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Abstract 

This paper introduces and discusses the novel asymmetric class of distributions that have the name 

inverse power Lomax power series (IPLPS). This class of distributions is produced by combining the 

inverse power Lomax with the power series distributions. This combined approach provides an 

opportunity for the creation of flexible distributions with significant physical implications in many 

fields, like biology and engineering. The IPLPS distributions encompass several new compound 

distributions as sub-models along with a new class of compound distributions. Many statistical 

features, including moments, quantile function, conditional moments, inverse moments, uncertainty 

measures, and probability-weighted moments, are obtained. As a special model of the generated class, 

the parameters of the inverse power Lomax Poisson distribution are estimated by different methods, 

including least squares, Cramér von Mises, maximum likelihood, and weighted least squares. 

Through an extensive simulation analysis, the execution of different parameter estimation techniques 

for the inverse power Lomax Poisson model is performed to show its validity based on its mean 

squared error and absolute bias. Two real datasets are utilized to show the practicality of the newly 

generated model. Results show that the inverse power Lomax Poisson distribution provides the most 

fitted model for these datasets in comparison to other distributions such as power Lomax, Marshall-

Olkin power Lomax, power Lomax Poisson, and Topp-Leone Lomax distributions. 

Keywords: Power series distributions, inverse power Lomax distribution, moments, 

compounding, Havrda and Charvat measure, Cramér von Mises.  

1. Introduction

Recent academic focus has shifted towards the creation of new univariate distributions. 

Univariate distributions, whether for theoretical, practical, or combined purposes, hold significant 

importance in statistical and related fields. Analyzing the reliability of experimental failure 

components is a primary objective. It's often assumed that these failures occur due to certain 

processes, yet a thorough investigation into the causes of component failure seems lacking; see 

Barreto-Souza et al. [1]. Consider a system's lifetime composed of N components, and N is the 

discrete random variable that follows geometric, Poisson, logarithmic, or binomial distributions.  
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Power series (PS) is the general form of these chosen distributions. For further information on 

the PS class of distributions, refer to Noack [2]. Suppose that X denotes the continuous random 

variable for each component. Consequently, the random variable X= Min(X1,X2,…,XN) or X= 

Max(X1,X2,…,XN) signifies any component lifetimes depending on whether they are arranged in a 

series or in parallel structure, respectively. 

 Suppose that the random variable N associated with the PS class of distributions, characterized 

by a probability mass function, is given by: 

( ) , 1, 2,.......
( )

n
na

P N n n
C




= = =

where 0na  only dependent on n, and 
1

( ) n
n

n

C a 


=

=   is finite. 

Several compound lifetime models have been created by combining several lifetime 

distributions with the PS class of distributions. For instance, the exponential PS [3], the Weibull-PS 

[4], Lindley-PS [5], exponential Pareto-PS [6], Burr XII-PS [7], exponentiated power Lindley-PS [8], 

generalized Burr XII-PS [9], odd log-logistic-PS [10], Topp-Leone generalized exponential-PS [11], 

power function-PS [12], inverse gamma-PS [13], inverse exponentiated Lomax-PS [14], beta 

exponential-PS [15],  unit exponentiated half logistic-PS [16], inverted Nadarajah-Haghighi-PS [17], 

power quasi Lindley-PS [18], unit Burr XII-PS [19], unit Gompertz-PS [20], log-logistic modified 

Weibull-PS [21],  power inverted Topp-Leone- PS [22] distributions, among others. 

Numerous writers have highlighted the significance and usefulness of inverted distributions in 

many fields, including engineering, economics, and medicine. In this work, the inverse power 

Lomax (IPL) distribution with three parameters, which was recently presented by Hassan and Abd-

Allah [23], attracts our attention. The probability density function (PDF) and the cumulative 

distribution function (CDF) of the IPL distribution, having , 0,   as shape parameters, and its 

scale parameter 0,   is defined, respectively, as follows: 
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− +
−

− +
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and, 

( ) 1 ; 0.
x

G x x
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



−
− 

= +   
 

(2) 

Due to the IPL distribution's non-monotonic failure rate, it offers greater flexibility, making it more 

appropriate for various practical data modeling and analytic applications. Hassan and Abd-Allah 

[23] looked at a few statistical characteristics and provided estimators of the parameters in censored

samples. Shi and Shi [24] studied how to statistically estimate parameters of the IPL distribution

when employing progressive first-failure censoring. The inference of the IEL distribution based on

generalized order statistics was discussed by Nassr et al. [25].

This paper's primary objective is to create a novel asymmetric compound class of distributions 

that is produced by combining the IPL and PS distributions to analyze a system with parallel 

components; this system is known as the inverse power Lomax power series (IPLPS). We are 

introducing this class due to the following:    

▪ To design several distinct models with different symmetric and asymmetric density

and hazard rate functions (HRFs) shapes.

▪ To go over a few of its statistical characteristics, including moments, quantile function

(QF), conditional moments, uncertainty measures, inverse moments, and probability-

weighted moments (PWMs).
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▪ To estimate the IPLPS class of distribution parameters, some estimation techniques are

taken into consideration, such as weighted least squares (WLS), maximum likelihood

(ML), Cramér von Mises (CM), and least squares (LS).

▪ To evaluate the effectiveness of various estimates using specific metrics, a dedicated

simulation study is conducted for one special model, namely the IPL Poisson (IPLP)

distribution.

▪ The IPLP distribution, as a sub-model within this class, demonstrates superiority over

certain other distributions, as revealed through an analysis of two real-data

applications.

This paper’s contents are arranged as follows. The IPLPS distributions are introduced in Section 

2. Many structural properties of the class are provided in Section 3. Section 4 provides certain

examples of the suggested distributions. Parameter estimators for the IPLPS class using different

classical methods are shown in Section 5, while Section 6 provides simulation studies. Section 7

presents the application of the suggested distribution’s particular case, whereas Section 8 offers

concluding findings.

