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Abstract 

This paper introduces a new statistical distribution called length biased quasi suja distribution (LBQS). 

It explores its properties, including moments, moment generating function(MGF), characteristic 

function(CF), harmonic mean, reliability, hazard rate and reverse hazard rate. Order statistics of the 

above distribution is obtained. Furthermore, the paper also examines various entropy which measures 

the randomness of system, like Renyi entropy and Tsalli’s entropy. It also evaluates Bonferroni and 

Lorenz curves which are useful in measuring the inequality. It also discusses parameter estimation 

techniques specifically maximum likelihood estimation and likelihood ratio testing. Moreover, a 

simulation study has been conducted to demonstrate how well the distribution would perform in real-life 

situation. The validity of the distribution is also demonstrated with real-world data example of failure 

data, highlighting its potential for practical applications in data analysis. 
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1. Introduction

The weighted distributions are applied in various research areas related to biomedicine, reliability, 

ecology and branching processes. A number of continuous distributions are used like Weibull, lindley, 

exponential, lognormal and gamma for modelling this type of data. If x is the original observation with 

its pdf f(x), then in case of any bias in sampling appropriate weighted function, say w(x) which is a 

function of random variable will be introduced to model the situation. This concept of weighted 

distributions was given by Fisher [7] to model the ascertainment bias. Later Rao [13] developed this 

concept in a unified manner while modelling the statistical data when the standard distributions were 

not appropriate to record these observations with equal probabilities. As a result, weighted models 

were formulated in such situations to record the observations according to some weighted function. 

The weighted distribution reduces to length biased distribution when the weight function considers 

only the length of the units. The concept of length biased sampling was first introduced by Cox [5]. 

Weighted distributions are applied in various research areas related to reliability, biomedicine, ecology 

and branching processes. Dey et al [6] discussed weighted exponential distribution with its properties 

and different methods of estimation. Kilany [12] have obtained the weighted version of lomax 

distribution. Ahmad et al [1] have obtained the length biased weighted version of lomax distribution 

with properties and applications. Khan et al. [11] discussed the weighted modified weibull distribution. 

Rather and Subramanian [17] discussed the characterization and estimation of length biased weighted 

generalized uniform distribution. Recently Rather and Subramanian [19] also discussed on weighted 
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Sushila distribution with properties and applications. Ganaie R.A et. al [9] studied about how Uma 

distribution is applicable in engineering sciences. Saraja V D et al. [20] explored the length biased 

Tornumonkpe distribution, their properties, estimations and practical applications. Rashid Ganaie A 

et.al [16] formulated exponentiated ADYA distribution and studied their properties and applications. 

A new generalization of Akshaya distribution with applications in engineering science was studied by 

Rather and Subramanian [18]. Rather and Ozel [14] modelled Weighted Power Lindley distribution and 

its application on Life time data.  

Recently, Shanker [21] proposed a one parameter distribution suja distribution and studied its 

statistical properties, estimation of parameter using method of moment and method of maximum 

likelihood and applications to some real lifetime data and observed that Suja distribution gives much 

closer fit than several one parameter lifetime distributions. Recently, Al Omari and Alsmairan [2] 

obtained length-biased Suja distribution and studied its statistical properties and applications. Al-

Omari et al [3] proposed power length-biased suja distribution and discussed its properties and 

applications.  Alsmairan I. K [4] derived weighted suja distribution and discussed its statistical 

properties and applications to ball bearings data in safety engineering. Todoka et al [22] have studied 

on the cdf of various modifications of suja distribution and discussed their applications in the field of 

analysis of computer- virus propagation and debugging theory. 

In this paper, we proposed length biased quasi suja distribution. The quasi suja distribution, 

introduced by Shanker et al in [15], is a recently obtained two-parameter model for extreme right 

skewed data which contains suja distribution as particular case designed for various applications in 

engineering and medical sciences. Validity and significance of proposed model in modelling lifetime 

data was better than quasi suja distribution, exponential distribution, Lindley and erlang truncated 

exponential distribution.  

The paper is classified into following sections: Section 2 defines the proposed length biased 

quasi suja distribution and reliability. Some structural properties are discussed in Section 3. The 

likelihood ratio test is given in Section 4. Then, Renyi and Tsalli’s entropy measures of the LBQS 

distribution are obtained in Section 5. Section 6 describes the method of obtaining order statistics. 

