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Abstract

In this study, we derive Bayes’ estimators for the unknown parameters of the Inverse Gompertz Distribu-
tion (IGD) using three alternative loss functions: the Squared Error Loss Function (SELF), the Entropy
Loss Function (ELF), and the Linex Loss Function. Closed-form formulas for Bayes estimators are not
possible when both parameters are unknown, hence Lindley’s approximation (L-Approximation) is used
for computation. We examine the performance of these estimators using their simulated hazards and
assess their effectiveness in parameter estimation. It was discovered that as the sample size increases,
parameter estimations became more precise and accurate across all functions. However, ELF consistently
has lower MSE values than SELF and LINEX, indicating better parameter estimation. This pattern was
also seen in the estimation of the hazard function, where ELF regularly beat SELF and LINEX, implying
more efficient parameter estimation overall.

Keywords: Likelihood Function, Prior Distribution, Posterior Distribution, Bayes Estimates,
Lindle y Appr oximation

1. INTRODUCTION

Gompertz [1] proposed a probability distribution with two parameters, which is widely used in
survival analysis to represent human mortality and behavioral sciences data. This distribution, a
generalization of the exponential distribution, has many practical uses, particularly in medical
and actuarial studies. It has considerable similarities to well-known distributions such as the
Gumbel, Weibull, generalized logistic, exponential, and double exponential distributions [2].
However, the Gompertz distribution (GD) only shows an increasing failur e rate, restricting
its potential to represent occurrences across several fields. As a result, many authors have
contributed to methodological studies and characterizations of this distribution to addr ess real-
world challenges in a variety of fields, including medical sciences, economics, behavioral sciences,
engineering, biological studies, actuarial science, envir onmental studies, and lifetime analysis.
The Gompertz distribution and its variants have been the subject of extensiv e resear ch. Read
[3] offers a fundamental overview of the Gompertz distribution, including its featur es and
applications in statistical fields. Makany [4] explor es the theoretical foundations of Gompertz’s
curve and provides insights into its mathematical representation. Franses [5] discusses practical
issues of fitting Gompertz curves to actual data. Wu and Lee [6] investigate combinations of
Gompertz distributions, offering a frame work for defining complicated systems. El-Gohar y et al.
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[7] introduce the gene ralized Gompertz distribution, which improves modeling flexibility . The
beta-Gompertz distribution, proposed by Jafari et al. [8]], enhances the flexibility of data captur e.
Khan et al. [9]] introduce the transmuted Gompertz distribution, which can accommodate a
wider range of data patter ns. El-Bassiouny et al. [10,[11] study mixtur e models that combine the
Gompertz distribution with other distributions to improve applicability in reliability and survival
analysis. Rasool et al. [12] introduced the McDonald Gompertz distribution, which improves
its ability to captur e complicated data patter ns. [13] introduced Topp-Leone Inverse Gompertz
Distribution with different estimation procedur es and application. Sanku et al. [14] assess and
compar e various estimating methodologies for the Gompertz distribution, assisting resear chers
and practitioners in selecting relevant methods.

2. INVERSE GOMPERTZ DISTRIBUTION

The random variable X is said to have an Inverse Gaussian Distribution (IGD) with shape
parameter A and scale parameter <, if its cumulativ e distribution function (CDF) is given by

CA(pF
F(x)=e 7(8 1), x>0, Ay>0 (1)
The probability density function (PDF) of the Inverse Gaussian Distribution (IGD) is expressed as

A 7A<e%71)+%

flx) = ﬁe i (2)
Further more, the reliability function is provided as follows:
—2 (e% —1>
R(x)=1—¢ " (3)
The quantile function for the IGD distribution can be expressed as
Y
=— 0<g<1 4

——  IGD(=1,7=1)
————  1GD(%.=057=0.1)

IGD(7.=0.3.7=5)

————  18D(7.=09,7=15)
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Figure 1: PDF of the IGD
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Figure 2: CDF of the IGD

3. BAYESIAN ESTIMATION TECHNIQUES

Let x = (x1,%3,...%;) be a random variable with parameters A and <y having a size n. From
the bayes’ the posterior probability density function of the parameters A and 7 given x can be
expressed as

B (A, y)1(A, )
Pr(A, v, nlx) = I [ [ A 7)L(A, 7)d(A, ) ?

wher e (A, 7y) is the likelihood and (A, ) is the prior probability distribution.