2. Construction of the IPLPS Class

The IPLPS class is introduced in this section. This class of distributions is motivated by a key 

assumption that renders it suitable for application in each survival and reliability study. Specifically, 

it assumes that a device’s failure arises from the presence of an unspecified number of initial faults, 

denoted as N, of the same type. These faults remain undetected until they lead to failure and are 

subsequently fixed. 

If we consider Xi, i=1,…,N to represent the time until device failure caused by the 𝑖th defect 

supposing that these Xi’s are independent and identically distributed (iid) IPL random variables, 

independent of N, then a truncated PS random variable, a distribution within the IPLPS class, can 

be utilized to model the time until the last failure. This proposed class of distributions can effectively 

model systems with parallel components, as many biological and industrial applications frequently 

do. Currently, let us explore a parallel of N iid random variables from the IPL distribution, denoted 

as Xi, where i=1,…,N. 

Assuming that X=max 1
{ }N

i i
X

= be iid breakdown times of N items connected at a parallel 

structure, then the conditional CDF of X N is introduced as: 
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where G(.) is the CDF (2) of the IPL distribution. The joint CDF is given as follows: 
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  . 

Hence, the IPLPS class is represented by the marginal CDF of X, which takes the form: 
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where, ( , , , )     denotes the set of parameters, , 0,   represent scale parameters and, 

, 0    indicate shape parameters. Another simplified form for (3) is as follows: 

 
1

( ; ) ( ; ) ; 0,
( )

F x C k x x
C

 

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  Also, the PDF of the IPLPS class of distributions can be 

introduced by: 

 
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The survival function and HRF associated to the IPLPS distribution are expressed as follows, 

respectively: 
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Proposition: When θ approaches zero, the IPL distribution appears as a limiting special case of 

the IPLPS distributions  
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which represents the CDF (2) of the IPL distribution. 

Lemma 1: For the IPLPS class of distributions, the density function can be expressed as an infinite 

mixture of IPL distributions with parameters ( , , )n   ,  

1

( ; ) ( ) ( ; , , ).

n
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Proof:  The following is an alternative form for the PDF given in Equation (5): 
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(6) 

where, ( ; , , )g x n    refers to the IPL distribution's density function (1) with parameters ( , , ).n    

3. Some Statistical Properties

Here, several distinct statistical features of the IPLPS distributions are derived, which may 

include the quantile function, 𝑟th moment and inverse moment, PWMs, conditional moments, and 

entropy measures.  

3.1 Quantile Function 

The QF of the IPLPS class of X, denoted by ( )1( ) ,ux Q u F u−= =  is represented as follows:
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Particularly, the median, denoted by m, of the IPLPS distribution, is derived by letting 𝑢 = 0.5 in 

Equation (7). 

3.2 Moments and Inverse Moments 

Most important properties for any distribution are concluded using ordinary moments. The rth 

moment of X can be introduced by using Equation (6) as follows: 
( 1)
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After simplification, the 𝑟th moment of the IPLPS distribution, can be written as: 

1
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where, B(.,.) denotes the beta function. For r=1 in Equation (8), the mean of the IPLPS distribution is 

given.  Also, we can get the IPLPS moment generating function from the moments by the following 

equation: 

0 0 1
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 Furthermore, the 𝑟th inverse moment for the IPLPS distribution is derived using Equation (6) which 

leads to: 
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3.3 Conditional Moments 

Studying the conditional moments is very important in lifetime models. The conditional 

moments of the IPLPS distribution, defined by ( )| ,rE X X t can be introduced by the following

lemma. 

Lemma 3.1: Supposing that X has the IPLPS ( ; )x  , the rth conditional moment of X, is obtained such 

that:  
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where B(.,.) refers to the incomplete beta function. 

Proof: Since 

( ) 1
| ( ; ) .

( ; )
r r

r

t

M E X X t x f x dx
F t






=  = 

Hence, by inserting the PDF (4) in rM then 
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By simplifying, then the rth conditional moment of the IPLPS class of distributions can be rewritten 

as, 

( )
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where B (.,., x) is the incomplete beta function and ( ; )F x  represents the IPLPS survival function. 

3.4 Probability-Weighted Moments 

  Greenwood et al. [26] were the first to propose the PWM approach, with the main goal being the 

derivation of quantiles and parameter estimators for several generalized distributions that are only 

analytically represented in reverse form. Eventually, for a random variable X, the PWM is expressed 

by the following equation: 
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Substituting Equations (4) and (5) in Equation (9) we get: 
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An expansion for  ( )( ; )
r

C k x   can be written as follows: 
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After that, using the Gradshteyn and Ryzhik [27] relation, which states that; for any positive integer 

m, the following expansion, for a positive integer r, is used:  
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In addition, 
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Assuming that 1,z n= −  then Equation (14) is rewritten in this form: 
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Hence, the PWM of the IPLPS class of distributions is represented by placing Equations (13) and (15) 

into (10) and after some simplification, 
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Hence, 
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= and  B (.,.) is the beta function. 

3.6 Entropy Measures 

Entropy serves as a metric for quantifying the uncertainty within data and finds applications 

across diverse fields such as science, physics, and engineering. Essentially, higher entropy values 

indicate greater uncertainty within the data. In this sub-section, expressions for certain entropy 

measures within the IPLPS class are derived. Let X refers to random variable drawn from IPLPS 

distributions, so the Rényi entropy (RE) can be represented by the following equation: 

0

1
log ( ; ) , 1, 0.

