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Abstract 

When calculating risk and making decisions, investors and financial institutions heavily rely on the 

modeling of asset return volatility. For the exponentiated generalized autoregressive conditional 

heteroscedasticity (EGARCH) model, we created a unique innovation distribution in this study called 

the type-II-Topp-Leone-exponentiated-Gumbel (TIITLEGU) distribution. The key mathematical 

characteristics of the distribution were determined, and Monte Carlo experiments were used to 

estimate the parameters of the novel distribution using maximum likelihood estimation (MLE) 

procedure. The performance of the EGARCH (1,1) model with TIITLEGU distributed innovation 

density in relation to other innovation densities in terms of volatility modeling is examined through 

applications using two Nigerian shock returns. The results of the diagnostic tests indicated that, with 

the exception of the EGARCH (1,1)-Johnson (SU) reparametrized (JSU) innovation density, the fitted 

models have been sufficiently specified. The parameters for the EGARCH (1,1) model with different 

innovation densities are significant at various levels. Furthermore, in out-of-sample prediction, the 

fitted EGARCH (1,1)-TIITLEGU innovation density performed better than the EGARCH (1,1)-

existing innovation densities. As a result, it is decided that the EGARCH-TIITLEGU model is the most 

effective for analyzing Nigerian stock market volatility. 

Keywords: EGARCH, Innovations density, Maximum likelihood estimation, 

Simulation. 

I. Introduction

The Nigerian stock market has grown in terms of the number of stock exchanges and other financial 

intermediaries, the number of listed stocks, trading volumes, market capitalization, investor 

population, stock exchange turnover, and stock price indexes over time. The stock market's 

performance is a key measure of a country's progress and development. Because it reflects the 

potential viability and financial strength of corporate entities registered on the stock exchange, the 

stock market is one of the yardsticks for assessing an economy's growth and development. However, 

the state of investor confidence in different economic sectors is reflected in the stock market. It shows 

hopes for the stability of the financial system and reflects the strength of the producing sector [1-2]. 

A survey of pertinent literature reveals that while predicting stock market volatility, academics have 

neglected to account for the contributions of alternate innovation distributions. Since financial time 

series have leptokurtic and autocorrelation characteristics, mis-specification may result from 

applying the incorrect innovation density in the EGARCH volatility model. Additionally, an 
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erroneous innovation density specification can result in a significant loss of efficiency for the relevant 

estimators, an invalid risk assessment, incorrectly priced options, and an improper valuation of 

Value-at-Risk (VaR). 

In making financial decisions such as portfolio selection, risk management, and option pricing, 

financial return volatility is an important metric to consider. Therefore, in order to model and 

anticipate the volatility of asset returns, it is imperative to create a model with strongly driven 

conditional innovation density. According to [3], a suitable volatility model is one that both 

accurately represents the disturbance term's heteroscedasticity and reflects the stylized facts that are 

present in stock return series. Financial institutions usually employ generalized autoregressive 

conditional heteroskedasticity (GARCH) models to predict return volatility for stocks, bonds, and 

market indexes, while they can also be used to analyze other types of financial data, such as 

macroeconomic data. In order to aid in their decisions about asset allocation, hedging, risk 

management, and portfolio optimization, they use the information that is produced to estimate the 

returns of current investments, help decide pricing, and assess which assets may yield larger returns 

[4]. However, these returns exhibit leverage effects, heavy tail, volatility clustering, significant 

skewness and excess leptokurtic behaviours which the symmetric GARCH model with normal 

distributed innovations in most cases fail to capture [5-7]. Despite the skewed form and appealing 

characteristics of the student-t in GARCH models, the tail behaviour is still too short to adequately 

describe skewness and fat tails in asset returns [8-9]. According to [10], volatility models that do not 

allow for conditional variance asymmetry typically result in inaccurate volatility estimations and 

projections. To address this flaw in GARCH's treatment of financial time series, the asymmetric 

exponential GARCH model was developed using the generalized error distributed innovation. 

Specifically, to accommodate asymmetric impacts between asset returns that are positive and 

negative [10-11]. Few studies had been done on returns volatility modeling utilizing the EGARCH 

model with common innovation densities, which raises questions about the choice of innovation 

densities [11-17]. 

Quite a few academics have focused on establishing novel distributions for volatility model 

innovations, and have conducted various studies in this area of altering the innovation density of 

the EGARCH volatility model. [18] advocated the use of the beta-student-t distribution for the 

EGARCH model in the estimation of volatility. [19] discovered that more flexible GARCH-type 

models are sufficiently acceptable in predicting volatility for all density assumptions. Using 

simulated and actual data, the Bayesian analysis of a stochastic model with generalized hyperbolic 

skew Student-t distribution. [20] proposed the EGARCH model with the beta-skew Student-t 

density for predicting daily volatility. [21] discovered that using leptokurtic distributions in 

GARCH-type models helped them produce more accurate volatility projections. [22-23] evaluated 

the daily volatility of stock index returns using a new generalization of the skew Student-t 

distribution, and demonstrated that it performed better than some innovation densities. [2] and [24] 

proposed the exponentiated half-logistic skew-t and generalized odd generalized skew-t densities 

for evaluating the daily volatility of bitcoin, Nigeria inflation and first bank Nigeria stock returns, 

and found that it performed better than other innovation densities in the GARCH-type models. [7] 

proposed the GARCH model with the exponentiated Gumbel density for predicting daily return 

volatility of the S&P 500 index. [9] proposed the odd generalized exponential Laplace density for 

evaluating the daily volatility of the Nigeria stock exchange, and found that it performed better than 

other innovation densities in the GARCH-type models. These models informed entrepreneur and 

investors on volatile nature of stock prices and bitcoin rates. However, developing robust 

distributions remains critical in improving the accuracy of the monetary risk system. Therefore, this 

research set out to propose a new innovation density for the asymmetric EGARCH model by 

introducing a novel distribution. This research is focused on the distinctiveness of the structural 

properties of the novel distribution and modification of the distributional assumption of the 
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innovations of the EGARCH volatility model. 

