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Abstract 

This paper introduces and thoroughly examines the Exponentiated Gompertz Inverse 

Rayleigh (EtGoIr) Distribution, a four-parameter extension of the Gompertz Inverse 

Rayleigh distribution. The primary focus is on its application to biomedical datasets, 

shedding light on its mathematical and statistical properties. Some properties of the 

distribution that were derived include the quantile function, median, moments, incomplete 

moments, Rényi entropy, and probability weighted moments. The model parameters were 

estimated using the method of maximum likelihood. A simulation study was conducted to 

investigate the consistency of the proposed model. The outcome of the investigation revealed 

that the model demonstrates consistency, as evidenced by the reduction in both root mean 

square error (RMSE) and bias as sample sizes increase. To showcase the practical relevance 

of the EtGoIr distribution, the paper applies the model to three distinct biomedical datasets. 

The results highlight its enhanced flexibility, demonstrating superior fit compared to its 

counterpart. 

 Keywords: Exponentiated G, MLE, Moment, Renyi Enropy, Biomedical 

I. Introduction

Statistical theory continually evolves to meet the demands of modeling complex natural phenomena 

effectively. Traditional probability distributions have long served as foundational tools, yet the 

complexities of modern biomedical datasets often necessitate the development of novel models to 

extract deeper insights. This necessity is particularly pronounced in biomedical research, where 

conventional distributions struggle to capture the intricacies of physiological measurements, disease 

outcomes, and survival times across various medical conditions. Recent advancements in 

distribution theory have underscored the importance of innovative models for accommodating the 

skewness prevalent in the aforementioned datasets. This skewness poses a significant challenge to 

conventional distributions, prompting researchers to explore extensions of established models to 

better capture these complexities. Notable among these extensions are the works of [1] – [9]. 
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In this study, we focus on extending the Gompertz inverse Rayleigh (GoIR) distribution, 

introduced by [10], to create a more adaptable model. We investigate the exponentiated (Et) family 

of distributions, as proposed by [11], to achieve this extension. By combining the GoIR distribution  

with the Et family, our aim is to develop a versatile model capable of accurately fitting real-world 

datasets, particularly in biomedical science applications. 

The cumulative distribution function (cdf) and probability density function (pdf) of the Et family are 

given respectively as: 

𝐹(𝑥) = [𝐺(𝑥)]𝜃 ;                     (1) 

𝑓(𝑥) = 𝜃𝑔(𝑥)[𝐺(𝑥)]𝜃−1 : 𝜃 > 0   (2) 

where 𝐺(𝑥)and 𝑔(𝑥) are the cdf and pdf of the baseline distribution. 

The cdf and pdf of GoIR distribution taken as baseline are given as: 

𝐺(𝑥) = 1 − 𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

 (3) 

and 

𝑔(𝑥) = 2𝛽𝛾2𝑥−3𝑒−
(
𝛾

𝑥
)
2

[1 − 𝑒−
(
𝛾

𝑥
)
2

]
−𝜎−1

𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

 ; 𝜃 > 0, 𝛽 > 0, 𝛾 > 0, 𝜎 > 0  (4) 

The motivation for this research arises from the recognition that traditional distributions 

often fall short in accommodating the complexities of biomedical datasets, especially those 

exhibiting skewness. By extending the GoIR distribution, we seek to contribute to the development 

of hybrid distributions that better reflect the intricacies of real-world data. 

II. Methods

2.1 Derivation of Exponentiated Gompertz Inverse Rayleigh (EtGoIR)  

Distribution 

This section introduces a new model called the EtGoIR distribution. The cdf of the EtGoIR 

distribution is derived by substituting equation (3) into equation (1), as follows: 

𝐹(𝑥) =

{

1 − 𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃

 (5) 

On differentiating equation (5) with respect to x, we obtain pdf of EtGoIR distribution given as: 

 𝑓(𝑥) = 2𝜃𝛽𝛾2𝑥−3𝑒−(
𝛾

𝑥
)
2

[1 − 𝑒−
(
𝛾

𝑥
)
2

]
−𝜎−1

𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

{

1 − 𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃−1

  (6) 

The pdf plot of the EtGoIR distribution is given in Figure 1 below. 
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Figure 1:  pdf plot of EtGoIR distribution 