1
RI f x dx   



 
 =  

−  
 
 (16) 

Suppose ( )( )
0

; ,IP f x dx






=  then by using PDF (5) and expansion (14) in integral IP, we have 

( )

 
 

( 1)
1( 1)

10

1 ( ; ) ,
( )

n
n

n

x
IP x na k x dx

C

  
 






 

− + −
−− +

=

  
= +    

    
 (17) 

But     1 1
1

11 0

( ; ) ( ; ) , ( 1), 1,2,..
n m m

n m m
n m

a
na k x a c k x c m m

a

 

 
 

− +• •

= =

   
= = + =   

      
 

According to Ref. [27], the previous equation can be expressed as: 

   1
,1

1 0

( ; ) ( ; ) .
n m

n m

n m

na k x a d k x




 

 
−

= =

 
= 

  
  (18) 

By using Equation (18) in the last term in (17), then 

( )

( )

0

1

1
1 ,

( 1) 1 ( 1) 1
, ,

.
( )

m

m

m
m

m

IP B m

a d

C


  





   
  

 

   





=

−

−

 + − + −
=  + + − 

 

 =



(19) 

Hence, by substituting (19) in Equation (16), the RE of the IPLPS class of distributions takes the 

following form:

RT&A, No 3 (79) 
Volume 19, September 2024

516



A.G. Al-Kilany, Amal S. Hassan, L.S. Diab, and E.S. El-Atfy 

A NOVEL ASYMMETRIC COMPOUND CLASS OF DISTRIBUTIONS 

0

1 ( 1) 1 ( 1) 1
( ) log , .

1
R m

m

I B m
   

   
  



=

  + − + −
=  + + −  

−    


Tsallis entropy (TE), introduced by Tsallis [28] as a thermodynamic measure, has a wide 

application across various real-world domains. Generally, TE offers intriguing explanations in 

physical, chemical, and biological phenomena. The TE measure is represented as: 

0

1
1 ( ) , 1, 0.

1
TEI f x dx  



 
 = −  

−  
 



Using the similar procedure discussed above, the TE is given by: 

0

1 ( 1) 1 ( 1) 1
1 , ( 1) .

1
TE m

m

I B m
   

  
  



=

   + − + −
  = −  + + −  −     



4. Special Sub-Models

Here, certain special cases of this class are introduced. Graphs depicting the PDF and HRF are 

presented to showcase the IPLP distribution' flexibility for some chosen values for the parameters. 

• If 1 = , the IPLPS class offers the inverse Lomax PS class of distributions (new-class).

• Letting ( ) 1C e = − , the IPLPS distribution turns to the IPLP distribution.

• Supposing that 1 = , ( ) 1C e = − and  the IPLPS distribution provides the IL Poisson (ILP)

distribution (new).

• Setting ( ) log(1 )C  = − − , the IPLPS class becomes the IPL logarithmic (IPLL) distribution

(new).

• By putting 1, = and ( ) log(1 )C  = − − , the IPLPS distribution provides the IL logarithmic

(ILL) distribution (Buzaridah et al. [29]).

• Considering that 1( ) (1 )C    −= − , the IPLPS distribution introduces the IPL geometric

(IPLG) distribution (new).

• By letting 1, =  and 1( ) (1 ) ,C    −= −  the IPLPS distribution presents the IL geometric

(ILG) distribution (new).

• Substituting ( ) (1 ) 1mC  = − − , that yields the IPL binomial (IPLB) distribution (new).

• Taking 1, =  besides ( ) (1 ) 1,mC  = − −  it gives the IL binomial (ILB) distribution.

The IPLP Distribution 

By setting 1( )C e −= , and ( )C e =  in (4) and (5), the PDF and CDF of the IPLP distribution 

is obtained by:   

( )

1

1 ( ; )
1 1 ; 0,

1
( ; ) k xx

x e x
e

f x




 







− −
−

− −
 
+   

−  
=

( ; )

1
1

; 0,
1

( ; )
k xe

x
e

F x





−


−
=

where, ,  denote the shape parameters and ,  refer to the scale parameters. The HRF of the IPLP 

distribution is given as follows: 
1

1 ( ; )

1
( ; )

1 ; 0.( ; )
k x

k x

x e x
x

e e
H x


  

 






− −
− − − 

+    −   

=

The PDF and HRF plots for the IPLP distribution are given in Figure 1. 
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Figure 1: PDF and HRF plots for specific parameter values of the IPLP distribution. 

Figure 1 indicates that the IPLP distribution's density may exhibit reversed-J, skewed to the right, or 

unimodal shapes. Moreover, the HRF can take on increasing, decreasing, upside down, or reversed 

J-shaped forms at different parameter values. This suggests that the IPLP distribution is versatile for

fitting datasets with diverse shapes.

5. Parameter Estimation

Here, the parameter estimation for the IPLPS distributions is discussed by applying the ML, LS, 

WLS, and CM methods. 

5.1 Maximum Likelihood Estimators 

Let x1, x2, …, xn be a simple random sample from the IPLPS class of distributions with a set of 

parameters ( ), , , .
T

    = The likelihood function of this sample, denoted by nL  based on the 

observed random sample of size 𝑛 from density (5) is given by: 

( )
1

1

1

1 ( ; ) .
( )

n n

n ii
i

x
L x C k x

C







  

− −
−

− −

=

  
= +    

   


The log-likelihood, say log ,nL , can be expressed as: 

( ) ( )

( )( )

1 1

1

log log log ( ) ( 1) log ( 1) log 1

log ( ; ) ,

n n
i

n i

i i

n

i

i

x
L n n C x

C k x


    





−

= =

=

 
= − − + − + +  

 

+

 



(20) 

Hence, by differentiating (20) with respect to , ,    and ,  respectively, yields 

( )

( )1 1

( ; )log
log 1 1 log 1 ,

( ; )

n n
in i i i

ii i

x x xC k xL n

C k x


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 

     

−
− − −
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 
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1

1 1 1
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
  



  

    

− −
− − −

−
= = =

 +  = − − + +
   +  

  

( )

( )

1

22
1 1

( ; )log
( 1) 1 ,

( ; )

n n
in i i

ii ii
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and, 

RT&A, No 3 (79) 
Volume 19, September 2024

518



A.G. Al-Kilany, Amal S. Hassan, L.S. Diab, and E.S. El-Atfy 

A NOVEL ASYMMETRIC COMPOUND CLASS OF DISTRIBUTIONS 

( )

( )1

( ; )log ( )
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n
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xC k xL n nC

C C k x
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−
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Then the ML estimates (MLEs) for the parameters , ,    and ,  denoted by ˆ ˆˆ , ,    and ˆ, can be 

derived by setting ( ) , ( ), ( )n n nL L L        and ( )nL   to be zero and solving these

equations numerically. 

