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Abstract 

In the field of information theory, different uncertainty measures have been introduced by various 

researchers. These measures are widely used in reliability and survival studies. In this article, we 

introduce two new weighted uncertainty measures which are known as weighted R-Norm entropy 

(WRNE) and weighted R-Norm residual entropy (WRNRE). WRNE and WRNRE are “length-

biased” shift-dependent uncertainty measures in which higher weight is assigned to large values of 

the observed random variable. Several important properties of these measures are studied. Some 

significant characterization results and the relationships of WRNRE with other reliability measures 

are presented. We also show that the survival function is uniquely determined by the WRNRE. 

Finally, based on a real life data set of bladder cancer patients, we illustrate the importance of 

WRNE and WRNRE. 

Keywords: Weighted entropy, weighted R-Norm entropy, hazard rate function, 

mean residual life function and characterization results. 

1. Introduction

A very important concept that has attracted the attention of researchers in the field of 

information theory is the measurement of uncertainty of probability distributions. The 

fundamental uncertainty measure (UM) which is well known by means of applications not only in 

the field of information theory but also in different other research fields is the Shannon’s entropy 

[1]. Let 𝑌 be an absolutely continuous non-negative r.v with p.d.f 𝑓(𝑦), then the Shannon’s entropy 

(SE) is defined as 

𝐻𝑌(𝑓) = −∫ 𝑓(𝑦) log 𝑓(𝑦)𝑑𝑦 = −𝐸[log 𝑓(𝑦)]
∞

0
 .   (1) 

Throughout this article, the notations r.v and p.d.f represent an absolutely continuous non-

negative random variable and a probability density function respectively. 

For a lifetime component that has survived up to an age 𝑡0, the SE is not a useful technique for 

measuring the uncertainty about its residual life. So, the concept of residual entropy was proposed 

by Ebrahimi [2] and is defined as 

𝐻𝑌(𝑓; 𝑡0) = −∫
𝑓(𝑦)

𝐹(𝑡0)
log

𝑓(𝑦)

𝐹(𝑡0)
𝑑𝑦

∞

𝑡0
,  (2) 

where, �̅�(𝑡0) = 1 − 𝐹(𝑡0) is the survival function (s.f) of the r.v 𝑌. 
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The above UM’s have been widely used in different research fields, but these UM’s consider 

that a lifetime system or component serves the same in its whole life from the aspects of some 

given qualitative characteristic set by the experimenter. Due to this drawback, these UM’s provide 

the same importance to the occurrence of every event of a probabilistic experiment and therefore 

these measures take the designation of shift-independent UM’s. But in our real life, there exist 

several situations where the shift-dependent UM’s are desirable. So, with the contribution of Belis 

and Guiasu [3], the first shift-dependent UM, simply known as weighted entropy was introduced 

and is defined as 

𝐻𝑌
𝑤(𝑓) = −∫ 𝑤(𝑦)𝑓(𝑦) log 𝑓(𝑦)𝑑𝑦

∞

0

 = −∫ 𝑦𝑓(𝑦) log 𝑓(𝑦)𝑑𝑦
∞

0
 ,     (3) 

where, the factor 𝑦 in the integrand of (3) represents the weight which linearly emphasizes the 

occurrence of the event {𝑌 = 𝑦} and therefore yields a shift-dependent UM. 

Similarly, Di Crescenzo and Longobardi [4] have extended the UM (3) to its dynamic 

(residual) version and therefore proposed the concept of weighted residual entropy as follows 

𝐻𝑌
𝑤(𝑓; 𝑡0) = −∫ 𝑦

𝑓(𝑦)

𝐹(𝑡0)
log

𝑓(𝑦)

𝐹(𝑡0)
𝑑𝑦

∞

𝑡0
.  (4) 

It is clear from the available literature that the classical SE has been generalized in different 

ways by introducing some additional parameters to it. A well-known generalization that plays a 

very important role in different sciences is the concept of R-Norm entropy introduced by Boekee 

and Lubee [5]. For more work and applications of R-Norm entropy, one can see Kumar and 

Choudhary [6] and Kumar et al. [7]. The continuous version of R-Norm entropy (RNE) was given 

by Nanda and Das [8] and is given by 

𝐻(𝑌,𝑅)(𝑓) =
𝑅

𝑅−1
[1 − {∫ 𝑓𝑅∞

0
(𝑦)𝑑𝑦}

1

𝑅] , 𝑅 > 0(≠ 1).  (5) 

Similarly, analogous to (2), Nanda and Das [8] have extended the R-Norm entropy to its 

dynamic (residual) version, known as R-Norm residual entropy for the residual lifetime 𝑌 − 𝑡0|𝑌 >