3.1. Likelihood Function

Given a series of obser vations x = (X1, X,,...%,) with parameters A and 7 having a size n for IG
distribution (2), the likelihood function can be expressed as

] — Anz g%z(‘f%*l)*ﬂ%)
Yx

The log likelihood of IG distribution can be expressed as

L:logl:nlog/\—l—Z(Z)—ZZlog(x)—iz(ez—l) (7)

The maximum likelihood estimator of the shape and scale parameters for the parameters A and <y
is obtained by differentiating the (7) on parameters A and . The maximum likelihood differential
equations are:

(6)

T 1
M_A_Z(e~l_1>7 ®)

x
. y ()
dL noq n /\ZiZI (exp (Xi) - 1) i
dy  Sx 7 Y
Analytical solutions to equations and (9) are not viable. The estimated values for the

parameters A and <y can be deriv ed numerically using an iterativ e appr oach known as the Newton-
Raphson method [15}17,[16]. The Fisher infor mation matrix elements for parameters A and 7 can

9)
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be represented as follo ws:
l(Ay) % (AY)

_ 0A2 JAdy
=1 2oy #iom (10)
oAdy 0?2

The Jacobian matrix must be a non-singular symmetric matrix so its inverse must exist. So, using
the Newton Raphson method we have

(A7)
A A _
e )= ]|t | a

Tk+1 3y

with error term € being the absolute differences betw een the new and the previous value of A
and < in the iterativ e algorithm. That is

[ ][ 2] [ 2]] )
€k+1(7) Vk+1 Yk
wher e Ay and <y are the initial values of A and <y respectiv ely. .
wher e
d’L 1
Lyy= > =——= 13
M= T [P (13)
il €)) o (%)
2.4 i AYE :
£2L B )\E?:1 (exp (xll) 1) N Yi ( X ) Yiy < x? (1)
T dy? 7 7 v
L B d2L _ d2L _ —Tl+2;'1:1 exp (%) n exp (xll) 1 15
M T dAdy T dydA %) _l; x; Y (15)

3.2. Prior Distribution

From (6), it can obser ved that there is no proper conjugate distribution for the parameters A
and 7. Therefore, we will consider the use of independent gamma prior distribution for the
scale with parameters a; and b, and shape parameters a, and b,. That is A ~ Gamma(ay, b;) and
v ~ Gamma(ay, by). The joint prior distribution can be expressed as

(A, ) o AT Lym—lp=bidp=bay (16)

wher e a1,a,,b; and b, are hyper parameters.

3.3. Posterior Distribution

To obtain the posterior distribution for the IG distribution, we combine (6) and and can be
expressed as

) x
P(/\,,le) — k—l/\{l1+n—1,)/{12—1 Zx_2€7%2<ex 71)“"2(%)7171/\7!727 (17)

wher e ,
k= /oo /oo Aa1+n71,)/a271 2x72e*%2(37*1)+Z(%)*bl/\*b2782\87
0 0

Analytical solutions for A and 7 from the posterior equation (17) are not viable due to its
complicated natur e, necessitating the use of numerical appr oaches such as Gibbs sampling,
Metr opolis-Hastings, EM algorithm, Lindle y appr oximation, among others. In this study, we will
use the Lindle y appr oximation appr oach to obtain Bayesian estimates of A and 7.
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3.4. Loss Functions

The squar ed error is commonly employed as a loss function, however, its symmetric nature
may not be acceptable in estimating issues with asymmetric losses. This disparity is especially
pronounced in disciplines such as life testing and reliability estimation. In response, asymmetric
loss functions, such as Varian’s LINEX loss function [18], have gained popularity . [19] investigated
the featur es of the LINEX loss function and disco vered that the squar ed error loss is a specific
instance of it. Another useful option is the entropy loss function.

In recent years, many authors have used Bayesian estimation for estimating the parameters of
distributions. Examples include the works of Ahmed et al. [20], Basu & Ebrahimi [21], Nassar &
Eissa [22]], Pandey [23], Roio [24], Soliman et al. [31}32}[33], Singh et al. [30} 25, [26], Adegoke et
al [27], Ogunsany a et al. [28], Nzei et al. [29] , and others.

