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Abstract

In this paper, we consider the problem of estimation of parameters of the Kumaraswamy exponential
distribution using progressive type-I interval censored data. The maximum likelihood estimators (MLEs)
of the parameters are obtained. As it is observed that there is no closed-form solutions for the MLEs, we
implement the Expectation-Maximization (EM) algorithm for the computation of MLEs. Bayes estimators
are also obtained using different loss functions such as the squared error loss function and the LINEX
loss function. For the Bayesian estimation, Lindley’s approximation method has been applied. To evaluate
the performance of the various estimators developed, we conduct an extensive simulation study. The
different estimators and censoring schemes are compared based on average bias and mean squared error.
A real data set is also taken into consideration for illustration.

Keywords: Maximum likelihood estimate, EM algorithm, Bayesian inference, Lindley’s approxi-
mation

1. Introduction

In life testing experiment and survival analysis, the test units may leave the experiment before
failure due to restriction of time, budget cost or accidental breakage. A censored sample refers to
data that was gathered from such cases but may not be complete. Over the last few decades, a
number of censoring methodologies have been developed for the analysis of such situations. In
the exiting literature, two commonly used traditional censoring schemes are type-I and type-II,
in which experiment is terminated after a prescribed time point and number of failures, respec-
tively. However, neither of these two censoring strategies permit the experimenter to remove
live units from the experiment prior to its termination time. To remove the units in between the
experiments, the idea of progressive censoring was developed by [7]. It is further observed that,
in many practical situations it is not possible for the experimenter to continuously observe the
life test units to observe the precise failure lifetimes. For example, in medical and clinical trials,
specific information regarding the patient survival lifetime for those diagnosed with a particular
treatment may not be available. In such cases, the failure lifetimes are often observed in the
intervals, known as interval censoring. However, this censoring does not allow to remove the units
in between the experiments. The concept of progressive type-I interval censoring, incorporating
the principles of type-I, progressive, and interval censoring schemes, was introduced by [2]. In
this type of censoring, items can be withdrawn between two successive time points that have
been prescheduled.

The progressive type-I interval censored sample is gathered in the following manner. Assume
that n units are placed on a life test at the time t0 = 0. Units are inspected at m predefined
times t1, t2, ..., tm, with tm being the experiment’s scheduled finish time. At the ith inspection
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time ti, i = 1, ..., m, the number Xi , of failures within (ti−1, ti] is recorded and Ri surviving units
are randomly removed from the life test. The number of surviving units at time t1, ..., tm is a
random variable, hence the number of removals R1, ..., Rm can be estimated as a percentage of the
remaining surviving units. Specifically, ⌊qi× (number of surviving units at time ti)⌋ remaining
surviving units are eliminated from the life test with pre-specified values of q1, ..., qm−1 and
qm = 1, where ⌊w⌋ = the largest integer less than or equal to w. Alternatively, R1, R2, ..., Rm can
be pre-specified non-negative integers, with Robs

i = min(Ri, number of surviving units at time
ti), i = 1, 2, ..., m − 1, and Robs

m = number of surviving units at time tm. Data observed under this
censoring scheme can be represented as (Xi, Ri, ti)

m
i=1. If F(x, θ) is the cumulative distribution

function (cdf) of the population from which the progressive type-I censored sample is taken, then
the likelihood function of θ can be constructed as follows (see, [2])

L(θ) ∝
m

∏
i=1

[F(ti, θ)− F(ti−1, θ)]Xi [1 − F(ti, θ)]Ri , (1)

where t0 = 0.

In the recent past, several authors studied progressive type-I interval censored sampling schemes
under various circumstances. The maximum likelihood estimates of the parameters of the
exponentiated Weibull family and their asymptotic variances were obtained by [4]. Optimally
spaced inspection times for the log-normal distribution were determined by [12], while different
estimation methods based on progressive type-I interval censoring were considered for the
Weibull distribution by [17] and for the Generalized exponential distribution by [6]. The statistical
inference under this censoring for Inverse Weibull distribution was further discussed by [19].
Bayesian inference under this censoring has been discussed by [3] for Dagum distribution.
In this paper, we consider progressive type-I interval censored sample taken from a Kumaraswamy
exponential (KE) distribution with probability density function (pdf) given by

f (x) = βλe−x(1 − e−x)β−1(1 − (1 − e−x)β)λ−1, x > 0 . (2)