5.2 Least Squares and Weighted Least Squares Estimators 

Consider x (1), x(2), …, x(n) refers to an observed ordered sample and x1, x2, …, xn represents n random 

samples from the IPLPS distribution. Johnson et al. [30] claimed that the distribution's expectation 

and variance are determined independently of the unknown parameter by  

( )( )( ) ,
1

i
i

E F X
n

=
+

 and, ( )( ) 2

( 1)
( ) ,

( 1) ( 2)
i

i n i
Var F X

n n

− +
=

+ +

where ( )( )iF X indicates the CDF of any given distribution and X(i) denotes the statistic of order i. 

So, the LS estimates (LSEs) and WLS estimates (WLSEs) can be given by the minimization of the sum 

of all squared errors 
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2

( ) ( )

1

( ) ( ; ) ( ; ) .
n

i i i
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The LSEs and WLSEs of , ,   and , are produced by the minimization of the preceding function 
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Based on Equation (21), the LSEs 1 1 1
ˆ ˆˆ , ,    and 1̂ are provided by using 1,iv = while the WLSE 

2 2 2
ˆ ˆˆ , ,   and 2̂ are obtained by putting 

( ) ( )
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2
1 2
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These estimates can be given by solving each of the following equations numerically. 
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5.3 Cramèr –von-Mises Estimators 

This method can be defined as a type of estimator that relies on minimal distance principles 

since it relies on the disparity between the empirical distribution function and the CDF estimate. 

According to Macdonald [31], in this method, the CM estimator`s are presented as the minimization 

of the given equation with respect to , , ,   and , respectively, 
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The CM estimates (CMEs) 3 3 3
ˆ ˆˆ , , ,   and 3̂ can be obtained by differentiating the previous 

equation with respect to , , ,   , respectively, and equating it to zero. 

6. Simulation Study

      For each estimation problem, the investigation of the estimator's properties is very important. 

Analytical study of the obtained expressions for the estimators can't be effective due to their 

complexity. As a result, a numerical study will be established, handling the estimates' sampling 

distribution independently. This estimation is conducted in order to assess the estimators presented 

at the preceding section. All calculations are produced by using the Mathematica11.3 program. The 

performances of the different estimates will be compared according to their absolute bias (AB) and 

mean squared error (MSE). These numerical procedures will be shown by steps below: 

Step 1: 1000 random samples given the sizes of 50, 100, 150, and 200 are conducted from the inverse 

power Lomax Poisson distribution. 

Step 2: Four cases of parameter values have been selected such that: 

 Case 1 ( )0.2, 0.5, 0.5, 0.5    = = = = , Case 2 ( )0.1, 0.7, 0.5, 0.5    = = = =  , 

Case 3 ( )0.35, 0.75, 0.5, 0.5 ,    = = = = Case 4 ( )0.7, 0.25, 0.5, 0.5 .    = = = =    

Step 3: The MLEs, LSEs, WLSEs, and CMEs are derived for each unknown parameter. 

Step 4: The ABs and MSEs of different estimates of unknown parameters are calculated. 

The results are written down in Tables A.1 to A.4 (Appendix A). By the help of these tables, the 

following conclusions can be concluded to predict the performance for all these different estimates 

• For fixed value of   = 0.5 and = 0.5, ABs and MSEs for each  estimates and   estimate

values in the MLEs decrease while sample size increases (see Table A.1).

• For fixed values of   and, the MSEs of CMEs for and   are decreasing and the sample

size will be increasing in the same time (see Table A.3).

• For 0.75, = and for fixed values of  and , the MSEs of the WLSEs increase as the sample

size increases (see Table A.2).

• By increasing the sample size, the ABs of MLEs at 0.35 = and 0.75 = decrease

consistently, for fixed values for  and   as shown in Table A.3.
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• At n = 50 and 0.5, =  the MSEs have the smallest values for all different sets of parameters

at 0.35 = and 0.75 = , as indicated in Table A.4.

• As the sample size increases, it is evident through all estimation methods that both MSEs

and ABs decrease, as demonstrated in Table A.1 for instance.

• Almost in all cases, the estimated MSEs of the MLEs are the smallest compared to other

estimation methods across all parameter values.

7. Data Analysis

This section presents the application of the IPLP model on two real data sets, illustrating its 

practical adaptability and utility. The IPLP distribution is contrasted with alternative models 

including the power Lomax (PL) [32], PL Poisson (PLP) [33], Topp-Leone Lomax (TLLO) [34], and 

Marshall Olkins PL (MOPL) [35] distributions for two real datasets. 

      The first dataset has been introduced by Murthy et al. [36], represents 84 observations recording 

the failure time for specific aircraft windshield model. The dataset is as follows: 

0.04 1.866 2.385 3.443 0.301 1.876 2.481 3.467 0.309 1.899 

2.61 3.478 0.557 1.911 2.625 4.57 1.652 2.3 3.344 4.602 

1.757 3.578 0.943 1.912 2.632 3.595 1.07 1.914 2.646 3.699 

1.124 1.981 2.661 3.779 1.248 2.01 2.224 3.117 4.485 1.652 

2.229 3.166 2.688 3.924 1.281 2.038 2.823 4.035 1.281 2.085 

2.89 4.121 1.303 2.089 2.902 4.167 1.432 4.376 1.615 2.223 

3.114 4.449 1.619 2.097 2.934 4.24 1.48 2.135 2.962 4.255 

1.505 2.154 2.964 4.278 1.506 2.19 3 4.305 1.568 2.194 

3.103 2.324 3.376 4.663 

To examine the utility of the proposed models, various criteria measures, including -2Log-likelihood 

(L*), Akaike information criterion (A*), Bayesian information criterion (B*), consistent Akaike 

information criterion (C*), the Kolmogorov-Smirnov distance (K*) and its p-value (K*-PV), and CM 

statistics (W*) are evaluated. In general, the smaller the value of these statistics, a better fit model for 

the data will be found.  Table 1 offers MLEs for all models that are suggested, and Table 2 lists several 

goodness of fitting metrics.  

