conduct Bayesian parameter estimation to obtain posterior
samples of the parameters using the Joint Posterior Density function with Prior P(λ, δ1, δ2)
and Likelihood P(λ, δ1, δ2|X1, X2).

6. Calculate Highest Posterior Density (HPD) intervals for each parameter based on the
obtained posterior samples, representing the credible range of values for the parameters.

7. To assess convergence and stability, calculate the average for each parameter and compare it
with the initial values of (λ, δ1, δ2).
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6. Simulation Study

This study focuses on estimating parameters of two Lomax distributions, assuming a common
shape parameter (λ) and potentially two distinct scale parameters (δ1 and δ2). Maximum Likeli-
hood Estimators (MLEs) for the scale parameters and the shape parameter were computed in
Section 2, utilizing computational techniques to compare these estimators numerically through
simulations. In Section 3, we delve into the development of Bayes estimators. While these
estimators lack a precise analytical form, we derive parameter approximations based on Lindley’s
method. Various priors, including the Vague Prior, Jeffreys Prior, and Conjugate Prior, are em-
ployed to calculate these estimators and assess their performance under symmetric (as described
in Sections 8 to 16) loss function.

In Sections 4 and 5, we further include Bayesian estimators estimated using Gibbs and
Bootstrapping algorithms to compare these results with the parameters obtained using MLE and
Lindley’s approximation. Additionally, 95% Highest Posterior Density (HPD) credible intervals
for the parameters are estimated using Gibbs and Bootstrapping, facilitating comparisons with
95% asymptotic confidence intervals. Trace plots and density plots are also generated to evaluate
the performance and convergence of the MCMC chains.

The performance of these estimators is evaluated using bias and mean square error (MSE)
metrics. To quantitatively compare these estimators, we generate 10, 000 random samples from
two Lomax populations across various sample sizes and parameter combinations. Specific
hyperparameters (c1 = c2 = c3 = 1.5 and b1 = b2 = b3 = 0.5) are employed to calculate biases
and MSE for all estimators, with results presented in tabular form in Tables 1 to 2.

Table 1 presents the bias and MSE of MLE and Bayes estimators under a symmetric loss
function. The first column denotes various sample sizes, while the second column represents
the parameters λ, δ1, and δ2. Columns 3 and 4 display the bias and MSE of the MLE estimates,
respectively. The subsequent columns represent the bias and MSE of Bayes estimators using
Jeffreys prior in columns 5 and 6, Conjugate prior in columns 7 and 8, Gibbs in columns 9 and 10,
and Bootstrapping in columns 11 and 12. Table 2 displays 95% asymptotic and HPD intervals
using Gibbs and Bootstrapping for the parameters. The first two columns represent sample
sizes and parameters λ, δ1, and δ2. The third column indicates asymptotic confidence intervals
estimated using the information matrix. The fourth and fifth columns denote the HPD intervals
estimated using Gibbs and Bootstrapping algorithms.

The observations derived from our simulation study provide valuable insights into the
performance of different estimators under varying conditions:

• As sample sizes increase, both bias and mean square error for each estimator decrease.

• Estimators of the shape parameter obtained using MLE, Lindley’s method, Gibbs sampling,
and Bootstrapping converge to constant values with increasing sample sizes, indicating
consistency. The same trend is observed for scale parameters.

• For small sample sizes, Gibbs estimates outperform MLE and Bootstrapping in terms of
bias and mean square error for parameters λ, δ1, and δ2.

• Bayes estimation with informative priors yields minimum error compared to non-informative
priors like Vague and Jeffreys under symmetric loss functions.

• Lindley’s approximation, employing a conjugate prior in Bayes estimation, demonstrates
superior performance compared to ML estimators, Gibbs sampling, and Bootstrapping
under symmetric loss function.

• Highest Posterior Density (HPD) confidence intervals obtained through Gibbs sampling
tend to be more precise than Bootstrapping and traditional asymptotic confidence intervals.
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Table 1: For various sample sizes, we compare biases and mean square errors of multiple estimators under squared
error loss for θ = (λ, δ1, δ2).

