
R. KUMAR, H. SHARMA, A. KAUR, R. GUPTA
BAYESIAN AND E-BAYESIAN ESTIMATION…

BAYESIAN AND E-BAYESIAN ESTIMATION OF 

EXPONENTIATED INVERSE RAYLEIGH DISTRIBUTION 

USING CONJUGATE PRIOR 

RAMESH KUMAR1,  HEMANI SHARMA∗2, RAHUL GUPTA2,  ABLEEN KAUR3 

• 
Department of statistics, University of Jammu, 

 Jammu, J&K, India 180006 

rk1825308@gmail.com1, hemanisharma124@gmail.com*2, rahulgupta68@gmail.com2 

,ableenkaur23@gmail.com3

Abstract 

This study explores the application of Bayesian and E-Bayesian techniques to estimate the scale 

parameter of the Exponentiated Inverse Rayleigh distribution. Bayesian estimates for the parameter 

are derived using an informative Gamma prior and evaluated under three distinct loss functions: De-

Groot, Squared Error, and Al-Bayyati loss functions. Various Properties of the E-Bayesian estimators 

under different loss functions have also been studied. To compare the effectiveness of E-Bayesian 

estimates against the Bayesian counterpart, a simulation study is conducted using MatLab. The 

various derived estimators were compared in terms of their Mean Squared Error. The results of a 

simulation study reveal that E-Bayesian estimates exhibit a smaller Mean Squared Error in 

comparison to Bayesian estimates, thereby demonstrating their enhanced efficiency. Among the E-

Bayesian estimates, the third one stands out as the most effective. Moreover, the analysis highlights 

that the Squared Error loss function outperforms the Al-Bayyati and De-Groot loss functions, 

exhibiting a smaller MSE. Furthermore, the efficacy of these estimators is demonstrated through an 

analysis of a real-life dataset. 

Keywords: Al-Bayyati loss function, De-Groot loss function, Exponentiated 

inverse Rayleigh distribution, Gamma prior, Squared error loss function. 

1. Introduction

The Exponentiated Inverse Rayleigh distribution (EIRD) finds extensive utility in life testing and 

reliability studies, playing a crucial role in domains like electronic component longevity and wind 

speed analysis. Its significance also extends to physics and signal processing, facilitating 

investigations into radiations, sounds, and light phenomena. This versatility prompts statisticians to 

frequently employ the EIRD across diverse datasets. 

Rehman and Dar [1] conducted a comprehensive examination of the Exponentiated Inverse Rayleigh 

distribution, delving into its mathematical properties and harnessing Bayesian estimation 

techniques for parameter estimation. The probability density function (PDF) and cumulative 

distribution function (CDF) of the EIRD, characterized by scale parameter θ and shape parameter α, 

are as follows:      

𝑓(𝑥, 𝜃, 𝛼) =
2𝛼𝜃𝑒

−
𝛼𝜃
𝑥2

𝑥3
 ; 𝑥 > 0, 𝛼 , > 0  (1) 

𝐹(𝑥, 𝜃, 𝛼) = 𝑒
−

𝛼𝜃

𝑥2  ; 𝑥 > 0, 𝛼 , 𝜃 > 0 (2)
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Numerous authors have explored the Inverse Rayleigh distribution (IRD) from various angles. Voda 

[2] delved into essential properties such as Maximum Likelihood Estimation (MLE), confidence

intervals, and hypothesis tests. Siddiqui [3] focused on the diverse practical applications of the

Inverse Rayleigh Distribution. Soliman et al. [4] utilized squared error and zero-one loss functions

to devise Bayesian estimators for IRD, centered around lower record values. Reshi et al. [5] tackled

parameter estimation for the Generalized Inverse Rayleigh distribution.

Dey [6] derived Bayes estimators for IRD parameters using distinct loss functions and a non-

informative prior. Sindhua et al. [7] explored Bayesian estimators and associated risks for IRD

parameters, emphasizing left-censored data and showcasing the efficacy of the gamma prior under

Quasi-Quadratic loss functions. Okasha [8] explored E-Bayesian estimation for the Lomax

distribution with type-II censored data.

This paper's objective is to conduct a statistical comparison between Bayesian estimators and

Expected Bayesian estimators for the Exponentiated Inverse Rayleigh distribution's scale parameter.

The analysis involves the utilization of gamma priors and different loss functions. The ensuing

layout of the paper is outlined as follows: Section 2 outlines the derivation of the likelihood function,

prior distribution, and posterior distribution. Section 3 presents Bayesian estimators for the EIRD

scale parameter using Al-Bayyati, Squared Error, and De-Groot loss functions. In Section 4, E-

Bayesian estimates are derived and their properties are examined. Section 5 is dedicated to a

simulation study comparing Bayes and E-Bayes estimates. Real data analysis is tackled in Section 6,

while Section 7 concludes by summarizing the findings.

2. Likelihood function, Prior and Posterior Distribution

2.1            Likelihood function 
Let 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 be a random sample of size n drawn from EIRD. Then the likelihood function is 

given by  

 𝐿(𝑥, 𝜃) = 2𝑛𝛼𝑛𝜃𝑛 ∏
1

𝑥𝑖
3 𝑒−𝛼𝜃 ∑ 𝑥𝑖

−2𝑛
𝑖=1

𝑛

𝑖=1

 (3) 

In the context of Bayesian estimation, the selection of an appropriate prior holds paramount 

importance in parameter estimation. When a substantial understanding of the parameter(s) is 

available, the inclination is towards informative priors; however, when such knowledge is lacking, 

non-informative priors may be more appropriate. In this study, we opt for an informative prior, 

specifically the Gamma Prior, to derive the corresponding posterior distribution. 