The article is arranged as follows: Section 2 presents the developed novel distribution and its 

standardized form. Section 3 presents the properties of the novel distribution. Section 4 presents the 

maximum likelihood estimation procedure and Monte-Carlo simulation process. Section 5 presents 

the EGARCH model with the novel innovation density function including methods for selecting 

models and appraising predictions. Section 6 reports the empirical results of both estimation and 

forecast assessment, and conclusion in Section 7. 

2. Distribution Genesis

The cumulative distribution function (cdf) of the Type II Topp Leone (TIITL-G) family of 

distributions developed by [25] is specified as 

𝐹(𝑥) = 1 − [1 − 𝐺2(𝑥)]𝜃                (1) 

and the corresponding probability density function (pdf) is  

𝑓(𝑥) = 2𝜃𝑔(𝑥)𝐺(𝑥)[1 − 𝐺2(𝑥)]𝜃−1              (2) 

where 𝜃 > 0 is the shape parameter, 𝐺(𝑥) and 𝑔(𝑥) are the baseline cdf and pdf, respectively. The 

cdf of the baseline distribution titled the exponentiated Gumbel (EGU) distribution introduced by 

[26] is specified as

𝐺(𝑥) = 1 − {1 − 𝑒
[−𝑒

(−
𝑥−𝜇
𝜎 )

]
}

𝛼

,   (3) 

and the pdf is given as 

𝑔(𝑥) =
𝛼

𝜎
{1 − 𝑒

[−𝑒
(−

𝑥−𝜇
𝜎 )

]
}

𝛼−1

𝑒
[−𝑒

(−
𝑥−𝜇
𝜎 )

]
𝑒

(−
𝑥−𝜇

𝜎
)
,   (4) 

where 𝛼 > 0, 𝜎 > 0, 𝜇 ∈ ℛ  are shape, scale and location parameters, and 𝑥 ∈ ℛ .  

The cdf and pdf of the type II Topp Leone exponentiated Gumbel (TIITLEGU) model derived by 

inserting Equations (3) and (4) into Equations (1) and (2), respectively, are specified as 

𝐹(𝑥; 𝛼, 𝜃, 𝜇, 𝜎) = 1 − {1 − [Θ(𝑥)]2}𝜃 ,  (5) 

𝑓(𝑥; 𝛼, 𝜃, 𝜇, 𝜎) = 2𝜃Φ(𝑥){1 − [Θ(𝑥)]2}𝜃−1, (6) 

Hither, the pdf and cdf of the EGU are represented with Φ(𝑥) and Θ(𝑥). 𝛼 > 0, 𝜃 > 0, 𝜎 > 0 are the 

shape and scale parameters, and 𝜇 ∈ ℛ is the location parameter. More so, the survival and hazard 

rate functions are specified as follows 

𝑆(𝑥; 𝛼, 𝜃, 𝜇, 𝜎) = {1 − [Θ(𝑥)]2}𝜃  (7) 

ℎ(𝑥; 𝛼, 𝜃, 𝜇, 𝜎) = 2𝜃Φ(𝑥)Θ(𝑥){1 − [Θ(𝑥)]2}−1, (8) 

Figures 1 depicts that the TIITLEGU density function can be very useful in describing symmetric, 

heavy-tailed, unimodality, leptokurtic and skew patterns of most data sets. Hence, a viable 

alternative innovation density for increasing the accuracy of the EGARCH volatility model 

prediction. 

2.1 Standardized TIITLEGU Model 

The standardized TIITLEGU model is obtained via the transformation 𝜀𝑡 = 𝑧√ℎ𝑡
2, where 𝐸(𝑧𝑡) = 0 and

𝑣𝑎𝑟(𝑧𝑡) = 1. The random variable 𝑧𝑡 can be expressed as 𝑧𝑡 =
(𝑥𝑡−𝜇)

√ℎ𝑡
2

=
𝜀𝑡

√ℎ𝑡
2
, then  

𝒹𝑧𝑡

𝒹𝜀𝑡
=

1

√ℎ𝑡
2
. Therefore, 

the standardized TIITLEGU density function is 

𝑓(𝜀𝑡; 𝛼, 𝜃, ℎ𝑡) =
2𝛼𝜃

(ℎ𝑡
2)

1
2

𝜂𝛼−1(1 − 𝜂)𝑒
(−

𝜀𝑡

ℎ𝑡
2)

(1 − 𝜂𝛼)[1 − (1 − 𝜂𝛼)2]𝜃−1 1

(ℎ𝑡
2)

1
2

    (9) 

where 𝜂 = 1 − 𝑒−𝑒
(−

𝜀𝑡
ℎ𝑡
2)

, 𝜇 and √ℎ𝑡
2 denote the mean and standard deviation. The standardized
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TIITLEGU is the novel hybrid distributed innovation function for the EGARCH volatility model. 

Figure 1: The TIITLEGU density function (pdf) plots with selected parameter values. 