MLE Bayes ( J ) Bayes( C ) Gibbs Bootstrap

m,n θ ↓ Bias Mse Bias Mse Bias Mse Bias Mse Bias Mse

(10,10)

1.5
1
2
2
1
2

2.5
1
2

-0.14
0.209
0.469
-0.196
0.215
0.456
-0.266
0.232
0.503

0.264
0.26

1.087
0.45

0.247
1.058
0.719
0.269
1.289

0.022
0.209
-0.196
0.019
0.215
-0.198

0
0.232
-0.194

0.316
0.26

0.221
0.531
0.247
0.207
0.833
0.269
0.213

0.076
0.041
-0.173
0.056
0.069
-0.122
0.02

0.095
-0.091

0.244
0.116
0.151
0.404
0.122
0.147
0.638
0.141
0.161

-0.041
-0.139
0.096
-0.287
-0.084
0.001
0.077
0.023
0.022

0.148
0.110
0.552
0.294
0.107
0.484
0.488
0.112
0.426

0.26
0.036
-0.228
0.006
0.173
-0.44
0.125
0.024
0.3

0.316
0.232
0.501
0.672
0.298
0.73
0.862
0.15
0.854

(20,30)

1.5
1
2
2
1
2

2.5
1
2

-0.076
0.081
0.182
-0.078
0.08

0.163
-0.123
0.083
0.193

0.099
0.068
0.257
0.18

0.071
0.257
0.295
0.07

0.263

-0.01
0.081
-0.022
0.012
0.08

-0.037
-0.011
0.083
-0.013

0.104
0.068
0.139
0.193
0.071
0.146
0.311
0.07

0.142

0.011
0.024
0.004
0.023
0.029
0.004
-0.008
0.035
0.038

0.093
0.051
0.132
0.172
0.054
0.142
0.277
0.054
0.144

-0.131
-0.173
-0.159
-0.441
-0.008
-0.274
-0.362
-0.15

-0.259

0.074
0.073
0.203
0.269
0.059
0.225
0.267
0.059
0.202

-0.029
0.146
-0.497
-0.043
0.091
-0.177
0.124
0.197
0.203

0.102
0.147
0.418
0.263
0.169
0.296
0.329
0.125
0.313

(50,40)

1.5
1
2
2
1
2

2.5
1
2

-0.03
0.039
0.078
-0.051
0.037
0.097
-0.042
0.036
0.091

0.06
0.028
0.126
0.098
0.025
0.136
0.165
0.026
0.124

0.009
0.039
-0.017
0.001
0.037
-0.001
0.023
0.036
-0.006

0.063
0.028
0.098
0.101
0.025
0.101
0.174
0.026
0.094

0.02
0.016
0.005
0.007
0.017
0.029
0.024
0.018
0.029

0.059
0.024
0.097
0.095
0.022
0.105
0.163
0.023
0.098

0.11
0.055
-0.23
-0.18
0.001
-0.207
0.214
0.074
0.144

0.057
0.035
0.151
0.093
0.029
0.142
0.194
0.037
0.153

0.255
0.18
0.309
0.311
0.143
0.133
0.171

0
0.071

0.098
0.103
0.391
0.298
0.089
0.239
0.227
0.036
0.164

(60,60)

1.5
1
2
2
1
2

2.5
1
2

-0.016
0.03

0.047
-0.038
0.034
0.068
-0.053
0.031
0.078

0.042
0.019
0.08

0.083
0.021
0.088
0.121
0.021
0.096

0.014
0.03

-0.023
0.001
0.034
-0.004
-0.005
0.031
0.005

0.044
0.019
0.067
0.085
0.021
0.071
0.123
0.021
0.077

0.022
0.012
-0.008
0.005
0.018
0.017
-0.004
0.017
0.03

0.042
0.017
0.067
0.081
0.019
0.072
0.117
0.019
0.079

-0.022
0

-0.13
0.055
0.001
0.073
-0.253
-0.044
-0.116

0.031
0.025
0.104
0.061
0.022
0.099
0.132
0.021
0.085

-0.092
0

-0.222
-0.18

-0.099
-0.022
0.106
0.045
0.419

0.05
0.04
0.156
0.121
0.043
0.16
0.186
0.033
0.43
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Table 2: 95% Asymptotic, HPD intervals using Gibbs and Bootstrap confidence interval for the parameters θ =
(λ, δ1, δ2) at various sample sizes

