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Abstract

In this paper, we introduce a new generalization of exponentiated Nadarajah Haghighi distribution, namely
Marshall-Olkin exponentiated Nadarajah Haghighi (MOENH) distribution and study its properties. The
stress-strength parameter estimation is also taken into account. Characterizations of the new distribution
are obtained. The unknown parameters of the distribution are estimated using the maximum likelihood
method. It is established how important this distribution is to the research of the minification process.
Simulation studies are done, and sample path properties are explored. A real data set is fitted to the new
distribution to demonstrate the model’s adaptability and effectiveness.

Keywords: Marshall-Olkin family, Exponentiated Nadarajah Haghighi distribution, Stress-
Strength reliability, Maximum likelihood, Minification process.

1. Introduction

Marshall and Olkin introduced a new family of distributions in 1997 with one additional parameter
α, known as the Marshall-Olkin Family of Distributions. The distribution function of the family is
given by,

G(x) =
F(x)

α + (1− α)F(x)
,−∞ < x < ∞, α > 0 (1)

Here, F(x) represents the distribution function of a random variable X. The Marshall-Olkin family
of distributions is a class of continuous probability distributions that are used to model lifetime
data. It has the advantage of being flexible and able to fit a wide range of data sets. Cordeiro and
Lemonte [1] discussed some mathematical properties of the Marshall-Olkin extended Weibull
distribution and estimation of the model parameters by the maximum likelihood method. Ristić
and Kundu [14] introduced a third shape parameter to the two-parameter generalized exponential
distribution, adopted from the Marshall-Olkin method so that the hazard function of the proposed
model can have all the four major shapes, namely increasing, decreasing, bathtub or inverted
bathtub types. Recent developments in the Marshall-Olkin family of distributions can be given in
George and Thobias [4], Gillariose and Tomy [5], etc.

The exponential distribution is a versatile and widely used probability distribution that has
many important applications in various fields, particularly in modeling time-related events. The
generalized exponential distribution, sometimes referred to as the exponentiated exponential
(EE) distribution, failure rate function that might be either increasing, decreasing, or constant,
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see Gupta, et al. [8]. According to Gupta and Kundu [9], the failure rate function of the EE
distribution has similar behaviour to that of the gamma distribution and in many cases, it can
be utilized as an alternate distribution to the gamma and Weibull distributions. Nadarajah and
Haghighi [13] proposed a new generalization of the exponential distribution as an alternative
to the gamma, Weibull, and EE distributions. Lemonte [11] defined a new three-parameter
exponential-type distribution family, exponentiated Nadarajah Haghighi, that can be used to
model survival data and reliability issues. A three-parameter distribution called Exponentiated
Nadarajah and Haghighi (ENH) with cdf is given in (2)

F(x) =

{
(1− e1−(1+λx)γ

)β ; x > 0, γ, β, λ > 0
0 ; Otherwise,

(2)

where the parameters γ, β control the shape of the distribution and parameter λ is the scale
parameter. The major goal of the present study is to create a new model of the four-parameter
distribution, in the expectation that, in some instances, the new distribution will "fit better"
than the exponential, ENH, Nadarajah-Haghighi (NH), and Marshall-Olkin-Nadarajah-Haghighi
Distribution (MONH) distributions.

The rest of the paper is organized as follows: In Section 2, we propose a new generalization of
ENH distribution, namely MOENH distribution. Various structural properties of the MOENH
distribution, such as moments, quantile function, order statistics and stress-strength reliability
are studied in Section 3. Characterizations of MOENH distribution are obtained in Section 4. In
Section 5, we study the estimation of parameters of the MOENH distribution using the method
of Maximum Likelihood. In Section 6, we discuss the MOENH Minification process and the
corresponding sample paths. In Section 7, we have fitted the model to real-life data to show the
flexibility of the new distribution. Concluding remarks are presented in Section 8.

