
Adegoke, Abimbola, Oladoja, Oyebanjo & Obisesan
BAYESIAN ESTIMA TION OF PARAMETERS AND RELIABILITY
CHARACTERISTICS IN THE INVERSE GOMPER TZ DISTRIBUTION

BAYESIAN ESTIMATION OF PARAMETERS AND
RELIABILITY CHARACTERISTICS IN THE INVERSE

GOMPERTZ DISTRIBUTION

∗1Taiwo. M. Adegoke, 2Latifat A. Abimbola, 3Oladapo M. Oladoja,
4Oyindamola. R. Oyebanjo & 5K.O. Obisesan

•
∗1,2,3,4,5 Department of Mathematics and Statistics, First Technical Univ ersity , Ibadan, Nigeria.

∗1taiw o.adegoke@tech-u.edu.ng, 2latifat.abimbola@tech-u.edu.ng,
3oladapo.oladoja@tech-u.edu.ng, 4oyindamola.o yebanjo@tech-u.edu.ng

5 obisesan.olalekan@tech-u.edu.ng

Abstract

In this study, we derive Bayes’ estimators for the unknown parameters of the Inverse Gompertz Distribu-
tion (IGD) using three alternative loss functions: the Squared Error Loss Function (SELF), the Entropy
Loss Function (ELF), and the Linex Loss Function. Closed-form formulas for Bayes estimators are not
possible when both parameters are unknown, hence Lindley’s approximation (L-Approximation) is used
for computation. We examine the performance of these estimators using their simulated hazards and
assess their effectiveness in parameter estimation. It was discovered that as the sample size increases,
parameter estimations became more precise and accurate across all functions. However, ELF consistently
has lower MSE values than SELF and LINEX, indicating better parameter estimation. This pattern was
also seen in the estimation of the hazard function, where ELF regularly beat SELF and LINEX, implying
more efficient parameter estimation overall.

Keywords: Likelihood Function, Prior Distribution, Posterior Distribution, Bayes Estimates,
Lindle y Appr oximation

1. Introduction

Gompertz [1] proposed a probability distribution with tw o parameters, which is widely used in
sur viv al analysis to repr esent human mortality and beha vioral sciences data. This distribution, a
generalization of the exponential distribution, has many practical uses, particularly in medical
and actuarial studies. It has considerable similarities to well-kno wn distributions such as the
Gumbel, Weibull, generalized logistic, exponential, and double exponential distributions [2].

However, the Gompertz distribution (GD) only sho ws an increasing failur e rate, restricting
its potential to repr esent occurr ences across several fields. As a result, many authors have
contributed to methodological studies and characterizations of this distribution to addr ess real-
world challenges in a variety of fields, including medical sciences, economics, beha vioral sciences,
engineering, biological studies, actuarial science, envir onmental studies, and lifetime analysis.

The Gompertz distribution and its variants have been the subject of extensiv e resear ch. Read
[3] offers a fundamental overvie w of the Gompertz distribution, including its featur es and
applications in statistical fields. Makany [4] explor es the theor etical foundations of Gompertz’s
cur ve and provides insights into its mathematical repr esentation. Franses [5] discusses practical
issues of fitting Gompertz cur ves to actual data. Wu and Lee [6] inv estigate combinations of
Gompertz distributions, offering a frame work for defining complicated systems. El-Gohar y et al.

RT&A, No 3 (79) 
Volume 19, September 2024

744

mailto: taiwo.adegoke@tech-u.edu.ng
mailto: latifat.abimbola@tech-u.edu.ng
mailto:oladapo.oladoja@tech-u.edu.ng
mailto:oyindamola.oyebanjo@tech-u.edu.ng 
mailto: obisesan.olalekan@tech-u.edu.ng


Adegoke, Abimbola, Oladoja, Oyebanjo & Obisesan
BAYESIAN ESTIMA TION OF PARAMETERS AND RELIABILITY
CHARACTERISTICS IN THE INVERSE GOMPER TZ DISTRIBUTION

[7] introduce the gene ralized Gompertz distribution, which impr oves modeling flexibility . The
beta-Gompertz distribution, proposed by Jafari et al. [8], enhances the flexibility of data captur e.
Khan et al. [9] introduce the transmuted Gompertz distribution, which can accommodate a
wider range of data patter ns. El-Bassiouny et al. [10, 11] study mixtur e models that combine the
Gompertz distribution with other distributions to impr ove applicability in reliability and sur viv al
analysis. Rasool et al. [12] introduced the McDonald Gompertz distribution, which impr oves
its ability to captur e complicated data patter ns. [13] introduced Topp-Leone Inverse Gompertz
Distribution with dif ferent estimation procedur es and application. Sanku et al. [14] assess and
compar e various estimating methodologies for the Gompertz distribution, assisting resear chers
and practitioners in selecting rele vant methods.