2.2 Prior distribution 

The gamma distribution is employed as a conjugate prior distribution for the parameter θ. The 

subsequent Probability Density Function (PDF) is formulated using the shape parameter 'c' and the 

scale parameter 'r'.      

 ℎ(𝜃|𝑐, 𝑟) =
𝑟𝑐  𝜃𝑐−1𝑒−𝜃𝑟

𝛤𝑐
 ;  𝑐, 𝑟 > 0 , 𝜃 > 0  (4) 

2.3 Posterior distribution 

The posterior distribution for the parameter 𝜃 using (3) and (4), is given as 

 𝑔(𝑥, 𝜃) =
𝐿(𝑥, 𝜃) ∗ ℎ(𝜃)

∫ 𝐿(𝑥, 𝜃) ∗ ℎ(𝜃)𝑑𝜃
∞

0
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 =

2𝑛𝛼𝑛𝜃𝑛 ∏
1

𝑥𝑖
3 𝑒−𝛼𝜃 ∑ 𝑥𝑖

−2𝑛
𝑖=1𝑛

𝑖=1 ∗
𝑟𝑐  𝜃𝑐−1𝑒−𝜃𝑟

𝛤𝑐

∫ 2𝑛𝛼𝑛𝜃𝑛 ∏
1

𝑥𝑖
3 𝑒−𝛼𝜃 ∑ 𝑥𝑖

−2𝑛
𝑖=1𝑛

𝑖=1 ∗
𝑟𝑐  𝜃𝑐−1𝑒−𝜃𝑟

𝛤𝑐
𝑑𝜃

∞

0

      As a result, the posterior distribution of is equal to 

 =
𝜃(𝑛+𝑐)−1𝑒−𝜃{𝛼 ∑ 𝑥𝑖

−2+𝑟𝑛
𝑖=1 }

∫ 𝜃(𝑛+𝑐)−1𝑒−𝜃{𝛼 ∑ 𝑥𝑖
−2+𝑟𝑛

𝑖=1 }𝑑𝜃
∞

0

 𝑔(𝑥, 𝜃) =
𝑆𝑛+𝑐𝜃(𝑛+𝑐)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)
,    𝜃 > 0     𝑤ℎ𝑒𝑟𝑒 𝑆 = {𝛼 ∑ 𝑥𝑖

−2 + 𝑟
𝑛

𝑖=1
}  (5) 

3. Bayesian Estimation

In this section, we find the Bayes estimate of scale parameter of EIRD under three different loss 

functions as: 

3.1        Under the Al-Bayyati loss function 

Al-Bayyati [9] proposed a loss function, defined as 

𝐿(𝜃̂ , 𝜃) = 𝜃𝑑(𝜃̂ − 𝜃)2;  where 𝜃̂ is the estimate of 𝜃.  

By using the Al-Bayyati loss function, the bayes estimator is given as 

 𝐸{𝐿(𝜃̂ , 𝜃)} = ∫ 𝐿(𝜃̂ , 𝜃) ∗

∞

0

𝑔(𝑥, 𝜃)𝑑𝜃 

 = ∫ 𝜃𝑑(𝜃̂ − 𝜃)2 ∗
𝑆𝑛+𝑐𝜃(𝑛+𝑐)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 

 = ∫ 𝜃𝑑(𝜃̂2 + 𝜃2 − 2𝜃̂𝜃)2 ∗
𝑆𝑛+𝑐𝜃(𝑛+𝑐)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 

 = 𝜃̂2 ∫
𝑆𝑛+𝑐𝜃(𝑛+𝑐+𝑑)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 + ∫
𝑆𝑛+𝑐𝜃(𝑛+𝑐+𝑑+2)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 − 2𝜃̂ ∫
𝑆𝑛+𝑐𝜃̂(𝑛+𝑐+𝑑+1)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

𝑑𝜃 

By solving the above integral, finally we get 

 𝐸{𝐿(𝜃̂ , 𝜃)} = 𝜃̂2 ∗
𝛤(𝑛 + 𝑐 + 𝑑)

𝑆𝑑𝛤(𝑛 + 𝑐)
+

𝛤(𝑛 + 𝑐 + 𝑑 + 2)

𝑆𝑑+2𝛤(𝑛 + 𝑐)
− 2𝜃̂ ∗

𝛤(𝑛 + 𝑐 + 𝑑 + 1) 

𝑆𝑑+1𝛤(𝑛 + 𝑐)

And consequently, the Bayes estimator is 

𝜃̂𝐵𝐴 =
(𝑛+𝑐+𝑑)

𝑆
  (6) 

3.2           Under the Squared error loss function 

The Squared Error Loss Function [10] is defined as follows: 