2. MOENH distribution

In this section, we discuss the MOENH distribution introduced by using (1) and (2) we have the
distribution function of MOENH distribution as follows:

G(x) =


(

1−e1−(1+λx)γ
)β

α+(1−α)(1−e1−(1+λx)γ)
β ; x > 0, α, γ, β, λ > 0

0 ; Otherwise.
(3)

where the parameters β, γ are shapes of the distribution, and α, λ are the scale parameter. If β = 1,
the MOENH distribution reduces to MONH distribution. We have the NH distribution when
α = 1, β = 1. For α = 1, β = 1 , γ = 1, we obtain the exponential distribution. The probability
density function of MOENH distribution is,

g(x) =


αβγλ(1+λx)γ−1

(
e1−(1+λx)γ

)
(1−e1−(1+λx)γ)

1−β
(

α+(1−α)(1−e1−(1+λx)γ)
β
)2 ; x > 0, α, γ, β, λ > 0

0 ; Otherwise.

(4)

The survival function and failure rate function of MOENH distribution are respectively as,

S(x) = 1−

(
1− e1−(1+λx)γ

)β

α + (1− α)
(
1− e1−(1+λx)γ)β

=
α− α(1− e1−(1+λx)γ

)β

α + (1− α)(1− e1−(1+λx)γ
)β

, (5)

h(x) =
αβγλ(1 + λx)γ−1e1−(1+λx)γ[(

1− e1−(1+λx)γ) (
α + (1− α)

(
1− e1−(1+λx)γ)β

)]
× 1[((

1− e1−(1+λx)γ)−β
(

α + (1− α)
(
1− e1−(1+λx)γ)β

))
− 1
] .
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It can demonstrate that the distribution exhibits increasing, decreasing, bathtub-shaped, inverse
bathtub-shaped, and constant hazard functions. In Figure 1, we can see the plots of pdf and
hazard function of MOENH distribution for different values of the parameters.

Figure 1: Plots of pdf(left) and hazard function (right) for different values of parameters.

3. Statistical properties

In this section, some statistical properties of MOENH distribution are discussed.

3.1. Moment Generating Function

The moment generating function of MOENH distribution is given by

MX(t) =
∞

∑
h=0

∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

∞

∑
j=0

(−1)h+k+j (t)
h

h!

(
h
k

)(
k/r
m

)
(n + 1)β

λhαj!

×
(

α− 1
α

)n Γ(βn + β)Γ(m + 1)
Γ(βn + β− j)(j + 1)m+1 .

3.2. Quantile Function

The quantile function has a number of applications. It can be used to obtain median, skewness,
and kurtosis and can also be used to generate random variables. The quantile function of MOENH
distribution is obtained as,

X =

(
1− ln

(
1− e

1
β ln

(
pα

1−p+pα

))) 1
γ

− 1

λ
, 0 < p < 1, α, γ, β, λ > 0. (6)

3.3. Order Statistic

Order statistic makes their appearance in many areas of statistical theory. Let X1, X2, . . . , Xn be
a random sample from the MOENH family of distributions, and let X(1), X(2), . . . , X(n) be the
corresponding order statistic. The pdf of ith order statistic, say Xi:n, can be written as

gi:m(x) =
m!g(x)

(i− 1)! (m− i)!
[G(x)]i−1 [1− G(x)]m−i

=
m!g(x)

(i− 1)! (m− i)!

m−i

∑
j=0

(−1)j
(

m− i
j

)
[G(x)]j+i−1 (7)
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by using binomial expansion [1− G(x)]m−i = ∑m−i
j=0 (−1)j (m−i

j )∑m−i
j=0 (−1)j (m−i

j ) [G(x)]j The pdf

of the 1st and nth ordered statistic will be,

g1:m(x) =
∑m−1

j=0 (−1)j
(

m− 1
j

)
m!

(m− 1)!

× αβγλ(1 + λx)γ−1e1−(1+λx)γ(
1− e1−(1+λx)γ)1−β

(
α + (1− α)

(
1− e1−(1+λx)γ)β

)2

×

(
1− e1−(1+λx)γ

)β

α + (1− α)
(
1− e1−(1+λx)γ)β

,

gn:m(x) =
∑m−n

j=0 (−1)j
(

m− n
j

)
m!

(m− n)!(n− 1)!

× αβγλ(1 + λx)γ−1e1−(1+λx)γ(
1− e1−(1+λx)γ)1−β

(
α + (1− α)

(
1− e1−(1+λx)γ)β

)2

×

(
1− e1−(1+λx)γ

)β

α + (1− α)
(
1− e1−(1+λx)γ)β

.