Table 1: MLEs for all parameters of the models fitted to first dataset 

Model ̂ ̂ ̂ ̂

IPLP 0.1987 4.4769 0.011 3.9019 

PL 22.4127 2.3992 270.085 ____ 

PLP 121.997 1.6083 332.485 3.1412 

TLLO 3.7045 4.1343 0.1044 ____ 

MOPL 7.5277 1.417 7.5784 18.0908 

Table 2: Statistical metrics for all models according to the first dataset 

Model L* A* B* C* K* W* K*-PV 

IPLP 310.726 318.726 319.232 328.449 0.06679 0.05164 0.823436 

PL 524.280 530.279 530.579 537.572 0.0717773 0.06906 0.752356 

PLP 544.968 552.968 553.475 562.692 0.0713355 0.05521 0.758912 

TLLO 464.11 470.11 470.41 477.403 0.132497 0.38564 0.095490 

MOPL 616.978 624.978 625.484 634.701 0.0706109 0.05595 0.769575 

Table 2 clearly indicates that among all the models fitted, the IPLP model exhibits the lowest values 

for statistical measures. Hence, it could be regarded as the best model. Figure 2 illustrates non-

parametric plots for the first dataset, encompassing total time on test (TTT), box plot, and percentile- 

percentile (PP) plots. Furthermore, Figure 3 presents the estimated cumulative and density functions  
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for the fitted models. 

Figure 2: The TTT plot, Box plot, and PP-plot for first data 

Figure 3: Estimated CDF and PDF for the models fitted to the first dataset. 

Depending on Figure 3, the IPLP distribution provides the closest fit to the provided data, and then 

it is the best model among the other models to analyze these data. 

Data 2: This dataset represents 63 aircraft windshield service times, presented by Murthy et al. [36]. 

The data can be shown as follows:  

0.046 1.436 2.592 0.14 1.492 2.6 0.15 1.58 2.67 0.248 

1.719 2.717 0.28 1.794 2.819 0.313 1.915 2.82 0.389 1.92 

2.878 0.487 1.963 2.95 0.622 1.978 3.003 0.9 2.053 3.102 

0.952 2.065 3.304 0.996 2.117 3.483 1.003 2.137 3.5 1.01 

2.141 3.622 1.085 2.163 3.665 1.092 2.183 3.695 1.152 2.24 

4.015 1.183 2.341 4.628 1.244 2.435 4.806 1.249 2.464 4.881 

1.262 2.543 5.14  
Table 3 lists the MLEs for all models that are suggested, while Table 4 gives the numerical values of 

the statistical metrics.   

Table 3: MLEs for the unknown parameters of the models fitted to the second dataset 

Model ̂ ̂ ̂ ̂

IPLP 0.2238 3.8211 0.0233 2.0577 

PL 108.647 1.6327 422.985 ______ 

PLP 131.468 1.3335 256.861 1.8047 

TLLO 1.9449 4.5615 0.0834 ______ 

MOPL 0.7228 3.1157 0.0161 69.0443 
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Table 4: Statistical metrics for the proposed models according to the second dataset 

Model L* A* B* C* K* W* K*-PV 

IPLP 536.838 544.839 545.529 553.411 0.0684147 0.056686 0.909991 

PL 633.596 639.596 640.002 646.025 0.109307 0.0945244 0.409648 

PLP 545.928 553.928 554.617 562.5 0.0898046 0.0571536 0.656499 

TLLO 569.62 575.62 576.026 582.049 0.145844 0.273631 0.123926 

MOPL 542.74 550.74 551.429 559.312 0.137781 0.204885 0.166429 

Results in Table 4 show the utility of the IPLP model as it has the lowest L*, A*, B*, C*, K*, and W* 

values and has the greatest K*-PV compared to the others, which indicates that the IPLP distribution 

is the best model. In addition, Figures 4 and 5 give TTT Plot, box plot, and PP-plot, along with the 

estimated cumulative and densities of the fitted models plot as well, respectively, for the data. 

Figure 4: The TTT plot, box plot and PP-plot for second data 

Figure 5: The estimated CDF and PDF for the models fitted to the second dataset 

Figure 5 demonstrates that the IPLP distribution closely aligns with the histogram, indicating its 

superiority over other models for analyzing this data. 

8. Concluding Remarks

A novel asymmetric four-parameter IPLPS class of distributions formed by combining the inverse 

power Lomax and power series distributions is introduced in this paper. This blending technique 

enables the creation of adaptable distributions with significant implications across diverse fields 

such as engineering and biology. The IPLPS class includes a new compound class and many novel  
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compound distributions, which come as new sub-models. Expressions for the QF, conditional 

moments, inverse moments, PWMs, and uncertainty measures are constructed. Estimation of model 

parameters is carried out using WLS, ML, CVM, and LS techniques. We assess and compare several 

parameter estimators for the IPLP distribution using an in-depth simulation study. Additionally, we 

demonstrate the efficacy of the proposed model using two real datasets, where it exhibits superior 

fit compared to alternative models. 

Appendix A: Tables 

Table A.1: Results of simulation study of different estimates for the IPLP distribution: Case 1 

