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Abstract

Systems of two-level assembly with unknown timing of leads are taken into consideration while
arranging supplies. Probably, the final product's demand and its deadline are known. When all required
parts are on hand, each level's assembly process gets underway. To address these problems, we have
developed a model for the control of inventories for an uncapitatedwarehousing space in a manufacturing
plant with unpredictable demand and lead times. The goal is to choose orders in a way that minimizes
the overall system's cost. We present a multilevel optimization model including a rotating horizon
that utilizes gradients to handle unknown lead time and demand, irrespective of the distributions at
the core of them. Furthermore, a precise algorithm is created to solve the model. In a case study, we
compare our approach with the current model. Our computational results indicate that while the new
gradient-based multi-level optimization model nearly continuously yields the least expensive overall
across all parameter settings. These models' performances are either systematically worse or extremely
sensitive to cost parameters (holding cost, shortfall cost, etc.).

Keywords: multilevel optimization model; rolling horizon;uncertain demand; uncertain lead time.

1. Introduction

Supply chain management is a top priority for businesses in the modern global marketplace
because of the fierce competition and elevated customer expectations. A special focus is on
supply chain network architecture because it is recognized that efficient management of the
supply chain a critical role in lowering costs and improving service levels. A skilled network
design approach can significantly reduce expenses for a company by as much as 60% [1-3].
Historically, the planning and placement of facilities have been considered a strategic choice
in supply chain network architecture. That being said, sub-optimality may result from the
traditional method of making tactical inventory decisions after site selections. Inventory costs
are heavily impacted by strategic location choices, highlighting the necessity of incorporating
inventory concerns into strategic network design models [4-6]. As a result, there has been a
significant push in recent years for the creation of inventory models that integrate tactical and
strategic decisions. Several reasons, including changes in consumer needs and the arrival of raw
materials, cause uncertainty to become a ubiquitous feature in supply chain networks. Three
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main areas of uncertainty are identified: customers, manufacturing, and suppliers. Unexpected
expenses can arise from supplier uncertainty, which introduces unpredictability in lead time, and
customer uncertainty, which shows up as variances in order time or quantity. To improve overall
operational efficiency and optimize supply chains, businesses must acknowledge and manage
these uncertainties [7-8]. This research presents a novel Model of inventory control that considers
demand variability and lead time uncertainty. Stochastic programming is accepted as a useful
technique when the randomness’s probabilistic description is provided; but, in practice, this
information is not always available. The suggested model attempts to strike a balance between the
curse of dimensionality and solution resilience when addressing multi-period decision-making
situations with uncertainty [9–10]. The inventory control model is intended for usage in a
manufacturing facility warehouse, where a single product is produced from an ordered part.
Even though in reality several items are manufactured using different parts, in some situations
it is appropriate to assume that there is only one product, particularly when production lines
are independent and separate for different products. The goal of the study is to specify an order
strategy that reduces system expenses [11–12]. The paper analyzes two ambiguous parameters:
lead time and demand with unknown likelihood distributions and assumes that these quantities
are independent random variables within given intervals. The assumption is consistent with
empirical observations of dynamic lead time and demand dynamics, where trends in the past
are not indicative of the future. The model also allows for shortages, which have a backlog that
is entirely unfilled. To minimize the entire rate, which includes order, inventory holding, and
shortfall expenses, the goal is to ascertain the timing and size of orders. Because demand is
unpredictable at each stage and lead times are realized only after orders are placed, the intrinsic
dimensionality curse affects multi-stage decision-making problems. [13–14]. This study presents
three distinct contributions. Unlike earlier models, it first takes supply and demand uncertainties
into account. Second, it presents a novel multilevel inventory control optimization model that
approximates the multi-stage computational tractability decision-making problem. Thirdly, the
work creates a precise algorithm for the multilevel optimization framework based on gradients,
which makes it possible to explore the scenario space and worst-case situations with efficiency.
The following is the arrangement of the paper’s succeeding sections: Section 2 discuss about
existing relevant works. Section 3 goes into a thorough discussion of the problem formulation
and algorithm. Experimental results and sensitivity analysis are detailed in Section 4. Lastly,
Section 5 concludes the paper, summarizing key findings.