3. Properties of the TIITLEGU Model

3.1 Quantile and Median Functions 

The quantile function (qf) of the TIITLEGU model derived by inverting Eq. (5) is specified as 

𝑄(𝑢) = −𝜎 log [− log(1 − {1 − [1 − (1 − 𝑢)
1

𝜃]

1

2
}

1

𝛼

)] + 𝜇 (10) 

where 𝑢 ∼ Uniform(0,1). The median (M) of the TIITLEGU model is specified as 

𝑀 = −𝜎 log [− log(1 − {1 − [1 − (0.5)
1

𝜃]

1

2
}

1

𝛼

)] + 𝜇 (11) 

By means of the quantile function in Eq (10), various quantile measures can be estimated. 

3.2 Raw-Moment and Moment-Generating-Function 

The raw-moment (rm) of the TIITLEGU model is derived using the expansion series approach. Let 𝑋 ∼

𝑇𝐼𝐼𝑇𝐿𝐸𝐺𝑈(𝑥; 𝛼, 𝜃, 𝜇, 𝜎), the rth raw-moment of X is specified as  

𝜇�́� = ∫ 𝑥𝑟+∞

0
𝑓(𝑥; 𝛼, 𝜃, 𝜇, 𝜎)𝑑𝑥         (12) 

The expanded form of the TIITLEGU pdf using the series expansion is 

𝑓(𝑥) = ∑ 𝜔𝑚𝑒−(𝑚+1)
𝑥−𝜇

𝜎∞
𝑚=0 (13) 

where 𝜔𝑚 =
2𝛼𝜃

𝜎
∑

(−1)𝑖+𝑗+𝑘+𝑚(𝑘+1)𝑚(
𝜃−1

𝑖
)(

2𝑖−1
𝑗

)(
𝛼(𝑗+1)−1

𝑘
)

𝑚!

∞
𝑖,𝑗,𝑘=0

By inserting the expanded form in Eq. (13) into Eq. (12), we have 

𝜇�́� = ∑ 𝜔𝑚
∞
𝑚=0 ∫ 𝑥𝑟+∞

0
𝑒−(𝑚+1)

𝑥−𝜇

𝜎 𝑑𝑥,  (14) 

Let, 

RT&A, No 3 (79) 
Volume 19, September 2024

608



Mubarak,M.T., Adubisi,O.D., Abbas,U.F. 
A NOVEL HYBRID DISTRIBUTED INNOVATION EGARCH MODEL 

𝑧 = (𝑚 + 1)
𝑥−𝜇

𝜎
⇒ 𝑥 =

𝑧

−
𝜇

𝜎
(𝑚+1)

, 

𝑑𝑥

𝑑𝑧
=

1

−
𝜇

𝜎
(𝑚+1)

⇒ 𝑑𝑥 =
1

−
𝜇

𝜎
(𝑚+1)

𝑑𝑧, 

Hence, the rm of the TIITLEGU is specified as 

𝜇�́� = ∑ 𝜔𝑚
∞
𝑚=0 ∫ (

𝑧

−
𝜇

𝜎
(𝑚+1)

)
𝑟

+∞

0
𝑒−𝑧 1

−
𝜇

𝜎
(𝑚+1)

𝑑𝑧,         (15) 

Simplifying Eq. (15) leads to 

𝜇�́� = ∑ 𝜔𝑚
∞
𝑚=0 (−

𝜇

𝜎
(𝑚 + 1))

−𝑟−1

∫ (𝑧)𝑟+∞

0
𝑒−𝑧𝑑𝑧,         (16) 

Using the gamma integral representation Γ(𝛼 + 1) = ∫ (𝑦)𝛼+∞

0
𝑒−𝑦𝑑𝑦. Therefore, the rm of the 

TIITLEGU is specified as 

𝜇�́� = ∑ 𝜔𝑚
∞
𝑚=0

Γ(𝑟+1)

(−
𝜇

𝜎
(𝑚+1))

𝑟+1 (17) 

where 𝜔𝑚 =
2𝛼𝜃

𝜎
∑

(−1)𝑖+𝑗+𝑘+𝑚(𝑘+1)𝑚(
𝜃−1

𝑖
)(

2𝑖−1
𝑗

)(
𝛼(𝑗+1)−1

𝑘
)

𝑚!

∞
𝑖,𝑗,𝑘=0 .

Table 1 reports the first four raw-moments, standard-deviation (SD), dispersion index (DI) and 

coefficient of variation (CV) for the TIITLEGU model utilizing Eq. (17) with fixed 𝜇 = 0, 𝜎 = 1. 

Table 1: Summary statistics for the TIITLEGU model 

𝜇�́� 𝛼 = 1.5, 𝜃 = 1.5 𝛼 = 2.5, 𝜃 = 2.0 𝛼 = 3.3, 𝜃 = 3.5 𝛼 = 3.7, 𝜃 = 3.7 

𝜇1́ 0.4810 0.0969 0.0057 0.0022 

𝜇2́ 0.5850 0.0577 0.0016 0.0006 

𝜇3́ 0.9590 0.0472 0.0006 0.0002 

𝜇4́ 1.9600 0.0483 0.0003 0.0000 

SD 0.5950 0.2200 0.0396 0.0244 

DI 0.7350 0.4990 0.2750 0.2710 

CV 1.2400 2.2700 6.9500 11.1000 

Additionally, the moment generating function (mgf) of the TIITLEGU is specified as 

𝑀𝑟(𝑡) = ∑ ∑ 𝜔𝑚
∞
𝑚=0

Γ(𝑟+1)𝑡𝑟

(−
𝜇

𝜎
(𝑚+1))

𝑟+1
𝑟!