𝑡0 and is defined as 

𝐻(𝑌,𝑅)(𝑓; 𝑡0) =
𝑅

𝑅−1
[1 − {∫ (

𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦
∞

𝑡0
}

1

𝑅
] , 𝑅 > 0(≠ 1).        (6) 

From the recent literature, it is seen that the measurement of uncertainty (entropy) of 

probability distributions is widely being used in the research work of various researchers with 

respect to different sciences. After the existence of fundamental UM’s, the various researchers have 

introduced their weighted versions (1.e weighted entropies) for measuring the uncertainty of such 

real life problems which are best fitted by weighted probability distributions. The researchers who 

have been attracted in the recent past by the concept of weighted entropy and therefore introduced 

some new flexible  weighted UM’s are: Bhat et al. [9], Bhat and Baig [10], Bhat et al. [11],  Khammar 

and Jahanshahi [12], Kayal [13], Mirali and Baratpour [14], Nair et al. [15], Rajesh et al. [16], 

Nourbakhsh and Yari [17], Misagh et al. [18], Misagh and Yari [19] etc. Motivated with this 

research literature and the usefulness of R-Norm entropy and R-Norm residual entropy, here in 

this article, we introduce the concept of weighted R-Norm entropy and weighted R-Norm residual 

entropy. The article is continued as follows: In section 2, we consider the weighted R-Norm 

entropy (WRNE) in the form of its definition and several important properties. The section 3 

studies the dynamic (residual) version of WRNE, known as weighted R-Norm residual entropy 
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(WRNRE) and also presents various significant characterization results of this UM. The various 

important properties of WRNRE and also its relationship with other well-known reliability 

measures are focused in section 4. The section 5 presents an application of the WRNE and WRNRE 

by using a real life data. Finally, in the last section, some concluding remarks are illustrated. 

2. Weighted R-Norm Entropy (WRNE)

Analogous to (3), here in this section, we generate a new weighted UM which is actually the 

weighted version of R-Norm entropy (5) and is known as weighted R-Norm entropy (WRNE). 

Definition 2.1 The WRNE for a r.v 𝑌 having p.d.f 𝑓(𝑦) denoted by 𝐻(𝑌,𝑅)
𝑤 (𝑓) is defined as

𝐻(𝑌,𝑅)
𝑤 (𝑓) =

𝑅

𝑅−1
[1 − (∫ (𝑦𝑓(𝑦))

𝑅
𝑑𝑦

∞

0
)

1

𝑅
] , 𝑅 > 0(≠ 1),   (7) 

where, the factor 𝑦 in the integrand is defined in (3). 

 The following example makes it clear that two different probability distributions can have the 

same RNE’s, but unequal WRNE’s. 

Example 2.1. Let 𝑌 and 𝑍 be two r.v’s with pdf’s 

     𝑓𝑌(𝑡) = {
𝑡

2
, 0 < 𝑡 < 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑔𝑍(𝑡) = {

1 −
𝑡

2
, 0 < 𝑡 < 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

By using (5), we obtain that 

𝐻(𝑌,𝑅)(𝑓) = 𝐻(𝑍,𝑅)(𝑔) =
𝑅

𝑅−1
[1 − (

2

𝑅+1
)

1

𝑅
]. 

But, the WRNE’s of 𝑌 and 𝑍 are not identical as follow 

𝐻(𝑌,𝑅)
𝑤 (𝑓) =

𝑅

𝑅−1
[1 − (

2𝑅

2𝑅+1
)

1

𝑅
] and  𝐻(𝑍,𝑅)

𝑤 (𝑔) =
𝑅

𝑅−1
[1 − {2𝑅+1𝐵(𝑅 + 1, 𝑅 + 1)}

1

𝑅], 

where, 

𝐵(𝛼, 𝛽) = ∫ 𝑢𝛼−1(1 − 𝑢)𝛽−1𝑑𝑢 =
Γ(𝛼)Γ(𝛽)

Γ(𝛼+𝛽)
, 𝛼, 𝛽 > 0

1

0
. 

Hence, even though 𝐻(𝑌,𝑅)(𝑓) = 𝐻(𝑍,𝑅)(𝑔), but 𝐻(𝑌,𝑅)
𝑤 (𝑓) ≠ 𝐻(𝑍,𝑅)

𝑤 (𝑔), ∀ 𝑅 > 0(≠ 1).