The cdf corresponding to the above pdf is given by

F(x) = 1 − (1 − (1 − e−x)β)λ, x > 0 , (3)

where β > 0, λ > 0 are two shape parameters. Through out the paper, we use the notation
KE(β, λ) to denote Kumaraswamy exponential distribution with shape parameters β and λ. The
KE distribution is a generalisation of the exponential distribution that was created as a model
for issues in environmental studies and survival analysis. Several studies on Kumaraswamy
distribution and its generalisations have been published in recent years. An exponentiated
Kumaraswamy distribution and its properties were considered and discussed by [11].The Ku-
maraswamy linear exponential distribution with four parameters was introduced by [9], who
also derived some of its mathematical properties. The maximum likelihood estimation of the
unknown parameters for the Kumaraswamy exponential distribution was considered by [1]. The
exponentiated Kumaraswamy exponential distribution and its characterization properties were
introduced by [18]. The estimation of parameters for the Kumaraswamy exponential distribution
under a progressive type-II censored scheme was considered by [5].

The structure of this paper is outlined as follows. The maximum likelihood estimators of
KE(β, λ) parameters are obtained in Section 2. In this section, estimators are also obtained using
EM algorithm. In Section 3, Bayes estimates for β and λ are obtained for different loss functions
such as squared error and LINEX. Here, Lindley’s approximation method is used to evaluate these
Bayes estimates. In Section 4, a simulation study is carried out for analysing the properties of
various estimators developed in this paper. In Section 5, a real data is considered for illustration.
Finally, in Section 6, we present some concluding remarks.
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2. Maximum Likelihood Estimation

Let (Xi, Ri, ti) , i = 1, 2, · · · n be a progressively type-I interval censored sample taken from the
KE(β, λ) distribution defined in (2), then by using (1), the likelihood function is given by

L(β, λ) ∝
m

∑
i=1

[[
1 − (1 − e−ti−1)β

]λ
−
[
1 − (1 − e−ti )β

]λ
]Xi
[[

1 − (1 − e−ti )β
]λ
]Ri

. (4)

Then the log-likelihood function is given by

l(β, λ) = ln L(β, λ) =
m

∑
i=1

Xi ln
[
[1 − (1 − e−ti−1)β

]λ
−
[
1 − (1 − e−ti )β]λ

]
+

m

∑
i=1

Ri ln
[
1 − (1 − e−ti )β

]λ
. (5)

The MLEs of β and λ are the solutions to the following normal equations

m

∑
i=1

Ri λ[1 − Zβ
i ]

λZβ
i ln Zi

[1 − Zβ
i ]

λ
= −

m

∑
i=1

Xi

[
λ[1 − Zβ

i ]
λ−1Zβ

i ln Zi − λ[1 − Zβ
i−1]

λ−1Zβ
i−1 ln Zi−1

]
[(1 − Zβ

i )
λ − (1 − Zβ

i−1)
λ]

(6)

and

m

∑
i=1

Ri λ[1 − Zβ
i ]

λln(1 − Zβ
i )

[1 − Zβ
i ]

λ
= −

m

∑
i=1

Xi

[
(1 − Zβ

i )
λln(1 − Zβ

i )− (1 − Zβ
i−1)

λ ln(1 − Zβ
i )
]

[(1 − Zβ
i )

λ − (1 − Zβ
i−1)

λ]
, (7)

where Zβ
i = (1 − e−ti ).

As the above equations have no closed form solutions, the MLEs can be obtained through an
iterative numerical methods such as Newton-Raphson method. Since the MLEs are obtained
using numerical method, in the following subsection, the EM algorithm is used to find the MLEs
of β and λ.

2.1. EM Algorithm

The Expectation-Maximization (EM) algorithm is a broadly applicable method of iterative comput-
ing of maximum likelihood estimates and useful in a variety of incomplete-data scenarios where
methods like the Newton-Raphson method may prove to be more difficult. The expectation step,
also known as the E-step, and the maximisation step, often known as the M-step, are two steps
that comprise each iteration of the EM algorithm. Therefore, the algorithm is known as the EM
algorithm, and its detailed development can be found in [8]. The EM algorithm for finding MLEs
of the parameter of the two-parameter Kumaraswamy exponential distribution is as follows.
Let ψi,j, j = 1, 2, .....Xi, be the survival times of the units failed within subinterval (ti−1ti] and
ψ∗

i,j, j = 1, 2, .....Ri be the durations of survival for those units withdrawn at ti for i = 1, 2, 3, ...m,
then the log likelihood function, ln(Lc), based on the lifetimes of all n items (complete sample)
from the two-parameter KE(β, λ) distribution is given by

ln(Lc) =
m

∑
i=1

[
Xi

∑
j=1

log( f (ψi,j, θ)) +
Ri

∑
j=1

log( f (ψ∗
i,j, θ))