∞
𝑟=0 (18) 

where 𝜔𝑚 =
2𝛼𝜃

𝜎
∑

(−1)𝑖+𝑗+𝑘+𝑚(𝑘+1)𝑚(
𝜃−1

𝑖
)(

2𝑖−1
𝑗

)(
𝛼(𝑗+1)−1

𝑘
)

𝑚!

∞
𝑖,𝑗,𝑘=0 . 

3.3 Order Statistics 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 denote a random sample from the TIITLEGU and 𝑥1:𝑛 < 𝑥2:𝑛 < ⋯ < 𝑥𝑛:𝑛 be the order 

statistics obtained from the sample. The pth order statistics (os) is specified as 

𝑓𝑝:𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑝,𝑛−𝑝+1)
[𝐹(𝑥)]𝑝−1[1 − 𝐹(𝑥)]𝑛−𝑝      (19) 

By inserting Eqs. (5) and (6) into Eq. (19), we have 

𝑓𝑝:𝑛(𝑥) =
2𝜃Φ(𝑥){1−[Θ(𝑥)]2}

𝜃−1

𝐵(𝑝,𝑛−𝑝+1)
[1 − {1 − [Θ(𝑥)]2}𝜃]

𝑝−1
[1 − (1 − {1 − [Θ(𝑥)]2}𝜃)]

𝑛−𝑝
(20) 

Simplifying Eq. (20), the os of the TIITLEGU is specified as 

𝑓𝑝:𝑛(𝑥) =
2𝜃Φ(𝑥){1−[Θ(𝑥)]2}

𝜃(𝑛−𝑝+1)−1

𝐵(𝑝,𝑛−𝑝+1)
[1 − {1 − [Θ(𝑥)]2}𝜃]

𝑝−1
(21) 

The minimum and maximum order statistics is derived by inserting 𝑝 = 1 and p = n into Eq. (21). 

4. Estimation and Simulation Study

4.1 Maximum Likelihood Estimation 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 denote the observed random-values from the 𝑇𝐼𝐼𝑇𝐿𝐸𝐺𝑈(𝑥; 𝛼, 𝜃, 𝜇, 𝜎). Assuming that 
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𝜇 = 0, 𝜎 = 1, without loss of generality, the log-likelihood-function (LL) is specified as 

𝐿𝐿(𝜃, 𝛼 ) = 𝑛 log 2 + 𝑛 log 𝜃 + 𝑛 log 𝛼 + (𝛼 − 1)∑ log{𝜂𝑖}
𝑛
𝑖=1 + ∑ log{1 − 𝜂𝑖}

𝑛
𝑖=1  

+∑ 𝑥𝑖
𝑛
𝑖=1 + ∑ log(1 − 𝜂𝑖

𝛼)𝑛
𝑖=1 + (𝜃 − 1) ∑ log[1 − (1 − 𝜂𝑖

𝛼)2]𝑛
𝑖=1 (22) 

where 𝜂𝑖 = 1 − 𝑒[−𝑒(−𝑥)]. Differentiating Eq. (22) with respect to 𝜃 and 𝛼 gives the follows:
𝜕𝐿𝐿

𝜕𝜃
=

𝑛

𝜃
+ ∑ log[1 − (1 − 𝜂𝑖

𝛼)2]𝑛
𝑖=1

𝜕𝐿𝐿

𝜕𝛼
=

𝑛

𝛼
+ ∑ log{𝜂𝑖}

𝑛
𝑖=1 − ∑

𝜂𝑖
𝛼log{𝜂𝑖}

1−𝜂𝑖
𝛼

𝑛
𝑖=1 + (𝜃 − 1) ∑

2(1−𝜂𝑖
𝛼)𝜂𝑖

𝛼log{𝜂𝑖}

1−(1−𝜂𝑖
𝛼)

2
𝑛
𝑖=1

In this study, R-programming (optim function) is used in finding the maximum likelihood (ML) 

estimates (�̂�, �̂�)  of the TIITLEGU parameters. 

4.2 Simulation-Study 

The simulation process for the ML is obtainable as follows: N = 10,000 samples (replicates) are 

generated from the TIITLEGU model with sizes n’ = 20,50, 150, 250, 500 and 1000 using R-

programming. The precision of the ML estimates is evaluated via the mean estimates (MEs), absolute 

bias (Absbias), mean square errors (MSEs) and root mean square roots (RMSEs). The MLE is a 

suitable technique for estimating the TIITLEGU parameters Based on the simulation study. The results 

reported in Table 2 indicate that the parameter estimates are quite stable and very close to the true 

parameter values for the various sample sizes. The ME tend to be closer to the true values of the 

parameter with minimum MSEs, and RMSEs values as the sample size increases. 