Income distribution curve and estimation of parameters is discussed in section 7 and 8 respectively. 

Simulation study is shown in section 9. Finally, fitted the distribution to the real-life data and found to 

be fitting good compared to various other models. 

2. Length biased quasi suja distribution (LBQS)

2.1 Density and cumulative density functions 

The probability density function (pdf) and cumulative distribution function (cdf) of quasi suja 

distribution with parameters α and θ is defined by 
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Suppose X is a non -negative random variable with pdf f(x). Let w(x) be the non-negative weight 

function, then the pdf of the weighted random variable 𝑋𝑤 is given by 
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where w(x) is a non-negative weight function and ( ) = dxxfxwxwE )()()(  

For different weighted models, we have different choices of the weight function w(x). when w(x) = xc, 

the resulting distribution is termed as weighted distribution. In this paper, we are finding the length 

biased version of quasi suja distribution, so we will take c = 1 in weights xc, in order to get the length 

biased quasi suja distribution and its probability density function (pdf) is given by: 
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substituting equations (1) and (3) in (2) we obtain the density function of length biased quasi suja 

distribution as follows 
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and the cumulative distribution function (cdf) of LBQS distribution is obtained by  
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on simplification, the cdf of LBQS distribution is given by 
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 Graphs for the pdf and cdf of the LBQS distribution for several values of parameters are showed in 

Fig. 1 and Fig. 2. 
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Fig.1:  pdf plot of LBQS distribution Fig.2: cdf plot of LBQS distribution 

2.2   Survival, Hazard and Reversed hazard functions 

In this section, we discuss about the survival function, hazard and reverse hazard functions of the 

LBQS distribution. 

The survival function or the reliability function of the LBQS distribution is given by 
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The hazard function is also known as the hazard rate function, instantaneous failure rate or force of 

mortality and is given for LBQS distribution as 

)x(S

)x(f
)x(h l=

( ) )x,(()x,(

e)x(x x

−+−

+
=

−

6120213

45

The reverse hazard function of the LBQS distribution is given by 
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Fig. 3 and Fig. 4 represent graphs for the Survival function and Hazard rate function respectively of 

the LBQS distribution for several values of parameters. 
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3. Structural Properties

In this section, we investigate various structural properties of the LBQS distribution. Let X denotes the 

random variable of LBQS distribution with parameters α, θ and then its rth order moment E(Xr) about 

origin is given by 
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Putting r=1, we get the expected value of LBQS distribution as follows 
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Fig.3: Survival plot of LBQS distribution Fig.4: Hazard rate plot of LBQS distribution 
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3.1 Harmonic mean 

The harmonic mean of LBQS distributed random variable X can be written as 
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3.2 Moment generating function (MGF) and Characteristic function 

Let X have a LBQS distribution, then the MGF of X is obtained as 
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Similarly, we obtained characteristic function of the LBQS distribution as follows 
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4. Likelihood Ratio Test

Suppose X be a random sample from the LBQS distribution. We use the following hypothesis 

 𝐻𝑜: 𝑓(𝑥)=𝑓 (𝑥; α, 𝜃) against 𝐻1: 𝑓(𝑥)=𝑓l (𝑥; α, 𝜃)   

to test whether the random sample of size n comes from the quasi suja (QS) distribution or the LBQS 

distribution. The test statistic used is 
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5. Entropy Measures

The idea of entropy is important in various areas such as probability and statistics, physics, 

communication theory and economics. Entropy measures quantify the diversity, uncertainty, or 

randomness of a system. Entropy of a random variable X is a measure of variation of the uncertainty. 