2. Literature survey

This literature survey delves into various topics related to inventory control, including lost sales
inventory systems, perishable inventory systems, and supply chain management. These papers
can provide valuable insights into the challenges and solutions related to inventory control and
supply chain management, which can help in developing an effective inventory control policy for
the given research problem. Hansen et al. [15] presented a perishable product inventory control
policy for business-to-consumer retail that takes lead time and demand volatility into account.
To reduce expenses associated with stockouts and excess inventory, the study concentrated on
handling perishable inventory concerns. The established replenishment approach provided
efficient management of perishable inventory by balancing holding costs against lost sales
expenses. The idea outperformed traditional approaches, as shown by mathematical models,
offering shops a useful resolution. Dey et al. [2] investigated controlled lead time and adaptability
in astute supply chain management, highlighting the advantages of shortening lead time for
diverse elements. Instead of using projected formulae for total costs, the study presented an
accurate overall cost calculation that took backorder relationships and on-hand inventory into
account. The study’s use of marginal value analysis showed that the total expense of the supply
chain is convex in terms of lead time and volatility. An intelligent manufacturing procedure that
addresses stochastic demand and variable production rates was presented by the researcher. It was
validated by numerical examples and classical optimization, and the model validation was further
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strengthened by sensitivity analysis and graphical representations. Zhang et al. [16] presented
a learning algorithm that takes into account missed sales, positive lead times, and suppressed
demand for a single-product inventory system assessment regularly. It tackled the problem of
adaptive inventory ordering depending primarily on previous sales information. A random cycle-
updating rule with essential components including withheld on-hand inventory and estimate
of double-phase cycle gradients was introduced by the nonparametric simulated cycle-update
policy. The study demonstrated efficacy in managing intricate system dynamics by establishing a
square root convergence rate as a lower constraint for learning algorithms through regret analysis.
The discovered methods reduced the cost differences between practical learning algorithms and
clairvoyance benchmarks by enabling adaptive inventory decisions based on historical sales.
Das et al. [17] addressed inventory control with partial backlog, price-dependent demand, and
preservation technology applied to non-instantaneously decaying commodities. With the inclusion
of a Weibull distribution with three parameters for deterioration and preservation, the model took
into account the effects of preservation technology, price-dependent demand, and deterioration.
The extremely nonlinear optimization issues were solved using quantum-behaved particle swarm
optimization (QPSO) techniques. By comparing findings with several QPSO variations, numerical
examples were used to validate the proposed model. Sensitivity analysis looked into how
changing a parameter would affect the best course of action. Sarkar et al. [18] discussed a
collaborative advertising strategy for supply chain management in ambiguous circumstances.
Equations [34–37] restrictions were used to examine the model’s goal. Equation (24) provided
the overall cost of the supply chain under a cooperative advertising collaboration policy with
ambiguous conditions. Equation (15) provided the supplier’s total cost after modeling each of the
separate charges related to the supplier under the cooperative advertising collaboration. While
creating the model, the paper took into account a few suppositions. Transchel et al. [19] addressed
considering lead time unpredictability and service level limitations, inventory management and
supply planning are implemented for perishable goods. A dynamic inventory control policy was
implemented, taking into account a specified service level and an unpredictable lead time for
replenishments. With a first-in-first-out (FIFO) inventory system and a non-stationary demand
process, the study concentrated on a business-to-business (B2B) setting. Through simulation-
based optimization, the authors addressed the influence on service levels and waste rates while
offering analytical insights into the ideal replacement quantity under lead-time uncertainty. Goli
et al. [20] addressed the arc-routing problem of sustainable periodic garbage pickup. To solve
the garbage collection problem, the research presented a hybrid multi-objective optimization
strategy. The issue was formulated as an arc-routing problem in the paper, which made use of
multi-objective optimization to take into account numerous objectives at once and the creation of
a hybrid algorithm to discover the best possible answers. Our goal is to critically assess how these
studies contribute to inventory control advancements, particularly focusing on their effectiveness
in handling uncertainty and several other issues.