Table 2: Numerical values of MEs, Absbias, MSEs and RMSEs 

𝛼 = 1.5, 𝜃 = 1.5 𝛼 = 3.5, 𝜃 = 3.3 

n' Par. ME Absbias MSE RMSE n' Par. ME Absbias MSE RMSE 

20 𝛼 1.7238 0.2238 2.1842 1.4779 20 𝛼 3.7210 0.4210 8.8988 2.9831 

𝜃 3.1475 1.6475 10.9000 3.3015 𝜃 7.2017 3.7017 51.1596 7.1526 

50 𝛼 1.6239 0.1239 1.0649 1.0320 50 𝛼 3.5275 0.2275 4.4887 2.1187 

𝜃 2.4156 0.9156 4.5588 2.1351 𝜃 5.7094 2.2094 23.6443 4.8625 

150 𝛼 1.5312 0.0312 0.3634 0.6029 150 𝛼 3.3703 0.0703 1.8493 1.3599 

𝜃 1.8985 0.3985 1.3260 1.1515 𝜃 4.6138 1.1138 8.9932 2.9989 

250 𝛼 1.5156 0.0156 0.2146 0.4633 250 𝛼 3.3349 0.0349 1.1736 1.0833 

𝜃 1.7484 0.2484 0.7015 0.8375 𝜃 4.2532 0.7532 5.2725 2.2962 

500 𝛼 1.5089 0.0089 0.1105 0.3323 500 𝛼 3.3155 0.0155 0.6437 0.8023 

𝜃 1.6267 0.1267 0.3019 0.5495 𝜃 3.9323 0.4323 2.6383 1.6243 

1000 𝛼 1.5033 0.0033 0.0561 0.2368 1000 𝛼 3.3028 0.0028 0.3303 0.5747 

𝜃 1.5653 0.0653 0.1336 0.3655 𝜃 3.7293 0.2293 1.1773 1.0850 

𝛼 = 2.0, 𝜃 = 2.5 𝛼 = 4.1, 𝜃 = 4.5 

n' Par. ME Absbias MSE RMSE n' Par. ME Absbias MSE RMSE 

20 𝛼 2.8662 0.3662 6.1123 2.4723 20 𝛼 5.0225 0.5225 15.9168 3.9896 

𝜃 4.2505 2.2505 19.2609 4.3887 𝜃 8.4532 4.3532 69.0055 8.3070 

50 𝛼 2.6997 0.1997 2.9340 1.7129 50 𝛼 4.7706 0.2706 8.0638 2.8397 

𝜃 3.2939 3.2939 8.5372 2.9218 𝜃 6.8341 2.7341 35.0702 5.9220 

150 𝛼 2.5439 0.0439 1.0106 1.0053 150 𝛼 4.5916 0.0916 3.5820 1.8926 

𝜃 2.5848 0.5848 2.7012 1.6435 𝜃 5.5217 1.4217 13.8556 3.7223 

250 𝛼 2.5253 0.0253 0.6185 0.7865 250 𝛼 4.5407 0.0407 2.2462 1.4987 

𝜃 2.3669 0.3669 1.4303 1.1959 𝜃 5.0808 0.9808 8.5140 2.9179 

500 𝛼 2.5110 0.0110 0.3252 0.5702 500 𝛼 4.5209 0.0209 1.2639 1.1243 

𝜃 2.1968 0.1968 0.6399 0.7999 𝜃 4.6527 0.5527 4.0301 2.0075 

1000 𝛼 2.5028 0.0028 0.1635 0.4043 1000 𝛼 4.5031 0.0031 0.6643 0.8150 

𝜃 2.1011 0.1011 0.2767 0.5260 𝜃 4.4001 0.3001 1.8519 1.3608 
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5. EGARCH-Model

The asymmetric EGARCH model introduced by [10] is considered as a variate of the ARCH/GARCH 

model introduced by [3] and [27] for modeling time-varying volatility. The EGARCH differ from the 

symmetric GARCH variance structure given that the natural log variance is used in other for the 

parameters to be unrestricted and can take negative values while guaranteeing a positive conditional 

variance. Moreso, the EGARCH model includes the asymmetric impact of positive and negative 

shocks on volatility. The return of daily prices of assets is represented by 𝑟𝑡 and the EGARCH (1,1) 

model is defined as: 
𝑟𝑡 = 𝜇 + 𝜀𝑡 ,

𝜀𝑡 = 𝑧𝑡√ℎ𝑡
2,   𝑧𝑡 ∼ 𝑖. 𝑖. 𝑑,

log ℎ𝑡
2 = 𝜆0 + 𝛽1 log ℎ𝑡−1

2 + 𝜆1
𝜀𝑡−1

√ℎ𝑡−1
2

+ 𝛾1 |
𝜀𝑡−1

√ℎ𝑡−1
2

| 

(23) 

where 𝜆0 > 0, 𝜆1 > 0, 𝛽1 > 0 are the model parameters, 𝑧𝑡 is the conditional innovation density with 

𝐸(𝑧𝑡) = 0 and 𝑣𝑎𝑟(𝑧𝑡) = 1, 𝜇𝑡 is the conditional mean, 𝛾1 is the leverage parameter, log ℎ𝑡
2 is

conditional log variance at present day 𝑡, 𝜀𝑡−1 and log ℎ𝑡−1
2  are the error and conditional log variance

at preceding day 𝑡 − 1, respectively. The commonly utilized conditional innovation densities are 

well described in the literature. 

5.1 The Novel Conditional Innovation Density 

The log-likelihood (LL) function of the standardized TIITLEGU model presented in Eq. (9), is specified 

as 

𝐿𝐿(𝜗) = 𝑛 log 2 + 𝑛 log 𝜃 + 𝑛 log 𝛼 −
𝑛

2
log ℎ𝑡

2 + (𝛼 − 1) ∑ log{𝜂𝑡}
𝑛
𝑡=1 + ∑ log{1 − 𝜂𝑡}

𝑛
𝑡=1 +

∑ log [𝑒
(

𝜀𝑡

ℎ𝑡
2)

]𝑛
𝑡=1 + ∑ log(1 − 𝜂𝑡

𝛼)𝑛
𝑡=1 + (𝜃 − 1) ∑ log[1 − (1 − 𝜂𝑡

𝛼)2]𝑛
𝑡=1 −

𝑛

2
log ℎ𝑡

2 (24) 

where 𝜗 = (𝛼, 𝜃, ℎ𝑡), 𝛼, 𝜃 are the shape parameters and ℎ𝑡 is the EGARCH volatility model with 

vector parameters and 𝜂𝑡 = 1 − 𝑒[
 
 −𝑒

(−
𝜀𝑡
ℎ𝑡
2)

]. 