5.1 Renyi Entropy 

The Renyi entropy is important in ecology and statistics as index of diversity. It was proposed by 

Renyi. The Renyi entropy of order β for a random variable X is given by 
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5.2 Tsalli’s Entropy 
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6. Order Statistics

Consider X(1), X(2), ...,X(n) be the order statistics of a random sample X1, X2, ..., Xn drawn from the 

continuous population with pdf f(x) and cdf Fx(x), then the pdf of rth order statistic X(r) is given by 
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Using Equations (4) and (5) in Equation (7), the pdf of rth order statistic X(r) of the LBQS distribution is 

given by 
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pdf of higher order statistics is given by 

( ) 1

3

3

3

45

120

62

120

−
−













+

+















+

+
=

n
x

)n(X

)x,()x,(exx
n)x(f

  pdf of first order statistics is given by 
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7. Income Distribution Curve

The bonferroni and the Lorenz curves are not only used in economics in order to study the income and 

poverty, but it is also being used in other fields like reliability, medicine, insurance and demography. 

The bonferroni and lorenz curves are given by 
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8. Estimation

In this section, we will discuss the maximum likelihood estimators (MLE’s) of the parameters of the 

LBQS distribution. Consider X1, X2, ..., Xn be the random sample of size n from the LBQS distribution, 

then the likelihood function is given by 
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Differentiating (8) w.r.t θ and α we get the following likelihood equations 
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Because of the complicated form of the likelihood equations, algebraically it is very difficult to solve 

the system of nonlinear equations. Therefore, we use R-software for estimating the required 

parameters.  

9. Simulation Study

In this section, a simulation study is conducted to examine the performance of maximum likelihood 

estimators of the LBQS distributions using R-software. We generated random number for different 

sample sizes and different parameter values. We examined the mean estimates, biases, mean square 

errors and variances of the MLE’s. The simulation results for different parameter values of LBQS 

distribution is presented in table 1. It reveals from the table that as the sample size increases, biases, 

MSEs and variances of the MLE’s of the parameters become smaller respectively. Fig. 5, Fig. 6, Fig.7, 

Fig. 8, Fig.9, Fig.10, Fig.11 and Fig. 12 shows histogram graphs of simulated data. 

Table 1: The biases variances and MSEs of LBQS distribution for different parameter values 

n θ=2 α=8 

Bias Variance MSE Bias Variance MSE 

20 -0.1663918 0.07275417 0.1004404 9.1904 113.4698 197.9333 

30 -0.02764637 0.09921434 0.09997866 4.44103 79.39125 99.114 

50 -0.07826967 0.04104919 0.04717534 5.231117 48.07655 75.44114 

80 -

0.0005882063 

0.0192557 0.01925604 1.946187 26.27957 30.06722 

100 -0.06645069 0.0126943 0.01710999 2.637763 18.40008 25.35787 

200 0.0317005 0.00394192 0.004946842 -0.8056873 7.551154 8.200286 

300 -0.003812567 0.004438482 0.004453018 0.7725432 4.295084 4.891907 

θ=3 α=0.8 

Bias Variance MSE Bias Variance MSE 

20 0.1077014 0.1079198 0.1195194 0.10619 0.7403965 0.7516728 

30 0.05250122 0.08043579 0.08319217 -0.095104 0.3896097 0.3896097 

50 0.01232364 0.07130409 0.07145596 -0.1934582 0.256577 0.2940031 

80 0.07141307 0.03529702 0.04039685 -0.1773731 0.2315595 0.2630207 

100 0.03355058 0.01024581 0.01137146 0.01653806 0.05744206 0.05771557 

200 -0.02356278 0.01017962 0.01073482 0.009685886 0.05365214 0.05374595 

300 0.01235768 0.00395297 0.004105682 -0.03921203 0.0146893 0.01622688 

θ=6 α=0.3 

Bias Variance MSE Bias Variance MSE 

20 -0.2409736 0.8117087 0.869777 0.4400109 0.6451856 0.8387952 

30 0.2179345 0.4019304 0.4494258 -0.03356909 0.04080886 0.04193574 

50 0.2340156 0.3274527 0.382216 0.00622955 0.03390483 0.03394364 

80 0.15726 0.08666046 0.1113912 -0.02508142 0.01842258 0.01905166 

100 -0.1231709 0.06968093 0.08485199 0.02899184 0.01667758 0.01751811 

200 0.07676134 0.06580578 0.07169809 0.0002268879 0.007942669 0.007942721 

300 0.023855 0.0234289 0.02399796 0.009857188 0.005338747 0.005435911 

θ=8 α=0.5 

Bias Variance MSE Bias Variance MSE 

20 1.798051 6.027411 9.260398 0.01659618 0.3433603 0.3436357 

30 0.5363827 2.157112 2.444818 0.04257179 0.2365076 0.23832 
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, 