Case 1 ( )0.2, 0.5, 0.5, 0.5   = = = =

n Method Measure    

50 

ML 
AB 0.006745 0.077041 0.029852 0.115995 

MSE 0.007617 0.041746 0.120200 0.197901 

LS 
AB 0.430544 0.487070 0.144346 0.113605 

MSE 0.269951 0.238003 0.140357 0.146791 

WLS 
AB 0.288091 0.441809 0.096579 0.384180 

MSE 0.149819 0.215351 0.123369 0.789747 

CM 
AB 0.339837 0.487085 0.131450 0.304000 

MSE 0.174023 0.238043 0.114371 0.620196 

100 

ML 

AB 0.000455 0.057409 0.001818 0.076642 

MSE 0.004357 0.023858 0.083599 0.185695 

SE 0.000066 0.000143 0.000289 0.000424 

LS 

AB 0.447667 0.491493 0.156331 0.123996 

MSE 0.281292 0.241848 0.137407 0.143057 

SE 0.000284 0.000017 0.000336 0.000357 

WLS 

AB 0.279684 0.461081 0.073950 0.399205 

MSE 0.145609 0.221363 0.119117 0.831226 

SE 0.000259 0.000094 0.000337 0.000819 

CM 
AB 0.334056 0.493331 0.132073 0.361127 

MSE 0.162428 0.243538 0.102497 0.692470 

150 

ML 

AB 0.000429 0.034402 0.004477 0.047673 

MSE 0.002593 0.013023 0.065901 0.178032 

SE 0.000051 0.000109 0.000257 0.000419 

LS 
AB 0.444868 0.494006 0.155821 0.116442 

MSE 0.270110 0.244186 0.128611 0.130407 

WLS 
AB 0.296139 0.462616 0.085070 0.348997 

MSE 0.152255 0.222201 0.115882 0.733505 

CM 
AB 0.343748 0.493717 0.146006 0.373102 

MSE 0.166483 0.244084 0.097878 0.750284 

200

ML 
AB 0.001551 0.023436 0.012966 0.031401 

MSE 0.002002 0.009062 0.056420 0.170785 

LS 
AB 0.452990 0.494879 0.168071 0.114122 

MSE 0.275720 0.244991 0.131350 0.134244 

WLS 
AB 0.300224 0.468995 0.087634 0.360930 

MSE 0.155801 0.226458 0.117244 0.801838 

CM 
AB 0.338092 0.495897 0.128463 0.359770 

MSE 0.163050 0.245969 0.094788 0.693901 
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Table A.2: Results of simulation study of different estimates for the IPLP distribution: Case 2 

Case 2 ( )0.1, 0.7, 0.5, 0.5   = = = =

n Method Measure    

50 

ML 
AB 0.002242 0.091436 0.052315 0.088154 

MSE 0.001661 0.047267 0.112424 0.190250 

LS 
AB 0.514374 0.688831 0.134479 0.098571 

MSE 0.348814 0.475298 0.140524 0.136474 

WLS 
AB 0.382270 0.650093 0.080623 0.348311 

MSE 0.215249 0.443329 0.119549 0.738434 

CM 
AB 0.408666 0.690469 0.107712 0.382826 

MSE 0.221501 0.477186 0.104083 0.756821 

100 

ML 
AB 0.000734 0.064783 0.027290 0.064352 

MSE 0.000925 0.032769 0.087944 0.176691 

LS 
AB 0.549471 0.692815 0.168821 0.119962 

MSE 0.383591 0.480338 0.142214 0.142375 

WLS 
AB 0.356645 0.660133 0.060534 0.444925 

MSE 0.191185 0.447833 0.117684 0.891369 

CM 
AB 0.425101 0.694151 0.110837 0.335976 

MSE 0.234942 0.481978 0.100780 0.717249 

150 

ML 
AB 0.001048 0.047594 0.030172 0.060538 

MSE 0.000739 0.026150 0.076517 0.168294 

LS 
AB 0.548601 0.694918 0.164571 0.123721 

MSE 0.378798 0.483023 0.138253 0.138424 

WLS 
AB 0.363182 0.662171 0.067058 0.387271 

MSE 0.191053 0.449580 0.114219 0.801316 

CM 
AB 0.433434 0.695742 0.138198 0.388423 

MSE 0.236302 0.484116 0.098432 0.783373 

200 

ML 
AB 0.000355 0.035961 0.024822 0.018055 

MSE 0.000581 0.021184 0.065165 0.162195 

LS 
AB 0.557505 0.695863 0.168104 0.133845 

MSE 0.390652 0.484309 0.138774 0.144132 

WLS 
AB 0.358781 0.670564 0.063388 0.438549 

MSE 0.190053 0.454457 0.111519 0.828456 

CM 
AB 0.421589 0.696359 0.125404 0.424671 

MSE 0.228737 0.484958 0.102214 0.859722 
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Table A.3: Results of simulation study of different estimates for the IPLP distribution: Case 3 

Case 3 ( )0.35, 0.75, 0.5, 0.5   = = = =

n Method Measure    

50 

ML 
AB 0.028882 0.038793 0.041519 0.097016 

MSE 0.021385 0.024007 0.093766 0.205833 

LS 
AB 0.330981 0.720645 0.172635 0.214191 

MSE 0.200888 0.522177 0.156952 0.153552 

WLS 
AB 0.171788 0.664002 0.111915 0.315342 

MSE 0.094188 0.468671 0.125394 0.676175 

CM 
AB 0.200807 0.723881 0.139624 0.297306 

MSE 0.094502 0.526193 0.108873 0.592616 

100 

ML 
AB 0.011510 0.032625 0.034154 0.045939 

MSE 0.010988 0.017202 0.073926 0.191679 

LS 
AB 0.343760 0.730998 0.176993 0.239639 

MSE 0.204578 0.535951 0.150556 0.161608 

WLS 
AB 0.183232 0.681750 0.121003 0.315958 

MSE 0.096159 0.485995 0.114875 0.638105 

CM 
AB 0.196654 0.733830 0.131675 0.316076 

MSE 0.088577 0.539333 0.100398 0.589016 

150 

ML 
AB 0.009429 0.021253 0.021613 0.045372 

MSE 0.008488 0.012985 0.061332 0.185365 

LS 
AB 0.347205 0.736845 0.183141 0.228068 

MSE 0.198331 0.543845 0.142716 0.156601 

WLS 
AB 0.158364 0.678758 0.094665 0.387196 

MSE 0.091379 0.481589 0.118032 0.745790 

CM 
AB 0.197847 0.737241 0.133215 0.322106 

MSE 0.088204 0.544097 0.096084 0.576261 

200 

ML 
AB 0.005265 0.018039 0.032937 0.005198 

MSE 0.005849 0.010298 0.052733 0.183501 

LS 
AB 0.330284 0.738295 0.161452 0.216034 

MSE 0.183964 0.545553 0.130130 0.155453 

WLS 
AB 0.181529 0.692042 0.112438 0.315812 

MSE 0.096914 0.492804 0.114267 0.617612 

CM 
AB 0.185704 0.739790 0.125346 0.377463 

MSE 0.083501 0.541593 0.094968 0.691230 
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Table A.4: Results of simulation study of different estimates for the IPLP distribution: Case 4 

References 
[1] Barreto-Souza, W., de Morais, A. L., and Cordeiro, G. M. (2011). The Weibull-geometric

distribution. Journal of Statistical Computation and Simulation, 81(5):645–657.