2. Inverse Gompertz Distribution

The random variable X is said to have an Inverse Gaussian Distribution (IGD) with shape
parameter λ and scale parameter γ, if its cumulativ e distribution function (CDF) is giv en by

F(x) = e−
λ
γ

(
e

γ
x −1

)
, x > 0, λ, γ > 0 (1)

The probability density function (PDF) of the Inverse Gaussian Distribution (IGD) is expr essed as

f (x) =
λ

x2 e−
λ
γ

(
e

γ
x −1

)
+ γ

x (2)

Further mor e, the reliability function is provided as follo ws:

R(x) = 1 − e
− λ

γ

(
e

γ
t −1

)
(3)

The quantile function for the IGD distribution can be expr essed as

q =
γ

ln(1 − γ
λ ln q)

, 0 < q < 1. (4)

Figure 1: PDF of the IGD

RT&A, No 3 (79) 
Volume 19, September 2024

745



Adegoke, Abimbola, Oladoja, Oyebanjo & Obisesan
BAYESIAN ESTIMA TION OF PARAMETERS AND RELIABILITY
CHARACTERISTICS IN THE INVERSE GOMPER TZ DISTRIBUTION

Figure 2: CDF of the IGD

3. Bayesian Estimation Techniques

Let x = (x1, x2, . . . xn) be a random variable with parameters λ and γ having a size n. From
the bayes’ the posterior probability density function of the parameters λ and γ giv en x can be
expr essed as

Pr(λ, γ, η|x) = π(λ, γ)l(λ, γ)∫ ∫ ∫
π(λ, γ)l(λ, γ)∂(λ, γ)

(5)

wher e l(λ, γ) is the likelihood and (λ, γ) is the prior probability distribution.

3.1. Likelihood Function

Giv en a series of obser vations x = (x1, x2, . . . xn) with parameters λ and γ having a size n for IG
distribution (2), the likelihood function can be expr essed as

l =
λn

∑ x2 e−
λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x ) (6)

The log likelihood of IG distribution can be expr essed as

L = log l = n log λ + ∑
(γ

x

)
− 2 ∑ log (x)− λ

γ ∑
(

e
γ
x − 1

)
(7)

The maximum likelihood estimator of the shape and scale parameters for the parameters λ and γ
is obtained by dif ferentiating the (7) on parameters λ and γ. The maximum likelihood dif ferential
equations are:

d L
dλ

=
1
λ
−

n

∑
i=1

(
e

γ
xi − 1

)
1
γ

(8)

d L
dγ

=
n

∑
i=1

1
xi

+
λ ∑n

i=1

(
exp

(
γ
xi

)
− 1
)

γ2 −
λ ∑n

i=1

(
exp

(
γ
xi

)
xi

)
γ

(9)

Analytical solutions to equations (8) and (9) are not viable. The estimated values for the
parameters λ and γ can be deriv ed numerically using an iterativ e appr oach known as the Ne wton-
Raphson method [15, 17, 16]. The Fisher infor mation matrix elements for parameters λ and γ can
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be repr esented as follo ws:

Jk =

 ∂2 l(λ,γ)
∂λ2

∂2 l(λ,γ)
∂λ∂γ

∂2 l(λ,γ)
∂λ∂γ

∂2 l(λ,γ)
∂γ2

 (10)

The Jacobian matrix must be a non-singular symmetric matrix so its inv erse must exist. So, using
the Ne wton Raphson method we have[

λk+1
γk+1

]
=

[
λk
γk

]
− Jk

−1

[
∂l(λ,γ)

∂λ
∂l(λ,γ)

∂γ

]
(11)

with error ter m ϵ being the absolute dif ferences betw een the new and the previous value of λ
and γ in the iterativ e algorithm. That is

ϵ

[
ϵk+1(λ)
ϵk+1(γ)