Lemma 2.1. If 𝑈 = 𝑐𝑌, with 𝑐 > 0, then 

𝐻(𝑈,𝑅)
𝑤 (𝑓) =

𝑅

𝑅−1
(1 − 𝑐

1

𝑅) + 𝑐
1

𝑅𝐻(𝑌,𝑅)
𝑤 (𝑓).

Example 2.2. Let 𝑓(𝑦) be the p.d.f of a r.v 𝑌 distributed as: 

(a) Uniformly over [𝑚, 𝑛] with 𝑓(𝑦) =
1

𝑛−𝑚
, 𝑚 < 𝑦 < 𝑛, then 

 𝐻(𝑌,𝑅)(𝑓) =
𝑅

𝑅−1
[1 − (𝑛 − 𝑚)

1−𝑅

𝑅 ] and 𝐻(𝑌,𝑅)
𝑤 (𝑓) =

𝑅

𝑅−1
[1 − (

𝑛𝑅+1−𝑚𝑅+1

(𝑛−𝑚)𝑅
)

1

𝑅
]. 

(b) Exponentially with 𝑓(𝑦) = 𝜂𝑒−𝜂𝑦 , 𝑦 > 0, 𝜂 > 0, then
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 𝐻(𝑌,𝑅)(𝑓) =
𝑅

𝑅−1
[1 − (

𝜂𝑅−1

𝑅
)

1

𝑅
] and 𝐻(𝑌,𝑅)

𝑤 (𝑓) =
𝑅

𝑅−1
[1 − (

Γ(𝑅+1)

𝜂𝑅𝑅+1)

1

𝑅
]. 

(c) Gamma with 𝑓(𝑦) =
1

Γ(𝜂)
𝑒−𝑦𝑦𝜂−1, 0 < 𝑦 < ∞, 𝜂 > 0, then 

 𝐻(𝑌,𝑅)(𝑓) =
𝑅

𝑅−1
[1 −

1

(Γ(𝜂))
𝑅 (

Γ((𝜂−1)𝑅+1)

𝑅(𝜂−1)𝑅+1 )

1

𝑅
] and 𝐻(𝑌,𝑅)

𝑤 (𝑓) =
𝑅

𝑅−1
[1 −

1

(Γ(𝜂))
𝑅 (

Γ(𝜂𝑅+1)

𝑅𝜂𝑅+1 )

1

𝑅
]. 

(d) Weibull with 𝑓(𝑦) = 𝜂𝑦𝜂−1𝑒−𝑦𝜂
, 𝑦 > 0, 𝜂 > 0, then

 𝐻(𝑌,𝑅)(𝑓) =
𝑅

𝑅−1

[
 
1 − {

𝜂𝑅−1Γ((1−
1

𝜂
)(𝑅−1)+1)

𝑅
(𝑅−1)(1−

1
𝜂)+1

}

1

𝑅

]

 

and 𝐻(𝑌,𝑅)
𝑤 (𝑓) =

𝑅

𝑅−1
[1 − (

𝜂𝑅−1Γ(𝑅+
1

𝜂
)

𝑅
𝑅+

1
𝜂

)

1

𝑅

] . 

(e) Rayleigh with 𝑓(𝑦) = 𝜂𝑦𝑒−
𝜂

2
𝑦2

, 𝑦 ≥ 0, 𝜂 > 0, then 

 𝐻(𝑌,𝑅)(𝑓) =
𝑅

𝑅−1
[1 − (

(2𝜂)
𝑅−1

2 Γ(
𝑅+1

2
)

(√𝑅)
𝑅+1 )

1

𝑅

] and 𝐻(𝑌,𝑅)
𝑤 (𝑓) =

𝑅

𝑅−1

[

1 − {
Γ(𝑅+

1

2
)(

22𝑅−1

𝜂
)

1
2

𝑅
𝑅+

1
2

}

1

𝑅

]

 

. 

Theorem 2.1. Let 𝑌 be a r.v having SE 𝐻𝑌(𝑓), then 

𝐻(𝑌,𝑅)
𝑤 (𝑓) ≤

𝑅

𝑅−1
[1 − 𝑒𝑥𝑝 (

(1−𝑅)

𝑅
𝐻𝑌(𝑓) + 𝐸(log 𝑌))]. 

Proof. By applying the log-sum inequality, we have 

∫ 𝑓(𝑦) log
𝑓(𝑦)

(𝑦𝑓(𝑦))
𝑅 𝑑𝑦 ≥ ∫ 𝑓(𝑦)𝑑𝑦 log

∫ 𝑓(𝑦)𝑑𝑦
∞
0

∫ (𝑦𝑓(𝑦))
𝑅
𝑑𝑦

∞
0

∞

0

∞

0
 

= − log∫ (𝑦𝑓(𝑦))
𝑅
𝑑𝑦

∞

0
.