3.4. Stress-strength reliability

In order to estimate the stress-strength parameter, considering two random variables X and
Y with MOENH(α1, β, γ, λ) and MOENH(α2, β, γ, λ) distributions, respectively, with the same
baseline parameters β, γ, λ. We assume that X and Y are independent random variables. Then
the stress-strength parameter is obtained in the form

R = P(Y < X) =
∫ ∞

0

[∫ x

0
gY(y)

]
gX(x)dx

=
∫ ∞

0
GY(x)gX(x)dx = −α1

[
α2 (ln (α1)− ln(α2) + 1) + α1

(α1 − α2)2

]
.

(8)

4. Characterization

This section deals with the characterization of the MOENH distribution based on the ratio of two
truncated moments. To present the characterization of the distribution, consider the theorem
presented in Glänzel [7].

Theorem 1. Let (Ω, G, P) be a given probability space and let H = [a, b] be an interval for some
a < b (a = −∞, b = ∞ might be allowed). Let X : Ω→ H be a continuous random variable with
the distribution function G and let q1 and q2 be two real functions defined on H that

E[q2(x)|X ≥ x] = E[q1(x)|X ≥ x]ξ(x), x ∈ H

are defined with some real function ξ. Assume that q1 and q2 ∈ C1(H), ξ ∈ C2(H) and G is a
twice continuously differentiable and strictly monotone function on the set H. Finally, assume that
the equation ξq1 = q2 has no real solution in the interior of H. Then G is uniquely determined by
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the function q1, q2 and ξ, particularly

G(x) =
∫ x

a
C

[
ξ
′
(u)

ξ (u)q1(u)− q2(u)

]
exp (−S(u))du,

where the function is a solution of the differential equation S
′
= ξ

′
q1

ξq1−q2
and C is the normalization

constant, such that
∫

H dG = 1 and ξ(x) = E[q2(x)|X≥x]
E[q1(x)|X≥x] .

Proposition 1. Let X : Ω→ (0, ∞) be a continuous random variable and

q1(x) = (α + (1− α)(1− e1−(1+λx)γ
)β)2(1− e1−(1+λx)γ

)1−β

and
q2 = q1(x)e1−(1+λx)γ

, x > 0.

Then the random variable X has pdf (4) if and only if the function ξ defined in the Theorem 1 is
of the form

ξ(x) =
e1−(1+λx)γ

2
. (9)

Proof. Suppose the random variable X has pdf (4), then

(1− G(x))E [q1(X) | X ≥ x] = −Ce1−(1+λx)γ

(1− G(x))E [q2(X) | X ≥ x] = −C
2

e2(1−(1+λx)γ)

where, C = αβ. Further,

ξ(x)q1(x)− q2(x) = −1
2

q1(x)e1−(1+λx)γ 6= 0, x > 0.

Conversely, if ξ is of the above form, then

S
′
(x) =

ξ
′
(x)q1(x)

ξ(x)q1(x)− q2(x)
= γλ(1 + λx)γ−1

and hence,

S(x) = (1 + λx)γ .

Now, in view of Theorem 1, X has density (4). �

Corollary 1. Let X : Ω→ (0, ∞) be a continuous random variable and q1(x) be as in Proposition
1. The pdf of X in (4) if and only if there exist functions q2 and ξ defined in Theorem 1 satisfying
the differential equation

ξ
′
(x)q1(x)

ξ(x)q1(x)− q2(x)
= γλ(1 + λx)γ−1, x > 0.

The general solution of the differential equation given in Corollary 1 is,

ξ(x) = e(1+λx)γ
[
−
∫

γλ(1 + λx)γ−1e−(1+λx)γ
(q1(x))

−1 q2(x)dx + D
]

,

where D is a constant. Note that a set of functions satisfying the above differential equation is
given in Proposition 1 with D = 0. However, it should be noted that there are other triplets
(q1, q2, ξ) satisfying the conditions of Theorem 1.
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Proposition 2. The MOENH density function is log-convex for fixed α say, α = 1 and if γ < 1
and β < 1, and it is log-concave if γ > 1 and β > 1.

Proof. Let z = (1 + λx)γ, which implies that z > 1 for x > 0. We have x =
(

z1/γ − 1
)

/λ. The
MOENH density is now rewritten as a function of z, ξ(z) say, we obtain

ξ(z) = f
((

z1/γ − 1
)

/λ
)
= γλβ

z(γ−1)/γe(1−z)

[1− e(1−z)]1−β
, z > 1.