We achie ve the appr opriate Bayesian estimates by using predefined loss functions such squar ed
error, LINEX, and entropy, which are defined as follows:

We get the desir ed Bayesian estimates.Her e, d(6) is an estimate of d(6). In the Bayesian paradigm,
an optimal estimate for a certain loss function can be obtained by minimizing the average risk
of d(0) relative to a weight function, also known as the prior distribution of 6. The Bayesian
estimate, dpg, under the loss LS, corresponds to the posterior mean of d(6). by applying specified
loss functions: squar ed error, LINEX, and entropy, which are described as follows. The Bayesian
estimate of d(0) for the loss function LL is provided as:

dpp = —%log (lEg [e_h9|xD

the equiv alent estimate for the loss function LE is as follows:

. 1
dpe = (Bg(67%|x)) @

given that the corresponding expectations IEg(-) exist. We use loss functions LS, LL, and LE to
get Bayesian estimates of A, v, 6, the reliability function R(t), and the hazar d function h(t).

Initially , we compute the Bayesian estimate for A under the loss function Lg using the posterior
distribution P(A, 7y|x). This estimate is calculated as:

[e) o0 o
Ags = kﬂ/ / )\alJrn,YazflfoZE*%Z&X71)+Z(%)7bl)\7b278/\8’y (18)
0 0

For the L| loss function, the Bayesian estimate for A is as follows:

)A\BL:—%IOg (]E |:e_h)\|x:|> h#0

wher e
0o 00 x
E, [e*’“\x} _ k*l/ / PURTES IS fozefgz(ex71)+z(%)fb1AfbnthaAav (19)
0 Jo
Finally, when considering the loss function LE, we deter mine that

Apg = (]E()\fw\x))ii
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wher e

o
( w‘ -k / / Amtn—w—1 az 12x72 (3X—1)+):(%)_b1/\—b2’YaAa,Y (20)

Similarly , we proceed to deriv e Bayesian estimates for 7y under the specified loss functions.
Assuming that A and < are unknown, we obtain equations for Bayesian estimates of the
reliability function R(f) in a similar manner. For the loss function Lg it is given as

—k / / Aaﬁrn 1 a2 lzx 7% (e%*1)+2(%)7b1)‘*b27 1_67%<e%71> a)\a,y

(21)
For the L; loss function,w e have
b __1 —hR(t)
R(t)BL =77 log (IE |:€ |xD h 75 0

wher e

i
h(lﬂ(“l))
E, [e —k / / Adtn—1 az 1zx 7 (ev71)+2<%)7b1)\—b2’}‘e ANy

Finally, for the loss function Lg, it is found that

—w
pE =k~ / / A=l az 12x72 *% ( %71>+Z(%)7h1/\—b27 1 _e_%<e%_l> OAdy

3.5. Lindle y Appr oximation

In the preceding section, we derived Bayes estimators for A, 7, and 6 using various loss functions,
such as squar ed error, linex, and entropy. It is worth noting that these estimators are expressed
as ratios of two integrals, which resist simplification into closed forms. Nonetheless, using the
methods developed by Lindle y [34], these Bayes estimators can be estimated to a form devoid of
integrals. In practice, this strategy produces simple Bayes estimators that are easy to implement.
Consider the ratio of the integral I(X),

[ [ u( N+CAN GAdy
i feL )‘7 P dNdy

I(x) = E[u(A, v|x)] =

(24)

wher e:

(A

u(A,y
o L(A,7) is the log of likelihood;

) is a function of A and 7y only;

« p(A,7y) is the log of joint prior of A and 7.
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This can be evaluated as

I(x)

N

=u(
+ (g + 20 Pr) Oy p + (lar + 200292 ) 000

A ) + 5 (i 4 280y Py ) Oy + (1pey + 2082 Py )00y

Lo ) 4 . . 25
T3 [(#9 0y + 12092) (LyyyOyy + LyrgOya 29
+Layy 00y + LaagOar) + (hy0py + 1120021 ) (Lagq Oyy
+Loyar 01 + Laya0ay + Laaaoan)]
wher e
« A =MLE of A;
e §=MLE of 73
s (A . (A . tu(Ag) . Pu(Ag).
* Uy =Ty o MA T x> A = T o Ay = Taagy 8
. Ru(Ag) . ?u(Ag
* Hyy Lé%zw, upp = L;,(Azw
? ? P _PLAY) ¢ PLA) ¢ LA,
* Loy =Ly =Ly = 979704’ Ly = 555795 bar = Som1
A ¢ ¢ o 83L(/A\,'%).
* Ly =Ly =Lan = 3555
. art(A, . (A9
* PA= H§A7)> Py = ﬂéyﬂ
wher e 5
Liry =05 Ly = FE (26)
e (2@ (=G
—n+ Y exp (xl]) i | i=1 X2
Lygr = =2 % %) - o (27)
0 (el o (o) o (2
AT (e () -1) AR ( w M) AT
Loyyy =6- i 6 > +3 " -
(28)
log (A, y) = (a;—1)*log(A)+ (ay — 1) xlog () — biA — byy
a; —1 a, —1
Pr 1/\ —by; Py = : —b