]
,
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ln(Lc) = [ln(β) + ln(λ)]
m

∑
i=1

[Xi + Ri]−
m

∑
i=1

[
Xi

∑
j=1

ψi,j +
Ri

∑
j=1

ψ∗
i,j

]
+

(β − 1)
m

∑
i=1

[
Xi

∑
j=1

ln(1 − e−ψi,j) +
Ri

∑
j=1

ln(1 − e−ψ∗
i,j)

]
+

(λ − 1)
m

∑
i=1

[
Xi

∑
j=1

ln
[
1 − (1 − e−ψi,j)β

]
+

Ri

∑
j=1

ln
[
1 − (1 − e−ψ∗

i,j)β
]]

, (8)

where ∑m
i=1(Xi + Ri) = n

Taking the derivatives of (8) with respect to β and λ, respectively, the following normal equations
are obtained:

n
β
=(λ − 1)

m

∑
i=1

 Xi

∑
j=1

(1 − e−ψi,j)βln(1 − e−ψi,j)[
1 − (1 − e−ψi,j)β

]
+

m

∑
i=1

 Xi

∑
j=1

(1 − e−ψ∗
i,j)βln(1 − e−ψ∗

i,j)[
1 − (1 − e−ψ∗

i,j)β
]


−

m

∑
i=1

[
Xi

∑
j=1

ln(1 − e−ψi,j) +
Ri

∑
j=1

ln(1 − e−ψ∗
i,j)

]
(9)

and

n
λ
= −

m

∑
i=1

[
Xi

∑
j=1

ln
[
1 − (1 − e−ψi,j)β

]
+

Ri

∑
j=1

ln
[
1 − (1 − e−ψ∗

i,j)β
]]

. (10)

The lifetimes of Xi failures in the ith interval (ti−1, ti] are independent and follow a doubly trun-
cated Kumaraswamy exponential distribution from left at ti−1 and right at ti, while the lifetimes
of the Ri censored items at the time ti are independent and follow a truncated Kumaraswamy
exponential distribution from the left at ti, i = 1, 2, ...m.

For the EM algorithm, the following expected values of a doubly truncated Kumaraswamy ex-
ponential random variable Y, from a on the left and b on the right with 0 < a < b ≤ ∞ are needed.

Eβ,λ

[
ln(1 − e−Y)|Y ∈ [a, b)

]
=
∫ b

a

ln(1 − e−y) f (y; β, λ)dy
F(b : β, λ)− F(a; β, λ)

,

Eβ,λ

[
ln
[
1 − (1 − e−Y)β

]
|Y ∈ [a, b)

]
=
∫ b

a

ln
[
1 − (1 − e−y)β

]
f (y; β, λ)dy

F(b : β, λ)− F(a; β, λ)

and

Eβ,λ

[
(1 − e−Y)βln(1 − e−Y)[

1 − (1 − e−Y)β
] |Y ∈ [a, b)

]
=
∫ b

a

(1 − e−Y)βln(1 − e−Y)[
1 − (1 − e−Y)β

] f (y; β, λ)dy

F(b : β, λ)− F(a; β, λ)
.

The iterative process that results in the EM algorithm is as follows:

Step 1: Given starting values of β and λ, say β(0) and λ(0) and set k=0.

Step 2: In the (k + 1)th iteration, the following conditional expectations are computed by the
E-step. For i = 1, 2, · · · , m
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E1i = E ˆβ(k), ˆλ(k)

[
ln(1 − e−Y)|Y ∈ [ti−1, ti)

]
,

E2i = E ˆβ(k), ˆλ(k)

[
ln(1 − e−Y)|Y ∈ [ti, ∞)

]
,

E3i = E ˆβ(k), ˆλ(k)

[
ln[1 − (1 − e−Y)β̂(k) ]|Y ∈ [ti−1, ti)

]
,

E4i = E ˆβ(k), ˆλ(k)

[
ln[1 − (1 − e−Y)β̂(k) ]|Y ∈ [ti, ∞)

]
,

E5i = E ˆβ(k), ˆλ(k)

[
(1 − e−Y)β̂(k) ln(1 − e−Y)

[1 − (1 − e−Y)β̂(k) ]
|Y ∈ [ti−1, ti)

]
and

E6i = E ˆβ(k), ˆλ(k)

[
(1 − e−Y)β̂(k) ln(1 − e−Y)

[1 − (1 − e−Y)β̂(k) ]
|Y ∈ [ti, ∞)

]
.