2.2 Expansion of Density 

Using the generalized binomial expansion given as 

(1 − 𝑦)𝜌−1 =∑
(−1)𝑖Γ(𝜌)

𝑖! Γ(𝜌 − 𝑖)
𝑦𝑖

∞

𝑖=0

  (7) 

Applying equation (7) on the last term in equation (6), we have 

{

1 − 𝑒
(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃−1

=∑
(−1)𝑖Γ(𝜌)

𝑖! Γ(𝜌 − 𝑖)

∞

𝑖=0
[

𝑒
(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

]

𝑖

Where 

𝑒{−𝑣𝑦
𝑛} =∑

(−1)𝑗𝑣𝑗

𝑗!
𝑦𝑣𝑗

∞

𝑗=0

  (8) 

and 

𝑒{−𝑣𝑦
𝑛} =∑

𝑣𝑗

𝑗!
𝑦𝑣𝑗

∞

𝑗=0

  (9) 

Therefore, 

𝑒
{
𝛽
𝜎
𝑦𝑖}
=∑

(
𝛽
𝜎
)
𝑗

𝑗!
𝑦𝑗

∞

𝑗=0

 

where 

𝑦𝑗 = {1 − (1 − 𝑒
−(
𝛾
𝑥
)
2

)
−𝜎

}

𝑗

=∑(
𝑗
𝑘
) (−1)𝑘 [1 − 𝑒

−(
𝛾
𝑥
)
2

]
−𝜎𝑘∞

𝑘=0

Substituting back all the expansions into equation (6), we have 
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𝑓(𝑥) = 2𝛽𝜃𝛾2∑∑∑∑
(−1)𝑖+𝑘+𝑙 (

𝛽
𝜎
)
𝑗

(
𝑗 + 1
𝑘
) Γ(−𝜎(𝐾 + 1))Γ(𝜃)

𝑖! 𝑗! 𝑙! Γ(−𝜎(𝐾 + 1) − 𝑚)Γ(𝜃 − 𝑖)

∞

𝑙=0

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

𝑥−3  (10) 

𝑓(𝑥) = 𝜓𝑥−3 [𝑒
−(
𝛾
𝑥
)
2

]
𝑚+1

where  

𝜓 = 2𝛽𝜃𝛾2∑∑∑∑
(−1)𝑖+𝑘+𝑙 (

𝛽
𝜎
)
𝑗

(
𝑗 + 1
𝑘
)Γ(−𝜎(𝐾 + 1))Γ(𝜃)

𝑖! 𝑗! 𝑙! Γ(−𝜎(𝐾 + 1) −𝑚)Γ(𝜃 − 𝑖)

∞

𝑙=0

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

2.3 Properties of EtGoIR Distribution 

This section derives some statistical properties of the EGILx distribution including moments, 

survival function, hazard function, quantile functions, and order statistics. 

2.3.1 Quantile function 

The quantile function is the inverse of the cdf of a distribution and is used in simulation studies. It 

is also applied as a measure of the spread of a distribution. The quantile function is obtained using: 

𝑄(𝑢) = 𝐹−1(𝑢)                                (11) 

Applying equation (13) to the cdf of the new model, we have the quantile function given as 

𝑥 = 𝛾

{
 
−𝑙𝑜𝑔

[

1 − (1 −
𝜎𝑙𝑜𝑔(1−𝑢

1
𝜃)

𝛽
)

−(
1


)

]}

−(
1

2
)

 (12) 

2.3.2 Median 

Median of EtGoIR distribution is obtained by setting u =0.5 in equation (12) and it is given as 

𝑥𝑚𝑒𝑑𝑖𝑎𝑛 = 𝛾

{
 
−𝑙𝑜𝑔

[

1− (1 −
𝜎𝑙𝑜𝑔(1−0.5

1
𝜃)

𝛽
)

−(
1


)

]}

−(
1

2
)

 (13) 

2.3.3 Moments 

𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑓(𝑦)𝑑𝑥

∞

0

  (14) 

𝐸(𝑋𝑟) = 𝜓∫ 𝑥𝑟−3 [𝑒
−(
𝛾
𝑥
)
2

] 𝑑𝑥

∞

0

  (15) 