]
=

[[
λk+1
γk+1

]
−
[

λk
γk

]]
(12)

wher e λk and γk are the initial values of λ and γ respectiv ely. .
wher e

Lλλ =
d2 L
dλ2 = − 1

λ2 (13)

Lγγ =
d2 L
dγ2 = −2 ·

λ ∑n
i=1

(
exp

(
γ
xi

)
− 1
)

γ3 +

2 · λ ∑n
i=1

(
exp

(
γ
xi

)
xi

)
γ2 −

λ ∑n
i=1

(
exp

(
γ
xi

)
x2

i

)
γ

(14)

Lλγ =
d2 L

dλdγ
=

d2 L
dγdλ

=
−n + ∑n

i=1 exp
(

γ
xi

)
γ2 −

n

∑
i=1

 exp
(

γ
xi

)
xi

 · 1
γ

(15)

3.2. Prior Distribution

From (6), it can obser ved that ther e is no proper conjugate distribution for the parameters λ
and γ. Ther efor e, we will consider the use of independent gamma prior distribution for the
scale with parameters a1 and b1 and shape parameters a2 and b2. That is λ ∼ Gamma(a1, b1) and
γ ∼ Gamma(a2, b2). The joint prior distribution can be expr essed as

π(λ, γ) ∝ λa1−1γa2−1e−b1λe−b2γ (16)

wher e a1, a2, b1 and b2 are hyper parameters.

3.3. Posterior Distribution

To obtain the posterior distribution for the IG distribution, we combine (6) and (16) and can be
expr essed as

P(λ, γ|X) = k−1λa1+n−1γa2−1 ∑ x−2e−
λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γ (17)

wher e

k =
∫ ∞

0

∫ ∞

0
λa1+n−1γa2−1 ∑ x−2e−

λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γ
∂λ∂γ

Analytical solutions for λ and γ from the posterior equation (17) are not viable due to its
complicated natur e, necessitating the use of numerical appr oaches such as Gibbs sampling,
Metr opolis-Hastings, EM algorithm, Lindle y appr oximation, among others. In this study , we will
use the Lindle y appr oximation appr oach to obtain Bayesian estimates of λ and γ.
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3.4. Loss Functions

The squar ed error is commonly emplo yed as a loss function, however, its symmetric natur e
may not be acceptable in estimating issues with asymmetric losses. This disparity is especially
pronounced in disciplines such as life testing and reliability estimation. In response, asymmetric
loss functions, such as Varian’s LINEX loss function [18], have gained popularity . [19] inv estigated
the featur es of the LINEX loss function and disco vered that the squar ed error loss is a specific
instance of it. Another useful option is the entr opy loss function.

In recent years, many authors have used Bayesian estimation for estimating the parameters of
distributions. Examples include the works of Ahmed et al. [20], Basu & Ebrahimi [21], Nassar &
Eissa [22], Pande y [23], Roio [24], Soliman et al. [31, 32, 33], Singh et al. [30, 25, 26], Adegoke et
al [27], Ogunsany a et al. [28], Nzei et al. [29] , and others.

We achie ve the appr opriate Bayesian estimates by using predefined loss functions such squar ed
error, LINEX, and entr opy, which are defined as follo ws:

LS(d̂(θ), d(θ)) = (d̂(θ)− d(θ))2,

LL(d̂(θ), d(θ)) = eh(d̂(θ)−d(θ)) − h(d̂(θ)− d(θ))− 1, h ̸= 0,

LE(d̂(θ), d(θ)) ∝

(
d̂(θ)
d(θ)

)w

− w log

(
d̂(θ)
d(θ)

)
− 1, w ̸= 0,

We get the desir ed Bayesian estimates.Her e, d̂(θ) is an estimate of d(θ). In the Bayesian paradigm,
an optimal estimate for a certain loss function can be obtained by minimizing the average risk
of d̂(θ) relativ e to a weight function, also known as the prior distribution of θ. The Bayesian
estimate, d̂BS, under the loss LS, corresponds to the posterior mean of d(θ). by applying specified
loss functions: squar ed error, LINEX, and entr opy, which are described as follo ws. The Bayesian
estimate of d(θ) for the loss function LL is provided as:

d̂BL = − 1
h

log
(

Eθ

[
e−hθ |x

])
the equiv alent estimate for the loss function LE is as follo ws:

d̂BE =
(
Eθ(θ

−w|x)
)− 1

w

giv en that the corresponding expectations Eθ(·) exist. We use loss functions LS, LL, and LE to
get Bayesian estimates of λ, γ, θ, the reliability function R(t), and the hazar d function h(t).