The result follows by noting that the second derivative of log[ξ(z)] is

d2 log[ξ(z)]
dz2 = −

[
(γ− 1)

γz2 +
(β− 1)e1−z

[1− e1−z]
2

]
.

�

Proposition 3. For any λ > 0, α = 1, the MOENH distribution has an increasing failure rate
function if γ > 1 and β > 1, and it has a decreasing failure rate function if γ < 1 and β < 1. The
failure rate function is constant if γ = β = 1.
Proof. Using the log-convexity of the density function, the conclusion is valid. �

5. Estimation of parameters

There are several methods in the literature for estimating unknown parameters. In this section,
maximum likelihood method of estimation is used for estimating the parameters of MOENH
distribution. Let us consider x1, x2, . . . , xn be the random variables having MOENH distribution.
Then the likelihood function is given by,

L (xi, α, β, γ, λ) =
n

∏
i=1

αβγλ(1 + λx)γ−1e1−(1+λx)γ(
1− e1−(1+λx)γ)1−β

(
α + (1− α)

(
1− e1−(1+λx)γ)β

)2

The log-likelihood function is given by,

l =n ln(αβγλ) +
n

∑
i=1

ln(1 + λx)γ−1 +
n

∑
i=1

1− (1 + λx)γ

− 2
n

∑
i=1

ln
(

α + (1− α)
(

1− e1−(1+λx)γ
)β
)
−

n

∑
i=1

(1− β) ln
(

1− e1−(1+λx)γ
) (10)

Partial derivatives of (10) with respect to the unknown parameters α, β, γ, λ

∂l
∂α

=
n
α
− 2

n

∑
i=1

1− (1− e1−(1+λx)γ
)β

(α + (1− α)(1− e1−(1+λx)γ
)β)2

(11)

∂l
∂β

=
n
β
− 2

n

∑
i=1

β(1− α)(1− e1−(1+λx)γ
)(β−1)

α + (1− α)(1− e1−(1+λx)γ
)β

(12)

∂l
∂γ

=
n
γ
+

n

∑
i=1

ln (1 + λx)−
n

∑
i=1

(1 + λx)γ ln (1 + λx)− 2(1− α)β

×
n

∑
i=1

e1−(1+λx)γ
(1 + λx)γ ln (1 + λx)(1− e1−(1+λx)γ

)(β−1)

α− (α− 1)(1− e1−(1+λx)γ
)β

−
n

∑
i=1

(1− β) ln (1 + λx)e1−(1+λx)γ

e1−(1+λx)γ (13)
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∂l
∂λ

=
n
λ
+

n

∑
i=1

(γ− 1)x
1 + λx

−
n

∑
i=1

γx(1 + λx)γ−1

−2
n

∑
i=1

xγβ(1− α)e1−(1+λx)γ
(1 + λx)γ−1(1− e1−(1+λx)γ β−1

α− (α− 1)(1− e1−(1+λx)γ
)β

−
n

∑
i=1

γx(1− β)(1 + λx)γ−1e1−(1+λx)γ

1− e1−(1+λx)γ (14)

To obtain the maximum likelihood estimates of the unknown parameters, we equate,

∂l
∂α

= 0;
∂l
∂β

= 0;
∂l
∂γ

= 0;
∂l
∂λ

= 0 (15)

The ML estimators are found through the solution of the nonlinear system. Hence, using R or
MATLAB, a numerical approximation of the software’s solution to this system of equations is
possible.

6. Autoregressive Time Series Modelling

The autoregressive model is a stochastic process used in statistical modeling in which future
values are forecasted based on a weighted sum of past values. The idea behind an autoregressive
process is that the values of the past have an impact on the values of the present. A first-order
autoregressive time series model with exponential stationary marginal distribution was developed
by Gaver and Lewis [3]. In recent years, many authors Jayakumar and Babu [10] and Gillariose
and Tomy [6] have developed various autoregressive models with minification structures. In this
section, we develop various Autoregressive models of order 1 with Marshall-Olkin Exponentiated
Nadarajah Haghighi as marginals, namely MIN AR (1) Model I and Model II and MAX - MIN
AR (1) Model I and Model II, and explore some properties.