3.5.1 Bayes estimates of the parameters of IGD and its reliability

To obtain the bayes estimate under SELF for A, u(A,§) = A, uy, = Upy = Uyy = Uy = Uy =0
and u, = 1. Substituting these values into (25), we have

N N A 1 .
Ags = A+ prdax + EL)\/\/\UA/\

(29)

also to obtain the bayes estimate under SELF for 7, u()A\, F) =9, upp = Upy = Uyy = Uyp) = Uy =0
and u, = 1. Substituting these values into (25), we have

. A A 1, .
VBs = ¥+ Py0yy + EU’Y’YLW“WU’Y’Y

750

(30)



Adegoke, Abimbola, Oladoja, Oyebanjo & Obisesan

BAYESIAN ESTIMA TION OF PARAMETERS AND RELIABILITY RT&A, No 3 (79)
CHARACTERISTICS IN THE INVERSE GOMPER TZ DISTRIBUTION Volume 19, September 2024
To obtain the bayes estimate of A under the ELF, u(A,§) = A™%, then u) = —wA~%"1, uy, =

w(w+1)A"%"2 and up, = Uy, = ty) = U, = 0. Substituting these values into (25), we have

. s 1., R R | N
App = A7+ 2 00 (0 +200)] + 5 (02001 (Laaa0aa )] 31)
also to obtain the bayes estimate of 4 under the ELF, u(A,4) = 7%, then u, = —wA~-%71,

Uyy = w(w+1)A"%~2 and Upry = Upp = Uy = Uy = 0. Substituting these values into (25), we
have

. - L. . Lo R
Toe =77+ 3 [09y (g +20005)] + = [(11y0yy (Lygy07y)] (32)
To obtain the bayes estimate of A under the LLF, u(A, §) = e, then uy = —he ", uy) = h?e™"*

and ), = Uqyy = Uy) = U, = 0. Substituting these values into (25), we have

4 - | SN , L \
A = ¢+ 3 [0ar (a4 2000)] + 5 (a0 (Laaadn)] (33)
also to obtain the bayes estimate of  under the LLF, u(A,4) = e, then u, = —he ",

Uyy = h2e™ " and uy, = uy) = ) = u, = 0. Substituting these values into (25), we have

S

by L , Lo ,
oL =€ "+ 5 [0y (g + 28809)] + 5 (1240 (LyyOyy)] (34)

Under the SELF the bayes estimates for the reliability of IGD can be obtained by equating

i
-3(¢F) (ef —1).e7 7€V
u = 1l—e H Uy =
v
7 7 y x 2 et
AletT —1) et At o) (et —1)*-e 7
uy = —|\— 3~ e s Mg = 2
Y 7t v
2
B 2/\(6%—1) 2/\6% Aet ,%(5%71) Alet —1)  Aet 7%(5%71)
tyy = S|\ 2Ry e T )
v Y Y v i
17 s A 17
B T e R M G- -3 R L
Ll)w = M,Y/\I* ,72 + ’)/t + v

and substituting the values into (25). We have

I(x) =u(A,7) + 3 [(thyy + 200y Py ) 0oy + (1A + 2101 P2 )00

Le , \ . \ 35
3 (129039 ) (Lyyy 03y + LaryOan) + (82000) (Layy Oy )
+Laaroan)] -

Similarly , we can evaluate the Bayes estimators for the reliability function using the ELF and LLF.

