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Abstract

In this article we, proposed a new two parameter distribution called inverted power modified Lindley
distribution. The main objective is to introduce an extension to inverted modified Lindley distribution as
an alternative to the inverted exponential, inverted gamma and inverted modified Lindley distributions,
respectively. The proposed distribution is more flexible than the above mentioned distributions in
terms of its hazard rate function. In the part of estimation of the proposed model, we first utilize
the maximum likelihood (ML) estimator and parametric bootstrap confidence intervals, viz., standard
bootstrap, percentile bootstrap, bias-corrected percentile (BCPB), bias-corrected accelerated bootstrap
(BCAB) from the classical point of view as well the Bayesian estimation under different loss functions,
squared error loss function, modified squared error loss function, and Bayes credible interval as to obtain
the model parameter based on order statistics. A simulation study is carried out to check the efficiency of
the classical and the Bayes estimators in terms of mean squared errors and posterior risks, respectively.
Two real life data sets, have been analyzed for order statistics to demonstrate how the proposed methods
may work in practice.

Keywords: Inverted modified Lindley distribution, moments, maximum likelihood estimator,
order statistics, bootstrap confidence intervals, Bayes estimators.

1. Introduction

The inverted modified Lindley (IML) distribution is one of the most famous one-parameter
distributions used for modeling count data, whish was introduced by [5] as a mixture of inverted
exponential and inverted gamma distributions with mixing proportion θ/(1 + θ), to illustrate
diference between fiducial distribution and posterior distribution. [5] pointed out IML distribution
outperforms the classical inverse Lindley distribution for some real data sets. They studied many
properties of this distribution such as moments and inverse moments and also, noted down that
the first four moments of this distribution. Furthermore, the IML distribution does not provide a
reasonable parametric fit for modeling phenomenon with non-monotone failure rates, such as the
upside-down bathtub failure rates, which are common in reliability and biological studies. For
example, such failure rates curves can be observed in the course of a disease whose mortality
reaches a peak after some finite period and then declines gradually.

Several generalizations of Lindley distribution have been attempted by many researchers in
the existing literature such as [18] studied the generalized Lindley, [3] proposed an extended
Lindley, [10] proposed the power Lindley distribution, [2] introduced the exponentiated power
Lindley distribution, [4] proposed exponential Poisson Lindley distribution, [1] proposed a
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new weighted Lindley distribution, [12] proposed Wrapped Lindley distribution, [7] proposed
alpha power transformed inverse Lindley distribution, [7] proposed alpha-power transformed
Lindley distribution, [6] proposed a new modified Lindley distribution without considering
any special function or additional parameters. Recently, [13] introduced power modified Lindly
(PML) distribution. They showed that PML distribution provides better fit than Lindley, Weibull,
gamma, generalized exponential (GE) and power Lindley (PL) distributions and it was suitable
for modeling constant, increasing, decreasing and unimodal shaped hazard rate function.

Many researchers considered the inverted modified Lindley (IML) distribution in their studies.
For example, [14] studied the moments of order statistics and also estimation of the parameters by
using maximum likelihood methods, [15] have established relations for moments of generalized
order statistics and also proposed the estimation procedures under complete and censored data.
This study presents a one parameter extension of the IML distribution by [5]. The presented
distribution shows the flexible shapes of the density and hazard functions and gives better fits
than some well-known lifetime distributions, such as inverted modified Lindley, Modified Lindley
and Lindley distributions. In this article, we propose a three-parameter distribution, referred to
as inverted power modified Lindley (IPML) distribution using a similar idea [18], which is the
linear combination of inverted power exponential and inverted power gamma distribution. We
are motivated to introduce the IPML distribution because (i) it contain lots of aforementioned
of known lifetime models; (ii) it is capable of modelling monotonically increasing, decreasing,
hazard rates; (iii) it can be viewed as a suitable model for fitting the skewed data which may not
be properly fitted by other common distributions and can also be used in a variety of problems
in various areas such as public health, biomedical studies, environmental studies and industrial
reliability and survival analysis; and, (iv) Three real life data applications show that it compares
well with other competing lifetime distributions in modelling lifetime data.

The objective of this paper is three fold: First, we obtain the estimates of model param-
eters based on maximum likelihood method of estimation. The performance of the MLE is
demonstrated in terms of their mean squared errors (MSEs) based on simulated samples and for
different sample sizes through a simulation study. The second objective is to obtain four bootstrap
confidence intervals (BCIs) of model parameters based on MLE. The performances of the BCIs
are demonstrated in terms of their estimated coverage probabilities (CPs) and average widths
(AWs). The third objective is to obtain Bayes estimates (BEs) of the model parameters under four
loss functions (symmetric as well as asymmetric loss functions).