6.1. MIN AR(1) Model - I with MOENH Marginal Distribution

Consider an AR(1) structure,

Xn =

{
εn; with probability δ

min(Xn−1, εn); with probability 1− δ
(16)

where {εn} is a sequence of iid random variables independent of {Xn} and δ ∈ (0, 1). Then the
process is Stationary Markovian with MOENH Distribution.

Theorem 2. In an AR(1) process with structure (16), {Xn} is Stationary Markovian with MOENH
distribution with parameters δ, γ, β, λ iff {εn} is distributed as ENH(γ, β, λ)

Proof. Let εn ∼ ENH(γ, β, λ) From(16)

ḠXn(x) = δḠεn(x) + (1− δ)ḠXn−1(x)Ḡεn(x).

Under stationary equilibrium,

ḠX(x) =
δḠε(x)

1− (1− δ)Ḡε(x)
,

and hence

Ḡε(x) =
ḠX(x)

δ + (1− δ)ḠX(x)
.
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If εn ∼ ENH(γ, β, λ)

Ḡε(x) = 1− (1− e1−(1+λx)γ
)β.

Thus

ḠX(x) =
δ{1− (1− e1−(1+λx)γ

)β}
1− (1− δ){1− (1− e1−(1+λx)γ

)β}

=
δ− δ(1− e1−(1+λx)γ

)β

δ + (1− δ)(1− e1−(1+λx)γ
)β

,

which is the survival function of MOENH(δ). Conversely, if

ḠX(x) =
δ− δ(1− e1−(1+λx)γ

)β

δ + (1− δ)(1− e1−(1+λx)γ
)β

,

then Ḡεn(x) is distributed as ENH(γ, β, λ) and the process is stationary. In order to establish
stationarity, assume that Xn−1 ∼ MOENH(δ) and εn ∼ ENH(γ, β, λ) then,

ḠX(x) =
δ− δ(1− e1−(1+λx)γ

)β

δ + (1− δ)(1− e1−(1+λx)γ
)β

.

This means that Xn is distributed as MOENH(δ). �

Remark 1. If X0 has an arbitrary distribution GX0 , the minification process is asymptotically
stationary with MOENH(δ, γ, β, λ).
Since

ḠXn(x) = δḠε(x)
n−1

∑
i=0

(1− δ)iḠi
ε(x) + (1− δ)nḠX0(x)Ḡn

ε (x)

=
δḠε(x)

1− (1− δ)Ḡε(x)

=
δ− δ(1− e1−(1+λx)γ

)β

δ + (1− δ)(1− e1−(1+λx)γ
)β

,

the survival function of MOENH(δ, γ, β, λ).

6.2. MIN AR(1) Model - II with MOENH Distribution

Here we discuss a more general structure which allows probabilistic selection of process values,
innovations and combinations of both. Consider the AR(1) structure given by

Xn =


Xn−1; with probability δ1
εn; with probability δ2
min (Xn−1, εn) ; with probability 1− δ1 − δ2,

(17)

where δ1, δ2 > 0, δ1 + δ2 < 1 and {εn} is a sequence of iid random variables independent of
{Xn}. Then the process is stationary with Marshall-Olkin Exponentiated Nadaraja Haghighi
distribution.

Theorem 3. In an AR(1) process with structure (17), {xn} is stationary Markovian with MOENH
distribution with parameters τ, γ, β, and λ iff {εn} is distributed as ENH with parameters γ, β

and λ, where τ = δ2
1−δ1

.

Proof. Let εn ∼ ENH(γ, β, λ). From (17)

ḠXn(x) = δ1ḠXn−1(x) + δ2Ḡεn(x) + (1− δ1 − δ2) ḠXn−1(x)Ḡεn(x)
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Under stationary equilibrium we have,

ḠX(x) =
τḠε(x)

1− (1− τ)Ḡε(x)

=

τ

[
1−

(
1− e1−(1+λx)γ

)β
]

1− (1− τ)
[
1−

(
1− e1−(1+λx)γ)β

]

=

δ2
1−δ1

[
1−

(
1− e1−(1+λx)γ

)β
]

1−
(

1− δ2
1−δ1

) [
1−

(
1− e1−(1+λx)γ)β

] ,

where τ = δ2
1−δ1

, which is in the Marshall-Olkin form. Now let us assume that {Xn} ∼
MOENH(τ, γ, β, λ). From (17) under stationarity,

Ḡε(x) =
(1− δ1) ḠX(x)

δ2 + (1− δ1 − δ2) ḠX(x)
.