   𝐿(𝜃̂ , 𝜃) = (𝜃̂ − 𝜃)2 

By using the Squared error loss function, the bayes estimator is given as 

 𝐸{𝐿(𝜃̂ , 𝜃)} = ∫ 𝐿(𝜃̂ , 𝜃) ∗

∞

0

𝑔(𝑥, 𝜃)𝑑𝜃 

 = ∫ (𝜃̂ − 𝜃)2 ∗
𝑆𝑛+𝑐𝜃(𝑛+𝑐)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 
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= ∫ (𝜃̂2 + 𝜃2 − 2𝜃̂𝜃)
2

∗
𝑆𝑛+𝑐𝜃(𝑛+𝑐)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 

By solving the above integral, finally we get 

𝐸{𝐿(𝜃̂ , 𝜃)}    = 𝜃̂2  +
𝛤(𝑛 + 𝑐 + 2)

𝑆2𝛤(𝑛 + 𝑐)
− 2𝜃

(𝑛 + 𝑐)

𝑆

And consequently, the Bayes estimator as 

𝜃̂𝐵𝑆 =
(𝑛+𝑐)

𝑆
  (7) 

3. 3        Under the De-Groot loss function 

The De-Groot loss function [11] is defined as follows: 

 𝐿(𝜃̂ , 𝜃) =
(𝜃̂ − 𝜃)2

𝜃̂2

By using the De-Groot loss function, the bayes estimator is given as 

 𝐸{𝐿(𝜃̂ , 𝜃)} = ∫ 𝐿(𝜃̂ , 𝜃) ∗

∞

0

𝑔(𝑥, 𝜃)𝑑𝜃 

 = ∫
(𝜃̂ − 𝜃)2

𝜃̂2
∗

𝑆𝑛+𝑐𝜃(𝑛+𝑐)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 

 =
1

𝜃̂2
∫(𝜃̂2 + 𝜃2 − 2𝜃̂𝜃)2 ∗

𝑆𝑛+𝑐𝜃(𝑛+𝑐)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 

By solving the above integral, finally we get 

 𝐸{𝐿(𝜃̂ , 𝜃)} = 1 +
1

𝜃̂2

𝛤(𝑛 + 𝑐 + 2)

𝑆2𝛤(𝑛 + 𝑐)
−

2

𝜃̂

𝛤(𝑛 + 𝑐 + 1)

𝑆𝛤(𝑛 + 𝑐)

And consequently, the Bayes estimator as 

𝜃̂𝐵𝐷 =
(𝑛+𝑐+1)

𝑆
.    (8) 

4. E-Bayesian Estimation

According to Han [12], the prior parameters 'c' and 'r' should be chosen so that the prior given in (4) 

is a decreasing function of  𝜃. 
𝑑

𝑑𝜃
ℎ(𝜃|𝑐, 𝑟) =

𝑟𝑐  

𝛤𝑐
𝜃𝑐−2𝑒−𝜃𝑟{(𝑐 − 1) − 𝑟𝜃}, 

As a result, our prior distribution (4) becomes a decreasing function of 𝜃, for 0<c<1 and r>0. 

The E-Bayesian estimate of is calculated as follows: 

𝜃̂𝐸𝐵  = ∫ ∫ 𝜃̂𝐵𝐸 ∗ 𝜋(𝜃, 𝑐, 𝑟) ∗ drdc
𝑡

0

1

0

 

The intervals of integration for the first and second integrals correspond to the domains of the 

hyperparameters 'c' and 'r,' respectively, ensuring that our prior density function exhibits a 

decreasing trend with respect to 𝜃. The Bayesian estimate of 𝜃, denoted as 𝜃̂𝐸𝐵, is calculated utilizing 

three distinct loss functions. 

Subsequently, for the E-Bayesian estimates of 𝜃, we deliberate on the choice of prior distributions 

for the hyperparameters 'c' and 'r.' These distributions serve primarily to explore the influence of 

different prior choices on the E-Bayesian estimations of 𝜃. The hyperparameters 'c' and 'r' are 

governed by the following distributions 

𝜋1(𝜃, c, r) =
2(t − r)

t2
 ;    0 < 𝑐 < 1;    0 < 𝑟 < 𝑡 (9)

RT&A, No 3 (79) 
Volume 19, September 2024

707



R. KUMAR, H. SHARMA, A. KAUR, R. GUPTA
BAYESIAN AND E-BAYESIAN ESTIMATION…

𝜋2(𝜃, c, r) =
1

t
 ;   0 < 𝑐 < 1;    0 < 𝑟 < 𝑡  (10) 

𝜋3(𝜃, c, r) =
2r

t2
 ;    0 < 𝑐 < 1;    0 < 𝑟 < 𝑡  (11) 

Now follows the E- Bayesian estimates of the scale parameter of EIRD under proposed loss functions 

4.1     E-Bayesian estimation of 𝜃 under the Al-Bayyati loss function 

E-Bayesian estimate of the parameter 𝜃 based on 𝜋1(𝜃, c, r), is provided by

𝜃̂𝐸𝐵𝐴1
= ∫ ∫ 𝜃̂𝐵𝐴

𝑡

0

∗

1

0

 𝜋1(𝜃, c, r)drdc 

 = ∫ ∫ {
𝑛 + 𝑐 + 𝑑

𝑆
}

t

0

1

0

∗  {
2(t − r)

t2
} ∗ drdc 

 =
2

t2
{∫ (𝑛 + 𝑐 + 𝑑)𝑑𝑐 ∗ ∫ (

t − r

𝑆
)

t

0

1

0

∗ dr } 

On solving the above equation, we get 

𝜃̂𝐸𝐵𝐴1
  =

2𝑛 + 2𝑑 + 1

t2
∗ {(t + P) ∗ log (

t + P

P
) − 𝑡}  (12) 