Due to (7) and after simple simplification, we obtain the desired result. 

3. Weighted R-Norm Residual Entropy (WRNRE)

This section presents the weighted R-Norm entropy for residual lifetimes by utilizing the 

equation (7) which is the weighted version of (6). Some important characterization results of this 

UM are also discussed. 

Definition 3.1 For a r.v 𝑌 having p.d.f 𝑓(𝑦) and s.f �̅�(𝑡0), the WRNRE of order 𝑅 at time 𝑡0 > 0 is 

defined as 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 − {∫ (𝑦

𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦
∞

𝑡0
}

1

𝑅
] , 𝑅 > 0(≠ 1). (8) 

Here, we study the expressions of WRNRE of some well-known lifetime distributions. 

Example 3.1. If a r.v 𝑌 has the p.d.f 𝑓(𝑦) and s.f �̅�(𝑡0) as: 

(a)  𝑓(𝑦) =
1

𝑑−𝑐
, 𝑐 < 𝑦 < 𝑑 and �̅�(𝑡0) =

𝑑−𝑡0

𝑑−𝑐
, then
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𝐻(𝑌,𝑅)(𝑦; 𝑡0) =
𝑅

𝑅−1
[1 − (𝑑 − 𝑡0)

1−𝑅

𝑅 ]    and    𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 − {

𝑑𝑅+1−𝑡0
𝑅+1

(𝑑−𝑡0)𝑅(𝑅+1)
}

1

𝑅
]. 

(b) 𝑓(𝑦) = 𝜂𝑒−𝜂𝑦 , 𝑦 > 0, 𝜂 > 0 and �̅�(𝑡0) = 𝑒−𝜂𝑦, then

𝐻(𝑌,𝑅)(𝑓; 𝑡0) =
𝑅

𝑅−1
(1 −

𝜂
𝑅−1
𝑅

𝑅
)    and    𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) =
𝑅

𝑅−1
[1 − (

Γ(𝑅+1,𝜂𝑅𝑡0)

𝜂𝑒−𝜂𝑅𝑡0𝑅𝑅+1)

1

𝑅
]. 

(c) 𝑓(𝑦) =
𝜂𝜇

Γ(𝜇)
𝑒−𝜂𝑦𝑦𝜇−1, 0 < 𝑦 < ∞, 𝜂, 𝜇 > 0 and �̅�(𝑡0) =

Γ(𝜇,𝜂𝑡0)

Γ(𝜇)
, then 

𝐻(𝑌,𝑅)(𝑓; 𝑡0) =
𝑅

𝑅−1
[1 −

𝜂𝜇

Γ(𝜇,𝜂𝑡0)
{
Γ(𝑅(𝜇−1)+1,𝜂𝑅𝑡0)

(ηR)R(μ−1)+1 }

1

𝑅
] 

and 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 −

𝜂

Γ(𝜇,𝜂𝑡0)
{
Γ(𝑅𝜇+1,𝜂𝑅𝑡0)

(𝜂𝑅)𝑅𝜇+1 }

1

𝑅
]. 

(d) 𝑓(𝑦) = 𝜂𝑦𝜂−1𝑒−𝑦𝜂
, 𝑦 > 0, 𝜂 > 0 and  �̅�(𝑡0) = 𝑒−𝑦𝜂

, then

𝐻(𝑌,𝑅)(𝑓; 𝑡0) =
𝑅

𝑅−1
[1 −

𝜂
𝑅−1
𝑅 𝑒𝑡0

𝜂

𝑅
𝜂(𝑅+1)−𝑅

𝜂𝑅

{Γ (
𝑅(𝜂−1)+1

𝜂
, 𝑅𝑡0

𝜂
)}

1

𝑅
] 

and 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 − {

𝜂𝑅−1Γ(𝑅+
1

𝜂
.𝑅𝑡0

𝜂
)

𝑅
𝜂𝑅+1

𝜂 𝑒−𝑅𝑡0
𝜂

}

1

𝑅

]. 