Now by using Xn as MOENH (τ, γ, β, λ), we have

Ḡε(x) =

(1− δ1)

 δ2
1−δ1

[
1−
(

1−e1−(1+λx)γ
)β
]

1−
(

1− δ2
1−δ1

)[
1−(1−e1−(1+λx)γ)

β
]


δ2 + (1− δ1 − δ2)

[
δ2

1−δ1

[
1−(1−e1−(1+λx)γ)

β
]

1−
(

1− δ2
1−δ1

)[
1−(1−e1−(1+λx)γ)

β
]
]

= 1−
(

1− e1−(1+λx)γ
)β

.

Which is the Survival function of Exponentiated Nadaraja Haghighi distribution with parameters
γ, β and λ. �

6.3. MAX-MIN AR(1) Model - I with MOENH Distribution

Consider the AR(1) structure given by,

Xn =


max (Xn−1, εn) ; with probability δ1

min (Xn−1, εn) ; with probability δ2

Xn−1; with probability 1− δ1 − δ2,

(18)

where 0 < δ1, δ2 > 1, δ2 < δ1, δ1 + δ2 < 1 and {εn} is a sequence of iid random variables in-
dependent of {Xn}. Then the process is Stationary Markovian with Marshall-Olkin Exponentiated
Nadaraja Haghighi distribution.

Theorem 4. In an AR(1) MAX-MIN process with structure (18), {Xn} is a stationary Markovian
AR(1) MAX-MIN process with MOENH stationary distribution with parameters τ, γ, β and λ iff
{εn} is distributed as ENH with parameters γ, β and λ, where τ = δ1

δ2
.

Proof. Let εn ∼ ENH(γ, β, λ). From (18) we have,

ḠXn(x) = δ1
[
1−

(
1− ḠXn−1(x)

)
(1− Ḡεn(x))

]
+ δ2ḠXn−1(x)Ḡεn(x) + (1− δ1 − δ2) ḠXn−1(x).
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Under stationary equilibrium,

ḠXn(x) =
τḠε(x)

1− (1− τ)Ḡε(x)

=
τ[1−

(
1− e1−(1+λx)γ

)β
]

1− (1− τ)[1−
(
1− e1−(1+λx)γ)β

]

=

δ1
δ2
[1−

(
1− e1−(1+λx)γ

)β
]

1− (1− δ1
δ2
)[1−

(
1− e1−(1+λx)γ)β

]
.

Where τ = δ1
δ2

and ḠXn(x) is in the form of Marshall-Olkin distribution. Now Let Xn ∼
MOENH(τ, γ, β, λ). Then from (18), under stationarity,

Ḡε(x) =
δ2ḠXn(x)

δ1 + (δ2 − δ1)ḠXn(x)
.

Thus, after simplification it can be written as

Ḡε(x) =

δ2

 δ1
δ2

[
1−
(

1−e1−(1+λx)γ
)β
]

1−
(

1− δ1
δ2

)[
1−(1−e1−(1+λx)γ)

β
]


δ1 + (δ2 − δ1)

[
δ1
δ2

[
1−(1−e1−(1+λx)γ)

β
]

1−
(

1− δ1
δ2

)[
1−(1−e1−(1+λx)γ)

β
]
]

= 1− (1− e1−(1+λx)γ
)β,

which is the survival function of Exponentiated Nadaraja Haghighi distribution with parameters
γ, β and λ. �

6.4. MAX-MIN AR(1) Model - II with MOENH Distribution

Consider the more general MAX-MIN process that includes minimum, maximum innovations
and the process values, The AR(1) structure is given by

Xn =


max (Xn−1, εn) ; with probability δ1

min (Xn−1, εn) ; with probability δ2

εn; with probability δ3

Xn−1; with probability 1− δ1 − δ2 − δ3,

(19)

where 0 < δ1, δ2, δ3 < 1, δ1 + δ2 + δ3 < 1 and {εn} is a sequence of iid random vari-
ables independent of {Xn}. Then the process is stationary Markovian with Marshall-Olkin
Exponentiated Nadaraja Haghighi distribution.