3.6. Simulation Study

In this part, we undertake a simulation resear ch to estimate the parameters and reliability of
the Inverse Gamma (IG) distribution across several A and 7 combinations: (0.9, 0.6), (1.0, 1.0),
(1.0, 0.7), and (1.2, 0.8). The population parameter is created with R programming version
4.3.1. Sampling distributions are calculated for various sample sizes n = [30, 50, 100, 500] using
R = 1000 replications.T ables [I]and |show the calculated estimates and mean squar e errors (MSE)
in brackets.
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Table 1: Bayes estimates for different parameter values under the SELF, ELF and LINEX

SELF ELF LINEX
ABs VBs ABE YBE AL FBL
1230 A —og 09300 0.7191 0.8560 0.8274 0.6464 0.6600
" —og 00077 (0.1106) (0.0027) (0.0884) (0.0646) (0.0182)
n=50 h=og 0924 0.6090 0.8626 0.7691 0.6465 0.6988
we 0.5 (0.0061)  (0.0430)  (0.0018)  (0.0475)  (0.0647)  (0.0172)
n=100 a5 =1 0.967 0.6103 0.8689 0.7744 0.6414 0.6964
0y = (0.0059)  (0.0273)  (0.0011)  (0.0417)  (0.0670)  (0.0139)
n=500 b —1 0.9859 0.6026 0.8759 0.775 0.6373 0.6971
by, = 0.5 (0.0076  (0.0050)  (0.0005)  (0.0327)  (0.0690)  (0.0103)
n230 A—1o L0589 1.2097 1.2692 0.9871 1.1225 1.1300
v =10 (0.2014)  (0.3130)  (0.0623)  (0.0775)  (0.1425)  (0.0203)
1250 he.op L0731 1.0216 1.2397 1.0376 1.1253 1.1081
W =05 (0.1880)  (0.1199)  (0.0728)  (0.0482)  (0.1404)  (0.0131)
n=100 a =05 1.0956 1.0206 1.2359 1.0171 1.1277 1.1078
0 =05 (0.1654)  (0.0760)  (0.0723)  (0.0226)  (0.1385)  (0.0125)
n=50 b =05 1.1195 1.0051 1.2265 1.0021 1.1307 1.1058
by, = 0.5 (0.1448)  (0.01408)  (0.0752)  (0.0033)  (0.1363)  (0.0113)
1230 A—1o 4021 0.8344 1.2489 0.8529 0.8726 0.9204
v =07 2226)  (0.1419)  (0.0903)  (0.1103)  (0.0166)  (0.04964)
n250 heo1 L4760 0.7099 1.2998 0.7538 0.8666 0.9317
w = 0g (02700) (0.0553) (0.1089)  (0.0441  (0.0180) (0.0541)
n=100 4 = 1.4773 0.7113 1.3025 0.7575 0.8662 0.9315
4 =1 0.2530)  (0.0350)  (0.1025)  (0.0288)  (0.018)  0.0538)
n=500 by =05 1.4968 0.7030 1.3174 0.7536 0.8644 0.9321
by, = 0.5 (0.2519)  (0.0065)  (0.1029)  (0.0076)  (0.0184)  (0.0539)
1230 A_1, 0908 0.9659 0.8734 0.9612 1.2290 1.217
vy =08 (0.1015)  (0.2014)  (0.1193)  (0.1689)  (0.0016)  (0.1844)
n250 ho.gp 08943 0.8157 0.8592 0.8283 1.2290 1.1788
w = 09 _(01192) (0.0772)  (0.1357) (0.0662) (0.0019) (0.1478)
n=100 a5 =1 09272  0.8157) 0.8867 0.8299 1.2373 1.1782
=1 (0.0853  (0.0488  (0.1067  (0.0418)  (0.0018)  (0.1458)
n=500 b =1 0.9533 0.8039 0.9077 0.8211 1.245 1.1746
by =1 (0.0618) .0090) (0.0863)  (0.0080)  (0.0020)  (0.1408)
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Table 2: Bayes estimates for the hazard function under the SELF, ELF and LINEX

R(t)ps  R(t)se  R(t)pL
0.5728 0.7343 0.7212
(0.1114)  (0.0288)  (0.0326)

0.5499  0.7208  0.7304
RIS P00 01250 (00m28)  (00291)
n=100 @ =1 05517  0.7214  0.7301
o= 1 (0.1230)  (0.0323)  (0.0290)

n=500 b — 0.5501  0.7206  0.7309
by — 05 (0.1227)  (0.0322)  (0.0286)

=t 03971 16789  1.0409

n =30 i ; i:g (1.218) (0.0375) (0.2107)
L250  ho.op 036002 19986 10371
w—05 _(02917) (1.2129) (0.0188)

n=100 @ =05 036199 1.9976  1.0373
Gy — 0.5 (0.2895)  (1.2085)  (0.0188)

n=500 b =05 03650  1.9876  1.0376
by — 05 (0.2862) (1.1837)  (0.0189)

0.4004 0.4639 0.9609
(0.3605)  (0.2881)  (0.0015)