(m,n) θ ↓ Asymptotic Gibbs Bootstrap

(10,10)

δ1 = 1
δ2 = 2

λ = {1.5
2

2.5}

[0.372,1.677]
[1.42,3.521]
[0.562,2.974]
[0.447,2.131]
[0.837,4.003]

[0.299,1.433]
[0.804,3.267]
[0.773,2.218]
[0.874,2.615]
[1.32,3.96]

[0.385,1.631]
[0.676,2.804]
[1.204,3.642]
[1.227,3.527]
[1.128,3.484]

(20,10)

δ1 = 1
δ2 = 2

λ = {1.5
2

2.5}

[0.456,1.292]
[1.745,2.361]
[0.705,2.535]
[1.281,4.627]
[0.978,3.431]

[0.621,2.021]
[0.62,2.616]

[0.802,1.961]
[0.984,2.443]
[1.374,3.36]

[0.831,2.577]
[0.898,2.938]
[1.261,3.168]
[1.719,4.321]
[1.426,3.486]

(20,20)

δ1 = 1
δ2 = 2

λ = {1.5
2

2.5}

[0.595,1.559]
[1.887,3.025]
[0.736,2.05]
[1.225,3.476]
[1.178,3.253]

[0.622,1.832]
[0.871,2.619]
[0.79,1.709]

[1.405,3.151]
[1.374,3.36]

[0.435,1.282]
[0.791,2.378]
[1.042,2.35]

[1.282,2.796]
[1.846,4.175]

(20,30)

δ1 = 1
δ2 = 2

λ = {1.5
2

2.5}

[0.604,1.499]
[1.583,2.309]
[0.516,1.258]
[1.189,2.979]
[1.46,3.654]

[0.437,1.238]
[0.987,2.474]
[0.941,1.871]
[1.015,2.081]
[1.456,2.878]

[0.515,1.443]
[1.149,2.754]
[0.908,1.788]
[1.415,2.912]
[1.883,4.013]

(40,40)

δ1 = 1
δ2 = 2

λ = {1.5
2

2.5}

[0.6571.271]
[1.489,2.239]
[1.28,2.614]
[0.973,1.918]
[1.347,2.706]

[0.653,1.419]
[1.277,2.777]
[0.959,1.657]
[1.411,2.837]
[1.813,3.181]

[0.717,1.535]
[1.383,2.827]
[1.171,2.088]
[1.746,3.038]
[1.57,2.807]

(50,40)

δ1 = 1
δ2 = 2

λ = {1.5
2

2.5}

[0.721,1.309]
[1.721,2.393]
[0.828,1.597]
[1.634,3.224]
[1.402,2.699]

[0.75,1.442]
[1.178,2.379]
[1.225,2.046]
[1.359,2.328]
[1.989,3.475]

[0.697,1.361]
[1.307,2.595]
[1.221,2.098]
[1.651,2.856]
[2.010,3.465]

(60,60)

δ1 = 1
δ2 = 2

λ = {1.5
2

2.5}

[0.738,1.253]
[1.819,2.334]
[1.146,2.017]
[1.235,2.158]
[2.028,3.617]

[0.707,1.316]
[1.357,2.417]
[1.151,1.819]
[1.598,2.539]
[1.731,2.758]

[0.701,1.291]
[1.471,2.59]

[1.075,1.664]
[1.298,2.084]
[1.784,2.867]
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Table 3: Maximum Likelihood estimators and Bayes estimators of the combined model are given below.