Theorem 5. AR(1) MAX-MIN process {Xn} with structure (19) is a stationary Markovian AR(1)
MAX-MIN process with MOENH distribution (τ, γ, β, λ) if {εn} is distributed as ENH with
parameters γ, β and λ where τ = δ1+δ3

δ2+δ3
.

Proof. Let εn ∼ ENH(γ, β, λ). From (19) we have,

ḠXn(x) = δ1[1− (1− ḠXn−1(x))(1− Ḡεn(x))] + δ2ḠXn−1(x)Ḡεn(X) + δ3Ḡεn(X)

+ (1− δ1 − δ2 − δ3)ḠXn−1(x)
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Figure 2: Sample path for AR(1) Minification Model-I for p = 0.6, 0.7, β=0.5, γ=1.2 and λ=1.

Figure 3: Sample path of AR(1) Minification Model-II for different sets of (p1, p2) = (0.3, 0.4), (0.2, 0.5), β =
0.5, γ = 1.5, and λ = 1.

Under stationary equilibrium it gives,

ḠXn(x) =
τḠε(x)

1− (1− τ)Ḡε(x)

=

δ1+δ3
δ2+δ3

[1−
(

1− e1−(1+λx)γ
)β

]

1− (1− δ1+δ3
δ2+δ3

)[1−
(
1− e1−(1+λx)γ)β

]
,

where τ = δ1+δ3
δ2+δ3

, which is in the form of Marshall-Olkin distribution. Now let Xn ∼ MOENH(τ, γ, β, λ).
Then from (19), we have

Ḡε(x) =
(δ2 + δ3) ḠX(x)

(δ1 + δ3) + (δ2 − δ1) ḠX(x)

By simplifying, we get

Ḡε(x) =

(δ2 + δ3)

 δ1+δ3
δ2+δ3

[
1−
(

1−e1−(1+λx)γ
)β
]

1−
(

1− δ1+δ3
δ2+δ3

)[
1−(1−e1−(1+λx)γ)

β
]


(δ1 + δ3) + (δ2 − δ1)

[
δ1+δ3
δ2+δ3

[
1−(1−e1−(1+λx)γ)

β
]

1−
(

1− δ1+δ3
δ2+δ3

)[
1−(1−e1−(1+λx)γ)

β
]
]

= 1−
(

1− e1−(1+λx)γ
)β

.

Which is the Survival function of Exponentiated Nadaraja Haghighi distribution with parameters
γ, β and λ. Figure 2-5 displays the sample path features of the four AR(1) models created in this
section and how these measures change with different parameter settings. �
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Figure 4: Sample path for AR(1) MAX-MIN Model -I for various combinations of (p1, p2) = (0.2, 0.1), (0.3, 0.2), β =
0.25, γ = 1.2, and λ = 1.

Figure 5: Sample path for AR(1) MAX-MIN Model -II for (p1, p2, p3) = (0.4, 0.2, 0.2), (0.5, 0.2, 0.1), β = 0.25, γ =
1.2, and λ = 1.

7. Numerical illustration

7.1. Simulation study

A simulation study is conducted to evaluate the effectiveness of the MLEs for estimating the
parameters of MOENH distribution. For this, we take into account, α = 0.5, β = 1.2, γ = 0.8,
and λ = 0.09. For different sample sizes of n = 1000, n = 2000, and n = 4000, we simulate data
from the MOENH model and determine the MLEs by maximizing the likelihood function. We
carry out the procedure, 10000 times, and the results show that bias and root-mean-square error
(RMSE) decreases as sample size increases. The results are in the Table 1.

Table 1: Simulation

n Parameters Estimate Bias RMSE
α 0.6352 0.0135 0.1687

1000 β 1.2098 0.0009 0.0246
γ 0.9561 0.0156 0.1306
λ 0.1352 0.0045 0.0512
α 0.5895 0.0089 0.1295

2000 β 1.2074 0.0007 0.0168
γ 0.9000 0.0100 0.0995
λ 0.1193 0.0029 0.0373
α 0.5509 0.0051 0.0881

4000 β 1.2027 0.0002 0.0113
γ 0.8511 0.0051 0.0652
λ 0.1058 0.0015 0.0242
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7.2. Data illustration

We take into account the following DARWin data set for numerical illustration. DARWin is a
project, within the Swedish industry organization Swedish Energy, which collects and annually
presents outage data from most of the Swedish electricity system operators. The annual reports
from Swedish Energy are open-accessible and can be downloaded from the Swedish Energy
website. The unplanned events from 2012 divided into voltage level (12 k V) and failure causes are
given by Ekstedt et al. [2]. The parameters are estimated using the maximum likelihood method.
Akaike information criteria (AIC), Bayesian information criteria (BIC), Kolmogrov-Smirnov (K-S),
and p− value are the goodness-of-fit metrics that we take into consideration.