The rest of the paper is organized as follows: In Section 2, we described proposed model
PIML. In Section 3, dealt with some statistical and mathematical properties of PIML distribution.
Section 4 described the MLE and BCIs, namely, standard bootstrap (SB), percentile bootstrap (PB),
bias-corrected percentile bootstrap (BCPB) and bias-corrected accelerated bootstrap (BCAB) based
on MLE have been discussed. Also, we derive the Bayes estimators of the model parameters
under four loss functions. In Section 5, a Monte Carlo simulation study has been carried out
to assess the performances of the above cited classical and Bayes estimators in terms of their
MSEs. Also, we assess the performances of different BCIs and Bayes credible intervals in terms of
coverage probabilities (CPs) and average widths (AWs). For illustrative purposes, two real data
sets are analyzed in Section 6. Finally, concluding remarks are given in Section 7.

2. Model description

The one parameter inverted modified Lindley (IML) distribution proposed by [5] with cumulative
distribution function (CDF)

F(y) =
(

1 +
η

1 + η

1
y

e−η/y
)

e−η/y, y > 0, η > 0.

Now, we introduce a skewness parameter to the inverted modified Lindley distribution using
a similar idea to [9], [10], [16] and [13] i.e., X = Y1/τ , τ > 0 and to obtain a power inverted
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modified Lindley (PIML) distribution. The CDF of the two parameter PIML distribution is given
by

F(x) =
(

1 +
η

1 + η

1
xτ

e−η/xτ
)

e−η/xτ
, x > 0, η > 0, τ > 0, (1)

and the corresponding probability density function (PDF) given by

f (x) =
η

1 + η

τe−2η/xτ

xτ+1

(
(1 + η)eη/xτ

+
2η

xτ
− 1
)

, x > 0, η > 0, τ > 0, (2)

The corresponding survival function for a specified value X = x is obtained as

S(x) = 1 − F(x) = 1 −
(

1 +
η

1 + η

1
xτ

e−η/xτ
)

e−η/xτ
, x > 0, η > 0, τ > 0, (3)

Thus, we can also express the corresponding hazard rate function (HRF) for specified X = x as

h(x) =

η
1+η

τ e−2η/xτ

xτ+1

[
(1 + η)eη/xτ

+ 2η
xτ − 1

]
1 −

(
1 + η

1+η
1

xτ e−η/xτ
)

e−η/xτ
, x > 0, η > 0, τ > 0, (4)

Figure 1: PDF and HRF of the PIML distribution.

From the Figure 1, it is clear that the PDF and HRF of the PIML distribution is right skewed
distribution and initially increasing and then decreasing behaviour for the considered parameters
values and for specified time. The corresponding cumulative hazard rate function is defined by

C(x) = − log S(x) = − log
{

1 −
(

1 +
η

1 + η

1
xτ

e−η/xτ
)

e−η/xτ
}

, x > 0, η > 0, τ > 0. (5)

When τ = 1, the PIML distribution reduces to IML distribution. An advantage of the definition
of f (x) is that we can write it as a linear combination of well established PDFs as

f (x) = f1(x) +
1

2(1 + η)
( f2(x)− f3(x)), (6)

where, f1(x) is inverted exponential with parameter (η, τ), f2(x) is inverted gamma with parame-
ter (2η, 2τ) and f3(x) is inverted exponential with parameter (2η, τ)

f1(x) =
τηe−η/xτ

xτ+1 , f2(x) =
(2η)2τ

x2τ+1 e−2η/xτ
and f3(x) =

2ητ

xτ+1 e−2η/xτ
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3. Statistical and mathematical properties of PIML distribution

Here, we have discussed and derived several mathematical and statistical properties,which are
given in the following subsections.

3.1. Moments and moment generating function

Let X be a random variable from PIML distribution with PDF given in (2), then its moments is
given by the following

µ′
r =

∫ ∞

0
xr f (x)dx =

∫ ∞

0
xr η

1 + η

τe
−2η
xτ

xτ+1

(
(1 + η)e

η
xτ +

2η

xτ
− 1
)

dx

=
∫ ∞

0
xr−τ−1τηe

−η
xτ dx +

1
2(1 + η)

(∫ ∞

0
τ(2η)2xr−2τ−1e

−2η
xτ −

∫ ∞

0
τ(2η)xr−τ−1e

−2η
xτ

)
dx

= ηr/τΓ
(

1 − r
τ

)(
1 − 2r/τ−1

1 + η

( r
τ

))
. (7)

Also, the first four inverse moments are given by

E(Y−1) =
1

η1/τ
Γ
(

1 +
1
τ

)(
1 +

1

2
1
τ +1(1 + η)

(
1
τ

))

E(Y−2) =
1

η2/τ
Γ
(

1 +
2
τ

)(
1 +

1

2
2
τ +1(1 + η)

(
2
τ

))

E(Y−3) =
1

η3/τ
Γ
(

1 +
3
τ

)(
1 +

1

2
3
τ +1(1 + η)

(
3
τ

))

E(Y−4) =
1

η4/τ
Γ
(

1 +
4
τ

)(
1 +

1

2
4
τ +1(1 + η)

(
4
τ

))
.