E-Bayesian estimate of the parameter 𝜃 based on 𝜋2(𝜃, c, r), is provided by

𝜃̂𝐸𝐵𝐴2
= ∫ ∫ 𝜃̂𝐵𝐴

𝑡

0

∗

1

0

 𝜋2(𝜃, c, r)drdc 

 = ∫ ∫ {
𝑛 + 𝑐 + 𝑑

𝑆
}

t

0

1

0

∗  
1

t
∗ drdc 

where 𝑃 = (𝛼 ∑ 𝑥𝑖
−2𝑛

𝑖=1 ) and ∫ (𝑛 + 𝑐 + 𝑑)𝑑𝑐
1

0
=

2𝑛+2𝑑+1

2

Hence, on solving we get 

𝜃̂𝐸𝐵𝐴2
=

2𝑛 + 2𝑑 + 1

2t
∗ {log (

t + P

P
)}  (13) 

E-Bayesian estimate of the parameter 𝜃 based on 𝜋3(𝜃, c, r), and is given by

𝜃̂𝐸𝐵𝐴3
= ∫ ∫ 𝜃̂𝐵𝐴

𝑡

0

∗

1

0

 𝜋3(𝜃, c, r)drdc 

 = ∫ ∫ {
𝑛 + 𝑐 + 𝑑

𝑆
}

t

0

1

0

∗  
2r

t2
∗ drdc 

Hence on solving, we get 

𝜃̂𝐸𝐵𝐴3
=

(2𝑛 + 2𝑑 + 1)

𝑡2
∗ {P ∗ log (

P

t + P
) + t}  (14) 

4.2      E-Bayesian estimation of 𝜃 under the Squared error loss function

E-Bayesian estimate of the parameter 𝜃 under based on 𝜋1(𝜃, c, r), and is provided by

𝜃𝐸𝐵𝑆1
= ∫ ∫ 𝜃̂𝐵𝑆

𝑡

0

∗

1

0

 𝜋1(𝜃, c, r)drdc 

 = ∫ ∫ (
𝑛 + 𝑐

𝑆
)

𝑡

0

∗

1

0

 {
2(t − r)

t2
} ∗ drdc 

 =
2

t2
{∫ (𝑛 + 𝑐)𝑑𝑐 ∗ ∫ (

t − r

𝑃 + 𝑟
)

t

0

1

0

∗ dr } 

Where  𝑆 = {𝛼 ∑ 𝑥𝑖
−2 + 𝑟

𝑛

𝑖=1
}  𝑎𝑛𝑑 𝑃 = 𝛼 ∑ 𝑥𝑖

−2
𝑛

𝑖=1
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On solving the above integrals, finally we get 

𝜃̂𝐸𝐵𝑆1
=

2𝑛 + 1

t2
∗ {(t + P) ∗ log (

t + P

P
) − 𝑡}  (15) 

E-Bayesian estimate of the parameter 𝜃 based on 𝜋2(𝜃, c, r), and is provided by

𝜃̂𝐸𝐵𝑆2
= ∫ ∫ 𝜃̂𝐵𝑆

𝑡

0

∗

1

0

 𝜋2(𝜃, c, r)drdc 

= ∫ ∫ {
𝑛+𝑐

𝑆
}

t

0

1

0
∗  

1

t
∗ drdc 

=
1

t
{∫ (𝑛 + 𝑐)𝑑𝑐 ∗ ∫ (

1

𝑆
)

t

0

1

0

∗ dr } 

where  𝑆 = {𝛼 ∑ 𝑥𝑖
−2 + 𝑟

𝑛

𝑖=1
}  𝑎𝑛𝑑 𝑃 = 𝛼 ∑ 𝑥𝑖

−2
𝑛

𝑖=1

On solving the above integrals, finally we get 

𝜃̂𝐸𝐵𝑆2
=

2𝑛+1

2t
∗ {log (

t+P

P
)}   (16) 

E-Bayesian estimate of the parameter 𝜃 based on 𝜋3(𝜃, c, r), and is provided by

𝜃̂𝐸𝐵𝑆3
= ∫ ∫ 𝜃̂𝐵𝑆

𝑡

0

∗

1

0

 𝜋3(𝜃, c, r)drdc 

 = ∫ ∫ {
𝑛 + 𝑐

𝑆
}

t

0

1

0

∗  
2r

t2
∗ drdc 

on solving the above intervals, finally we get 

𝜃̂𝐸𝐵𝑆3
= {(

2𝑛 + 1

t2
) ∗ {P ∗ log (

p

t + P
) + t }}  (17) 

4.3          E-Bayesian estimation of 𝜃 under the De-Groot loss function

E-Bayesian estimate of the parameter 𝜃 based on 𝜋1(𝜃, c, r), and is provided by

𝜃̂𝐸𝐵𝐷1
= ∫ ∫ 𝜃̂𝐵𝐷

𝑡

0

∗

1

0

 𝜋1(𝜃, c, r)drdc 

𝜃̂𝐸𝐵𝐷1
= ∫ ∫ (

𝑛 + 𝑐 + 1

𝑆
)