Table 2: Parameter estimates and goodness of fit statistics for models fitted to the data

Model MLE -Log L AIC BIC KS p-VALUE
MOENH α = 2.000 73.6221 155.24 156.03 0.10819 0.9994

β = 0.2777
γ = 1.2189
λ = 0.00015

ENH β = 0.2777 78.6904 163.38 163.9725 0.2306 0.6449
γ = 1.2189
λ = 0.00013

NH γ = 1.2189 79.124 162.249 132.6435 0.2370 0.6122
λ = 0.0003

Exp λ = 0.0004 78.8909 159.78 159.982 0.2240 0.6782
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Figure 6: pp-plots

Table 2 lists the parameter estimates and goodness of fit statistics for DARWin voltage level
(12 k V) failure data. The MOENH model is more suitable for this data since the values of
− log L, AIC, BIC, K-S and p-value for the MOENH distribution are lower than those of the other
competing models. Figure 6 represents the pp-plot for the fitted models.

7.3. Testing of Hypothesis

In this section, we present the likelihood ratio test procedure for testing the significance of the
parameters of the MOENH model. We consider LR statistics to check if the fitted MOENH
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distribution for a given data set is statistically superior to the fitted exponential, NH, ENH
distributions. In any case, the hypothesis test of the type H0 : θ = θ0 vs H1 : θ 6= θ0 using the
generalized likelihood ratio test. The test statistic is,

− 2 ln λ(x) = 2[ln L(Θ̂; x)− ln L(Θ̂∗; x)] (20)

where Θ̂ is the maximum likelihood estimator with no restriction, and Θ̂∗ is the maximum
likelihood estimator with restriction. The test statistic follows a Chi-square distribution with
degrees of freedom (d f = d falt − d fnull). So here we consider the following likelihood ratio tests.

1. H01 : α = β = γ = 1, the sample is from Exp(λ)
H11 : α 6= β 6= γ 6= 1, the sample is from MOENH(α, β, γ, λ)

2. H02 : α = β = 1, the sample is from NH
H12 : α 6= β 6= 1, the sample is from MOENH(α, β, γ, λ)

3. H03 : α = 1, the sample is from ENH
H13 : α 6= 1, the sample is from MOENH(α, β, γ, λ)

Table 3: Likelihood ratio test

Model Hypothesis Test statistic p-value
Exp vs MOENH H01 : α, β, γ = 1 10.5406 0.0145

H11 : H01 is false
NH vs MOENH H02 : α, β = 1 11.0046 0.0041

H12 : H02 is false
ENH vs MOENH H03 : α = 1 10.1365 0.0014

H13 : H03 is false

The test statistic −2 ln λ(x) given in (20) is asymptotically distributed as χ2 with three degrees
of freedom for test 1, 2 degrees of freedom for test 2, and 1 degree of freedom for test 3. The
computed values of the test statistic in the case of the DARWin data set are listed in Table 3. From
Table 3, we can see that p− value is less than the significant level of 0.05.LR tests reject the three
sub-models in favour of the MOENH distribution. Since the critical values at the significance
level 0.05 and degree of freedom three, two, and one for the two-tailed tests are 9.348, 7.378, and
5.024 respectively the null hypothesis is rejected in all cases, which shows the appropriateness of
the MOENH distribution to the DARWin data.

8. Conclusion

In this paper, as a generalization of the exponential distribution, the MOENH distribution is
introduced. Statistical properties, characterization properties, and autoregressive time series
models of MOENH distribution are obtained. It is shown that the new model is a competitor
to the exponential distribution for modeling certain types of data sets. Also, the generation of
random variables from the new model is simple. The new model may attract the attention of
researchers as a viable competitor to the exponential distribution.
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