Then, the likelihood equations (9) and (10) are respectively given by

n
β
= (λ − 1)

m

∑
i=1

[XiE5i + RiE6i]−
m

∑
i=1

[XiE1i + RiE2i] (11)

and
n
λ
= −

m

∑
i=1

[XiE3i + RiE4i] . (12)

Step 3: The M-step requires to solve the equations (11) and (12) and obtains the next values,
ˆβ(k+1) and ˆλ(k+1), of β and λ, respectively, as follows:

ˆβ(k+1) =
n

(λ̂(k+1) − 1)∑m
i=1 [XiE5i + RiE6i]− ∑m

i=1 [XiE1i + RiE2i]

and
ˆλ(k+1) = − n

∑m
i=1 [XiE3i + RiE4i]

.

Step 4: Checking for convergence; if convergence happens, then the current ˆβ(k+1) and ˆλ(k+1) are
the approximated maximum likelihood estimates of β and λ via EM algorithm. If the convergence
doesn’t happens, then set k = k + 1 and go to step 2.

3. Bayesian Estimation

In this section, Bayesian estimation of parameters of KE(β, λ) are obtained under both symmetric
and assymetric loss functions.

The squared error is a symmetric loss function and is defined as

L1(δ, δ̂) = (δ̂ − δ)2,

where δ̂ is the estimate of parameter δ.

An asymmetric loss function is the LINEX loss function, defined as

L2(δ, δ̂) ∝ eh(δ̂−δ) − h(δ̂ − δ)− 1, h ̸= 0 .
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We assume that the prior distributions for β and λ follow independent gamma distributions given
by

π1(β|a, b) ∝ βa−1e−bβ, β > 0, a > 0, b > 0,

and
π2(λ|c, d) ∝ λc−1e−dλ, λ > 0, c > 0, d > 0 .

In addition, the hyper-parameters a, b, c, and d represent the prior knowledge of the unknown
parameters.

The joint prior distribution of β and λ is of the form

π(β, λ) ∝ βa−1e−bβλc−1e−dλ, β > 0, λ > 0 . (13)

Then, the posterior density of (β, λ) is given by

π∗(β, λ| x) =
L(β, λ| x)π(β, λ)∫ ∞

0

∫ ∞
0 L(β, λ)π(β, λ| x)dλ dβ

. (14)

The Bayes estimates of β and λ against the loss function L1 are respectively obtained as

β̂SB = E(β|x) =

∫
β

∫
λ β l(β, λ)π(β, λ)dλdβ∫

β

∫
λ l(β, λ)π(β, λ)dλdβ

(15)

and

λ̂SB = E(λ|x) =

∫
β

∫
λ λ l(β, λ)π(β, λ)dλdβ∫

β

∫
λ l(β, λ)π(β, λ)dλdβ

. (16)

The Bayes estimates of β under the loss function L2 is obtained as

β̂LB = −1
h

log E(e−hβ|x), h ̸= 0,

where

E(e−hβ|x) =

∫
β

∫
λ e−hβl(β, λ)π(β, λ)dλdβ∫
β

∫
λ l(β, λ)π(β, λ)dλdβ

. (17)

The Bayes estimates of λ under the loss function L2 is obtained as

λ̂LB = −1
h

log E(e−hλ|x), h ̸= 0,

where

E(e−hλ|x) =

∫
β

∫
λ e−hλl(β, λ)π(β, λ)dλdβ∫
β

∫
λ l(β, λ)π(β, λ)dλdβ

. (18)

The ratios of integrals given in equations (15), (16), (17) and (18) cannot be obtained in a closed
form. Thus, [13] approximation method for evaluating the ratio of two integrals have been used.
This has been adopted by several researchers, such as [10], [5], to obtain the approximate Bayes
estimates.
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3.1. Lindley approximation method

Since all estimates have the forms of ratios of two integrals, to obtain these estimates numerically,
we use the Lindley’s approximation method. Since Bayes estimates of β and λ depend on the
ratio of two integrals, we define,

I(x) =

∫ ∞
0

∫ ∞
0 u(β, λ)el(β,λ|x)+ρ(β,λ)dβdλ∫ ∞
0

∫ ∞
0 el(β,λ|x)+ρ(β,λ)dβdλ

, (19)

where u(β, λ) is function of β and λ only and l(β, λ|x) is the same as logL(β, λ|x) and ρ(β, λ) =
log π(β, λ). Then by Lindley’s method, I(x) can be approximated as