Table 1 presents the numerical values of these inverse moments for various values of
For any t < η, the moment generating function of PIML distribution can be computed as

Mx(t) =
∫ ∞

0
etx f (x)dx =

∞

∑
p=0

tp

p!
ηp/τΓ

(
1 − p

τ

)(
1 − 2p/τ−1

1 + η
(

p
τ
)

)
.

The characteristic function of PML distribution, ϕ(t) = E(eitx), and the cumulant generating
function of X, K(t) = log ϕ(t), are given by

ϕx(t) =
∞

∑
p=0

(it)p

p!
ηp/τΓ

(
1 − p

τ

)(
1 − 2p/τ−1

1 + η
(

p
τ
)

)
,

and

K(t) = log

(
∞

∑
p=0

(it)p

p!
(η)p/τ

)
+ log

(
Γ(1 − p

τ
)

(
1 − 2p/τ−1

1 + η
(

p
τ
)

))
.
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Table 1: Numerical values related to the moments of the PIML distribution for different values of parameters τ and η.

τ η E(Y−1) E(Y−2) E(Y−3) E(Y−4)
Sim. Exact Sim. Exact Sim. Exact Sim. Exact

2 0.1 3.2638 3.2529 12.3493 12.2727 52.6211 52.1709 248.0657 245.4545
1 0.9622 0.9646 1.1202 1.1250 0.5104 0.5115 2.2327 2.2500
2 0.6637 0.6636 0.5413 0.5417 1.4967 1.5056 0.5392 0.5417
3 0.5332 0.5343 0.3526 0.3542 0.2712 0.2728 0.2347 0.2361
4 0.4585 0.4588 0.2621 0.2625 0.1746 0.1750 0.1309 0.1313
5 0.4074 0.4080 0.2076 0.2083 0.1235 0.1242 0.0829 0.0833

10 0.2843 0.2848 0.1020 0.1023 0.0429 0.0431 0.0203 0.0205
15 0.2312 0.2314 0.0677 0.0677 0.0232 0.0233 0.0090 0.0090
30 0.1631 0.1627 0.0338 0.0336 0.0082 0.0082 0.0023 0.0022

3 0.1 2.1535 2.1552 4.9804 4.9901 12.2332 12.2727 31.6766 31.8211
1 0.9525 0.9520 0.9985 0.9975 1.1270 1.1250 1.3522 1.3481
2 0.7387 0.7400 0.6071 0.6085 0.5407 0.5417 0.5138 0.5142
3 0.6388 0.6396 0.4553 0.4568 0.3523 0.3542 0.2911 0.2934
4 0.5778 0.5774 0.3738 0.3733 0.2630 0.2625 0.1979 0.1974
5 0.5332 0.5337 0.3190 0.3195 0.2079 0.2083 0.1451 0.1454

10 0.4196 0.4195 0.1983 0.1982 0.1024 0.1023 0.0567 0.0566
15 0.3648 0.3651 0.1501 0.1504 0.0676 0.0677 0.0326 0.0327
30 0.2890 0.2886 0.0944 0.0941 0.0337 0.0336 0.0130 0.0129

3.2. Conditional moment, mean deviation, mean residual life and Bonferroni
and Lorenz curves

For the PML distribution, it can be easily seen that the conditional moments E[Xn|X > t], can be
written as E[Xn|X > t] = 1

S(x)µ′
n(t), where

µ
′
n(t) = E(Xn) =

∫ ∞

t
xn f (x)dx =

∫ ∞

t
xn η

1 + η

τe
−2η
xτ

xτ+1

(
(1 + η)e

η
xτ +

2η

xτ
− 1
)

dx

= τη
∫ ∞

t
xn−τ−1e

−η
xτ dx +

τ η

(1 + η)

(
2η
∫ ∞

t
xn−2τ−1e

−2η
xτ dx −

∫ ∞

t
xn−τ−1e

−2η
xτ

)
dx

= ηn/τγ
( η

tτ
, 1 − n

τ

)
+

ηn/τ 2n/τ−1

1 + η

(
γ

(
2η

tτ
, 2 − n

τ

)
− γ

(
2η

tτ
, 1 − n

τ

))
. (8)

The MRL function in terms of the first conditional moment as

η1(t) = E[X|x > t] =
µ′

1(t)
S(x)

,

where µ′
1(t) can be obtained from (8) where n = 1.