3. Methodology

3.1. Problem statement

We examine a manufacturing facility's vacant warehouse for a single item. Both the lead time
and the demand are ambiguous. To reduce the costs associated with orders, inventory, and
shortages,Choices are made across an arbitrary distinct time frame. We execute the assumption
that the management has complete knowledge of the level of demand and inventories at the
moment shortfall, and order arrival status before deciding which order to place during that time.
We also assume that the shortfall is fully backlogged, and order volume and demand arrive
at the start of the time frame for decisions. The present period is designated as period 1 for
modeling reasons, and a finite planning horizon n {1, 2... T} is enforced. The model has been
resolved using updated data for every decision-making window, and alone the sequence choice
for the present period is carried out when using the rolling horizon method of this model 105's
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answer [23–24] The planning horizon of the P(τ) decision-making model spans the time from
τ to τ + T − 1 .Following the resolution of the model P(τ) for decision-making, the policy of
order was established, We separate the horizon of planning decision into two sections: The choice
reached in the first era, τ, and in the second subsequent periods, (τ + 1, ..., τ + T − 1). The order
guidelines for period τ are put into effect, and τ is raised by one are repeated after updating the
model's initial settings for the upcoming planning horizon. As a result, the choice about periods
(τ + 1...τ + T − 1) may need to be rescheduled for the following planning span.

The planned horizon measure T has a significant impact on how accurate the previously
mentioned planning model is. Because T ≥ 3 are multi-phase models of decision-making that are
free from the well-acknowledged dimensionality curse. Infamously difficult to solve from the
standpoint of computational tractability. However, from an application standpoint, models with
this little planning horizon are essentially blind and could produce overly narrow-minded results.

3.2. Deterministic model

Consider an examination of a condensed form of the inventory control model, which takes lead
time and demand into account to be known and constant for every period. As a result, a Model
for deterministic single-stage optimization is all that remains of the multi-phase issue requiring
decision-making. It is important to note that a set of binary parameters δk,t∀ k, t, which indicates
whether or not the order placed in period k arrives by period t, constitutes the random lead time.
For instance, if an order placed during period 3 has a lead time of 4, then δ3,4 = δ3,5 = δ3,6 = 0
and δ3,t = 1, ∀t ∈ {7, 8, ...T}.The model for deterministic inventory management is presented in
(1a)–(1d). The model aims to reduce the overall cost along the horizon of planning. The inventory
holding cost, shortfall cost, and both fixed and variable order costs are the four cost terms in (1a),
in that order. After period t, the inventory level is determined by equation (1b). The quantity
of deficiency at period t, the total number of ordered products that reach by time t, the initial
inventory at period 0, and the entire quantity of the demand that is satisfied among periods 1
and t consist of the four terms listed on Constraint (1b)’s right side.By requiring the ordering of
at least one item within that time frame, constraint (1c) guarantees the imposition of a fixed order
fee. Constraint (1d) defines the decision variable supports. article amsmath

min ζ = (cµ)
T

∑
t=1

qt + f
T

∑
t=1

vt + h
T

∑
t=1

It + p
T

∑
t=1

gt (1a)

s.t. It = I0 +
t−1

∑
k=1−K

µqk δ̂k,t + gt −
t

∑
i=1

d̂i t ∈ {1, 2, . . . , T} (1b)

qt ≤ Mvt t ∈ {1, 2, . . . , T} (1c)

qt, It, gt ∈ Z+; vt ∈ {0, 1} t ∈ {1, 2, . . . , T} (1d)

3.3. Proposed method: Gradient computation in the approximated problem

The estimated problem for multilevel optimization is asymptotically convergent; hence we suggest
using a projected gradient approach. The formula for ∇x1 F̃1 (x1) is derived in this section, and
the projected gradient method’s local and global convergenceis verified [18-24].