θ MLE Mse Bayes(S) Mse Gibbs Mse Bootstrap Mse

λ=0.5
δ1=10
δ2=11

0.623
9.044

10.773

0.015
0.912
0.051

0.595
9.742

11.753

0.009
0.066
0.567

0.316
10.115
11.460

0.034
2.390
3.315

0.320
10.390
12.098

0.032
2.473
5.891

Table 4: 95% Asymptotic, HPD intervals using Gibbs and Bootstrap confidence interval for the parameters θ =
(λ, δ1, δ2) of the model.

θ Asymptotic Gibbs Bootstrap

λ
δ1
δ2

[0.6181, 0.6268]
[5.2672, 11.8221]
[6.4066, 15.1402]

[0.2784, 0.3561]
[7.0932, 13.1585]
[8.212, 15.0033]

[0.2764, 0.3519]
[7.3985, 13.5131]
[8.3435, 15.1913]

7. Empirical Example

In evaluating our model’s accuracy, we’ve collected data on annual deaths from Meningitis and
Nutritional Deficiencies across 158 countries. Our aim is to assess its performance by comparing
it with observed patterns in the dataset. To facilitate this comparison, we’ll create histograms
to visually represent the data and calculate the joint probability to understand simultaneous
occurrences of both types of deaths. By employing a joint density function, we can explore
various scenarios and better understand the probability associated with different combinations
of Meningitis and Nutritional Deficiencies deaths. It’s crucial for our model to align well with
observed data patterns and predict a range of related health outcomes. The data for annual
deaths is as follows:

Deaths due to Meningitis: 1563, 13, 292, 2520, 453, 46, 31, 62, 2323, 49, 45, 1975, 22, 134,
123, 2008, 39, 5258, 1239, 129, 2791, 89, 18, 902, 4623, 113, 6465, 377, 70, 284, 35, 2259, 17, 94,
38, 6147, 31, 110, 217, 118, 764, 52, 218, 55, 693, 73, 11283, 13, 16, 226, 86, 212, 21, 216, 3487,
30, 242, 3260, 267, 997, 109, 50, 34736, 4715, 577, 427, 10, 28, 185, 21, 408, 83, 136, 4396, 11,
12, 38, 162, 34, 162, 432, 43, 16, 2084, 2369, 291, 6260, 217, 522, 20, 24, 400, 2729, 1246, 100,
469, 96, 13, 44, 7772, 44914, 1235, 223, 19, 4493, 14, 17987, 28, 36, 599, 65, 143, 2056, 135, 36,
60, 1143, 995, 180, 25, 1563, 27, 1630, 20, 17, 4672, 2221, 77, 1968, 155, 297, 662, 31, 27, 214, 105,
125, 3765, 1037, 31, 625, 11, 85, 351, 52, 3941, 399, 54, 265, 1146, 14, 175, 254, 747, 14, 479, 2065, 1450.

Deaths due to Nutritional Deficiencies: 1244, 5, 114, 3015, 1330, 164, 12, 29, 4402, 45, 371, 820,
7, 894, 185, 8221, 11, 4048, 2048, 532, 965, 354, 12, 1247, 2454, 576, 16863, 1332, 66, 275, 23, 756, 3,
65, 134, 6355, 81, 206, 464, 734, 816, 293, 126, 31 1051, 92, 8989, 19, 12, 4734, 68, 116, 10, 782, 1973,
10, 1847, 1741, 100, 953, 218, 34, 26868, 20348, 230, 104, 10, 52, 773, 65, 1832, 18, 121, 4614, 13, 1, 9,
201, 15, 194, 323, 18, 4, 5285, 2062, 239, 14865, 279, 7558, 2, 15, 215, 3530, 1386, 189, 1300, 210, 15,
145, 2449, 5496, 6445, 443, 101, 26438, 38, 14631, 12, 126, 205, 304, 1300, 3611, 125, 165, 75, 456,
1142, 66, 18, 425, 20, 1180, 10, 26, 7626, 2101, 318, 2180, 467, 163, 795, 127, 95, 92, 126, 25, 6887, 992,
65, 237, 26, 29, 1043, 11, 3937, 139, 7, 159, 6090, 134, 41, 552, 954, 10, 1010, 1899, 2884.