5.2 Model Selection Criteria 

The modified Akaike information criteria (AIC) and Bayesian information criteria (BIC) proposed 

by [28] are utilized in selecting the best model under the conditional innovation densities. The 

modified AIC and BIC criteria are given by 

𝐴𝐼𝐶 =
2𝑘

𝑁
−

2𝐿𝐿

𝑁
(25) 

𝐵𝐼𝐶 =
𝑘 log𝑒(𝑁)

𝑁
−

2𝐿𝐿

𝑁
(26) 

where k   is the total number of estimated parameters, the estimated log-likelihood value and sample 

size are denoted by 𝐿𝐿  and 𝑁, respectively. The EGARCH model with the least AIC and BIC values 

is regarded as the most suitable model under the specified innovation density. 

5.3 Forecasts Performance 

The forecasts performance of the EGARCH models is appraised using the mean square error (MSE), 

root mean square root (RMSE), and mean absolute error (MAE). The performance measures for the 

volatility forecasts are given by 
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𝑀𝑆𝐸 =
1

𝑁
∑ (ℎ�̂� − ℎ𝑡)

2𝑁
𝑡=1 (27) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (ℎ�̂� − ℎ𝑡)

2𝑁
𝑡=1 (28) 

𝑀𝑆𝐸 =
1

𝑁
∑ |ℎ�̂� − ℎ𝑡|

𝑁
𝑡=1 (29) 

Where ℎ�̂� and ℎ𝑡 represent the volatility forecast and realized volatility, and

𝑁 is the sample size. The model with the least performance measures is regarded as the most 

appropriate for predicting the volatility of the daily log-returns. 

6. Empirical Results

6.1 Data Report 

To appraise the performance of the novel distributed innovation density in the EGARCH model, the 

United bank of Africa (UBA) and Total energies Nigeria (TEN) stock prices log-returns are utilized. 

The UBA dataset consists 5468 daily log-returns from 1/2/2000 to 5/1/2024 and TEN datasets consist 

5510 daily returns from 2/1/2001 to 5/1/2024. The estimation process is executed using 5218 daily log-

returns from 1/2/2000 to 30/12/2022 for the UBA while 5268 daily returns from 2/1/2001 to 30/12/2022 

for the TEN. The forecast evaluation of the models is carried-out with 250 daily returns from 3/1/2023 

to 5/1/2024 for both UBA and TEN. The summary statistics of the daily returns for the estimation 

processes are reported in Table 2. More so, the graphical plots of the daily returns, squared-returns 

and absolute-returns with their respective sample autocorrelation function (ACF) for both UBA and 

TEN are depicted in Figures 3 and 4.  

Tables 2 reports positive skewness and high excess kurtosis, leading to large Jarque-Bera 

(JB) statistic (p < 0.001) signifying that the daily returns for the estimation process have non-

normality characteristics. Figure 2 displays the density function of a normal distribution that has the 

same mean and standard deviation as those of the UBA and TEN return series. The plots provide a 

visual check of the normality assumption for the daily returns. The deviation between the solid 

(return series) and dashed line (Normal distribution) indicates that the daily returns are not 

normally distributed.  

Figure 2:  Empirical density function of the UBA and TEN daily returns. 

Further, the ARCH Lagrange-multiplier (LM) and Ljung Box-Q tests at lag 10, indicates the incidence 

of conditional heteroscedasticity and autocorrelation in the returns while the Augmented Dickey-

Fuller (ADF) test with its p-value indicates that the returns for the UBA and TEN are stationary.  
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Table 2: Summary statistics for the daily returns 

UBA returns (Estimation process) 

Number of 

observations 

Mean Median Minimum Maximum Std Dev. 

5218 -0.004 0.000 -204.521 206.978 5.005 

Skewness Kurtosis Jarque-Bera ARCH (10) Q (10) ADF test 

0.087 1096.432 26157 (< 0.0001) 894.89 (< 0.0001) 901.99 (< 0.0001) -24.7 (<0.01)

TEN returns (Estimation process) 

Number of 

observations 

Mean Median Minimum Maximum Std Dev. 

5268 0.022 0.000 -231.941 235.569 6.790 

Skewness Kurtosis Jarque-Bera ARCH (10) Q (10) ADF test 

0.999 1027.144 23175 (< 0.0001) 107.55 (< 0.0001) 117.84 (< 0.0001) -27.5 (<0.01)

Figure 3:  UBA daily returns, squared returns, absolute returns and sample autocorrelations. 