- Kf(?f 04051 04674  0.9605
- w - 0g (03542) (0.2838) (0.0015)
NZ100 4 —1 04077 04696  0.9603
- al - (0.3511)  (0.2813)  (0.0015)
2 =
04124 04738  0.9598
n=500 bi=05 a5 (0.2768)  (0.0016)
b, =05
t=3
0.1776  0.2037  0.9656
n=30 A=12
1.046)  (0.9935 054
y—o0g 1:046) (09935 (0.0549)

0.1695 0.1950 0.9672

n=S0 h=020 b (onn)  (00542)

oo “;1‘:'0'9 0.1741  0.1995 _ 0.9664
oy (L0529 (10015)  (0.0545)
n=500 b — 0.1771 02021  0.9659
b (L0464 (09957) (0.0548)

Table [I] shows Bayesian estimates for various parameter values using three loss functions:
SELF, ELF, and LINEX, with varied sample sizes. Each cell includes the estimated value of
parameters (A and ) with their standar d errors in parentheses. Generally , as the sample size
grows, the estimates get more precise, as evidenced by decreasing standar d errors. The three loss
functions act differently depending on the parameter values. However, it is clear that the ELF
loss function consistently produces estimates with fewer standar d errors than SELF and LINEX,
implying greater perfor mance in parameter estimation. This trend persists across a wide range
of sample sizes and parameter values, demonstrating the efficiency of the ELF loss function in
Bayesian estimation.

Table |2| shows Bayesian estimates of the hazar d function for three different loss functions:
SELF, ELF, and LINEX, across a range of sample sizes and parameter values. Increasing sample
sizes often results in lower mean squar ed error (MSE) across all three functions, indicating better
parameter estimate accuracy . However, perfor mance differences exist amongst the loss algorithms
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at different parameter settings. with example, with A =0.9, v =0.6, h =0.6, w = —0.5, a; =1,
a, = 1, by = 1, and b, = 0.5, the ELF loss function consistently produces the lowest MSE
compar ed to SELF and LINEX. This patter n holds true across other parameter settings, implying
that the ELF function outperfor ms the MSE.

3.7. Real life Application

In this section, we look at the dataset published by Balakrishnan et al. [35], which includes
134entries representing scores on the General Rating of Affective Symptoms for Preschoolers
(GRASP) scale. Using Bayesian appr oaches, we obtain the parameter estimates and reliability
ratings for the Inverse Gamma (IG) distribution over a variety of loss functions.

Table 3: Bayes estimate for the parameter of IGD under different loss functions when ay = 1,a, = 1,b; = 0.5 and
b, = 0.5

ELF ELF LINEX LINEX

w=-0.7 w=12 h=-05 h=05

A 0.2959 0.2962 0.29226 0.3520 0.3812
§  153.1028 152.3344 161.8959  156.055  156.0564

SELF

Table 4: Bayes estimate for the reliability function under different loss functions for different parameter values

alzazzl,blzbzzo.s ﬂlzﬂzzl,blzbzzl

t=1 0.3820 0.3804
SELF t=5 0.3805 0.3789
w =-15

BLE 1 0.3821 0.3811
w=15 0.3830 0.3799

t=5

h=1
LINEX o 0.3678 0.3651
h=-1 0.3679 0.3645

t =5

Table [3|shows the the Bayes estimates for the param eters of IG distribution under different
loss functions. Also, Table [4]displa y the reliability estimates under different loss functions and
parameter values.

4. CONCLUSION

Table [I] compar es Bayesian parameter estimation for three different loss functions: SELF, ELF, and
LINEX. Overall, as sample size grows, parameter estimates become more precise and accurate
across all loss functions. However, the ELF loss function consistently produces lower mean
squar ed error (MSE) values than SELF and LINEX, indicating more effective parameter estimation.
This shows that the ELF loss function may perfor m better in terms of balancing precision and
accuracy , making it an attractiv e option for Bayesian parameter estimation applications. Table
shows Bayesian estimates for the hazar d function using three alter native loss functions: SELF, ELF,
and LINEX. It demonstrates how the perfor mance of these estimators fluctuates with sample size
and parameter values. In general, as sample size increases, mean squar ed error (MSE) decr eases
across all three loss functions, indicating that parameter estimations are more accurate and precise.
The ELF loss function regularly produces lower MSE values than SELF and LINEX, indicating
more efficient parameter estimation.
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