50 0.7529427 1.423766 1.990688 -0.1185865 0.09495143 0.1090142 

80 0.6645098 0.729458 1.171031 -0.1246661 0.04489143 0.06043306 

100 0.1758446 0.4423283 0.4732496 -0.02355057 0.05949109 0.06004572 

200 0.1146044 0.1470872 0.1602214 -0.03848292 0.01408208 0.01556301 

300 0.1408959 0.06484056 0.08469221 -0.04973074 0.007839619 0.01031277 

 Fig.5: Simulation histogram when n=20, θ=2, α=8 Fig.6: Simulation histogram when n=300, θ=2, α=8 

Fig.7: Simulation histogram when  n=20, θ=3, α=0.8 Fig. 8: Simulation histogram when n=300, θ=3, α=0.8 
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Fig.9: Simulation histogram when n=20, θ=6, α=0.3 Fig. 10: Simulation histogram when n=300, θ=6, α=0.3 

Fig.11: Simulation histogram when n=20, θ=8, α=0.5 Fig.12: Simulation histogram when n=300, θ=8, α=0.5 

10. Application

In this section we fitted LBQS distribution on a real-life time data set and compared the model with 

various distributions namely, Quasi Suja (QS), Exponential, Lindley, Erlang truncated exponential 

(ETE) distribution. 

The data set is the period between failures for three repairable objects. This data set is provided in 

Hassan A.S [10] and explored later by Gadde S. R [8] 

1.43, 1.23, 1.46, 0.11, 0.94, 0.30, 0.71, 4.36, 1.82, 0.77, 0.40, 2.37, 2.63, 1.74, 0.63, 1.49, 4.73, 1.23, 3.46, 2.23, 

1.24, 2.46, 0.45, 1.97, 0.59, 0.70, 1.86, 0.74, 1.06, 1.17. 

In order to compare LBQS distribution with the above-mentioned distributions, we consider the criteria 

like Bayesian information criterion (BIC), Akaike information criterion (AIC), Akaike information 

criterion corrected (AICC) and -2 logL. Better distribution is said to be the one which has lower values 

of AIC, BIC, AICC and -2logL. These criteria can be calculated by using the following formulae. 

1

12
AICICC222

−−

+
+=−=−=

kn

)k(k
A,LlognlogkBIC,LlogkAIC
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k is the number of parameters; n is the sample size and -2logL is the maximized value of log likelihood 

function. They are calculated for above mentioned data set and showed in table 2. 

Table 2: Parameter estimations and goodness of fit test statistics 

Fig. 13: Density curve of data set 

Data 

set 

Distributions Parameters MLE 

(Standard 

error) 

-2logL AIC BIC AICC 

1 

LBQS α 3.06130 

(2.37265) 

79.26209 83.26209 86.06448 83.706 

θ 1.29691 

(.16734) 

QS α 0.29151 

(0.29806) 

86.74344 90.74344 93.54584 91.632 

θ 2.72816 

(0.34681) 

ETE β 1.02149 

(78.67718) 

86.01075 90.01075 92.81315 90.455 

θ 1.00673 

(133.7592) 

Exponential θ 0.64822 

(0.11835) 

86.01075 88.01075 89.41195 88.153 

Lindley θ 0.9762395 

(0.1345043) 

83.09456 85.09456 86.49576 85.238 
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 From table 2 and density curve of data shown in Fig.13, it is evident that the LBQS distribution 

leads to better fit than the Quasi Suja, Exponential, Lindley, ETE distributions. 

11. Conclusion

In this paper, a new modification of quasi suja distribution is executed namely length biased  quasi suja 

distribution with two parameters and its different statistical properties are discussed and investigated. 

The distribution is generated by using the length biased technique and taking the two-parameter quasi 

suja distribution as the base distribution. The parameters of the executed distribution are obtained by 

using the maximum likelihood estimator. Finally, the usefulness of newly introduced distribution is 

discussed by applying the to real life data set and the result of the data set witnessed that the length 

biased quasi suja distribution fits better than the quasi suja, exponential, erlang truncated exponential, 

and lindley distributions. 
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