If we denote the median by M, then the mean deviations from the mean and the median
can be calculated as

δµ′
1
= 2µ′

1F(µ′
1)− 2µ′

1 + 2
∫ ∞

µ′
1

x f (x)dx = 2µ′
1F(µ′

1)− 2µ′
1

+ τη2(1 + η)i+1 ∑
(k,l)∈J

∞

∑
r=0

r

∑
i=0

i

∑
z=0

z+1

∑
y=0

(
k + l
r + 1

)(
r
i

)(
i
z

)(
z + 1

y

)

× (r + 1)Wk,l
(−1)r+iηzΓ( 1

τ + y + 1, µ′
1)

(1 + η)i+1[ηi + η]
1
τ +y+1

.
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Similarly, the mean deviation of median (δM) is obtained as follows

δM = 2MF(M)− M − µ′
1 + 2

∫ ∞

M
x f (x)dx

and by using the steps used to solve the integral , we get

δM = 2MF(M)− M − µ′
1 + 2τη2 ∑

(k,l)∈J

∞

∑
r=0

r

∑
i=0

i

∑
z=0

z+1

∑
y=0

(
k + l
r + 1

)(
r
i

)(
i
z

)(
z + 1

y

)

× (r + 1)Wk,l
(−1)r+iηzΓ( 1

τ + y + 1, µ′
1)

(1 + δ)i+1[ηi + η]
1
τ +y+1

.

respectively. Where µ′
1(µ) and µ′

1(M) can obtained from (8). Also, F(µ) and F(M) are easily
calculated from (1).

The Bonferroni and Lorenz curves are defined as

B(P) =
1

Pµ

∫ Q

0
x f (x)dx and L(P) =

1
µ

∫ Q

0
x f (x)dx,

respectively, where Q = F−1(P). The Bonferroni and Gini indices are defined by

B = 1 −
∫ 1

0
B(P)dP and G = 1 − 2

∫ 1

0
L(P)dP,

respectively. If X has the pdf in (2), then one can obtain Bonferroni curve of the MPL distribution
as By replacing n=1 and t=q in (8) we get-

B(P) =
η1/τ

Pµ

(
Γ
(

η

qτ
, 1 − 1

τ

)
+

η1/τ21/τ−1

1 + η

(
Γ
(

2η

qτ
, 2 − 1

τ

)
− Γ

(
2η

qτ
, 1 − 1

τ

)))
(9)

and the Lorenz curves L(p) = pB(p).

3.3. Entropy

If X is a continuous random variable having probability density function f (.), then Renyi entropy
is defined as

Rr =
1

1 − r
log
(∫ ∞

0
f r(x)dx

)
, r ̸= 1, r > 0

=
1

1 − r
log

(
τr−1 η

1−r
τ

r

∑
i=0

i

∑
j=0

(−1)j
(

r
i

)(
i
j

)
2i−j Γ(i − j + r + r−1

τ )

(1 + η)i(r + i)i−j+r− r−1
τ

)
. (10)

The r-entropy, say Ir(x), is defined by

Ir(x) =
1

1 − r
log
(

1 −
∫ ∞

0
f r(x)dx

)
, r ̸= 1, r > 0

and then it follows from equation (10).
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3.4. Stress-strength Reliablity

The stress-strength reliability for PIML random variables X ∼ PIML(τ1, η1) and Y ∼ PIML(τ2, η2)
is given by

R = P(X2 < X1) =
∫ ∞

0
F2(x) f1(x)dx = 1 −

∫ ∞

0
F2(x) f1(x)dx

= 1 −
(

∞

∑
i=0

(−1)i

i!

(
η2

(η1)τ2/τ1

)i
Γ
(

iτ2
τ1

+ 1
)
+

1
2(1 + η1)

∞

∑
i=0

(−1)i

i!

 η2

(2η1)
τ2
τ1

i

× Γ
(

iτ2

τ1
+ 2
)
− 1

2(1 + η1)

∞

∑
i=0

(−1)i

i!

(
η2

(2η1)τ2/τ1

)i
Γ
(

iτ2

τ1
+ 1
)

+

(
η2

1 + η2

)(
1

ητ2/τ1
1

)
∞

∑
i=0

(−1)i

i!

(
2η2

(η1)τ2/τ1

)i
Γ
(
(i + 1)τ2

τ1
+ 1
)

+

(
η1η2

(1 + η1)(1 + η2)

)
1

(2η1)
τ2
τ1
+1

∞

∑
i=0

(−1)i

i!

(
2η2

(2η1)τ2/τ1

)i
Γ
(
(i + 1)τ2

τ1
+ 2
)

−
(

η2

2(1 + η1)(1 + η2)

)
1

(2η1)τ2/τ1

∞

∑
i=0

(−1)i

i!

(
2η2

(2η1)τ2/τ1

)i
Γ
(
(i + 1)τ2

τ1
+ 1
))

.

3.5. Order statistics

Let X1, X2, · · · , Xn be a random sample of size n from the PIML distribution and X(1), X(2), · · · , X(n)
be the corresponding order statistics. The probability density function of the rth order statistics is
obtained as follow:

fr:n(x) =
n!

(r − 1)!(n − r)!
[F(x)]r−1[1 − F(x)]n−r f (x).

For the PIML distribution, the pdf of rth order statistic is obtained as

fr:n(x) =
n!

(r − 1)!(n − r)!

n−r

∑
i=0

r+i−1

∑
j=0

(
n − r

i

)(
r + i − 1

j

)
(−1)i

(
η

1 + η

)j+1 1
xτ(j+1)

× e
−2η(j+1)

xτ e
−η(r+i−1)

xτ

(
(1 + η)e

η
xτ +

2η

xτ
− 1
)

.