(i)Gradient of the objective function in the approximated problem
A formula for computing is given by the following theorem ∇x1 F̃1 (x1).
Theorem 1:Formula for (gradients in n-level optimization problems). The expression for the
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gradient ∇x1 F̃1 (x1)is as follows. article amsmath

∇x1 F̃1(x1) = ∇x1 f1s(x1, x(T2)
2 , . . . , x(Tn)

n )

+
n

∑
i=2

Zi∇x1 f1(x1, x(T2)
2 , . . . , x(Tn)

n ),

Zi =
Ti

∑
t=1

(
i−1

∑
j=2

ZjC
(t)
ij + B(t)

i

)
Tt

∏
s=t+1

A(s)
i ,

A(t)
i = ∇xi Φ

(t)
i (x1, x(T2)

2 , . . . , x(Ti−1)
i−1 , x(t−1)

i ),

B(t)
i = ∇x1 Φ(t)

i (x1, x(T2)
2 , . . . , x(Ti−1)

i−1 , x(t−1)
i ),

C(t)
ij = ∇xj Φ

(t)
i (x1, x(T2)

2 , . . . , x(Ti−1)
i−1 , x(t−1)

i )

For any i = 2, . . . , n; t = 1, . . . , Ti;and j = 2, . . . , i − 1, wherever we define ∏Tt
s=t+1 A(s)

i :=

A(t+1)
i A(t+2)

i . . . A(Ti)
i for t < Tiand ∏Ti

s=Ti+1
A(s)

i = I.

We consider computing ∇x1 F̃1 (x1) using Theorem 1. Observe that computing is simple for

us Z2 = ∑T2
t=1 B(t)

2 ∏T2
s=t+1 A(s)

2 . For i = 3, . . . , n, when we haveZ2, . . . , Zi−1, we can calculate Zi.
We present a computation technique that ∇x1 F̂1 (x1) by computing Z2, . . . , Zn in this sequence
within Algorithm 1 article amsmath algorithm algpseudocode

Algorithm 1: Calculation of ∇x1 F̂1(x1).

Input: x1 = existing first-level variable value. {x(0)i }n
i=2 = the lower-level iteration’s initial values.

Output: The exact value of ∇x1 F̄1(x1).

Algorithm 1: Calculation of ∇x1 F̂1 (x1) .

Input: x1 = existing first-level variable value.
{

x(0)i

}n

i=2
= the lower-level iteration’s initial

values.
Output: The exact value of ∇x1 F̄1 (x1). g := (0, . . . , 0)⊤.
for i := 2, . . . , n do
Zi := O.
for t := 1, . . . , Tido
x(t)i := Φ(t)

i

(
x1, x(T2)

2 , . . . , x(T1−1)
i−1 , x(t−1)

i

)
.

B̂(t)
i := ∑i−1

l=2 ZlC
(t)
il + B(t)

i .

Zi := Zi A
(t)
i + B̄(t)

i .
for i = 2, . . . , n do
g := g + Zi∇x1 f1.
g := g +∇x1 f1.
return g

For i = 2, . . . , nand t = 1, . . . , Ti, Φ(t)
i , It is mentioned in Algorithm 1’s fifth line is the

revised formula that takes the gradient into account.∇x4 F̄i (x1, . . . , xi) of the ith function of
the level objective. ∇xi F̃i (x1, . . . , xi)is calculated by utilizing Algorithm 1 on the (n − i + 1)- a
level optimization issue using objective functions F̃i, . . . , F̄n. Therefore, in the computation, call
Algorithm 1 recursively of ϕ

(t)
i , we can compute ∇x1 F̂1 (x1).

3.4 Complexity of the gradient computation
By repeatedly running Algorithm 1, we examine the computational complexity of ∇x1 F̂1 (x1).

An asymptotic large symbol for O notation is O(∗) in the following theorem.
Theorem 2. Let ci and sibe the complexity of time and space, respectively, for computing∇x1 F̃i (xi).

To calculate∇x1 F̂i (x1, . . . , xi), we recursively call the algorithm Φ(ti)
i based on ∇x1 F̃i (xi). More-

over, we use the following assumptions:
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• The intricacy of space and time in assessing Φ(ti)
i are O (ci)and O (si).