(e) 𝑓(𝑦) = 𝜂𝑦𝑒−
𝜂

2
𝑦2

, 𝑦 ≥ 0, 𝜂 > 0 and �̅�(𝑡0) = 𝑒−
𝜂

2
𝑦2

, then 

𝐻(𝑌,𝑅)(𝑓; 𝑡0) =
𝑅

𝑅−1
[1 − 𝑒

𝜂

2
𝑡0
2

{(
(2𝜂)𝑅−1

𝑅𝑅+1 )

1

2
Γ (

𝑅+1

2
,
𝜂𝑅

2
𝑡0
2)}

1

𝑅

] 

and 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 − 𝑒

𝜂

2
𝑡0
2

{Γ (𝑅 +
1

2
,
𝜂𝑅

2
𝑡0
2) (

22𝑅−1

𝜂𝑅2𝑅+1)

1

2𝑅
}

1

𝑅

]. 

where, Γ(𝛽, 𝛼𝑧) = 𝛼𝛽 ∫ 𝑒−𝛼𝑢𝑢𝛽−1𝑑𝑢, 𝛼, 𝛽 > 0
∞

𝑧
 is an upper incomplete gamma function. 

Theorem 3.1 Let 𝑌 be a r.v having WRNRE and RNRE 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) and 𝐻(𝑌,𝑅)(𝑓; 𝑡0) respectively.

Then for all 𝑡0 > 0, wehave 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 − {𝑡0

𝑅 (1 −
(𝑅−1)

𝑅
𝐻(𝑌,𝑅)(𝑓; 𝑡0))

𝑅

+∫ 𝑧𝑅−1 (
𝐹(𝑧)

𝐹(𝑡0)
)

𝑅∞

𝑧=𝑡0
(𝑅 − (𝑅 − 1)𝐻(𝑌,𝑅)(𝑓; 𝑧)) 𝑑𝑧}

1

𝑅

]. 

Proof. 
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∫ (𝑦
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦 = ∫ (∫ 𝑅𝑧𝑅−1𝑑𝑧
𝑦

0
) (

𝑓(𝑦)

𝐹(𝑡0)
)

𝑅∞

𝑡0

∞

𝑡0
𝑑𝑦 

 = 𝑅 ∫ [∫ 𝑧𝑅−1𝑑𝑧 + ∫ 𝑧𝑅−1𝑑𝑧
𝑦

𝑡0

𝑡0
0

] (
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦
∞

𝑡0
 

= 𝑡0
𝑅 ∫ (

𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦 + 𝑅 ∫ 𝑧𝑅−1 (∫ (
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦
∞

𝑦=𝑧
)

∞

𝑧=𝑡0

∞

𝑡0
𝑑𝑧.  (9) 

From (6), we have 

∫ (
𝑓(𝑦)

�̅�(𝑡0)
)

𝑅∞

𝑡0
𝑑𝑦 = (1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)(𝑓; 𝑡0))

𝑅

.  (10) 

and 

∫ 𝑓𝑅(𝑦)𝑑𝑦 = �̅�𝑅(𝑡0)
∞

𝑡0
(1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)(𝑓; 𝑡0))

𝑅

.  (11) 

Using (9), (10) and (11) in (8), the required result will be obtained. 

The following theorem shows that 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) determines the s.f �̅�(𝑡0) uniquely.

Theorem 3.2. Let 𝑌 be a r.v having p.d.f 𝑓(𝑦), s.f �̅�(𝑡0) and WRNRE 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) < ∞,∀ 𝑅 > 0(≠ 1)

respectively. If 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) is increasing in 𝑡0, then 𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) uniquely determines the

corresponding s.f �̅�(𝑡0). 

Proof. Rewriting (8) as 

1 −
(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) = (∫ (𝑦
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦
∞

𝑡0
)

1

𝑅
.  (12) 

Differentiating (12) both sides w.r.t 𝑡0, we have 

(1−𝑅)

𝑅

𝜕

𝜕𝑡0
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) =
1

𝑅
(∫ (𝑦

𝑓(𝑦)

𝐹(𝑡0)
)

𝑅∞

𝑡0
𝑑𝑦)

1−𝑅

𝑅
[𝑅ℎ𝐹(𝑡0) ∫ (𝑦

𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦 − 𝑡0
𝑅ℎ𝐹

𝑅(𝑡0)
∞

𝑡0
],        (13) 

where, ℎ𝐹(𝑡0) =
𝑓(𝑡0)

𝐹(𝑡0)
 represents the hazard rate of 𝑌. Using (12), we can rewrite (13) as 

𝑡0
𝑅 (1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0))
1−𝑅

ℎ𝐹
𝑅(𝑡0) − {𝑅 − (𝑅 − 1)𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}ℎ𝐹(𝑡0) − (𝑅 − 1)
𝜕

𝜕𝑡0
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) = 0 .

          (14) 

For fixed 𝑡0 > 0, ℎ𝐹(𝑡0)  ia a solution of 𝜓(𝑥) = 0, where 

𝜓(𝑥) = 𝑡0
𝑅 (1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0))
1−𝑅

𝑥𝑅 − 𝑅 (1 −
(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)) 𝑥 − (𝑅 − 1)
𝜕

𝜕𝑡0
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) = 0 .