Î(x) =u(β̂, λ̂) +
1
2
[(

ˆuββ + 2ûβρ̂β

)
ˆσββ +

(
ˆuλβ + 2ûλρ̂β

)
ˆσλβ+(

ˆuβλ + 2ûβρ̂λ

)
ˆσβλ + ( ˆuλλ + 2ûλρ̂λ) ˆσλλ

]
+

1
2

[(
ûβ ˆσββ + ûλ ˆσβλ

) ( ˆlβββ ˆσββ + ˆlβλβ ˆσβλ + ˆlλββ ˆσλβ + ˆlλλβ ˆσλλ

)
+
(
ûβ ˆσλβ + ûλ ˆσλλ

) ( ˆlλββ ˆσββ + ˆlβλλ ˆσβλ + ˆlλβλ ˆσλβ + ˆlλλλ ˆσλβ

)]
, (20)

where β̂ and λ̂ are the ML estimators of β and λ, respectively. Also, uββ is the second derivative
of the function u(β, λ) with respect to β and ˆuββ is the same expression evaluated at (β̂, λ̂) . Other
expressions are given by

lββ =
∂2l(β, λ)

∂β2

=
m

∑
i=1

Xi


(

∂2Fi
∂β2 − ∂2Fi−1

∂β2

)
(Fi − Fi−1)

−

(
∂Fi
∂β − ∂Fi−1

∂β

)2

(Fi − Fi−1)
2

+ Ri

 − ∂3Fi
∂β3

(1 − Fi)
−

(
∂Fi
∂β

)2

(1 − Fi)
2




lλλ =
∂2l(β, λ)

∂λ2

=
m

∑
i=1

Xi


(

∂2Fi
∂λ2 − ∂2Fi−1

∂λ2

)
(Fi − Fi−1)

−

(
∂Fi
∂λ − ∂Fi−1

∂λ

)2

(Fi − Fi−1)
2

+ Ri

 − ∂3Fi
∂λ3

(1 − Fi)
−

(
∂Fi
∂λ

)2

(1 − Fi)
2




lβλ =
∂2l(β, λ)

∂λ2

=
m

∑
i=1

Xi


(

∂2Fi
∂β∂λ − ∂2Fi−1

∂β∂λ

)
(Fi − Fi−1)

−

(
∂Fi
∂λ − ∂Fi−1

∂λ

) (
∂Fi
∂β − ∂Fi−1

∂β

)
(Fi − Fi−1)2

+

Ri

 − ∂2Fi
∂β∂λ

(1 − Fi)
−

(
∂Fi
∂β

) (
∂Fi
∂λ

)
(1 − Fi)

2

 (21)
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lλβ =
∂2l(β, λ)

∂λ2

=
m

∑
i=1

Xi


(

∂2Fi
∂β∂λ − ∂2Fi−1

∂β∂λ

)
(Fi − Fi−1)

−

(
∂Fi
∂λ − ∂Fi−1

∂λ

) (
∂Fi
∂β − ∂Fi−1

∂β

)
(Fi − Fi−1)2

+

Ri

 − ∂2Fi
∂β∂λ

(1 − Fi)
−

(
∂Fi
∂β

) (
∂Fi
∂λ

)
(1 − Fi)

2

 . (22)

From equations (21) and (22), we have

lβββ =
∂3l(β, λ)

∂β3

=
m

∑
i=1

Xi

 ∂3Fi
∂β3 − ∂3Fi−1

∂β3

Fi − Fi−1
−

3
(

∂2Fi
∂β2 − ∂2Fi−1

∂β2

) (
∂Fi
∂β − ∂Fi−1

∂β

)
(Fi − Fi−1)2 +

2
(

∂Fi
∂β − ∂Fi−1

∂β

)3

(Fi − Fi−1)
3


−Ri

 ∂3Fi
∂β3

1 − Fi
+

3
(

∂2Fi
∂β2

) (
∂Fi
∂β

)
(1 − Fi)

2 +
2
(

∂Fi
∂β

)3

(1 − Fi)
3


 ,

lλλλ =
∂3l(β, λ)