On solving the integral part in equation (15), we have 

𝐸(𝑋𝑟) = 𝜓 [
𝛾𝑟Γ(1−

𝑟

2
)

(𝑘+1)
1−
𝑟
2

]  (16) 

When r=1 in equation (16), we have mean of EtGoIR distribution
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2.3.4 Incomplete Moments 

The 𝑟𝑡ℎ (r > 0) incomplete moments for the EtGoIR distributions follow from equation (10) as 

�̇�𝑟(𝑢) = ∫𝜓𝑥
𝑟−3𝑒−(𝑚+1 )

(
𝛾
𝑥
)
2

𝑑𝑥

𝑢

0

 

Let 𝑡 = (𝑚 + 1 ) (
𝛾

𝑥
)
2

⇒ 𝑥 = (
(𝑚+1 )𝛾2

𝑡
)

1

2

When 𝑥 = 0  ⇒ t = 0 , 𝑎𝑛𝑑 𝑖𝑓  𝑥 = 𝑢 ⇒   𝑡 = (𝑚 + 1 ) (
𝛾

𝑢
)
2

Then  

�̇�𝑟(𝑢) =
𝜓

2((𝑚+1 )𝛾2)
1−
𝑟
2

𝛾 (1 −
𝑟

2
, (𝑚 + 1 )𝛾2)   (17) 

2.3.5 Rényi Entropy 

Define the Rényi entropy of the EtGoIR distributions with the following formula [12] 

𝑇𝑅(Ƞ) =
1

1 − Ƞ
𝑙𝑜𝑔∫ 𝑓Ƞ(𝑥)𝑑𝑥

∞

0

  , Ƞ > 0,Ƞ ≠ 1 

By equation (6) we find 𝑓(𝑥)Ƞ: 

 

2 2

2 2
1 1 1 1 1

2 3( ) 2 1 1

x x
e e

x x
f x x e e e e

 

 

 
  

  


      

 
   
      

          
      
   

            
                                                                   

 
 

   
 
 

 1 



 
 
 
 
 
 
 
 
 

By generalized binomial series and exponential expansion, we get 

{

1 − 𝑒

𝛽
𝜎
(1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

)

}

Ƞ(𝜃−1)

=∑
Γ(Ƞ(𝜃 − 1) + 𝑖)

𝑖! ΓȠ(𝜃 − 1))

∞

𝑖=0

𝑒

𝛽𝑖
𝜎
(1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

)

And 

𝑒

𝛽
𝜎
(1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

)(Ƞ+𝑖)

=∑
𝑗𝑧𝛽𝑧(Ƞ + 𝑖)𝑧

𝑧!𝜎𝑧

∞

𝑧=0

(1 − (1 − 𝑒
−(
𝛾
𝑥
)
2

)
−𝜎

)

𝑧

Then 

𝑓(𝑥)Ƞ = ∑
Γ(Ƞ(𝜃 − 1) + 𝑖)𝑗𝑧𝛽𝑧(Ƞ + 𝑖)𝑧

𝑖! ΓȠ(𝜃 − 1))𝑧! 𝜎𝑧

∞

𝑖=𝑧=0

(1 − (1 − 𝑒
−(
𝛾
𝑥
)
2

)
−𝜎

)

𝑧

Again using a generalized binomial, we get 

𝑓(𝑥)Ƞ = ₩𝑥−3Ƞ𝑒
−(

𝛾

𝑥
)
2
(Ƞ+𝑞)  (18) 

Where ₩ =∑
2𝜃Ƞ𝛽Ƞ𝛾2ȠΓ(Ƞ(𝜃 − 1) + 𝑖)𝑗𝑧𝛽𝑧(Ƞ + 𝑖)𝑧(−1)𝑝Γ((𝜎 + 1)Ƞ + 𝜎𝑝 + 𝑞)

𝑖! ΓȠ(𝜃 − 1))𝑧! 𝜎𝑧𝑞! Γ((𝜎 + 1)Ƞ + 𝜎𝑝)

∞

𝑖=0

(
𝑧

𝑝
) 

By substituting equation (18) into the equation above, we get: 

𝑇𝑅(Ƞ) =
1

1 − Ƞ
𝑙𝑜𝑔∫ ₩𝑥−3Ƞ𝑒

−(
𝛾
𝑥
)
2
(Ƞ+𝑞)