[2] Noack, A. (1950). A class of random variables with discrete distributions. The Annals of

Mathematical Statistics, 21(1):127–132.

[3] Chahkandi, M., and Ganjali, M. (2009). On some lifetime distributions with decreasing

failure rate, Computational Statistics and Data Analysis, 53:4433–4440

[4] Morais, A. L., and Barreto-Souza, W., (2011). A compound class of Weibull and power series

distributions. Computational Statistics and Data Analysis, 55:1410–1425.

Case 4 ( )0.7, 0.25, 0.5, 0.5   = = = =

n Method Measure    

50 

ML 
AB 0.002412 0.026550 0.017636 0.062220 

MSE 0.056895 0.005150 0.097176 0.176375 

LS 
AB 0.004458 0.236684 0.175355 0.196397 

MSE 0.090972 0.056577 0.154987 0.154997 

WLS 
AB 0.118599 0.213013 0.132290 0.293232 

MSE 0.095884 0.049828 0.129123 0.667014 

CM 
AB 0.100852 0.237882 0.168351 0.251028 

MSE 0.074475 0.057127 0.116832 0.562473 

100 

ML 
AB 0.011686 0.012692 0.031510 0.009029 

MSE 0.396155 0.002067 0.076041 0.170751 

LS 
AB 0.019738 0.241765 0.204124 0.214818 

MSE 0.087939 0.058649 0.158975 0.161972 

WLS 
AB 0.115818 0.222881 0.142248 0.273083 

MSE 0.085862 0.051960 0.121264 0.574088 

CM 
AB 0.131302 0.241384 0.149405 0.309364 

MSE 0.070562 0.058503 0.105365 0.588599 

150 

ML 
AB 0.019717 0.005788 0.035701 0.010170 

MSE 0.030271 0.001102 0.058667 0.153535 

LS 
AB 0.012704 0.244189 0.198267 0.207426 

MSE 0.082305 0.059729 0.150544 0.160624 

WLS 
AB 0.114129 0.224038 0.144723 0.293595 

MSE 0.086913 0.052262 0.124999 0.661949 

CM 
AB 0.133418 0.243985 0.142315 0.290336 

MSE 0.070266 0.059684 0.103061 0.557025 

200 

ML 
AB 0.012894 0.005315 0.039573 0.030536 

MSE 0.025921 0.000908 0.053184 0.153984 

LS 
AB 0.027965 0.245094 0.218293 0.217001 

MSE 0.078031 0.060166 0.152014 0.158960 

WLS 
AB 0.103315 0.226621 0.161816 0.278613 

MSE 0.085451 0.052928 0.130257 0.629098 

CM 
AB 0.117752 0.244956 0.169220 0.286765 

MSE 0.064152 0.060075 0.104847 0.525627 

RT&A, No 3 (79) 
Volume 19, September 2024

527



A.G. Al-Kilany, Amal S. Hassan, L.S. Diab, and E.S. El-Atfy 

A NOVEL ASYMMETRIC COMPOUND CLASS OF DISTRIBUTIONS 

[5] Warahena-Liyanage, G., and Pararai, M. (2015). The Lindley power series class of

distributions: model, properties and applications. Journal of Computations & Modelling, 5(3):

35–80.

[6] Elbatal, I., Zayed, M., Rasekhi, M., and Butt, N. (2017). The exponential Pareto power series

distribution: Theory and applications. Pakistan Journal of Statistics and Operation Research, 13(3):

603–615,  https://doi.org/10.18187/pjsor.v13i3.2072

[7] Silva, R. B. and Cordeiro, G. M. (2015). The Burr XII power series distributions: A new

compounding family. Brazilian Journal of Probability and Statistics, 29(3): 565–589

[8] Alizadeh, M., Bagheri, S. F., Samani, E. B., Ghobadi, S., and Nadarajah, S. (2018).

Exponentiated power Lindley power series class of distributions: Theory and

applications. Communications in Statistics-Simulation and Computation, 47(9):2499–

2531.https://doi.org/10.1080/03610918.2017 .1350270

[9] Elbatal, I., Altun, E., Afify, A. Z., and Ozel, G. (2018). The generalized Burr XII power series

distributions with properties and applications. Annals of Data Science, 6:571–597

https://doi.org/10.1007/s40745-018-0171-2.

[10] Goldoust, M., Rezaei, S., Alizadeh, M., Nadarajah, S. (2019). The odd log-logistic power

series family of distributions: Properties and applications. Statistica, 79(1):77–107.

https://doi.org/10.6092/issn.1973-2201/8115

[11] Kunjiratanachot, N., Bodhisuwan, W. and Volodin, A. (2018). The Topp-Leone generalized

exponential power series distribution with applications. Journal of Probability and Statistical

Science, 16(2): 197–208.

[12] Hassan, A. S., and Assar, S. M. (2021). A new class of power function distribution: Properties

and applications. Annals of Data Science, 8: 205–225, https://doi.org/10.1007/s40745-019-

00195-7

[13] Rivera, P. A., Calder´ın-Ojeda, E., Gallardo, D. I., and G´omez, H. W. (2021). A compound

class of the inverse gamma and power series distributions. Symmetry, 13, 1328.

[14] Hassan, A. S., Almetwally, E. M, Gamoura, S. C, Metwally, A. S. M. (2022). Inverse

exponentiated Lomax power series distribution: Model, estimation, and application. Journal

of Mathematics, 2022, 1998653, https://doi.org/10.1155/2022/1998653

[15] Khojastehbakht, N., Ghatari, A., and Samani, E. B. (2023). The beta exponential power series

distribution. Annals of Data Science, 10(5):1157–1178, https://doi.org/10.1007/s40745-022-

00414-8

[16] Alghamdi, S. M., Shrahili, M., Hassan, A. S., Mohamed, R.E., Elbatal, I., and Elgarhy, M.