𝑡

0

∗

1

0

 {
2(t − r)

t2
} ∗ drdc 

 =
2

t2
{∫ (𝑛 + 𝑐 + 1)𝑑𝑐 ∗ ∫ (

t − r

𝑃 + 𝑟
)

t

0

1

0

∗ dr } 

Where  𝑆 = {𝛼 ∑ 𝑥𝑖
−2 + 𝑟

𝑛

𝑖=1
}  𝑎𝑛𝑑 𝑃 = 𝛼 ∑ 𝑥𝑖

−2
𝑛

𝑖=1

On solving the above integrals, we get 

𝜃̂𝐸𝐵𝐷1
=

(2𝑛+3)

t2 ∗ {(t + P) ∗ log (
t+P

P
) − 𝑡}  (18) 

E-Bayesian estimate of the parameter 𝜃 based on 𝜋2(𝜃, c, r), and is provided by

𝜃̂𝐸𝐵𝐷2
= ∫ ∫ 𝜃̂𝐵𝐷

𝑡

0

∗

1

0

 𝜋2(𝜃, c, r)drdc 

= ∫ ∫ {
𝑛+𝑐+1

𝑆
}

t

0

1

0
∗  

1

t
∗ drdc 

 =
1

t
{∫ (𝑛 + 𝑐)𝑑𝑐 ∗ ∫ (

1

𝑆
)

t

0

1

0

∗ dr } 

 =
1

t
{∫ (𝑛 + 𝑐 + 1)𝑑𝑐 ∗ ∫ (

1

𝑃 + 𝑟
)

t

0

1

0

∗ dr } 
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Where  𝑆 = {𝛼 ∑ 𝑥𝑖
−2 + 𝑟

𝑛

𝑖=1
}  𝑎𝑛𝑑 𝑃 = 𝛼 ∑ 𝑥𝑖

−2
𝑛

𝑖=1

𝜃̂𝐸𝐵𝐷2
=

(2𝑛 + 3)

2t
∗ {log (

t + P

P
)}  (19) 

E-Bayesian estimate of the parameter 𝜃 based on 𝜋3(𝜃, c, r), and is provided by

𝜃̂𝐸𝐵𝐷3
= ∫ ∫ 𝜃̂𝐵𝐷

𝑡

0
∗

1

0
 𝜋3(𝜃, c, r)drdc 

= ∫ ∫ {
𝑛+𝑐+1

𝑆
}

t

0

1

0
∗  

2r

t2 ∗ drdc 

 =
2

t2
{∫ (𝑛 + 𝑐 + 1)𝑑𝑐 ∗ ∫ (

r

𝑃 + 𝑟
)

t

0

1

0

∗ dr } 

=
2

t2 {
2𝑛+3

2
∗ {t − P ∗ log (

t+P

P
) }} 

On solving the above intervals, finally we get 

𝜃̂𝐸𝐵𝐷3
= {

(2𝑛 + 3)

t2
∗ {P ∗ log (

p

t + P
) + t }}  (20) 

4.4         Properties of E-Bayesian estimates under Different Loss Functions 

In this section, we will discuss the relationship amongst the different E-Bayesian estimators obtained 

under the Al-Bayyati loss function i.e, 𝜃̂𝐸𝐵𝐴1
, 𝜃̂𝐸𝐵𝐴2

, 𝜃̂𝐸𝐵𝐴3 
(𝑖 = 1,2,3) 

Theorem 4.1 E-Bayesian estimators obtained under the Al-Bayyati loss function will follow the 

following results:  

(i) 𝜃̂𝐸𝐵𝐴3
< 𝜃̂𝐸𝐵𝐴2

< 𝜃̂𝐸𝐵𝐴1

(ii) lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴1
) = lim

𝑃→∞
(𝜃̂𝐸𝐵𝐴2

  ) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴3
  )

Proof (i) From  (12) and (13), we get 

𝜃̂𝐸𝐵𝐴1
− 𝜃̂𝐸𝐵𝐴2

=
(2𝑛+2𝑑+1)

t2 ∗ {(t + P) ∗ log (
t+P

P
) − 𝑡} −

2𝑛+2𝑑+1

2t
∗ {log (

t+P

P
)} 

      =
(2𝑛 + 2𝑑 + 1)

t
{log (1 +

t

P
) (

P

t
+

1

2
) − 1}  (21) 

From (13) and (14), we get 

𝜃̂𝐸𝐵𝐴2
− 𝜃̂𝐸𝐵𝐴3

=
(2𝑛+2𝑑+1)

2t
∗ {log (

t+P

P
)} −

(2𝑛+2𝑑+1)

𝑡2 ∗ {t − P ∗ log (
t+P

P
)} 

 =
(2𝑛 + 2𝑑 + 1)

t
{log (1 +

t

P
) (

P

t
+

1

2
) − 1}  (22) 

Since log (1 +
t

P
) = {

t

P
−

t2

2P2 +
t3

3P3 − ⋯ … }

𝜃̂𝐸𝐵𝐴1
− 𝜃̂𝐸𝐵𝐴2

=
(2𝑛 + 2𝑑 + 1)

t
{

t2

12P2
+

t3

6P3
− ⋯ … }

𝜃̂𝐸𝐵𝐴1
− 𝜃̂𝐸𝐵𝐴2

> 0 

hence      

𝜃̂𝐸𝐵𝐴1
> 𝜃̂𝐸𝐵𝐴2

 (23) 