Initially , we compute the Bayesian estimate for λ under the loss function LS using the posterior
distribution P(λ, γ|x). This estimate is calculated as:

λ̂BS = k−1
∫ ∞

0

∫ ∞

0
λa1+nγa2−1 ∑ x−2e−

λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γ
∂λ∂γ (18)

For the LL loss function, the Bayesian estimate for λ is as follo ws:

λ̂BL = − 1
h

log
(

E
[
e−hλ|x

])
h ̸= 0

wher e

Eλ

[
e−hλ|x

]
= k−1

∫ ∞

0

∫ ∞

0
λa1+n−1γa2−1 ∑ x−2e−

λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γ−hλ
∂λ∂γ (19)

Finally , when considering the loss function LE, we deter mine that

λ̂BE =
(
E(λ−w|x)

)− 1
w
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wher e

Eλ(λ
−w|x) = k−1

∫ ∞

0

∫ ∞

0
λa1+n−w−1γa2−1 ∑ x−2e−

λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γ
∂λ∂γ (20)

Similarly , we proceed to deriv e Bayesian estimates for γ under the specified loss functions.
Assuming that λ and γ are unkno wn, we obtain equations for Bayesian estimates of the

reliability function R(t) in a similar manner . For the loss function LS it is giv en as

R̂(t) = k−1
∫ ∞

0

∫ ∞

0
λa1+n−1γa2−1 ∑ x−2e−

λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γ

1 − e
− λ

γ

(
e

γ
t −1

) ∂λ∂γ

(21)
For the LL loss function,w e have

R̂(t)BL = − 1
h

log
(

E
[
e−hR(t)|x

])
h ̸= 0

wher e

Eλ

[
e−hR(t)|x

]
= k−1

∫ ∞

0

∫ ∞

0
λa1+n−1γa2−1 ∑ x−2e−

λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γe
−h

1−e
− λ

γ

(
e

γ
t −1

)
∂λ∂γ

(22)
Finally , for the loss function LE, it is found that

λ̂BE =
(
E(R(t)−w|x)

)− 1
w

R̂(t)BE = k−1
∫ ∞

0

∫ ∞

0
λa1+n−1γa2−1 ∑ x−2e−

λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γ

1 − e
− λ

γ

(
e

γ
t −1

)−w

∂λ∂γ

(23)

3.5. Lindle y Appr oximation

In the preceding section, we deriv ed Bayes estimators for λ, γ, and θ using various loss functions,
such as squar ed error, linex, and entr opy. It is worth noting that these estimators are expr essed
as ratios of tw o integrals, which resist simplification into closed for ms. Nonetheless, using the
methods de veloped by Lindle y [34], these Bayes estimators can be estimated to a for m de void of
integrals. In practice, this strategy produces simple Bayes estimators that are easy to implement.
Consider the ratio of the integral I(X),

I(x) = E[u(λ, γ|x)] =
∫ ∫

u(λ, γ)eL(λ,γ)+G(λ,γ)dλdγ∫ ∫
eL(λ,γ)+ρ(λ,γ)dλdγ

, (24)

wher e:

• u(λ, γ) is a function of λ and γ only;

• L(λ, γ) is the log of likelihood;

• ρ(λ, γ) is the log of joint prior of λ and γ.
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This can be evaluated as

I(x) =u(λ̂, γ̂) +
1
2
[
(ûγγ + 2ûγ p̂γ)σ̂γγ + (ûλγ + 2ûλ p̂γ)σ̂λγ

+(ûγλ + 2ûγ p̂λ)σ̂γλ + (ûλλ + 2ûλ p̂λ)σ̂λλ

]
+

1
2
[
(ûγσ̂γγ + ûλσ̂γλ)(Lγγγσ̂γγ + Lγλγσ̂γλ

+Lλγγσ̂λγ + Lλλγσ̂λλ) + (ûγσ̂λγ + ûλσ̂λλ)(Lλγγσ̂γγ

+Lγλλσ̂γλ + Lλγλσ̂λγ + Lλλλσ̂λλ)
]

(25)

wher e:

• λ̂ = MLE of λ;

• γ̂ = MLE of γ;