∂λ3

=
m

∑
i=1

Xi

 ∂3Fi
∂λ3 − ∂3Fi−1

∂λ3

Fi − Fi−1
−

3
(

∂2Fi
∂λ2 − ∂2Fi−1

∂λ2

) (
∂Fi
∂λ − ∂Fi−1

∂λ

)
(Fi − Fi−1)2 +

2
(

∂Fi
∂λ − ∂Fi−1

∂λ

)3

(Fi − Fi−1)
3


−Ri

 ∂3Fi
∂λ3

1 − Fi
+

3
(

∂2Fi
∂λ2

) (
∂Fi
∂λ

)
(1 − Fi)

2 +
2
(

∂Fi
∂λ

)3

(1 − Fi)
3


 ,

lλββ =
∂3l(β, λ)

∂λ∂β2

=
m

∑
i=1

Xi

 ∂3Fi
∂λ∂β2 −

∂3Fi−1
∂λ∂β2

Fi − Fi−1
−

(
∂2Fi
∂β2 − ∂2Fi−1

∂β2

) (
∂Fi
∂λ − ∂Fi−1

∂λ

)
(Fi − Fi−1)2

−
2
(

∂Fi
∂β − ∂Fi−1

∂β

) (
∂2Fi
∂λ∂β − ∂2Fi−1

∂λ∂β
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lβλβ =
∂3l(β, λ)

∂λ∂β2

=
m

∑
i=1

Xi

 ∂3Fi
∂β∂λ∂β − ∂3Fi−1

∂β∂λ∂β

Fi − Fi−1
−

(
∂2Fi
∂β∂λ − ∂2Fi−1

∂β∂λ

) (
∂Fi
∂β − ∂Fi−1

∂β

)
(Fi − Fi−1)2

−


(

∂Fi
∂λ − ∂Fi−1

∂λ

) (
∂2Fi
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)
+
(
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) (
∂Fi
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)
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2


−

2
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∂Fi
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) (
∂Fi
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∂β

)2

(Fi − Fi−1)2


+ Ri
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∂β∂λ∂β2

1 − Fi
+

(
∂2Fi
∂β∂λ

) (
∂Fi
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)
(1 − Fi)

2

−


(

∂Fi
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) (
∂2Fi
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(1 − Fi)

3 +

(
∂Fi
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) (
∂Fi
∂λ

)
(1 − Fi)

2

+

2
(

∂Fi
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) (
∂Fi
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)2(
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i
)


 .

Let ui = 1 − e−ti . Then

∂Fi
∂β

= λ
[
1 − uβ

i

]λ−1
uβ

i ln ui

∂2Fi
∂β2 = λ

[
1 − uβ

i
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uβ

i (ln ui)
2 − λ (λ − 1)

[
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i
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uβ

i ln ui

)2
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Also,
ρ(β, λ) ∝ (c − 1)logβ − dβ + (b − 1)logλ − aλ . (23)

Thus,

ρ̂β =
c − 1

β̂
− d

and
ρ̂λ =

b − 1
λ̂

− a .

Here (
σ̂ββ σ̂βλ

σ̂λβ σ̂λλ

)
= -

(
l̂ββ l̂βλ

l̂λβ l̂λλ

)−1

We now determine the approximate Bayes estimates of β and λ under various loss functions
using the above-mentioned equations. First, we derive the Bayes estimates for β and λ under
the squared error loss function L1. For estimating β, we take u(β, λ) = β. Therefore uβ = 1 and
uββ = uλ = uλλ = uβλ = uλβ = 0. Then the Bayes estimate of β under the loss function L1 is
obtained as

β̂SB =β̂ + 0.5[2β̂βσ̂ββ + 2β̂λσ̂βλ + σ̂ββ l̂βββ+

σ̂ββσ̂βλ l̂βλβ + 2σ̂ββσ̂λβ l̂λββ + σ̂λβσ̂λλ l̂λλλ] .

To estimate λ, we take u(β, λ) = λ. Thus uλ = 1 and uβ = uββ = uλλ = uλβ = uβλ = 0. Then the
Bayes estimate of λ under the loss function L1 can be determined as

λ̂SB =λ̂ + 0.5[2β̂βσ̂λβ + 2β̂λσ̂λλ + σ̂ββσ̂βλ l̂βββ+

σ̂2
βλ l̂βλβ + σ̂βλσ̂λβ l̂λββ + σ̂ββσ̂λλ l̂λββ + σ̂2

λλ l̂λλλ] .