• The time and space complexity of Algorithm 1 pales in contrast to the for loops in lines 2–9.
of∇x1 f1 and ∇x1 f1 for i = 1, . . . , n are reduced in terms of order.

• Then, the whole intricacy of time c1 and space intricacy s1 for calculating can ∇x1 F̂i (x1, . . . , xi)
be expressed as

c1 = O

(
pnn!cn

n−1

∏
i=1

(Ti+1di)

)
,

s1 = O (qnsn) .

Correspondingly, for a fixed p, q > 1.

3.4. Global convergence of the projected gradient method

Here, we investigate using the projected gradient approach to solve the problem. In this
method,the revised point is projected on S1in each iteration and computes the gradient vec-
tor using Algorithm [1]. We may determine when all lower-level updates are made using the
steepest descent method, the Lipschitz continuity of the objective function’s gradient. Therefore,
by choosing a short enough step size, we may ensure both local and global projected gradient
method convergence.

Theorem 3. Assume that Φ(t)
i

(
x1, . . . , xi−1, x(t−1)

i

)
= x(t−1)

i − α
(t−1)
i ∇x1 F̃i

(
x1, . . . , xi−1, x(t−1)

i

)
for all i = 2, . . . , n and ti = 1, . . . , Tiwhere parameters for α

(t−1)
i and x(0)i are provided for each

i and t. Let us assume that ∇xj fiis limited and Lipschitz continuous for all i = 1, . . . , nand

j = 1, . . . , n; furthermore, ∇x1 Φ(t)
i ,∇x1 Φ(t)

i , and ∇xj Φ
(t)
i are bounded and Lipschitz continuous

for all i = 2, . . . , n; j = 2, . . . , i − 1; t = 1, . . . , Ti.. In such cases, ∇x1 F̂1 is Lipschitz continuous
with∇(x1 ).

This theorem is proven; see Supplementary material A.5. Assume the same premises as
Theorem 3 in the following corollary. Assume that the set S1is compact and convex. Assume that

L is the Lipschitz constant for ∇x1 F̂1 . In the case of Problem (6), a sequence
{

x(t)1

}
produced

by the projected gradient technique with a compact, steady-step size (e.g., smaller than 2/L)
converges to a stationary point at a convergence rate via a convergent subsequence starting at
any initial point of O(1/

√
t).

Proof. The gradient of the problem’s L-Lipschitz is the objective function continuous, according
to Theorem 3. The gradient mapping related to F̃1, the indicator function of S1, and the
fixed step magnitude α

(t)
1 with fulfilling 0 < α

(t)
1 < 2/Lfor all t should be represented by G :

int
(

dom
(

F̃1

))
→ Rd1 Keep in mind that €‘G(x_1)€=0 only in the event that x1 is a stationary point.

With x̄1as a limit point of
{

x(t)1

}
., we obtain mint

s=0 ∥ G
(

x(s)1

)
∥≤ O(1/

√
t) and ∥ G (x̄1) ∥= 0.

4. Computational experiments

To evaluate and contrast the capabilities of novel gradient based multilevel optimization model
with existing stochastic programming, and pessimistic decision-making models, we ran an
experiment. The five patterns of demand utilized in the research are based on actual request
information from the Census Bureau of the United States Department of Commerce and the
Federal Reserve Bank of St. We carried a total of five sets of tests for each of the six models and
five cases, with h/p = {0.1, 0.3, 0.5, 0.7, 0.9} for h = 5 and c = 1. Since the ratio of h/p is important in
inventory control models. Given the importance of the h/p ratio in models of inventory control,
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we ran a total of five sets of experiments for each of the six models and five occurrences, with h/p
= {0.1, 0.3, 0.5, 0.7, and 0.9} when h = 5 and c = 1. We took the demand data some of which are
expressed in millions of dollars and created random lead-time estimates. We divided the values
by the price of one unit to translate them to the number of units and assure uniformity. It's also
believed that period 1 will not see any orders placed, but that period 1's initial inventory will be
enough to meet demand for the first two periods. It is significant to highlight that the computer
system using MATLAB (R2022a) software was able to generate the numerical results and tables
following the specifications.