Differentiating 𝜓(𝑥) w.r.t 𝑥, we have 

𝜕

𝜕𝑥
𝜓(𝑥) = 𝑅𝑡0

𝑅 (1 −
(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0))
1−𝑅

𝑥𝑅−1 − 𝑅 (1 −
(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)) .

Also, 

𝜕2

𝜕𝑥2 𝜓(𝑥) = 𝑅(𝑅 − 1)𝑡0
𝑅 (1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0))
1−𝑅

𝑥𝑅−2 . 

Now, 
𝜕

𝜕𝑋
𝜓(𝑥) = 0 gives 
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𝑥 = (
𝑅−(𝑅−1)𝐻(𝑌,𝑅)

𝑤 (𝑓;𝑡0)

𝑅𝑡0
)

𝑅

𝑅−1

= 𝑥0  (say). 

Case I. Let 𝑅 > 1, then 
𝜕2

𝜕𝑥2 𝜓(𝑥0) > 0. Thus, 𝜓(𝑥) attains minimum at  𝑥0. Also, 𝜓(0) < 0 and 𝜓(∞) 

= ∞. Further, we can also observe it that 𝜓(𝑥) first decreases for 0 < 𝑥 < 𝑥0 and then increases for 

𝑥 > 𝑥0. So, 𝑥 = ℎ𝐹(𝑡0) is the unique solution to 𝜓(𝑥) = 0. 

Case II. Let 𝑅 < 1, then 
𝜕2

𝜕𝑥2 𝜓(𝑥0) < 0. Thus, 𝜓(𝑥) attains maximum at 𝑥0. Also, 𝜓(0) > 0 and 

𝜓(∞) = −∞. Further, we can easily see it that 𝜓(𝑥) first increases for 0 < 𝑥 < 𝑥0 and then decreases 

for 𝑥 > 𝑥0. So, 𝑥 = ℎ𝐹(𝑡0) is the unique solution to 𝜓(𝑥) = 0. By combining both the cases, it is 

concluded that 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) uniquely determines ℎ𝐹(𝑡0),  which in turns determines �̅�(𝑡0).

4. Properties and Inequalities of 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0)

In this section, we study some interesting properties and inequalities of WRNRE. 

Definition 4.1. A r.v 𝑌 is said to be smaller than in WRNRE of order 𝑅 (denoted by𝑌 𝑊𝑅𝑁𝑅𝐸
≤

𝑍), if 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) ≤ 𝐻(𝑍,𝑅)

𝑤 (𝑓; 𝑡0), 𝑡0 > 0.

Definition 4.2. A r.v 𝑌 or a s.f �̅� has increasing (decreasing) R-Norm entropy for residual life 

IWRNERL (DWRNERL), if 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) is increasing (decreasing) in 𝑡0, 𝑡0 > 0.

Lemma 4.1. If 𝑍 = 𝜆𝑌, with 𝜆 > 0 is a constant, then 

𝐻(𝑍,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−−1
(1 − 𝜆

1

𝑅) + 𝜆
1

𝑅𝐻(𝑌,𝑅)
𝑤 (𝑓;

𝑡0

𝜆
). 

Proof.  

𝐻(𝑍,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 − {∫ (𝑧

𝑓(𝑧)

𝑃𝑟(𝑍>𝑡0)
)

𝑅

𝑑𝑧
∞

𝑡0
}

1

𝑅
], 

where, 𝑓(𝑧) is the p.d.f of 𝑍. 

Setting 𝑍 = 𝜆𝑌, we obtain 

𝐻(𝑍,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 − {∫ 𝜆 (𝑦

𝑓(𝑦)

𝐹(
𝑡0
𝜆

)
)

𝑅

𝑑𝑦
∞
𝑡0
𝜆

}

1

𝑅

]. 

By using (8), we obtain the required result. 

Theorem 4.1. For two r.v’s 𝑌 and 𝑍, let us define 𝑋1 = 𝛼1𝑌 and 𝑋2 = 𝛼2𝑍, with 𝛼1, 𝛼2 > 0. Let 

𝑌 𝑊𝑅𝑁𝑅𝐸
≤

𝑍 and 𝛼1 ≤ 𝛼2. Then 𝑋1
𝑊𝑅𝑁𝑅𝐸

≤
𝑋2, if 𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) or 𝐻(𝑍,𝑅)
𝑤 (𝑓; 𝑡0) is decreasing in 𝑡0 > 0.

Poof.  Suppose 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) is decreasing in 𝑡0.