Similarly, 

𝜃̂𝐸𝐵𝐴2
− 𝜃̂𝐸𝐵𝐴3

=
(2𝑛 + 2𝑑 + 1)

t
{

t2

12P2
+

t3

6P3
− ⋯ … }

𝜃̂𝐸𝐵𝐴2
− 𝜃̂𝐸𝐵𝐴3

> 0, and 

hence  

𝜃̂𝐸𝐵𝐴2
> 𝜃̂𝐸𝐵𝐴3

 (24) 

Combining (23) and (24), we get 

𝜃̂𝐸𝐵𝐴3
< 𝜃̂𝐸𝐵𝐴2

< 𝜃̂𝐸𝐵𝐴1

Proof (ii): From (21) and (22), we get 

𝜃̂𝐸𝐵𝐴1
− 𝜃̂𝐸𝐵𝐴2

= 𝜃̂𝐸𝐵𝐴2
− 𝜃̂𝐸𝐵𝐴3

(2𝑛 + 2𝑑 + 1)

t
{log (1 +

t

P
) (

P

t
+

1

2
) − 1} 

After taking the limit, we get 
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lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴1
− 𝜃̂𝐸𝐵𝐴2

) = lim
𝑃→∞

(2𝑛 + 2𝑑 + 1)

t
{

t2

12P2
+

t3

6P3
… … } 

lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴2
− 𝜃̂𝐸𝐵𝐴3

) = lim
𝑃→∞

(2𝑛 + 2𝑑 + 1)

t
{

t2

12P2
+

t3

6P3
… … } 

On solving the above , we have 

lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴1
− 𝜃̂𝐸𝐵𝐴2

) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴2
− 𝜃̂𝐸𝐵𝐴3

) = 0

Hence 

 lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴1
) = lim

𝑃→∞
(𝜃̂𝐸𝐵𝐴2

) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴3
)

Now we will discuss the relationship amongst the different E-Bayesian estimators obtained under 

the Square Error loss function i.e, 𝜃̂𝐸𝐵𝑆1
, 𝜃̂𝐸𝐵𝑆2

, 𝜃̂𝐸𝐵𝑆3 
(𝑖 = 1,2,3) 

Theorem 4.2 E-Bayesian estimators obtained under the Squared Error loss function will follow the 

following results:  

(i) 𝜃̂𝐸𝐵𝑆3
< 𝜃̂𝐸𝐵𝑆2

< 𝜃̂𝐸𝐵𝑆1

(ii) lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆1
) = lim

𝑃→∞
(𝜃̂𝐸𝐵𝑆2

  ) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆3
  ) 

Proof (i): From (15) and (16), we get 

𝜃̂𝐸𝐵𝑆1
− 𝜃̂𝐸𝐵𝑆2

=
2𝑛 + 1

t2
∗ {(t + P) ∗ log (

t + P

P
) − 𝑡} −

2𝑛 + 1

2t
∗ {log (

t + P

P
)} 

𝜃̂𝐸𝐵𝑆1
− 𝜃̂𝐸𝐵𝑆2

=
(2𝑛 + 1)

t
∗ {log (

t + P

P
) (

P

t
+

1

2
) − 1}  (25) 

𝜃̂𝐸𝐵𝑆1
− 𝜃̂𝐸𝐵𝑆2

> 0 

𝜃̂𝐸𝐵𝑆1
> 𝜃̂𝐸𝐵𝑆2

 (26) 

Similarly, from (16) and (17), we get 

𝜃̂𝐸𝐵𝑆2
− 𝜃̂𝐸𝐵𝑆3

=
(2𝑛 + 1)

2t
∗ {log (

t + P

P
)} −

(2𝑛 + 1)

𝑡2
∗ {t − P ∗ log (

t + P

P
)} 

𝜃̂𝐸𝐵𝑆2
− 𝜃̂𝐸𝐵𝑆3

=
(2𝑛 + 1)

t
{log (1 +

t

P
) (

P

t
+

1

2
) − 1}  (27) 

𝜃̂𝐸𝐵𝑆2
− 𝜃̂𝐸𝐵𝑆3

> 0 

    𝜃̂𝐸𝐵𝑆2
> 𝜃̂𝐸𝐵𝑆3

 (28) 

Combining (26) and (28), we get 

𝜃̂𝐸𝐵𝑆3
< 𝜃̂𝐸𝐵𝑆2

< 𝜃̂𝐸𝐵𝑆1

Proof (ii): From (25) and (27), we get 

𝜃̂𝐸𝐵𝑆1
− 𝜃̂𝐸𝐵𝑆2

=
(2𝑛 + 1)

t
{log (1 +

t

P
) (

P

t
+

1

2
) − 1} = 𝜃̂𝐸𝐵𝑆2

− 𝜃̂𝐸𝐵𝑆3

After taking the limit, we get 

lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆1
− 𝜃̂𝐸𝐵𝑆2

) = lim
𝑃→∞

(2𝑛 + 1)

t
{

t2

12P2
+

t3

6P3
− ⋯ … } = 0

and 

lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆2
− 𝜃̂𝐸𝐵𝑆3

) = lim
𝑃→∞

(2𝑛+1)

t
{

t2

12P2 +
t3

6P3 − ⋯ … } = 0

On solving, we have 

 lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆1
− 𝜃̂𝐸𝐵𝑆2

) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆2
− 𝜃̂𝐸𝐵𝑆3

) = 0

hence 

 lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆1
) = lim

𝑃→∞
(𝜃̂𝐸𝐵𝑆2

) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆1
)