𝑑𝑥

∞

0
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The last integral, we get 

𝑇𝑅(Ƞ) =
1

1−Ƞ
log (

₩Γ(
3

2
(Ƞ−1)+1)

2((Ƞ+𝑞 )𝛾2)
1
2
(3Ƞ+1)

)  (19) 

2.3.6 Probability Weighted Moments 

The probabilistic weighted moment (𝜑,Ƞ)𝑡ℎfor EtGoIR distributions can be expressed as follows: 

𝜌(𝜑,Ƞ) = 𝐸 (𝑋
𝜑(𝐹Ƞ(𝑋))) = ∫ 𝑥𝜑

∞

−∞

𝐹Ƞ(𝑥)𝑓(𝑥)𝑑𝑥 

By equation (5), we can find 𝐹Ƞ(𝑥): 

𝐹(𝑥)Ƞ =

{

1− 𝑒

𝛽
𝜎
(1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

)

}

𝜃Ƞ

By generalized binomial series: 

{

1 − 𝑒

𝛽
𝜎
(1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

)

}

𝜃Ƞ

=∑(−1)𝑗
∞

𝑗=0

(
𝜃Ƞ

𝑗
) 𝑒

𝑗𝛽
𝜎
(1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

)

And using exponential expansion 

𝑒

𝑗𝛽
𝜎
(1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

)

=∑
𝑗𝑟𝛽𝑟

𝑟! 𝜎𝑟

∞

𝑟=0

(1 − (1 − 𝑒−
(
𝛾
𝑥
)
2

)
−𝜎

)

𝑟

Then 

𝐹(𝑥)Ƞ = ∑
(−1)𝑗𝑗𝑟𝛽𝑟

𝑟! 𝜎𝑟

∞

𝑗=𝑟=0

(
𝜃Ƞ

𝑗
)(1 − (1 − 𝑒−

(
𝛾
𝑥
)
2

)
−𝜎

)

𝑟

And using generalized binomial 

(1 − (1 − 𝑒−
(
𝛾
𝑥
)
2

)
−𝜎

)

𝑟

=∑(−1)𝑠
∞

𝑠=0

(
𝑟

𝑠
)(1 − 𝑒−

(
𝛾
𝑥
)
2

)
−𝑟𝜎

And  (1 − 𝑒
−(
𝛾
𝑥
)
2

)
−𝑟𝜎

= ∑
Γ(𝑟𝜎 + 𝑤)

𝑤! Γ(𝑟𝜎)

∞

𝑤=0

𝑒
−(
𝛾
𝑥
)
2
𝑤

Then 

𝐹(𝑥)Ƞ = ₭𝑒−
(
𝛾

𝑥
)
2
𝑤  (20) 

Where ₭ = ∑
(−1)𝑗+𝑠𝑗𝑟𝛽𝑟Γ(𝑟𝜎 +𝑤)

𝑟!𝜎𝑟𝑤! Γ(𝑟𝜎)

∞

𝑗=𝑟=𝑠=𝑤=0

(
𝜃Ƞ

𝑗
) (
𝑟

𝑠
) 

By substituting equation (20) into the equation above, we get: 

𝜌(𝜑,Ƞ) = ₭𝜓 ∫ 𝑥𝜑−3

∞

−∞

𝑒
−(𝑤+𝑚+1 )(

𝛾
𝑥
)
2

𝑑𝑥 

Let 𝑢 = (𝑤 +𝑚 + 1 ) (
𝛾

𝑥
)
2

then 

𝜌(𝜑,Ƞ) =
₭𝜓Γ(1−

𝜑

2
)

2((𝑤+𝑚+1 )𝛾2)
1−
𝜑
2

(21)
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2.3.7 Survival function 

𝑆(𝑥) = 1 − 𝐹(𝑥)  (22) 

𝑆(𝑥) = 1 −

{

1 − 𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃

 (23) 

2.3.8 Hazard function 

𝐻(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
 (24) 

𝐻(𝑥) =

2𝜃𝛽𝛾2𝑥−3𝑒
−(
𝛾
𝑥)
2

[1−𝑒
−(
𝛾
𝑥)
2

]

−𝜎−1

𝑒

(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

{

1−𝑒

(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃−1

1−

{

1−𝑒

(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃  (25) 

The hazard plot of the EtGoIR distribution is given in Figure 2 below. 