6.2 Parameters Estimation of the EGARCH (1,1) Model 

The EGARCH (1,1) model specified in Eq. (22) is estimated under ten different innovation densities: 

normal (NORM), student-t (ST), generalized error (GE), skew normal (SNORM), skew student-t 

(SST), skew generalized error (SGE), generalized hyperbolic (GHYP), Johnson (SU) reparametrized 

(JSU), Normal inverse Gaussian (NIG) and the novel type II Topp Leone exponentiated Gumbel 

(TIITLEGU). Tables 3 and 4 reports the estimated parameters of the EGARCH (1,1) models. The rugarch 

package in R-programming is used in estimating the parameters of the EGARCH-NORM, EGARCH-

ST, EGARCH-GE, EGARCH-SNORM, EGARCH-SST, EGARCH-SGE, EGARCH-GHYP, EGARCH-

JSU and EGARCH-NIG while the Optim function in R-programming is utilized to maximize the log-

likelihood function of EGARCH-TIITLEGU. As reported in Table 5, the EGARCH-TIITLEGU model has 

the highest log-likelihood (LL) value and exhibits superior fit to the standardized residuals compare 

to others for both return series.  
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Figure 4:  TEN daily returns, squared returns, absolute returns and sample autocorrelations. 

Table 3: EGARCH Model Parameter Estimates with Innovation Densities (UBA returns). 

Model 
Cond. 

Distr. 
𝜆0 𝜆1 𝛽1 𝛾1 Ghlambda Skew Shape1 Shape2 

EGARCH 

(1,1) 
NORM 0.5707‘***’ -0.0581‘***’ 0.7492‘***’ 0.4881‘***’ - - - 

STD 0.4320‘***’ 0.0960‘’ 0.888‘***’ 2.1239‘***’ - 2.1000‘***’ - 

GED 8.5262‘***’ 1.2433 0.1171 6.5026‘***’ - 0.1019‘***’ - 

SNORM 0.5680‘***’ -0.0488‘***’ 0.7488‘***’ 0.4867‘***’ 0.9781‘***’ - - 

SSTD 0.6725‘***’ 0.2855‘’ 0.8914‘***’ 6.3057‘***’ 1.0003‘***’ 2.0100‘***’ - 

SGED 1.6151‘***’ 0.7086‘***’ 0.3730‘***’ 3.6658‘***’ 1.0005‘***’ 0.3956‘***’ - 

GHYP 0.0240‘***’ 0.0524‘***’ 0.9858‘***’ 0.2100‘***’ -0.9677‘***’ -0.0547 0.2500‘***’ - 

JSU 0.2856‘’ 0.0571‘***’ 0.8828‘***’ 1.1730‘***’ 0.0001 0.8269‘***’ - 

NIG 0.7949‘***’ 0.3175‘***’ 0.9532‘***’ 4.3156‘***’ 0.0172 0.0100‘***’ - 

TIITLEGU 
2.327e-

10‘’ 

3.929e-

10‘’ 
0.9828‘***’ 0.7799‘***’ - 1.9433‘***’ 3.5128‘***’ 

Significance levels: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 ‘’, 1 

Table 4: EGARCH Model Parameter Estimates with Innovation Densities (TEN returns). 

Model 
Cond. 

Distr. 
𝜆0 𝜆1 𝛽1 𝛾1 Ghlambda Skew Shape1 Shape2 

EGARCH 

(1,1) 
NORM 0.4283‘***’ -0.0869‘***’ 0.7781‘***’ 0.2932‘***’ - - - 

STD -0.0587 0.2583‘***’ 0.8234‘***’ 0.6745‘***’ - 2.1000‘***’ - 

GED 1.3745‘***’ 0.0974 -0.1137‘***’ 1.1712‘***’ - - 0.1024‘***’ - 

SNORM 0.4296‘***’ -0.0858‘***’ 0.7765‘***’ 0.3024‘***’ 0.9552‘***’ - - 

SSTD 0.2775‘***’ 0.7821‘***’ 0.8283‘***’ 1.8532‘***’ 1.0011‘***’ 2.0100‘***’ - 

SGED 0.6894‘***’ 0.0739‘***’ 0.2451‘***’ 0.0659‘***’ 1.1175‘***’ 0.3868‘***’ - 

GHYP -0.0226‘***’ -0.0294‘***’ 0.9880‘***’ 0.0905‘***’ -02818‘***’ 0.0025 0.2500‘***’ - 

JSU 0.4089‘***’ -0.0000 0.3658‘***’ -0.0000 0.2953‘***’ 0.2616‘***’ - 

NIG -0.0434‘***’ 0.0071‘***’ 1.0000‘***’ 0.0177‘***’ -0.0071 0.0100‘***’ - 

TIITLEGU 0.0552‘***’ 0.0579‘***’ 0.5195‘***’ 1.5234‘***’ - 5.2086‘***’ 9.8771‘***’ 

Significance levels: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 ‘’, 1 

Tables 3 and 4 reports that the parameter estimates of the EGARCH conditional variance 

specifications are highly statistically significant and 
1
  is highly significant which shows that the 
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daily log-returns have leverage effect. Therefore, the impact of the shocks is asymmetric in nature 

that is, the impact of positive shocks on volatility are higher than negative shocks of the similar size. 

The AIC and BIC values also reported in Table 5 suggest that the EGARCH-TIITLEGU model is best 

for investigating the volatility of the Nigerian stock market. 

Table 5: Comparison of the Innovation Densities for estimated models. 

Model 
Innovation 

Dist. 

Log-

Likelihood 
AIC BIC 

Log-

Likelihood 
AIC BIC 

(UBA Returns). (TEN Returns). 