Now, we obtain the Bayes estimates of β and λ under LINEX loss function L2. For estimating
β, we take u (β, λ) = e−hβ. Thus uβ = −he−hβ, uββ = h2e−hβ and uλ = uλλ = uλβ = uβλ = 0.
Therefore, Bayes estimate of β under the loss function L2 is obtained as

β̂LB = −1
h

log[E(e−hβ|x)] , (24)

where

E(e−hβ|x) =e−hβ̂ + 0.5[ûββσ̂ββ + ûλ(2β̂λσ̂ββ + 2β̂λσ̂λ + σ̂2
ββ l̂βββ+

σ̂ββσ̂βλ l̂βλβ + 2σ̂βββσ̂λβ l̂λββ] , (25)

To estimate λ, we take u(β, λ) = e−hλ. Thus, uλ = −he−hλ, uλλ = h2e−hλ and uβ = uββ = uλβ =
uβλ = 0. Therefore, the Bayes estimate of λ under the loss function L2 is obtained as

λ̂LB = −1
h

log[E(e−hλ|x)] , (26)

where

E(e−hλ|x) =e−hλ̂ + 0.5
[
ûλλσ̂λλ + ûλ

(
2β̂βσ̂λβ + 2β̂λσ̂λλ + σ̂ββσ̂βλ l̂βββ+

σ̂2
βλ ł̂βλβ + σ̂βλσ̂λβ ł̂λββ + σ̂λλσ̂ββ l̂λββ + σ̂2

λλ l̂λλλ

)]
. (27)
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4. Simulation Study

A simulation study is carried out in this section to investigate the behaviours of the proposed
methods of estimation for the KE distribution. Five different censoring schemes are suggested to
generate progressive type-I interval censored data from the KE distribution, and a comparison
of all the estimating techniques mentioned above will be addressed. The simulation is run
in R programming. The different censoring schemes used to compare the performance of the
estimation procedures is given in the following table.

Scheme n m q(i)
i

1 75 10 (0.25, 0.25, 0.25, 0.25, 0.5, 0.5, 0.5, 0.5, 0.5, 1)
2 75 12 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
3 100 15 (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.25, 0.25, 0.25, 0.25

0.25, 0.25, 0.25, 1)
4 100 20 (0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
5 100 25 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

Here, for the censoring scheme 1, the first few intervals are lighter, and the remaining intervals
are heavier. Schemes 2 and 5 represent conventional interval censoring, in which no removals are
made prior to the end of the experiment, scheme 3 is the reverse of scheme 1, and censoring in
scheme 4 occurs only at the beginning and end. For various combinations of n, m, and various
censoring schemes, the performance of each estimators is numerically compared in terms of their
bias and mean square error (MSE) values. The bias and MSE of the MLE’s and the estimates
obtained using the EM algorithm are given in Table 1.

For Bayes estimation, we considered both informative and non-informative priors for the un-
known parameters. For informative prior, we consider two priors; Prior 1 and Prior 2. The
hyper-parameters for Prior 1 and Prior 2 are chosen in such a way that mean of the prior dis-
tribution is equal to the parameter value and variance of the prior distribution is high (Prior 1)
and low (Prior 2). The values of hyper-parameters we considered for different choices of the
parameters β and λ are given below.

Parameter Prior Hyper parameters
β/λ a/c b/d

1.25 Prior 1 1.25 1
Prior 2 2.5 2

1.5 Prior 1 1.5 1
Prior 2 3 2

1.75 Prior 1 1.75 1
Prior 2 3.5 2

2 Prior 1 1 0.5
Prior 2 4 2
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We use h = 1 to evaluate Bayes estimators under the LINEX loss function L2. In each case,
we have assessed bias and MSE based on 500 iterations. We repeat the simulation study for
various values of β and λ also. The bias and MSE for the estimate of β for both informative and
non-informative priors are given in Table 2. Table 3 provides the bias and MSE for the estimate of
λ for both informative and non-informative priors.

The tabulated values shows that all of the estimates do improve with a higher value of n. From
Table 1, regarding MSE and Bias, we found that the estimates based on the censoring schemes
2 and 5 give the better estimates of β and λ, followed by the scheme 4. In case of maximum
likelihood estimation given in table 1, as n increases the MSE of estimates decrease as expected.
Also, we can see that bias and MSEs of the estimates of β and λ via EM algorithm are smaller
than bias and MSEs of the corresponding MLEs. Also the Bayes estimators based on informative
prior perform much better than the MLEs in terms of biases and MSEs. From the tables 1, 2 and
3, it is clear that the bias and MSE of Bayes estimators under informative prior are smaller than
those of MLE’s.