Now we will discuss the relationship amongst the different E-Bayesian estimators obtained under 

the De-Groot loss function i.e, 𝜃̂𝐸𝐵𝑆1
, 𝜃̂𝐸𝐵𝑆2

, 𝜃̂𝐸𝐵𝑆3 
(𝑖 = 1,2,3) 

Theorem 4.3 E-Bayesian estimators obtained under the Square Error loss function will follow the 

following results:  

(i)𝜃̂𝐸𝐵𝐷3
< 𝜃̂𝐸𝐵𝐷2

< 𝜃̂𝐸𝐵𝐷1

(ii) lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷1
) = lim

𝑃→∞
(𝜃̂𝐸𝐵𝐷2

  ) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷3
 ) 
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Proof (i): From (18) and (19), we get 

𝜃̂𝐸𝐵𝐷1
− 𝜃̂𝐸𝐵𝐷2

=
2𝑛+3

t2 ∗ {(t + P) ∗ log (
t+P

P
) − 𝑡} −

2𝑛+3

2t
∗ {log (

t+P

P
)} 

𝜃̂𝐸𝐵𝐷1
− 𝜃̂𝐸𝐵𝐷2

=
(2𝑛 + 3)

t
∗ {log (

t + P

P
) (

P

t
+

1

2
) − 1}  (29) 

𝜃̂𝐸𝐵𝐷1
− 𝜃̂𝐸𝐵𝐷2

> 0 

𝜃̂𝐸𝐵𝐷1
> 𝜃̂𝐸𝐵𝐷2

 (30) 

Similarly, from eq. (19) and (20), we get 

𝜃̂𝐸𝐵𝐷2
− 𝜃̂𝐸𝐵𝐷3

=
(2𝑛 + 3)

2t
∗ {log (

t + P

P
)} −

(2𝑛 + 3)

𝑡2
∗ {t − P ∗ log (

t + P

P
)} 

𝜃̂𝐸𝐵𝐷2
− 𝜃̂𝐸𝐵𝐷3

=
(2𝑛 + 3)

t
{log (1 +

t

P
) (

P

t
+

1

2
) − 1}  (31) 

𝜃̂𝐸𝐵𝐷2
− 𝜃̂𝐸𝐵𝐷3

> 0 

𝜃̂𝐸𝐵𝐷2
> 𝜃̂𝐸𝐵𝐷3

 (32) 

Combining (30) and (32), we get 

𝜃̂𝐸𝐵𝐷3
< 𝜃̂𝐸𝐵𝐷2

< 𝜃̂𝐸𝐵𝐷1

    Proof (ii): From (29) and (31), we get 

𝜃̂𝐸𝐵𝐷1
− 𝜃̂𝐸𝐵𝐷2

=
(2𝑛 + 3)

t
{log (1 +

t

P
) (

P

t
+

1

2
) − 1} = 𝜃̂𝐸𝐵𝐷2

− 𝜃̂𝐸𝐵𝐷3
 

After taking the limit , we get 

 lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷1
− 𝜃̂𝐸𝐵𝐷2

) = lim
𝑃→∞

(2𝑛 + 3)

t
{

t2

12P2
+

t3

6P3
− ⋯ … } = 0

And 

 lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷2
− 𝜃̂𝐸𝐵𝐷3

) = lim
𝑃→∞

(2𝑛 + 3)

t
{

t2

12P2
+

t3

6P3
− ⋯ … } = 0

On solving, we have 

lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷1
− 𝜃̂𝐸𝐵𝐷2

) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷2
− 𝜃̂𝐸𝐵𝐷3

) = 0

 lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷1
) = lim

𝑃→∞
(𝜃̂𝐸𝐵𝐷2

) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷3
)

Hence the proof is complete. 

The part (a)  of theorem 4.(i), 4.(ii) and 4.(iii) shows that with different priors (9)-(11) of the 

parameters c and r, the associated E-Bayesian estimate 𝜃̂𝐸𝐵𝐴𝑖
, 𝜃̂𝐸𝐵𝐷𝑖

, 𝑎𝑛𝑑 𝜃̂𝐸𝐵𝑆𝑖
; (i=1,2,3) are different.

The property (b) of  the theorems shows that 𝜃̂𝐸𝐵𝐴𝑖
, 𝑐; (i=1,2,3) are asymptotically equivalent to each

other as ∑ 𝑥𝑖
−2𝑛

𝑖=1 → ∞, that means 𝜃̂𝐸𝐵𝐴𝑖
; (i=1,2,3) are all close to each other when ∑ 𝑥𝑖

−2𝑛
𝑖=1  is

sufficiently large and 𝜃̂𝐸𝐵𝐷𝑖
, 𝑎𝑛𝑑 𝜃̂𝐸𝐵𝑆𝑖

; (𝑖 = 1,2,3) are also close to each other.