• ûγ = ∂u(λ̂,γ̂)
∂γ , ûλ = ∂u(λ̂,γ̂)

∂λ , ûγλ = ∂2u(λ̂,γ̂)
∂γ∂λ , ûλγ = ∂2u(λ̂,γ̂)

∂λ∂γ ;

• ûγγ = ∂2u(λ̂,γ̂)
∂γ2 , ûλλ = ∂2u(λ̂,γ̂)

∂λ2 ;

• L̂λγγ = L̂γλγ = L̂γγλ = ∂3 L(λ̂,γ̂)
∂γ∂γ̂∂λ̂

, L̂γγγ = ∂3 L(λ̂,γ̂)
∂γ∂γ̂∂γ̂ , L̂λλλ = ∂3 L(λ̂,γ̂)

∂λ∂λ̂∂λ̂
;

• L̂γλλ = L̂λλγ = L̂λγλ = ∂3 L(λ̂,γ̂)
∂γ∂λ̂∂λ̂

;

• p̂λ = ∂π(λ̂,γ̂)
∂λ , p̂γ = ∂π(λ̂,γ̂)

∂γ .

wher e
Lλλγ = 0; Lλλλ =

2
λ3 (26)

Lγγλ = −2 ·
−n + ∑n

i=1 exp
(

γ
xi

)
γ3 +

2 · ∑n
i=1

(
exp

(
γ
xi

)
xi

)
γ2 −

∑n
i=1

(
exp

(
γ
xi

)
x2

i

)
γ

(27)

Lγγγ = 6 ·
λ ∑n

i=1

(
exp

(
γ
xi

)
− 1
)

γ4 − 6 ·
λ ∑n

i=1

(
exp

(
γ
xi

)
xi

)
γ3 + 3 ·

λ ∑n
i=1

(
exp

(
γ
xi

)
x2

i

)
γ2 −

λ ∑n
i=1

(
exp

(
γ
xi

)
x3

i

)
γ

(28)

log π(λ, γ) = (a1 − 1) ∗ log (λ) + (a2 − 1) ∗ log (γ)− b1λ − b2γ

ρλ =
a1 − 1

λ
− b1; ργ =

a2 − 1
γ

− b2

3.5.1 Bayes estimates of the parameters of IGD and its reliability

To obtain the bayes estimate under SELF for λ̂, u(λ̂, γ̂) = λ̂, uλλ = uλγ = uγγ = uγλ = uγ = 0
and uλ = 1. Substituting these values into (25), we have

λ̂BS = λ̂ + p̂λσ̂λλ +
1
2

Lλλλσ̂λλ (29)

also to obtain the bayes estimate under SELF for γ̂, u(λ̂, γ̂) = γ̂, uλλ = uλγ = uγγ = uγλ = uλ = 0
and uγ = 1. Substituting these values into (25), we have

γ̂BS = γ̂ + p̂γσ̂γγ +
1
2

σ̂γγLγγγσ̂γγ (30)
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To obtain the bayes estimate of λ̂ under the ELF, u(λ̂, γ̂) = λ−w, then uλ = −wλ̂−w−1, uλλ =
w(w + 1)λ̂−w−2 and uλγ = uγγ = uγλ = uγ = 0. Substituting these values into (25), we have

λ̂BE = λ̂−w +
1
2
[σ̂λλ (ûλλ + 2ûλρλ)] +

1
2
[(ûλσ̂λλ (Lλλλσ̂λλ)] (31)

also to obtain the bayes estimate of γ̂ under the ELF, u(λ̂, γ̂) = γ−w, then uγ = −wλ̂−w−1,
uγγ = w(w + 1)λ̂−w−2 and uλγ = uλλ = uγλ = uγ = 0. Substituting these values into (25), we
have

γ̂BE = γ̂−w +
1
2
[σ̂γγ (ûγγ + 2ûγργ)] +

1
2
[(ûγσ̂γγ (Lγγγσ̂γγ)] (32)

To obtain the bayes estimate of λ under the LLF, u(λ̂, γ̂) = e−hλ, then uλ = −he−hλ, uλλ = h2e−hλ

and uλγ = uγγ = uγλ = uγ = 0. Substituting these values into (25), we have

λ̂BL = e−hλ +
1
2
[σ̂λλ (ûλλ + 2ûλρλ)] +

1
2
[(ûλσ̂λλ (Lλλλσ̂λλ)] (33)

also to obtain the bayes estimate of γ under the LLF, u(λ̂, γ̂) = e−hγ, then uγ = −he−hλ,
uγγ = h2e−hλ. and uλγ = uλλ = uγλ = uγ = 0. Substituting these values into (25), we have