(2023). Analysis of milk Production and failure data: Using unit exponentiated half logistic

power series class of distributions. Symmetry, 15, 714, https://doi.org/10.3390/sym15030714

[17] Ul-Haq, M, A., Shahzad, M, K., and Tariq, S. (2023). The inverted Nadarajah–Haghighi

power series distributions. International Journal of Applied and Computational

Mathematics,10(11), https://doi.org/10.1007/s40819-023-01551-1.

[18] Hassan, A. S., and Abd-Allah, M., (2023). Power quasi-Lindley power series class of

distributions: Theory and applications. Thailand Statistician, 21(2): 314–336

[19] Zayed, M. A., Hassan, A. S., Almetwally, E. M., Aboalkhair, A. M., Al-Nefaie, A. H., and

Almonry, H. M. (2023). A compound class of unit Burr XII model: Theory, estimation, fuzzy,

and application. Scientific Programming, https://doi.org/10.1155/2023/4509889

[20] Yousef, M. M., Hassan, A. S., and Almetwally, E. M. (2024). Statistical inference for the unit

Gompertz power series distribution using ranked set sampling with applications. Assiut

University Journal of Multidisciplinary Scientific Research, 53(1):154–189.

[21] Oluyede, B., Dingalo, N. and Chipepa, F. (2024). A new and generalized class of log-logistic

modified Weibull power series distributions with applications. Thailand Statistician 22(2),

237–273

RT&A, No 3 (79) 
Volume 19, September 2024

528

https://doi.org/10.18187/pjsor.v13i3.2072
https://doi.org/10.1080/
https://doi.org/10.1007/s40745-018-0171-2
https://doi.org/10.6092/issn.1973-2201/8115
https://doi.org/10.1155/2022/1998653
https://doi.org/10.3390/sym15030714
https://doi.org/10.1007/s40819-023-01551-1
https://doi.org/10.1155/2023/4509889


A.G. Al-Kilany, Amal S. Hassan, L.S. Diab, and E.S. El-Atfy 

A NOVEL ASYMMETRIC COMPOUND CLASS OF DISTRIBUTIONS 

[22] El-Saeed, A.R., Hassan, A.S., Elharoun, N.M., Al Mutairi, A., Khashab, R.H., Nassr, S.G.

(2023).  A class of power inverted Topp-Leone distribution: Properties, different estimation

methods & applications. Journal of Radiation Research and Applied Sciences, 16 (2023) 100643,

https://doi.org/10.1016/j.jrras.2023.100643

[23] Hassan, A. S., and Abd-Allah, M. (2019). On the inverse power Lomax distribution. Annals

of Data Science, 6: 259–278, https://doi.org/10.1007/s40745-018-0183-y

[24] Shi, X., and Shi, Y. (2021). Inference for inverse power Lomax distribution with progressive

first-failure censoring. Entropy, 23, 1099. https://doi.org/10.3390/ e23091099

[25] Nassr, S. G., Hassan, A. S., Almetwally, E. M., Al Mutairi, A., Khashab, R. H. and ElHaroun,

N. M. (2023). Statistical inference of the inverted exponentiated Lomax distribution using

generalized order statistics with application to COVID-19. AIP Advances, 13, 105118;

https://doi.org/10.1063/5.0174540.

[26] Greenwood, J. A., Landwehr, J. M., Wallis, J. R., and Matals, N. C. (1979).  Probability

weighted moments: Definition and relation to parameters of several  distributions

expressable in inverse form. Water Resources Research, 15:1094–1054

[27] Gradshteyn, I. S.; and Ryzhik, I. M. Table of Integrals, Series and Products; Academic Press:

San Diego, CA, USA, 2000.

[28] Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical

Physics, 52(1):479–487

[29] Buzaridah, M., Ramadan, D. A, and El-Desouky, B. (2021). Flexible reduced logarithmic-

inverse Lomax distribution with application for bladder cancer. Open Journal of Modelling

and Simulation. 09(04):351–369. https://doi.org/10.4236/ojmsi.2021.94023.

[30] Johnson, N. L., Kemp, A. W., and Kotz, S. Univariate Discrete Distributions. Wiley-

Interscience, third edition, 2005.

[31] MacDonald, P. D. M. (1971). Comment on “an estimation procedure for mixtures of

distributions” by Choi and Bulgren. Journal of the Royal Statistical Society. Series B

(Methodological), 33(2): 326–329.

[32] Rady, E. A., Hassanein, W. A., and Elhaddad, T. A. (2016). The power Lomax distribution

with an application to bladder cancer data, Springer Plus,

https://www.ncbi.nlm.nih.gov/pubmed/ 27818876.

[33] Hassan, A. S., and Nassr, S. (2018). Power Lomax Poisson distribution: Properties and

estimation. Journal of Data Science, 18, 105–128. https://doi.org/10.6339/JDS.201801_16

(1).0007

[34] Oguntunde, P., Khaleel, M., Okagbue, H., and Odetunmibi, O. (2019). The Topp–Leone

Lomax (TLLo) distribution with applications to airborne communication transceiver

dataset. Wireless Personal Communications. 109. https://doi.org/10.1007/s11277-019-06568-8.

[35] Ul Haq, M. A., Hamedani, G. G., Elgarhy, M., and Ramos, P. L. (2020). Marshall-Olkin power

Lomax distribution: Properties and estimation based on complete and censored samples.

International Journal of Statistics and Probability, Canadian Center of Science and Education, 9(1):

1–48.

[36] Murthy, D. N. P., Xie, M. and Jiang, R. Weibull Models. Wiley, 2004.

RT&A, No 3 (79) 
Volume 19, September 2024

529

https://doi.org/10.1007/s40745-018-0183-y
https://www.ncbi.nlm.nih.gov/