5. Simulation Study

In order to compare the performance of Bayesian and E-Bayesian techniques of estimation, a 

simulation study was conducted using MatLab. We chose a sample of size of n=20, 50, 70, 100, 120 

to represent small, medium and large data set. The following steps were conducted: 

1. The shape (α) and scale (𝜃) parameters has been fixed at 0.5 and 0.25 respectively.

2. For given value of t, we generate c and r from uniform and gamma distribution

respectively.

3. For given value of α and 𝜃, we generate a random sample of different sizes from

Exponentiated inverse Rayleigh distribution (EIRD) using the quantile function.

4. The above steps are iterated 1000 times to find the MSE of Bayesian and E-Bayesian

estimates of scale parameter using different loss functions.
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5. The MSE for Bayesian and E-Bayesian estimates under different loss function are shown in

table 1.

6. The MSE of 𝜃 for Bayesian and E-Bayesian estimation under different loss functions are

also illustrated in Figure 1, 2 and 3.

Table 1: Mean Squared Error (MSE) of  𝜃 under different loss functions for 𝛼 = 0.25, 𝜃 = 0.5 , 𝑡 = 1.5, 𝑑 =

3. 

 n 𝜃𝐵𝐴 𝜃𝐸𝐵𝐴1
𝜃𝐸𝐵𝐴2

𝜃𝐸𝐵𝐴3
𝜃𝐵𝑆 𝜃𝐸𝐵𝑆1

𝜃𝐸𝐵𝑆2
𝜃𝐸𝐵𝑆3

𝜃𝐵𝐷 𝜃𝐸𝐵𝐷1
𝜃𝐸𝐵𝐷2

𝜃𝐸𝐵𝐷3

  20 0.1357 0.1315 0.1304 0.1294 0.1029 0.0994 0.0987 0.0979 0.1134 0.1096 0.1087 0.1079 

  50 0.0958 0.0948 0.0945 0.0942 0.0854 0.0844 0.0842 0.0839 0.0888 0.0878 0.0876 0.0873 

  70 0.0735 0.0727 0.0725 0.0724 0.0677 0.0668 0.0667 0.0666 0.0696 0.0688 0.0686 0.0685 

100 0.0604 0.0599 0.0599 0.0598 0.0569 0.0565 0.0564 0.0563 0.0581 0.0576 0.0576 0.0575 

120 0.0546 0.0543 0.0543 0.0542 0.0519 0.0517 0.0517 0.0516 0.0528 0.0526 0.0525 0.0525 

Figure 1: MSE of Bayesian and E-Bayesian estimates of  𝜃 under Al-Bayyati loss function. 
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Figure2: MSE of Bayesian and E-Bayesian estimates of 𝜃 under Squared error loss function. 

Figure 3: MSE of Bayesian and E-Bayesian estimates of 𝜃 under De-Groot loss function. 
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6. Real Data Analysis

The dataset was sourced from [13], comprising monthly actual tax revenues in Egypt spanning fro

m January 2006 to November 2010. The data, expressed in 1000 million Egyptian pounds, are as foll

ows: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1, 6.7, 17, 8.6, 9.7, 39.2, 35.7, 

15.7, 9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 1

1.9, 7, 8.6, 12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8. The Kolmogorov-Smirnov (K-S

) statistic's value is 0.082194, with an associated p-value of 0.8203. This suggests that the Exponentia

ted Inverse Rayleigh Distribution (EIRD) is the best fit for this dataset. Based on this data, the Maxi

mum Likelihood estimates yield 𝜃̂ = 8.9362 and 𝛼̂= 9.8028. Figure 4 and 5 displays the histogram an

d the estimated Cumulative Distribution Function (CDF) of the EIRD for the dataset, while the esti

mated Bayesian and E-Bayesian values are presented in Table 2. 

Figure 4: Histogram and the fitted density for the monthly actual taxes revenue. 

Figure 5: Plot for the ECDF of the EIRD model. 
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Table 2: Bayesian and E-Bayesian estimates of  𝜃 based on real dataset. 

𝜃𝐵𝐴 𝜃𝐸𝐵𝐴1
𝜃𝐸𝐵𝐴2

𝜃𝐸𝐵𝐴3
𝜃𝐵𝑆 𝜃𝐸𝐵𝑆1

𝜃𝐸𝐵𝑆2
𝜃𝐸𝐵𝑆3

𝜃𝐵𝐷 𝜃𝐸𝐵𝐷1
𝜃𝐸𝐵𝐷2

𝜃𝐸𝐵𝐷3

94.257 129.236 95.558 71.446 89.769 123.032 90.971 68.017 91.265 125.100 92.500 69.160 

7. Conclusion

This paper focuses on employing Bayesian and E-Bayesian methods to estimate the scale parameter 

of the Exponentiated Inverse Rayleigh distribution (EIRD) through the use of diverse loss functions. 

Additionally, certain properties of the E-Bayesian estimates are explored. Notably, the results of a 

simulation study reveal that E-Bayesian estimates exhibit a smaller Mean Squared Error (MSE) in 

comparison to Bayesian estimates, thereby demonstrating their enhanced efficiency. Among the E-

Bayesian estimates, the third one stands out as the most effective. 

Moreover, the analysis highlights that the Squared Error loss function outperforms the Al-Bayyati 

and De-Groot loss functions, exhibiting a smaller MSE. The conclusions drawn from the simulation 

study are further substantiated by validating the findings through a real-life dataset. 
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