Simulation results
According to simulation data, for various h/p ratios, the gradient-based multilevel model has

a lower total cost on average less optimistic than other models of decision-making, such as the
stochastic programming model. We performed five instances of a sensitivity analysis using various
cost parameter choices for each model, and the results are displayed in Figure 1. The combination
of the cost factors h and p is shown in this figure. One instance is represented by each graph
column, and the first row displays the pattern of demand for every case. The cost parameter
configurations for various h/p ratios are shown in the following graph rows. The difference
between each model and the ideal model is shown bythe bars' vertical axis, which is computed
by dividing each model's answer by the perfect model's solution minus one. Consequently, a
smaller value implies the model's output is more similar to the perfect model. For instance, in
the graph where h/p = 0.5, the multilevel optimization model's solution is 1.39e7, whereas the
perfect model's solution is 0.85e7. Consequently, the multilevel model's value of the bar chart
on this graph is (1:39e7/0:85e7) - 1 = 64%. Overall parameter settings and instances, the average
difference between our model and the ideal model is 71.4%, 84.7%, and 79.5%, respectively.

To demonstrate the extent to which the multilevel model's total cost is superior to or inferior
to other models, we also provide the numerical experiment's results from a different angle. The
multilevel model's relative performance is assessed using the ratio R = 100 in comparison to
the stochastic programming and pessimistic techniques for making decisions. The expression
"multi" denotes the average overall price of the multilevel model, whereas "mdl" represents the
average overall expense of the pessimistic models or stochastic programming, across five instances.
In Figure 2, we conspire and display the outcomesof the overall cost-performance ratio. The
multilevel model performs better than the comparison model if there is a good performance ratio;
hence, a greater percentage indicates an improved comparative performance of the multilevel
model. For example, the multilevel model's average overall cost is 10.6% lower than that of the
stochastic programming and pessimistic models when h/p = 0.3. For example, for h/p = 0.3, the
multilevel model's average total cost beats the probabilistic and stochastic programming models
by 2.6% and 10.6%, respectively. When h/p is raised, the pessimistic model performs worse. By
projectingit usually has a larger inventory level to minimize lead times and future needs; hence,
raising h/p raises the model's overall cost.

Several performance metrics in use now have different service levels. We examined the single
service level—the multilevel, pessimistic models, and stochastic programming fill rate. The
proportion of client orders that are fulfilled right away from available stock is known as the fill
rate. Reducing the h/p ratio generally improves it. Figure 3 shows the average percentage of fills
of five instances for each model. The pessimistic model's fill rates are 97% in all possible combos
of h and p. The fill rates of the stochastic programming model and the multilevel optimization
model are nearly equal at 98% when the expense of a shortage is extremely significant, that is, h/p
= 0.1. Nevertheless, the multilevel optimization model's fill rate decreases by only 2%, while the
stochastic programming model's fill rate falls to 85% when the shortage cost is reduced.

While the multilevel optimization model responds to adjustments to shortages cost extra
subtly and effectively than the stochastic model, figure 3 shows the outcomes suggest that the
multilevel optimization model is not the stochastic model, sensitive to scarcity cost. We divided
the overall cost into the costs associated with shortages and inventory holding to explain this
finding. Table 1 summarizes the percentage shifts in shortage and inventory levels for each of
the five cases when the h/p ratio rises from 0.1 to 0.9. Percentages that are positive or negative
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Figure 1: The comparison of multilevel optimization, stochastic programming, Pessimistic models under h/p= {0.9,
0.7, 0.5, 0.3, 0.1}

denote growth or decrease, accordingly. The multilevel model decreased the average inventory
level each period (and the related inventory cost) by 22% to get the benefits of the decreased
shortfall cost when the shortage cost decreased (the h/p ratio increased from 0.1 to 0.9) in Example
1 in Table 1. The fill rate decreased by 2% as a result, and the average shortage level rose by
160% (from 0.34 to 0.90 units each period). However, because of the sharp decline in shortfall cost
per unit, the shortfall cost was drastically reduced by 71%. However, there was a more notable
reaction from the stochastic model to the lower shortage cost. 51% less inventory meant a 14%
lower fillrate, an increase in the scarcity level of 961% (from 0.35 to 3.70 units each period), and
an 18% increase in the cost of shortages. These adjustments result in a 36% and 31% reduction in
the multilevel optimization model's total amount of inventory held and shortfall cost, respectively,
and the stochastic programming model. The average percentages for five cases are reported in
the final two rows of Table 1.
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Figure 2: Retaining and scarcity costs' effects on the multi-level model's (multi) relative performance ratio concerning
other models (model). * (mdl - multi)/mdl is the performance ratio, or R = 100.