The rth ordered moment is obtained as

µr:n(x) =
∫ ∞

0
x fr:n(x)dx =

n!
(r − 1)!(n − r)!

n−r

∑
i=0

r+i−1

∑
j=0

(
n − r

i

)(
r + i − 1

j

)
(−1)i

×
(

η

1 + η

)j+1
(
(1 + η)

η
τ j−1

τ +1

Γ
(

τ j−1
τ + 1

)
(2j + r + i)

τ j−1
τ +1

+
2

η
τ j−1

τ +1

Γ
(

τ j−1
τ +

)
(2j + r + i + 1)

τ j−1
τ +2

− 1

η
τ j−1

τ +1

1

(2j + r + i + 1)
τ j−1

τ +1
Γ
(

τ j − 1
τ

+ 1
))

.

4. Parametric estimation of the parameters of PIML distribution

Here, in this Section, we have derived the classical and the Bayesian point and interval estimation
of the model parameters, respectively.

RT&A, No 3 (79) 
Volume 19, September 2024

794



Kumar, Goyal, Pareek and Saha
NEW EXTENSION OF INVERTED MODIFIED LINDLEY DISTRIBUTION

4.1. Classical estimation

Let x1, x2, · · · , xn be a random sample of size n from the PIML distribution. Then, the likelihood
function is given by

L =
n

∏
i=1

f (xi) =
n

∏
i=1

τη

1 + η

e−2η/xτ
i

xτ+1
i

(
(1 + η)eη/xτ

i +
2η

xτ
i
− 1
)

=
τnηn

(1 + η)n e
−2η ∑n

i=1
1

xτ
i

n

∏
i=1

(
(1 + η)eη/xτ

i +
2η

xτ
i
− 1
) n

∏
i=1

1
xτ+1

i

The corresponding log-likelihood function is

ln L = n ln(τ) + n ln (η)− n ln (1 + η)− 2η
n

∑
i=1

1
xτ

i
+

n

∑
i=1

ln
(
(1 + η)eη/xτ

i +
2η

xτ
i
− 1
)
−

n

∑
i=1

ln(xτ+1
i )

The maximum likelihood estimates of η and τ can be obtained by solving the following non-linear
equations:

∂ ln L
∂η

=
n

η(1 + η)
− 2

n

∑
i=1

1
xτ

i
+

n

∑
i=1

xτ
i eη/xτ

i + (1 + η)eη/xτ
i + 2

xτ
i (1 + η)eη/xτ

i + 2η − xτ
i

= 0,

∂ln L
∂τ

=
n
τ
+ 2η

n

∑
i=1

xτ
i ln (xi)−

n

∑
i=1

x2τ
i η(1 + η)eη/xτ

i ln(xi) + 2ηx2τ
i ln(xi)

xτ
i (1 + η)eη/xτ

i + 2η − xτ
i

−
n

∑
i=1

ln(xi) = 0.

To solve the above equations, non-linear optimization methods such as the quasi-Newton algo-
rithm can be used to obtain the MLEs of τ and η and are denoted by τ̂mle and η̂mle. To estimate δ
and γ, we use two methods of estimation, namely maximum likelihood method and Bayesian
method. Bayesian estimation method will be discussed in the subsequent Section.

Bootstrap confidence interval

Here, we provide a detailed method for constructing the CIs based on bootstrap method. Here,
we consider four CIs based on bootstrap methods: (i) standard bootstrap (SB), (ii) percentile
bootstrap (PB), (iii) bias-corrected percentile bootstrap (BCPB), and (iv) bias-corrected accelerated
bootstrap (BCAB). Below, we provide the algorithm for construction of the bootstrap CIs based
on method of maximum likelihood.

1. Let (X1, X2, ..., Xn) be a random sample of size n drawn from PIML(η, τ). (η̂mle, τ̂mle) of
(η, τ). A bootstrap sample of size n is obtained from the original sample by multiplying 1/n
as mass at each point, denoted by (X∗

1 , X∗
2 , ..., X∗

n).

2. Compute the MLEs (η̂∗
mle, τ̂∗

mle) of (η, τ). The M-th bootstrap estimator of (η, τ) are computed
as

η̂
∗(M)
mle = η̂mle

(
X∗(M)

1 , X∗(M)
2 , ..., X∗(M)

n

)
τ̂
∗(M)
mle = τ̂mle

(
X∗(M)

1 , X∗(M)
2 , ..., X∗(M)

n

)
3. There are total number of nn re-samples. From these re-samples, the entire collection of

R values of η̂∗
mle, τ̂∗

mle from smallest to largest would constitute an empirical bootstrap
distribution as: {

η̂
∗(I)
mle ; I = 1(1)R

}
{

τ̂
∗(I)
mle ; I = 1(1)R

}
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SB

Let

¯̂η∗
mle =

1
R

R

∑
I=1

η̂
∗(I)
mle , s(η̂∗

mle) =

√√√√ 1
(R − 1)