Figure 2: plot of hazard function of EtGoIR distribution 

2.3.9 Cumulative hazard function 

𝐶(𝑥) = −log [𝑆(𝑥)]  (26) 

𝐶(𝑥) = −𝑙𝑜𝑔

[

1 −

{

1 − 𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃

]

(27)
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2.3.10 Reverse hazard function 

𝑅(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
 (28) 

𝑅(𝑥) =

2𝜃𝛽𝛾2𝑥−3𝑒
−(
𝛾
𝑥)
2

[1−𝑒
−(
𝛾
𝑥)
2

]

−𝜎−1

𝑒

(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

{

1−𝑒

(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃−1

{

1−𝑒

(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃   (29)   

2.3.11 Order Statistics 

The pdf of the rth order statistics of 𝑋𝑟:𝑛is given as: 

𝑓𝑟:𝑛(𝑥) =
1

𝐵(𝑟, 𝑛 − 𝑟 + 1)
∑(−1)𝑖[𝐹(𝑥)]𝑟+𝑖−1
𝑛−𝑟

𝑖=0

𝑓(𝑥)  (30) 

Inserting equation (5) and equation (6) into equation (30), we have 

𝑓𝑟:𝑛(𝑥) =
1

𝐵(𝑟,𝑛−𝑟+1)
∑ (−1)𝑖

[{

1− 𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃

]

𝑟+𝑖−1

𝑛−𝑟
𝑖=0 2𝜃𝛽𝛾2𝑥−3𝑒−

(
𝛾

𝑥
)
2

[1 −

𝑒−
(
𝛾

𝑥
)
2

]
−𝜎−1

𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

{

1 − 𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃−1

On bringing the like terms together, we have 
 

2 2

2 2

( ) 1

1 1 1 1 1

2
3

:
0

2
( ) ( 1) 1 1
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r i

e e

n r
x xi

r n
i

f x x e e e e
B r n r

 

 



 


  


 

   
       
   

 
      
                    

                                 



 
 

         
     

 
  

          (31) 

Using the generalized binomial expansion on the last term in equation (31), we have 

{

1 − 𝑒
(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃(𝑟+𝑖)−1

=∑
(−1)𝑗Γ(𝜃(𝑟 + 𝑖))

𝑗! Γ(𝜃(𝑟 + 𝑖) − 𝑗)

∞

𝑗=0
[

𝑒
(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

]

𝑗

Substituting back into equation (31), we have 

𝑓𝑟:𝑛(𝑥) =
2𝜃𝛽𝛾2

𝐵(𝑟,𝑛−𝑟+1)
∑ ∑

(−1)𝑖+1Γ(𝜃(𝑟+𝑖))

𝑗!Γ(𝜃(𝑟+𝑖)−𝑗)
∞
𝑗=0

𝑛−𝑟
𝑖=0 𝑥−3𝑒

−(
𝛾

𝑥
)
2

[1 − 𝑒
−(

𝛾

𝑥
)
2

]
−𝜎−1

[

𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

]

𝑗+1

  (32) 

Also, expanding the last term in equation (32), we have 

[

𝑒
(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

]

𝑗+1

=∑(−1)𝑘 (
𝑗 + 1
𝑘
) 1 − (1− 𝑒

−(
𝛾
𝑥
)
2

)
−𝜎𝑘∞

𝑘=0
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𝑓𝑟:𝑛(𝑥) =
2𝜃𝛽𝛾2

𝐵(𝑟, 𝑛 − 𝑟 + 1)
∑∑∑

(−1)𝑖+𝑗+1 (
𝑗 + 1
𝑘
)Γ(𝜃(𝑟 + 𝑖))

𝑗! Γ(𝜃(𝑟 + 𝑖) − 𝑗)

∞

𝑘=0

∞

𝑗=0

𝑛−𝑟

𝑖=0

𝑥−3𝑒
−(
𝛾
𝑥
)
2

[1 − 𝑒
−(
𝛾
𝑥
)
2

]
−𝜎(𝑘+1)−1

 (33) 