Following the provided data, we estimate the parameters using Maximum Likelihood Estima-
tion (MLE) and Bayes estimation techniques, as outlined in the preceding sections. Substituting
the values, the results obtained are as follows.

In Table 3, we have estimated the parameters (λ, δ1, and δ2) of the combined model for deaths
due to Meningitis and Nutritional Deficiencies. The parameter values and Mean Squared Error
(MSE) of Maximum Likelihood Estimators (MLE), Bayes estimators using symmetric loss function,
as well as Bayes estimators using Gibbs and Bootstrapping methods have been computed. From
the results, it is evident that Bayes estimators, when estimated using the symmetric loss function,
yield the minimum error. Additionally, asymptotic and Highest Posterior Density (HPD) intervals
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Figure 1: Illustration of Deaths due to Meningitis and Nutritional Deficiencies.

have been calculated using Gibbs and Bootstrapping, and the results are presented in Table 4.
Fig. 1 illustrates the number of deaths attributed to Meningitis and Nutritional Deficiencies.

Each bar represents the frequency of deaths, while the curve depicts the density of the Lomax
distribution. Based on the graph, we observe that deaths due to Meningitis approximately follow
a Lomax distribution with parameters: shape=8, scale=0.2. Similarly, deaths due to Nutritional
Deficiencies also approximately follow a Lomax distribution with parameters: shape=8, scale=0.

In summary, our analysis begins with trace plots and density plots, which serve as valuable
tools for understanding the behavior of the Markov chain over iterations. Trace plots, illustrated in
Figures 2 and 3, show the Markov chain’s values against iteration number. A stable and random
pattern across iterations is observed, indicating convergence and the adequate representation
of the posterior distribution by the chain. Meanwhile, density plots, depicted in Figures 4
and 5, provide estimates of simulated marginal posterior distributions, resembling smoothed
histograms. Importantly, the unimodal density plot indicates that the posterior distribution is well-
behaved, lacking multimodality or skewness. Overall, our analysis underscores the robustness
and reliability of our Bayesian inference process.

RT&A, No 4(80)

Volume 19, December, 2024

144



Vijay Kumar Lingutla and Nagamani Nadiminti
PARAMETERIC ESTIMATION IN TWO LOMAX POPULATIONS

Figure 2: Illustration of Trace of the parameters estimated using Gibbs

Figure 3: Illustration of Trace of the parameters estimated using Bootstrapping
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Figure 4: Illustration of Density of the parameters estimated using Gibbs

Figure 5: Illustration of Density of the parameters estimated using Bootstrapping
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8. Conclusion

The focus of our study was to estimate the common shape parameter λ for two Lomax populations,
where the scale parameters δ1 and δ2 are unknown and potentially different. It is important
to note that this problem has not been explored in the existing literature. Similar to the case
of a single population, it is not possible to obtain exact expressions for Maximum Likelihood
Estimates (MLE) and Bayes estimates for our model. Hence, we employed a numerical approach
to derive approximate MLEs for the associated parameters. Using these MLEs, we also obtained
95% asymptotic confidence intervals for the parameters.

Furthermore, we developed approximate Bayes estimators under various priors (vague,
Jeffreys, and conjugate), incorporating symmetric loss function. A comprehensive assessment
of all proposed estimators was conducted, evaluating their performance in terms of biases and
risk values. Our numerical investigation highlighted the superiority of Bayes estimators under
a conjugate prior, particularly when utilizing the symmetric loss function. These estimators
demonstrated better performance compared to all other alternatives, specifically with respect to
mean squared error.

It is imperative to emphasize that our conclusions regarding the suitability of these estimators
are exclusively drawn from the outcomes of our numerical simulations. To elucidate the method
of estimation, we presented a real-life example. We hope that our study will inspire researchers to
explore alternative estimators for the common shape parameter, potentially offering competitive
performance against our proposed estimators.
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A. MLE

The detailed explanation of the notations used in Section 2 are given below.
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δ1

)
, T2 =

n
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B. Bayes

All the notations used in section 3.2.1 are given below.