R

∑
I=1

(
η̂
∗(I)
mle − ¯̂η∗

mle

)2
,

¯̂τ∗
mle =

1
R

R

∑
I=1

τ̂
∗(I)
mle , s(τ̂∗

mle) =

√√√√ 1
(R − 1)

R

∑
I=1

(
τ̂
∗(I)
mle − ¯̂τ∗

mle

)2

be the sample means and standard deviations of
{

η̂
∗(I)
mle ; I = 1(1)R

}
,
{

τ̂
∗(I)
mle ; I = 1(1)R

}
, respec-

tively. Then, 100(1 − γ)% SB confidence interval of (η, τ) are given as:{
¯̂η∗
mle − Z(γ/2) × s(η̂∗

mle), ¯̂η∗
mle + Z(γ/2) × s(τ̂∗

mle)
}

,{
¯̂τ∗
mle − Z(γ/2) × s(τ̂∗

mle), ¯̂τ∗
mle + Z(γ/2) × s(τ̂∗

mle)
}

,

where Z(γ/2) is obtained by using upper (γ/2)-th point of the standard normal deviate.

PB

Let η̂
∗(ξ)
mle , τ̂

∗(ξ)
mle are the ξ percentile of

{
η̂
∗(I)
mle ; I = 1(1)R

}
,
{

η̂
∗(I)
mle ; I = 1(1)R

}
, respectively. Then,

a 100(1 − γ)% PB confidence interval of (τ, η) are given as:{
τ̂
∗(R×(γ/2))
mle , τ̂

∗(R×(1−γ/2))
mle

}
,{

η̂
∗(R×(γ/2))
mle , η̂

∗(R×(1−γ/2))
mle

}
,

respectively.
To study the different confidence intervals, we consider their estimated average widths (AWs)

and coverage probabilities (CPs) for each of the considered methods and are given as

AW(τ) =

K
∑

i=1
(Ucli − Lcli)

K
and CP(τ) =

number (Lcl ≤ τ ≤ Ucl)

K
,

AW(η) =

K
∑

i=1
(Ucli − Lcli)

K
and CP(η) =

number (Lcl ≤ η ≤ Ucl)

K
.

4.2. Bayesian estimation

As a powerful and valid alternative to classical estimation, the Bayesian approach suggests a
procedure to combine the observed information with the prior knowledge. Here, for the purpose
of framing the Bayesian analysis, we set assumptions as:

τ ∼ Gamma(τ0, τ1), η ∼ Gamma(η0, η1).

We now consider several (symmetric and asymmetric) loss functions (LS), namely, SELF, WSELF,
MSELF, and PLF. These loss functions with corresponding Bayesian estimators (BS) and posterior
risks (PR) are provided in Table 2.
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Table 2: Five loss functions with corresponding BS and PR.

LS: L(ψ, δ) BS of parameter ψB PR of parameter ρψ

SELF = (ψ − d)2 E(ψ|x) Var(ψ|x)

WSELF = (ψ−d)2

ψ (E(ψ−1|x))−1 E(ψ|x)− (E(ψ−1|x))−1

MSELF =
(

1 − d
ψ

)2 E(ψ−1|x)
E(ψ−2|x) 1 − E(ψ−1|x)2

E(ψ−2|x)

PLF = (ψ−d)2

d

√
E(ψ2|x) 2

(√
E(ψ2|x)− E(ψ|x)

)

Posterior distributions

The joint prior distribution of parameters τ and η under the independent prior distributions

τ ∼ Gamma(τ0, τ1), η ∼ Gamma(η0, η1),

is given as

π(τ, η) =
ττ0

1 η
η0
1

Γ(τ0)Γ(η0)
ττ0−1ηη0−1e−(τ1τ+η1η), (11)

where all the hyper-parameters τ0, τ1, η0 and η1 are positive. Now, let ζ be

ζ(τ, η) = ττ0−1ηη0−1e−(τ1τ+η1η), τ > 0, η > 0,

then, the joint posterior distribution is proportional to the joint prior distribution π(τ, η) and a
given likelihood function L(data) as

π∗(τ, η|data) ∝ π(τ, η)L(data). (12)

In the case of PML distribution, the exact joint posterior PDF of parameters τ and η, is given by

π∗(τ, η|x) = CL(x, Υ)ζ(τ, η) (13)

where

L(x; Υ) =
τnηn

(1 + η)n e
−2η ∑n

i=1
1

xτ
i

n

∏
i=1

[
(1 + η)eη/xτ

i +
2η

xτ
i
− 1
] n

∏
i=1

1
xτ+1

i

, (14)

Υ = (τ, η) and K is normalizing constant and is given by

C−1 =
∫ ∞

0

∫ ∞

0
L(x, Υ)ζ(τ, η)∂η∂τ.

Consequently, the marginal posterior PDF for the elements of vector Υ with Υ = (Υ1, Υ2) = (τ, η),
is given by

π(Υi|x) =
∫ ∞

0
π∗(Υ|x)∂Υj, (15)

where i, j = 1, 2, i ̸= j and Υi is the ith element of vector parameter Υ.