[1 − 𝑒
−(
𝛾
𝑥
)
2

]
−𝜎(𝑘+1)−1

=∑
(−1)𝑖Γ(−𝜎(𝑘 + 1))

𝑙! Γ(−𝜎(𝑘 + 1) − 𝑙)

∞

𝑖=0

[𝑒
−(
𝛾
𝑥
)
2

]
𝑖

Putting all the expansions together, we have the rth order statistics of EtGoIR distribution given as: 

𝑓𝑟:𝑛(𝑥) =
2𝜃𝛽𝛾2

𝐵(𝑟,𝑛−𝑟+1)
∑ ∑ ∑ ∑

(−1)𝑖+𝑗+𝑘+1(
𝑗+1
𝑘
)Γ(−𝜎(𝑘+1))Γ(𝜃(𝑟+𝑖))

𝑗!𝑙!Γ(𝜃(𝑟+𝑖)−𝑗)Γ(−𝜎(𝑘+1)−𝑙)
∞
𝑙=0

∞
𝑘=0

∞
𝑗=0

𝑛−𝑟
𝑖=0 𝑥−3 [𝑒

−(
𝛾

𝑥
)
2

]
𝑖+1

 (34) 

To obtain minimum order statistics for EtGoIR distribution, we set r=1 in equation (34) to get 

𝑓1:𝑛(𝑥) = 2𝑛𝜃𝛽𝛾
2 ∑ ∑ ∑ ∑

(−1)𝑖+𝑗+𝑘+1(
𝑗+1
𝑘
)Γ(−𝜎(𝑘+1))Γ(𝜃(1+𝑖))

𝑗!𝑙!Γ(𝜃(1+𝑖)−𝑗)Γ(−𝜎(𝑘+1)−𝑙)
∞
𝑙=0

∞
𝑘=0

∞
𝑗=0

𝑛−1
𝑖=0 𝑥−3 [𝑒

−(
𝛾

𝑥
)
2

]
𝑖+1

       (35) 

To obtain maximum order statistics for EtGoIR distribution, we set r=n in equation (34) to get 

𝑓𝑛:𝑛(𝑥) = 2𝑛𝜃𝛽𝛾
2 ∑ ∑ ∑

(−1)𝑗+𝑘+𝑖(
𝑗+1
𝑘
)Γ(−𝜎(𝑘+1))Γ(𝜃(𝑛))

𝑗!𝑙!Γ(𝜃(𝑛)−𝑗)Γ(−𝜎(𝑘+1)−𝑙)
∞
𝑙=0

∞
𝑘=0

∞
𝑗=0 𝑥−3 [𝑒−

(
𝛾

𝑥
)
2

]
𝑖+1

 (36) 

2.4 Maximum Likelihood Estimation (MLE) 

Given some observed data, a method known as maximum likelihood estimation (MLE) can be used 

to estimate a probability distribution's parameters. This is accomplished by maximizing a likelihood 

function to make the observed data as probable as possible given the assumed statistical model. The 

log-likelihood function of EtGoIR is given as 

𝑙𝑜𝑔𝐿 = 𝑛𝑙𝑜𝑔(2) + 𝑛𝑙𝑜𝑔(𝜃) + 𝑛𝑙𝑜𝑔(𝛽) + 2𝑛𝑙𝑜𝑔(𝛾) − 3∑ log(𝑥) − 𝛾2∑ (
1

𝑥
)
2

− (𝜎 +𝑛
𝑖=1

𝑛
𝑖=1

1)∑ 𝑙𝑜𝑔 [ 1 − 𝑒−
(
𝛾

𝑥
)
2

] +
𝛽

𝜎
∑ [1 − [1 − 𝑒−

(
𝛾

𝑥
)
2

]
−𝜎

] + (𝜃 − 1)∑

[
 
1 − 𝑒

(
𝛽

𝜎
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

]

 
𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1   (37) 

The maximum likelihood estimate is the location in the parameter space where the 

likelihood function is maximized. The maximum likelihood estimates of θ, β, 𝛾 and  are the values 

that maximize the likelihood function. We can find these values by taking the partial derivatives of 

the likelihood function with respect to θ, β, 𝛾,  and setting them equal to zero. This gives us the 

following equations:  