γ̂BL = e−hγ +
1
2
[σ̂γγ (ûγγ + 2ûγργ)] +

1
2
[(ûγσ̂γγ (Lγγγσ̂γγ)] (34)

Under the SELF the bayes estimates for the reliability of IGD can be obtained by equating

u = 1 − e
− λ

γ

(
e

γ
t −1

)
; uλ =

(e
γ
t − 1) · e−

λ
γ (e

γ
t −1)

γ

uγ = −
(

λ(e
γ
t − 1)
γ2 − λe

γ
t

γt

)
· e−

λ
γ (e

γ
t −1); uλλ = − (e

γ
t − 1)2 · e−

λ
γ (e

γ
t −1)

γ2

uγγ = −
(
−2

λ(e
γ
t − 1)
γ3 + 2

λe
γ
t

γ2t
− λe

γ
t

γt2

)
e−

λ
γ (e

γ
t −1) −

(
λ(e

γ
t − 1)
γ2 − λe

γ
t

γt

)2

e−
λ
γ (e

γ
t −1)

uλγ = uγλ = − (e
γ
t − 1) · e−

λ
γ (e

γ
t −1)

γ2 +
e

γ
t · e−

λ
γ (e

γ
t −1)

γt
+

(e
γ
t − 1) ·

(
λ(e

γ
t −1)
γ2 − λe

γ
t

γt

)
· e−

λ
γ (e

γ
t −1)

γ

and substituting the values into (25). We have

I(x) =u(λ̂, γ̂) +
1
2
[(ûγγ + 2ûγ p̂γ)σ̂γγ + (ûλλ + 2ûλ p̂λ)σ̂λλ]

+
1
2
[
(ûγσ̂γγ)(Lγγγσ̂γγ + Lλλγσ̂λλ) + (ûλσ̂λλ)(Lλγγσ̂γγ

+Lλλλσ̂λλ)] .

(35)

Similarly , we can evaluate the Bayes estimators for the reliability function using the ELF and LLF.

3.6. Simulation Study

In this part, we undertake a simulation resear ch to estimate the parameters and reliability of
the Inverse Gamma (IG) distribution across several λ and γ combinations: (0.9, 0.6), (1.0, 1.0),
(1.0, 0.7), and (1.2, 0.8). The population parameter is created with R programming version
4.3.1. Sampling distributions are calculated for various sample sizes n = [30, 50, 100, 500] using
R = 1000 replications.T ables 1 and 2 sho w the calculated estimates and mean squar e errors (MSE)
in brackets.
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Table 1: Bayes estimates for different parameter values under the SELF, ELF and LINEX

SELF ELF LINEX
λ̂BS γ̂BS λ̂BE γ̂BE λ̂BL γ̂BL

n =30 λ = 0.9
γ = 0.6
h = 0.6
w= -0.5
a1 = 1
a2 = 1
b1 = 1

b2 = 0.5

0.9300
(0.0077)

0.7191
(0.1106)

0.8560
(0.0027)

0.8274
(0.0884)

0.6464
(0.0646)

0.6600
(0.0182)

n =50 0.9524
(0.0061)

0.6090
(0.0430)

0.8626
(0.0018)

0.7691
(0.0475)

0.6465
(0.0647)

0.6988
(0.0172)

n = 100 0.967
(0.0059)

0.6103
(0.0273)

0.8689
(0.0011)

0.7744
(0.0417)

0.6414
(0.0670)

0.6964
(0.0139)

n = 500 0.9859
(0.0076

0.6026
(0.0050)

0.8759
(0.0005)

0.775
(0.0327)

0.6373
(0.0690)

0.6971
(0.0103)

n =30 λ = 1.0
γ = 1.0
h = -0.1
w = 0.5
a1 = 0.5
a2 = 0.5
b1 = 0.5
b2 = 0.5

1.0589
(0.2014)

1.2097
(0.3130)

1.2692
(0.0623)

0.9871
(0.0775)

1.1225
(0.1425)

1.1300
(0.0203)

n =50 1.0731
(0.1880)