Figure 3: Effects of holding and shortage expenses on fill rate

Table 1: Inventory, shortage level, cost, and fill rate change when the h/p ratio rises from 0.1 to 0.9.

Example Type Inventory
Cost

Shortage
Cost

Inventory
Level

Shortage
Level

Fill-
rate

Total
Inventory
and
Shortage
Cost

1 Multi-level -22% -71% -22% 160% -2% -36%
Stochastic -51% 18% -51% 961% -14% -31%

2 Multi-level -14% -69% -14% 175% -2% -27%
Stochastic -50% 26% -50% 1032% -15% -27%

3 Multi-level -14% -75% -14% 126% -2% -32%
Stochastic -47% 28% -47% 1056% -14% -25%

4 Multi-level -26% -67% -26% 200% -3% -35%
Stochastic -41% -19% -41% 631% -13% -32%

5 Multi-level -17% -83% -17% 51% -1% -38%
Stochastic -30% -4% -30% 762% -9% -22%

Average Multi-level -19% -73% -19% 143% -2% -34%
Stochastic -44% 10% -44% 888% -13% -27%
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In conclusion, the thorough comparison of the multilevel model with other methods shows
its reliable performance, resilience, and sophisticated reaction to changing circumstances. These
results further our knowledge of efficient inventory control techniques and offer practitioners and
researchers insightful information for enhancing supply chain management in practical settings.

5. Conclusion

In this research, we suggest an innovative method for dealing with unpredictability in a manufac-
turing facility that places fresh orders in response to demand. There is a backlog of shortages,
and the lead time and demand are unreliable metrics. Selecting orders in a way that minimizes
the overall cost is the goal. Three new insights are added to the literature by this work. Ini-
tially, we consider two distinct types of uncertainty arising from lead time and demand. The
majority of previously suggested models concentrated on one of these two, but they are still
highly ambiguous due to the interactions between the two sources and the other. Second, as
a trade-off between computational tractability and accurately representing the multiple-phase
decision-making process under uncertainty, we suggest a multilevel Inventory control problem
optimization model. Third, we design a precise algorithm for the multilevel optimization model
that effectively searches in the worst instance, without counting all possible outcomes in the
vast scenario space using Bender's decomposition foundation. The results imply that in reaction
to the variety of cost factors, the multilevel optimization model operates more adaptable. The
performance of the model of stochastic programming is primarily dependent on distributional
knowledge and historical data; however, it attempts to strike a trade-off between holding costs
and shortage. Concerning the cost parameters, the suggested multilevel optimization model auto-
matically modifies its optimal ordering methods to produce the lowest (or nearly the lowest) total
cost across all parameter configurations. Furthermore, the outcomes demonstrate that in terms
of fill rate and total cost, the multilevel optimization model performs better than the stochastic
programming model under various cost parameter values. The moderate model is nearly always
in the middle of the results of the pessimistic and optimistic models, which are dependent on the
cost factors. On the other hand, the multilevel optimization model finds the lowest (or nearly the
lowest) total expense for every parameter configuration by automatically modifying its optimal
ordering methods based on the cost parameters. There are various limitations to this study that
point to potential areas for future investigation. In the suggested model, for instance, a single
item created from a single component is assumed. If this supposition were to be relaxed, a
more intricate model reflecting the ambiguity and interdependency of several components on the
supply and demand sides would be necessary. Moreover, the decision-maker may choose to ship
particular components or goods as a batch to reduce transportation costs by incorporating fixed
and variable transportation costs into the model.
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