Generating posterior samples

Let f (x|υ) be a general PDF that is labeled with parameter vector υ = (υ1, υ2, ..., υp). Based on a

given sample x and initial parameter vector υ0 = (υ
(0)
1 , υ

(0)
2 , ..., υ

(0)
p ), the Gibbs sampler gives the

values for each iteration with p steps by extracting a new value for each parameter from its full
conditional PDF. In symbols, the steps for each iteration (iteration l), are as follows:
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• Set an initial parameter vector (υ(0)1 , υ
(0)
2 , ..., υ

(0)
p )

• Extract υl
1 from π

(
υ1|υl−1

2 , υl−1
3 , ..., υl−1

p , x
)

• Extract υl
2 from π

(
υ2|υl

1, υl−1
3 , ..., υl−1

p , x
)
; and so on down to

• Extract υl
p from π

(
υp|υl

1, υl
2, ..., υl

p−1, x
)
.

Making use the above GS algorithm, the posterior samples of the parameters τ and η of PML
distribution are generated from the full conditional posterior PDFs

π
(
τ|ηk−1, x

)
∝ ττ0+n−1e−τ1τ

n

∏
i=1

(
(1 + η)xτ−1eηxτ

i + 2ηx2τ−1
i − xτ−1

i

)
e−2ηxτ

i

and

π
(
η|τk−1, x

)
∝

ηη0+n+1 e−η1η(
1 + η

)n

n

∏
i=1

(
(1 + η)xτ−1eηxτ

i + 2ηx2τ−1
i − xτ−1

i

)
e−2ηxτ

i ,

respectively.

5. Comparison via Monte-Carlo Simulation

Here, we have carried out a Monte Carlo simulation study to compare the performances of the
classical and the Bayesian methods of estimation of the parameters (τ, η) of PIML distribution. The
performance of the estimates (classical as well as Bayes) are compared in terms of their MSEs and
posterior risks, respectively. Also, we have obtained four BCIs, namely, SB, PB, BCPB and BCAB
and high posterior density (HPD) credible intervals, respectively. The performance of the CIs are
compared in terms of their AWs and CPs. Here, for the simulation study, we have considered the
sample sizes n = 20, 30, 50, 100 and (τ, η) = (0.5, 2.0), (1.0, 2.0), (0.5, 3.0), (1.0, 3.0), (2.0, 2.0),
respectively. For each of the designs, R = 1, 000 bootstrap samples each of size n are drawn from
the original sample and replicated K = 1, 000 times.

This section presents Monte Carlo simulation results to assess the performance of MLE
mentioned in the previous section. First, we generate different samples with size n from (1) based
upon the inversion method. We compute the mean square errors (MSEs) and biases of the MLEs
of the parameters based on N = 10, 000 iterations. The results are summed up in Table 2 for some
selected parameter values and several sample sizes, n. The results in Table 2 indicate that the
MSEs and biases of the MLEs decrease when the sample size n increases. So, the MLEs of the
parameters are consistent.

5.1. Simulation results using mean squared errors, Bayes risks and nominal
coverage probability as the criterion.

This section is devoted to calculate posterior risk values of Bayes estimators under different
loss functions based on Monte Carlo simulation. We generated samples of different sizes
n = {30, 50, 75, 100} from the PIML distribution for true value of parameters (i) (τ, η) = (2, 0.5)
and (ii) (τ, η) = (1, 2). Table 3 reports the posterior risk values of Bayes estimators under prior
distributions defined in (11) and the aforementioned five loss functions as shown in Table 1. These
results provided by considering hyper parameters values as (τ0, τ1) = (2, 1), (η0, η1) = (4, 2)
for case (i) and (τ0, τ1) = (10, 1), (η0, η1) = (1, 2) and for case (ii) based on 10000 replicates
with 1000 burn-in of MCMC procedure in Open BUGS software. It is evident from Table 4 that
with increasing sample size n, the posterior risk decreases and this confirms the consistency
property. We also observe that as n increases, Bayes estimate of τ based on KL loss function
provide superior performance than other Bayes estimates whereas Bayes estimate of η based on
PL loss function perform better than other loss functions as η decreases.
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Table 4: Posterior risk values of Bayesian estimators under different loss functions based on simulation data set for
different sample sizes.

n Loss (τ, η) = (2, 0.5) (τ, η) = (1, 2)
function rτ̂ rη̂ rτ̂ rη̂

20 SELF 0.183806 0.009075 0.042515 0.154721
WSELF 0.071691 0.026926 0.030225 0.077895
MSELF 0.030278 0.098003 0.022891 0.043705
PLF 0.068412 0.025424 0.029432 0.075577