As expected, the Bayes estimators based on informative prior perform much better than the Bayes
estimators based on non-informative prior in terms of biases and MSEs. From Tables 2 and 3,
one can see that for β and λ, estimators based on informative priors perform better to those of
non-informative priors in terms of bias and MSE. Also, among the Bayes estimators of β, the
estimator under the LINEX loss function performs better. Again, when compared to squared
error loss functions, estimators of λ under the LINEX loss function have the least bias and MSE.

Table 1: Bias and MSE of parameters under different censoring schemes for different values of β and λ

β̂ λ̂

(β, λ) n m c.s MLE EM MLE EM

Bias MSE Bias MSE Bias MSE Bias MSE

10 1 -0.3509 0.1807 -0.3055 0.0956 -0.4086 0.3751 -0.3131 0.3318
12 2 -0.2609 0.1073 -0.1063 0.0268 -0.2298 0.1260 -0.1192 0.1057

(1.25,1.5) 75 15 3 -0.3948 0.2090 -0.3129 0.0985 -0.6539 0.7903 -0.2564 0.7338
20 4 -0.2811 0.1276 -0.2259 0.0631 -0.2734 0.2140 -0.1871 0.2175
25 5 -0.2725 0.1174 -0.2195 0.0495 -0.2567 0.1782 -0.1691 0.1555
10 1 -0.3487 0.1360 -0.3160 0.0772 -0.1784 0.2405 -0.1686 0.1903
12 2 -0.0542 0.0394 -0.0528 0.0901 -0.1275 0.1113 -0.1136 0.0511

(1.75,2) 100 15 3 -0.3526 0.1757 -0.3016 0.0912 -0.3358 0.3049 -0.2373 0.2762
20 4 -0.1386 0.0538 -0.1029 0.0558 -0.1628 0.1496 -0.1421 0.1040
25 5 -0.0982 0.0501 -0.0898 0.0242 -0.1422 0.1386 -0.1315 0.0757
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5. Illustrations using real data

In this section, a real-life data is utilised to demonstrate the inference methods proposed in this
paper. The data was previously studied by [14] and [15].
The data shows the running and failure times for a sample of devices from the larger system’s
eld-tracking research. The failure times are:
2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00, 1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 2.61,
2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45, 2.66.
The data was also previously considered by [16] and fitted for KE(β, λ) distribution. For evaluating
the goodness of fit, they used the Anderson-Darling test. The Anderson-Darling test statistic has
a value of 2.00757 and the related P-value is 0.0913729. Based on the aforementioned estimation
procedures, we have obtained the estimates of β and λ, which is included in Table 4.

Table 4: Estimates of β and λ for the real data

Bayes

n m Censoring scheme MLE EM SE LINEX

30 5 q = (0.25, 0.25, 0.5, 0.5, 1) β 1.2857 1.5756 1.5875 1.5173
Xi = (8, 3, 4, 1, 4) λ 0.5192 0.5739 0.5324 0.5338
Ri = (2, 1, 3, 4, 0)

30 7 q = (0.5, 0, 0, 0, 0, 0, 1) β 1.1000 1.3050 0.9374 0.9214
Xi = (7, 3, 3, 2, 3, 5, 0) λ 0.5355 0.5784 0.5875 0.5866
Ri = (3, 0, 0, 0, 0, 4, 0)

30 12 q = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) β 0.8453 1.1082 0.7944 0.7866
Xi = (5, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 4) λ 0.4445 0.4961 0.4869 0.4346
Ri = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5)

6. Conclusion

In this paper, we considered the problem of estimation of parameters of Kumaraswamy-exponential
distribution based on progressive type-I interval censored sample. The maximum likelihood esti-
mators of the parameters β and λ were obtained. Since the MLEs of the unknown parameters of
the distribution does not admit closed form, we employed the EM algorithm approach. The Bayes
estimators were also obtained using different loss functions such as squared error loss function
and LINEX loss function. To evaluate the Bayes estimators, Lindley’s approximation method was
applied. Based on simulation study, we have the following conclusions. We observed that the
performance of EM algorithm was quite satisfactory. In addition, it was found that for both β and
λ, the bias and MSE of the Bayes estimators under an informative prior are smaller than those of
MLEs. The performance of Informative prior was better than the Non-informative prior both β
and λ in terms of bias and MSE values. For both β and λ, Bayes estimators under LINEX loss
function perform better with regard to bias and MSE. The estimation methods employed in this
paper were also illustrated using real data sets.
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