𝜕𝑙𝑜𝑔𝑙

𝜕𝜃
=

𝑛

𝜃
+∑ 𝑙𝑜𝑔

[

1 − 𝑒
−(

𝛽

𝜎
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

]

 

= 0𝑛
𝑖=1   (38) 

𝜕𝑙𝑜𝑔𝑙

𝜕𝛽
=

𝑛

𝛽
+

1

𝜎
∑ [1 − [1 − 𝑒

−(
𝛾

𝑥
)
2

]
−𝜎

] − (𝜃 − 1)∑
𝑒

(
𝛽
𝜎
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

[

1−𝑒

(
𝛽
𝜎
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

]

𝑛
𝑖=1 = 0𝑛

𝑖=1 (39)
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𝜕𝑙𝑜𝑔𝑙

𝜕𝛾
=

2𝑛

𝛾
+ 2𝛾∑ (

1

𝑥
)
2

+ (𝜎 + 1)∑
𝛾𝑒

−(
𝛾
𝑥)
2

1−𝑒
−(
𝛾
𝑥)
2

𝑛
𝑖=1 + 

𝛽

𝜎
∑ 2𝜎𝛾𝑒

−(
𝛾

𝑥
)
2

[1 − 𝑒
−(

𝛾

𝑥
)
2

]
−𝜎−1

+ (𝜃 −𝑛
𝑖=1

𝑛
𝑖=1

1)∑
𝑒
(
𝛽
𝜎
)
2𝜎𝛾𝑒

−(
𝛾
𝑥)
2

𝑒

(
𝛽
𝜎
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

[1−𝑒
−(
𝛾
𝑥)
2

]

−𝜎−1

[

1−𝑒

(
𝛽
𝜎
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

]

𝑛
𝑖=1 = 0  (40) 

𝜕𝑙𝑜𝑔𝑙

𝜕𝜎
=

𝛽

𝜎
∑ [1 − 𝑒−

(
𝛾

𝑥
)
2

]
−𝜎

𝑙𝑜𝑔𝑛
𝑖=1 [1 − 𝑒−

(
𝛾

𝑥
)
2

] +
𝛽

𝜎2
∑ [1 − [1 − 𝑒−

(
𝛾

𝑥
)
2

]
−𝜎

]𝑛
𝑖=1 ∑ 𝑙𝑜𝑔 [1 − 𝑒−

(
𝛾

𝑥
)
2

] + (𝜃 −𝑛
𝑖=1

1)∑
𝑒

−(
𝛽
𝜎
)[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

𝑙𝑜𝑔[1−𝑒
−(
𝛾
𝑥)
2

]−𝑒

−(
𝛽

𝜎2
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

[

1−𝑒

(
𝛽
𝜎
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

]

= 0𝑛
𝑖=1   (41) 

Since equations (38), (39), (40) and (41) are non-linear in parameters, techniques such as Newton-

Raphson method in R-software can be used to accomplish the task of estimating the parameters from 

equations (38), (39), (40) and (41). 

III. Results

3.1  Simulation 

In this section, we conduct a simulation study to assess the performance of the Maximum Likelihood 

Estimation (MLE) for the EtGoIR distribution. We generate random numbers using the quantile 

function (qf) of the distribution. Specifically, if U is a uniform random variable on the interval (0, 1), 

then x follows the EtGoIR distribution. We generated a total of n = 10000 samples, with each sample 

having sizes n=20, 50, 100, 250, 500, and 1000. These samples were drawn from the EtGoIR 

distribution using its quantile function. Subsequently, we calculated the empirical means, biases, 

and root mean squared errors (RMSE) of the MLE. 