30 SELF 0.065705 0.007869 0.026909 0.085396
WSELF 0.033654 0.017964 0.021658 0.046136
MSELF 0.018129 0.046110 0.018359 0.026846
PLF 0.032622 0.017514 0.021233 0.045574

50 SELF 0.035856 0.007735 0.014231 0.051113
WSELF 0.020319 0.011983 0.011751 0.027568
MSELF 0.011905 0.019580 0.009982 0.015532
PLF 0.020002 0.011839 0.011603 0.027314

100 SELF 0.024259 0.003219 0.010833 0.029405
WSELF 0.011909 0.006025 0.008129 0.015245
MSELF 0.005946 0.011653 0.006210 0.008089
PLF 0.011784 0.005991 0.008063 0.015200

6. Applications

In this section, we examine the versatility of the PIML model in comparison with the inverted
modified Lindley (IML), modified Lindley (ML) and inverse Lindley (IL) distributions by usage
of three real data sets presented below, which are available in [5]. The box plot of the considered
data set are displyed in Figure 2. To check the validity of the considered data sets with the
proposed model, the goodness-of-fit statistics is considered. Here, we have used built-in package
fitdistrplus of the R open source software (see, Ihaka and Gentleman (1996)) for goodness-of-fit
test. And we derived the unknown parameters by the maximum likelihood estimation (MLE)
method, log likelihood function evaluated at the MLEs (l̂), the values of the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC), the values of the Kolmogorov“Smirnov
(K“S) statistic, the corresponding p values and the values of the Anderson-Darling (AD) and
Cram©r von Mises (CM) are compared with IML, IL and also are reported in Table 5.

Data set I: This first data set has been analyzed by [19]. The Open University (1993), which
relates to the prices of the 31 various children’s wooden toys on sale in a Sufolk craft shop in
April 1991, is the source of the first data set. Originally, the data set is: 4.2, 1.12, 1.39, 2, 3.99, 2.15,
1.74, 5.81, 1.7, 0.5, 0.99, 11.5, 5.12, 0.9, 1.99, 6.24, 2.6, 3, 12.2, 7.36, 4.75, 11.59, 8.69, 9.8, 1.85, 1.99,
1.35, 10, 0.65, 1.45.

Data set II: The second data set, which was obtained from [17], includes the intervals between
failures for repairable items and the data set is: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59,
0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97,
1.86, 1.17.

Data set III: The third actual data set includes 30 iterations of [11] reported March precipitation
figures for Minneapolis/St. Paul (in inches). The set of data is: 0.77, 1.74, 0.81, 1.2, 1.95, 1.2, 0.47,
1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.9, 2.05.
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Figure 2: Box plot of the considered data sets I, II and III [[5]].

Table 5: The model fitting summary of the considered data sets I, II and III.

Distribution n (τ̂, η̂) −l̂ AIC BIC KS Statistic p-value AD CM
Data Set I

PIML 30 (1.093,2.233) 73.011 150.023 152.825 0.1017 0.9154 0.4138 0.0546
IML 30 (2.1537) 73.187 148.375 149.776 0.1225 0.7589 0.4082 0.0487
ML 30 (0.2825) 73.00 148.000 149.4016 0.18521 0.2548 0.9004 0.1556
L 30 (0.3999) 73.232 148.464 149.865 0.1832 0.2661 0.8631 0.1478

Data Set II
PIML 30 (0.955,0.941) 45.227 94.454 97.257 0.12767 0.7124 0.9657 0.1387
IML 30 (0.9201) 45.301 92.603 94.004 0.1404 0.5951 0.9454 0.1405
ML 30 (0.7302) 40.749 83.499 84.901 0.0979 0.9355 0.4283 0.0629
L 30 (0.9767) 41.537 85.0740 86.4752 0.1278 0.7108 0.7125 0.1111

Data Set III
PIML 30 (1.362,1.222) 41.608 87.216 90.018 0.1392 0.6058 0.6605 0.0985
IML 30 (1.2473) 43.868 89.736 91.137 0.1974 0.1925 1.391 0.217
ML 30 (0.6644) 41.945 85.889 87.291 0.1566 0.4532 1.1278 0.1723
L 30 (0.9096) 43.1437 88.2874 89.6886 0.1882 0.2383 1.5908 0.2618
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The MLEs of the parameters given in Table 5. The widths of the BCIs and the Bayes estimates
as well as Bayes credible intervals of the model parameters are given in Tables 6 and 5, respectively.

7. Concluding Remarks

In this article, we have proposed a new probability distribution, namely, PIML distribution
by considering the IML distribution. Different statistical characteristics have been deliberated.
Maximum likelihood estimates of the models parameters as well bootstrap confidence intervals
from classical point of view and the Bayes estimates have been obtained. The consistency of the
point and interval estimates have been shown through the simulation study in terms of mean
squared errors, average widths and corresponding coverage probabilities. With the lowest values
of AIC, BIC, AD, CM, KS and highest values of KS p values among all the competitive models,
viz., L, ML and IML, the PIML distribution has been choden the best fitted model to fit the
considered three data sets.
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