ρ1 = 0, ρ2 = − 2
δ1

, ρ3 = − 2
δ2

,

a1 = − 2
δ1

σ12 − 2
δ2

σ13, a2 = − 2
δ1

σ22 − 2
δ2

σ23, a3 = − 2
δ1

σ32 − 2
δ2

σ33.
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d
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](
2m
δ3

1
− (λ + 1)T′′′

1

)
,

D =
2T′

2T′′
2

d

(
m
δ2

1
− (λ + 1)T′′

1

)
− 1

d

[
m + n

λ2

(
m
δ2

1
− (λ + 1)T′′

1

)
+ (T′

1)
2

](
2n
δ3

2
− (λ + 1)T′′′

2

)
,

d = −m + n
λ2

(
m
δ2

1
− (λ + 1)T′′

1

)(
n
δ2

2
− (λ + 1)T′′

2

)
− T′

1
2
(

n
δ2

2
− (λ + 1)T′′

2

)
− T′

2
2
(

m
δ2

1
− (λ + 1)T′′

1

)
,

σ11 =
1
d

(
m
δ2

1
− (λ + 1)T′′

1

)(
n
δ2

2
− (λ + 1)T′′

2

)
,

σ12 = −
T′

1
d

(
n
δ2

2
− (λ + 1)T′′

2

)
= σ21,

σ13 = −T′
2

d

(
m
δ2

1
− (λ + 1)T′′

1

)
= σ31,

σ22 = −1
d

[
m + n

λ2

(
n
δ2

2
− (λ + 1)T′′

2

)
+ (T′

2)
2

]
,

σ23 = −
T′

1T′
2

d
= σ32,

σ33 = −1
d

[
m + n

λ2

(
m
δ2

1
− (λ + 1)T′′

1

)
+ (T′

1)
2

]
.

C. Jeffrey

All the notations used in section 3.2.2 are given below.

ρ1 =
1

2
[

d1d2(m+n)
λ2 + d1(T′

2)
2 + d2(T′

1)
2
] [ (m + n)

λ

(
2d1d2

λ
− d1T′′

2 − d2T′′
1

)
− (T′

1)
2T′′

2 − (T′
2)

2T′′
1

]

ρ2 =
1

2
[

d1d2(m+n)
λ2 + d1(T′

2)
2 + d2(T′

1)
2
] [ (m + n)d′1d2

λ2 + 2T′
1T′′

1 d2 + (T′
2)

2d1

]

ρ3 =
1

2
[

d1d2(m+n)
λ2 + d1(T′

2)
2 + d2(T′

1)
2
] [ (m + n)d1d′2

λ2 + 2T′
2T′′

2 d1 + (T′
1)

2d2

]

a1 = ρ1σ11 + ρ2σ12 + ρ3σ13,
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a2 = ρ1σ21 + ρ2σ22 + ρ3σ23,

a3 = ρ1σ31 + ρ2σ32 + ρ3σ33,

d1 = m
δ2

1
− (λ + 1)T′′

1 , d2 = n
δ2

2
− (λ + 1)T′′

2 .

d′1 = −2m
δ3

1
− (λ1 + 1)T′′′

1 , d′2 = −2n
δ3

2
− (λ + 1)T′′′

2

D. Conjugate

All the notations used in section 3.2.3 are given below.

ρ1 = c1−1
λ − b1, ρ2 = b2

δ2
1
− c2+1

δ1
, ρ3 = b3

δ2
2
− c3+1

δ2

a1 = c1−1
λ − b1σ11 +

b2
δ2

1
− c2+1

δ1
σ12 +

b3
δ2

2
− c3+1

δ2
σ13,

a2 = c1−1
λ − b1σ21 +

b2
δ2

1
− c2+1

δ1
σ22 +

b3
δ2

2
− c3+1

δ2
σ23,

a3 = c1−1
λ − b1σ31 +

b2
δ2

1
− c2+1

δ1
σ32 +

b3
δ2

2
− c3+1

δ2
σ33,
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