EGARCH 

(1,1) 
NORM -12581.400 4.8242 4.8305 -11134.030 4.4296 4.461 

STD -11070.810 4.2456 4.2532 -8291.421 3.3071 3.3149 

GED -5747.029 2.2051 2.2126 19540.740 -7.7859 -7.7781

SNORM -12578.510 4.8235 4.8310 -11124.140 4.4361 4.4439

SSTD -11046.030 4.2365 4.2453 -8173.160 3.2603 3.2694

SGED -10738.730 4.1187 4.1275 -4397.584 1.7555 1.7646

GHYP -10923.350 4.1899 4.1999 -8299.449 3.3111 3.3215

JSU -11066.350 4.2443 4.2531 9042.654 -3.6013 -3.5922

NIG -10092 3.8709 3.8797 -4979.278 1.9874 1.9965

TIITLEGU 13546.100 -5.1894 -5.1806 25184.930 -9.5588 -9.5501
Note(s):  Bolded values indicate the highest log-likelihood value, and the least AIC and BIC values 

Tables 6 and 7 reports the diagnostic tests results for the EGARCH (1,1) model under the various 

innovation densities. From Table 6, the Ljung Box-Q statistic (p > 0.05) specifies that the squared 

standardized residuals from the EGARCH-TIITLEGU model exhibit no sign of serial-correlation. 

Likewise, the ARCH-LM statistic (p > 0.05) indicates that the standardized residuals from the 

EGARCH-TIITLEGU model exhibit no additional conditional heteroscedasticity, that is, the 

conditional variance equation are correctly specified. Therefore, the results disclose that 

standardized TIITLEGU density is an improved distributed innovation function for the EGARCH (1,1) 

model. 

Table 6: Estimated EGARCH (1,1) models diagnostic tests (UBA returns). 

Model 
Innovation 

Dist. 

Ljung-Box 

Q-Statistic
p-value

ARCH-LM 

Statistic 
p-value

EGARCH 

(1,1) 
NORM 0.007 0.999 0.007 0.999 

STD 0.008 0.999 0.008 0.999 

GED 0.010 0.999 0.010 0.999 

SNORM 0.007 0.999 0.007 0.999 

SSTD 0.008 0.999 0.008 0.999 

SGED 0.007 0.999 0.007 0.999 

GHYP 0.066 0.999 0.067 0.999 

JSU 0.008 0.999 0.008 0.999 

NIG 0.021 0.999 0.021 0.999 

TIITLEGU 0.013 0.999 0.013 0.999 
Note(s): Significance level: 0.05 = . 
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Table 7: Estimated EGARCH (1,1) models diagnostic tests (TEN returns). 

Model 
Innovation 

Dist. 

Ljung-Box 

Q-Statistic
p-value

ARCH-LM 

Statistic 
p-value

EGARCH 

(1,1) 
NORM 0.021 0.999 0.021 0.999 

STD 0.091 0.999 0.092 0.999 

GED 5.936 0.981 5.923 0.981 

SNORM 0.021 0.999 0.020 0.999 

SSTD 0.088 0.999 0.088 0.999 

SGED 0.010 0.999 0.010 0.999 

GHYP 0.045 0.999 0.046 0.999 

JSU 1251.5 2.2E-16 2317.7 2.2E-16 

NIG 0.477 0.999 0.474 0.999 

TIITLEGU 0.039 0.999 0.039 0.999 
Note(s): Significance level: 0.05 = . 

6.3 Forecasts Evaluation of the EGARCH Models 

The forecast evaluation metrics for the out-of-sample are reported in Table 8, and the least MSE, 

RMSE and MAE values belong to the EGARCH-TIITLEGU model. Therefore, the EGARCH-TIITLEGU 

model is statistically efficient and displays superior capability in forecasting the volatility of the 

Nigerian stock market relative to other models. 

Table 8: Forecasts evaluation metrics of the estimated EGARCH (1,1) models. 

Model 
Innovatio

n Dist. 
MSE RMSE MAE MSE RMSE MAE 

(UBA returns) (TEN returns) 

EGARCH 

(1,1) 
NORM 8.155 2.856 1.752 1.731 1.316 0.213 

STD 8.151 2.855 1.751 1.733 1.316 0.197 

GED 8.151 2.855 1.751 1.733 1.316 0.197 

SNORM 8.121 2.849 1.752 1.730 1.315 0.267 

SSTD 8.151 2.855 1.751 1.733 1.316 0.197 

SGED 8.150 2.855 1.751 1.777 1.332 0.354 

GHYP 8.159 2.856 1.753 1.733 1.316 0.197 

JSU 8.151 2.855 1.751 1.733 1.316 0.198 

NIG 8.151 2.855 1.751 1.733 1.316 0.197 

TIITLEGU 8.050 2.837 1.736 1.547 1.244 0.182 
Note(s): Bolded values indicate the conditional distribution with the least MSE, RMSE and MAE. 

7. Conclusion

The estimation of the TIITLEGU model parameters using the MLE procedure, and introduction as a 

novel distributed innovation function for the EGARCH-volatility model is considered. The density 

and cumulative functions, failure rate function, quantile function, standardized density function and 

other mathematical properties are derived. Monte-Carlo experiments are carried out to study the 

performance of the MLE procedure. The experiments results indicate that the MLE is asymptotically 

unbiased and consistent given that the ME tend to be closer to the true values of the parameter with 

minimum MSEs, and RMSEs as the sample size increases. 

Additionally, the standardized TIITLEGU density is presented as a novel distributed 

innovation function for the EGARCH volatility model for investigating the volatility of the Nigerian 
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stock market via the UBA and TEN returns. The empirical findings showed that the EGARCH-

TIITLEGU model has the highest log-likelihood, and least AIC and BIC values. Equally, the EGARCH-

TIITLEGU model has the least forecast evaluation metrics among other models. In conclusion, the 

EGARCH-TIITLEGU model is best for investigating the volatility of the Nigerian stock market. 
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