Now, 𝑌 𝑊𝑅𝑁𝑅𝐸
≤

𝑍 implies 

𝐻(𝑌,𝑅)
𝑤 (𝑓;

𝑡0

𝛼2
) ≤ 𝐻(𝑍,𝑅)

𝑤 (𝑓;
𝑡0

𝛼2
) . (15)
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Further, since
𝑡0

𝛼1
≥

𝑡0

𝛼2
, we have 

𝐻(𝑌,𝑅)
𝑤 (𝑓;

𝑡0

𝛼1
) ≤ 𝐻(𝑌,𝑅)

𝑤 (𝑓;
𝑡0

𝛼2
) .  (16) 

From (15) and (16), we get 

𝐻(𝑌,𝑅)
𝑤 (𝑓;

𝑡0

𝛼1
) ≤ 𝐻(𝑍,𝑅)

𝑤 (𝑓;
𝑡0

𝛼2
).     (17) 

Using Lemma 4.1 in (17), we obtain 𝑋1
𝑊𝑅𝑁𝑅𝐸

≤
𝑋2. 

Theorem 4.2. Let 𝑌 be a r.v with support (0,𝑚],𝑚 > 0, p.d.f 𝑓(𝑦) and s.f �̅�(𝑡0), 𝑡0 > 0, then for 𝑅 >

0(≠ 1), the following inequality holds 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) ≥

𝑅

𝑅−1
[1 − 𝑒𝑥𝑝 {

∫ (𝑦
𝑓(𝑦)

�̅�(𝑡0)
)
𝑅

log(𝑦
𝑓(𝑦)

�̅�(𝑡0)
)
𝑅
𝑑𝑦

𝑚
𝑡0

𝑅 ∫ (𝑦
𝑓(𝑦)

�̅�(𝑡0)
)
𝑅
𝑑𝑦

𝑚
𝑡0

+ log(𝑚 − 𝑡0)}].

Proof.  Using log-sum inequality and (8), we have 

∫ (𝑦
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

log (𝑦
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦 ≥ ∫ (𝑦
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦 log
∫ (𝑦𝑓(𝑦))

𝑅
𝑑𝑦

𝑚
𝑡0

∫ (𝐹(𝑡0))
𝑅
𝑑𝑦

𝑚
𝑡0

𝑚

𝑡0

𝑚

𝑡0
 

= ∫ (𝑦
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅𝑚

𝑡0
𝑑𝑦 [log {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}
𝑅

− log(𝑚 − 𝑡0)] .

After simple calculations, we can easily obtain the required result. 

Theorem 4.3. If 𝑌 is IWRNERL (DWRNERL) and 𝑅 > 0(≠ 1), then 

ℎ𝐹(𝑡0) ≤ (≥) [
𝑅

𝑡0
𝑅 {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}
𝑅

]

1

𝑅−1
. 

Proof. From (14), we have 

(𝑅 − 1)
𝜕

𝜕𝑡0
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) = 𝑡0
𝑅 (1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0))
1−𝑅

ℎ𝐹
𝑅(𝑡0) − 𝑅 (1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)) ℎ𝐹(𝑡0).

Since 𝑌 is IWRNERL (DWRNERL), therefore 

ℎ𝐹(𝑡0) [𝑡0
𝑅 {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}
1−𝑅

ℎ𝐹
𝑅−1(𝑡0) − 𝑅 {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}] ≥ (≤)0 .

which leads to 

ℎ𝐹(𝑡0) ≤ (≥) [
𝑅

𝑡0
𝑅 {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}
𝑅

]

1

𝑅−1
. 

Theorem 4.4. If �̅� is IWRNERL (DWRNERL), then 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) ≥ (≤)

𝑅

𝑅−1

[

1 − 𝑡0 {
(1+

𝜕

𝜕𝑡0
𝛿𝐹(𝑡0))

𝑅−1

𝛿𝐹(𝑡0)
}

1

𝑅

]

 

 , 

where 𝛿𝐹(𝑡0) is the mean residual life function of 𝑌. 
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Proof. From (14), we have 

𝜕

𝜕𝑡0
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) =
1

𝑅−1
[𝑡0

𝑅 {1 −
(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}
1−𝑅

ℎ𝐹
𝑅(𝑡0) − 𝑅 {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)} ℎ𝐹
𝑅(𝑡0)].

Since, �̅� is IWRNERL and 𝑅 > 0(≠ 1), therefore, we have 

𝑡0
𝑅 {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}
1−𝑅

ℎ𝐹
𝑅(𝑡0) − 𝑅 {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)} ℎ𝐹(𝑡0).

which gives 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) ≥

𝑅

(𝑅−1)
[1 − 𝑡0 (

ℎ𝐹
𝑅−1(𝑡0)

𝑅
)

1

𝑅
]. 