1.0216
(0.1199)

1.2397
(0.0728)

1.0376
(0.0482)

1.1253
(0.1404)

1.1081
(0.0131)

n = 100 1.0956
(0.1654)

1.0206
(0.0760)

1.2359
( 0.0723)

1.0171
(0.0226)

1.1277
(0.1385)

1.1078
(0.0125)

n = 500 1.1195
(0.1448)

1.0051
(0.01408)

1.2265
(0.0752)

1.0021
(0.0033)

1.1307
(0.1363)

1.1058
(0.0113)

n =30 λ = 1.0
γ = 0.7
h = 0.1

w = -0.8
a1 = 1
a2 = 1

b1 = 0.5
b2 = 0.5

1.4021
.2226)

0.8344
(0.1419)

1.2489
(0.0903)

0.8529
(0.1103)

0.8726
(0.0166)

0.9204
(0.04964)

n =50 1.4760
(0.2700)

0.7099
(0.0553)

1.2998
(0.1089)

0.7538
(0.0441

0.8666
(0.0180)

0.9317
(0.0541)

n = 100 1.4773
0.2530)

0.7113
(0.0350)

1.3025
(0.1025)

0.7575
(0.0288)

0.8662
(0.018)

0.9315
0.0538)

n = 500 1.4968
(0.2519)

0.7030
(0.0065)

1.3174
( 0.1029)

0.7536
(0.0076)

0.8644
(0.0184)

0.9321
(0.0539)

n =30 λ = 1.2
γ = 0.8
h = -0.2
w = -0.9
a1 = 1
a2 = 1
b1 = 1
b2 = 1

0.9083
(0.1015)

0.9659
(0.2014)

0.8734
(0.1193)

0.9612
(0.1689)

1.2290
(0.0016)

1.217
(0.1844)

n =50 0.8943
(0.1192)

0.8157
(0.0772)

0.8592
(0.1357)

0.8283
( 0.0662)

1.2290
(0.0019)

1.1788
(0.1478)

n = 100 0.9272
(0.0853

0.8157)
(0.0488

0.8867
(0.1067

0.8299
(0.0418)

1.2373
(0.0018)

1.1782
(0.1458)

n = 500 0.9533
(0.0618)

0.8039
.0090)

0.9077
(0.0863)

0.8211
(0.0080)

1.245
(0.0020)

1.1746
(0.1408)
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Table 2: Bayes estimates for the hazard function under the SELF, ELF and LINEX

R̂(t)BS R̂(t)BE R̂(t)BL

n =30 λ = 0.9
γ = 0.6
h = 0.6
w= -0.5
a1 = 1
a2 = 1
b1 = 1

b2 = 0.5
t =1

0.5728
(0.1114)

0.7343
(0.0288)

0.7212
(0.0326)

n =50 0.5499
(0.1256)

0.7208
(0.0328)

0.7304
(0.0291)

n = 100 0.5517
(0.1230)

0.7214
(0.0323)

0.7301
(0.0290)

n = 500 0.5501
(0.1227)

0.7206
(0.0322)

0.7309
(0.0286)

n =30 λ = 1.0
γ = 1.0
h = -0.1
w = 0.5
a1 = 0.5
a2 = 0.5
b1 = 0.5
b2 = 0.5

t = 2

0.3971
( 1.218)

1.6789
(0.0375)

1.0409
(0.2107)

n =50 0.36002
(0.2917)

1.9986
(1.2129)

1.0371
(0.0188)

n = 100 0.36199
(0.2895)

1.9976
(1.2085)

1.0373
(0.0188)

n = 500 0.3650
(0.2862)

1.9876
(1.1837)

1.0376
(0.0189)

n =30 λ = 1
γ = 0.7
h = 0.1

w = -0.8
a1 = 1
a2 = 1

b1 = 0.5
b2 = 0.5

t =3

0.4004
(0.3605)

0.4639
(0.2881)

0.9609
(0.0015)

n =50 0.4051
(0.3542)

0.4674
(0.2838)

0.9605
(0.0015)

n = 100 0.4077
(0.3511)

0.4696
(0.2813)

0.9603
(0.0015)

n = 500 0.4124
(0.3452)

0.4738
(0.2768)

0.9598
(0.0016)

n =30 λ = 1.2
γ = 0.8
h = -0.2
w = -0.9
a1 = 1
a2 = 1
b1 = 1
b2 = 1
t = 5

0.1776
(1.046)