Using ℎ𝐹(𝑡0) =
1+

𝜕

𝜕𝑡0
𝛿𝐹(𝑡0)

𝛿𝐹(𝑡0)
, we get 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) ≥

𝑅

𝑅−1
[1 − 𝑡0 {

1

𝑅
(

1+
𝜕

𝜕𝑡0
𝛿𝐹(𝑡0)

𝜕

𝜕𝑡0
𝛿𝐹(𝑡0)

)

𝑅−1

}

1

𝑅

]. 

The proof of DWRNERL is similar. 

Theorem 4.5.  Let 𝑌 be the lifetime of a system with p.d.f 𝑓(𝑦) and s.f �̅�(𝑡𝑜), 𝑡0 > 0, then for 𝑅 >

0(≠ 1), we have 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) ≤

𝑅

𝑅−1
[1 − 𝑒𝑥𝑝 {𝑅 ∫

𝑓(𝑦)

𝐹(𝑡0)
log 𝑦𝑑𝑦 + (1 − 𝑅)𝐻𝑌(𝑓; 𝑡0)

∞

𝑡0
}] .        (18) 

Proof. From log-sum inequality, we have 

∫ 𝑓(𝑦) log
𝑓(𝑦)

(𝑦
𝑓(𝑦)

�̅�(𝑡0)
)
𝑅

∞

𝑡0
𝑑𝑦 ≥ ∫ 𝑓(𝑦)𝑑𝑦 log

∫ 𝑓(𝑦)𝑑𝑦
∞
𝑡0

∫ (𝑦
𝑓(𝑦)

�̅�(𝑡0)
)
𝑅
𝑑𝑦

∞
𝑡0

∞

𝑡0

= �̅�(𝑡0) [log �̅�(𝑡0) − 𝑅 log {1 −
(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}]. (19) 

where (19) is obtained from (8). 

The L.H.S of (19) leads to 

(1 − 𝑅) ∫ 𝑓(𝑦) log 𝑓(𝑦)𝑑𝑦 − 𝑅 ∫ 𝑓(𝑦) log 𝑦𝑑𝑦 + 𝑅�̅�(𝑡0) log �̅�(𝑡0)
∞

𝑡0

∞

𝑡0
.  (20) 

Using (20) in (19), we obtain (18). 

5. Application

In this section, we demonstrate a real life data set to analyze the performance of WRNE and 

WRNRE in practice. The data set represents the remission times (in months) of a random sample of 

 128 bladder cancer patients given in Lee and Wang [20] and is given as follows: 

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 

5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 
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9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 

34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 

2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 

11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 

6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 

8.65, 12.63, 22.69. 

According to Afaq et al. [21] this data set is best fitted by length biased Lomax distribution 

(LBLD). So, for computing the uncertainty of this data set, the simple entropy techniques are not 

appropriate. Therefore, it is necessary to apply the weighted entropy techniques rather than the 

simple entropy. For the weighted entropy, here we must consider the parameters of the Lomax 

distribution (LD) not of the LBLD. The MLE’s of the parameters of LD having p.d.f 𝑓(𝑦) =

𝛼

𝛽
(1 +

𝑦

𝛽
)

−(𝛼+1)

, 𝑦 > 0, 𝛼, 𝛽 > 0 from this data set are obtained as: 𝛼 = 8.43 (shape parameter) and 

𝛽 = 70.29 (scale parameter) respectively. Now, for 𝛼 = 8.43, 𝛽 = 70.29, 𝑅 = 2 and 𝑡0 = 5, the values 

of WRNE and WRNRE are obtained as: 𝐻(𝑌,𝑅)
𝑤 (𝑓) = 1.028 and 𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) = 0.585. Similarly, for

the same values of 𝛼 and 𝛽, if we take 𝑅 = 4 and 𝑡0 = 10,  we can obtain 𝐻(𝑌,𝑅)
𝑤 (𝑓) = 1.111 and

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) = 1.015 respectively.

6. Conclusion

In this article, we considered weighted R-Norm entropy of order 𝑅 and also its dynamic 

(residual) version. These are shift-dependent uncertainty measures which assign the higher weight 

to the larger values of the observed random variable. We have also studied the various significant 

properties of these measures. Some of the important relationships of the proposed dynamic 

measure with hazard rate and mean residual life functions have been discussed. Finally, we have 

illustrated the importance of the proposed measures with the help of a real life data set. 
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