0.2037
(0.9935)

0.9656
(0.0549)

n =50 0.1695
(1.063)

0.1950
(1.011)

0.9672
(0.0542)

n = 100 0.1741
(1.0529)

0.1995
(1.0015)

0.9664
(0.0545)

n = 500 0.1771
(1.0464)

0.2021
(0.9957)

0.9659
(0.0548)

Table 1 sho ws Bayesian estimates for various parameter values using three loss functions:
SELF, ELF, and LINEX , with varied sample sizes. Each cell includes the estimated value of
parameters (λ̂ and γ̂) with their standar d errors in par entheses. Generally , as the sample size
grows, the estimates get mor e precise, as evidenced by decr easing standar d errors. The three loss
functions act dif ferently depending on the parameter values. However, it is clear that the ELF
loss function consistently produces estimates with fewer standar d errors than SELF and LINEX,
implying greater perfor mance in parameter estimation. This trend persists across a wide range
of sample sizes and parameter values, demonstrating the efficiency of the ELF loss function in
Bayesian estimation.

Table 2 sho ws Bayesian estimates of the hazar d function for three dif ferent loss functions:
SELF, ELF, and LINEX, across a range of sample sizes and parameter values. Increasing sample
sizes often results in lower mean squar ed error (MSE) across all three functions, indicating better
parameter estimate accuracy . However, perfor mance dif ferences exist amongst the loss algorithms
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at dif ferent parameter settings. with example, with λ = 0.9, γ = 0.6, h = 0.6, w = −0.5, a1 = 1,
a2 = 1, b1 = 1, and b2 = 0.5, the ELF loss function consistently produces the lowest MSE
compar ed to SELF and LINEX. This patter n holds true across other parameter settings, implying
that the ELF function outperfor ms the MSE.

3.7. Real life Application

In this section, we look at the dataset published by Balakrishnan et al. [35], which includes
134entries repr esenting scor es on the General Rating of Affectiv e Symptoms for Preschoolers
(GRASP) scale. Using Bayesian appr oaches, we obtain the parameter estimates and reliability
ratings for the Inverse Gamma (IG) distribution over a variety of loss functions.

Table 3: Bayes estimate for the parameter of IGD under different loss functions when a1 = 1, a2 = 1, b1 = 0.5 and
b2 = 0.5

SELF
ELF

w = -0.7
ELF

w = 1.2
LINEX
h = -0.5

LINEX
h = 0.5

λ̂ 0.2959 0.2962 0.29226 0.3520 0.3812
γ̂ 153.1028 152.3344 161.8959 156.055 156.0564

Table 4: Bayes estimate for the reliability function under different loss functions for different parameter values

a1 = a2 = 1 , b1 = b2 = 0.5 a1 = a2 = 1 , b1 = b2 = 1

SELF t = 1 0.3820 0.3804
t = 5 0.3805 0.3789

ELF
w = -1.5

t = 1 0.3821 0.3811

w = 1.5
t = 5 0.3830 0.3799

LINEX
h = 1
t =1 0.3678 0.3651

h = -1
t =5 0.3679 0.3645

Table 3 sho ws the the Bayes estimates for the param eters of IG distribution under dif ferent
loss functions. Also, Table 4 displa y the reliability estimates under dif ferent loss functions and
parameter values.

4. Conclusion

Table 1 compar es Bayesian parameter estimation for three dif ferent loss functions: SELF, ELF, and
LINEX. Overall, as sample size grows, parameter estimates become mor e precise and accurate
across all loss functions. However, the ELF loss function consistently produces lower mean
squar ed error (MSE) values than SELF and LINEX, indicating mor e effectiv e parameter estimation.
This sho ws that the ELF loss function may perfor m better in ter ms of balancing precision and
accuracy , making it an attractiv e option for Bayesian parameter estimation applications. Table 2
shows Bayesian estimates for the hazar d function using three alter nativ e loss functions: SELF, ELF,
and LINEX. It demonstrates how the perfor mance of these estimators fluctuates with sample size
and parameter values. In general, as sample size increases, mean squar ed error (MSE) decr eases
across all three loss functions, indicating that parameter estimations are mor e accurate and precise.
The ELF loss function regularly produces lower MSE values than SELF and LINEX, indicating
mor e efficient parameter estimation.
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