Table.1 MLEs, biases and RMSE for some values of parameters 

(0.5,0.1,0.1,0.5) (2,1,3,2.5) 

n Parameters Estimated 

Values 

Bias RMSE Estimated 

Values 

Bias RMSE 

20 





0.4548 

0.1266 

0.1262 

0.5770 

-0.0452

0.0266

0.0262

0.0770

0.1484 

0.0976 

0.0579 

0.1908 

2.2647 

1.0825 

3.0253 

2.7354 

0.2647 

0.0825 

0.0253 

0.2354 

0.9692 

0.5743 

0.2659 

0.9156 

50 





0.4737 

0.1075 

0.1110 

0.5366 

-0.0263

0.0075

0.0110

0.0366

0.1151 

0.0503 

0.0310 

0.1216 

2.1251 

1.0966 

3.0438 

2.5940 

0.1251 

0.0966 

0.0438 

0.0940 

0.6905 

0.4272 

0.1938 

0.6200 
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100 





0.4890 

0.1035 

0.1054 

0.5185 

-0.0110

0.0035

0.0054

0.0185

0.0903 

0.0338 

0.0193 

0.0889 

2.0670 

1.0951 

3.0519 

2.5425 

0.0670 

0.0951 

0.0519 

0.0425 

0.4628 

0.3017 

0.1539 

0.4413 

250 





0.4972 

0.1006 

0.1019 

0.5097 

-0.0028

0.0006

0.0019

0.0097

0.0665 

0.0227 

0.0126 

0.0630 

2.0166 

1.0665 

3.0435 

2.5241 

0.0166 

0.0665 

0.0435 

0.0241 

0.2872 

0.2210 

0.1115 

0.2873 

500 





0.5017 

0.1012 

0.1006 

0.5012 

0.0017 

0.0012 

0.0006 

0.0012 

0.0511 

0.0160 

0.0091 

0.0415 

2.0052 

1.0511 

3.0318 

2.5051 

0.0052 

0.0511 

0.0318 

0.0051 

0.1923 

0.1606 

0.0825 

0.1930 

1000 





0.5028 

0.1010 

0.1002 

0.5000 

0.0028 

0.0010 

0.0002 

0.0001 

0.0370 

0.0105 

0.0064 

0.0289 

2.0010 

1.0434 

3.0288 

2.5048 

0.0010 

0.0434 

0.0288 

0.0048 

0.1367 

0.1208 

0.0727 

0.1400 

Table 1 presents the simulation outcomes corresponding to the EtGoIR distribution. It is observed 

that as the sample size increases, the Root Mean Square Error (RMSE) and bias associated with the 

parameter estimators consistently decreases. The outcome suggest that the model is consistent. 

3.2 Applications 

This section demonstrates the practical application of the EtGoIR distribution by utilizing it to model 

biomedical datasets. We compare its performance in providing a robust parametric fit to the datasets 

with that of the Gompertz Inverse Rayleigh (GoIR) distribution, the generalized Gompertz (GGo) 

distribution, the exponentiated exponential (EtEx) distribution, and the inverse Rayleigh (IR) 

distribution. Metrics such as the log likelihood, Akaike Information Criterion (AIC), and Bayesian 

Information Criterion (BIC) are employed for this comparison. To discern the most suitable model, 

computations of the log likelihood, AIC, and BIC values are carried out for both the proposed EtGoIR 

model and the alternative models used for comparison. The model exhibiting the lowest log 

likelihood, AIC, and BIC values is deemed the most appropriate match for the provided datasets. 

For this analytical endeavor, the R software is employed, facilitating the necessary calculations and 

comparisons. 

      Data set 1 has been utilized by [13] and [14]. The dataset comprises the summation of skinfold 

measurements from 202 athletes at the Australian Institute of Sports. It consists of the following 

values: 

28.0, 98, 89.0, 68.9, 69.9, 109.0, 52.3, 52.8, 46.7, 82.7, 42.3, 109.1, 96.8, 98.3, 103.6, 110.2, 98.1, 57.0, 43.1, 

71.1, 29.7, 96.3, 102.8, 80.3, 122.1, 71.3, 200.8, 80.6, 65.3, 78.0, 65.9, 38.9, 56.5, 104.6, 74.9, 90.4, 54.6, 

131.9, 68.3, 52.0, 40.8, 34.3, 44.8, 105.7, 126.4, 83.0, 106.9, 88.2, 33.8, 47.6, 42.7, 41.5, 34.6, 30.9, 100.7, 

80.3, 91.0, 156.6, 95.4, 43.5, 61.9, 35.2, 50.9, 31.8, 44.0, 56.8, 75.2, 76.2, 101.1, 47.5, 46.2, 38.2, 49.2, 49.6, 

34.5, 37.5, 75.9, 87.2, 52.6, 126.4, 55.6, 73.9, 43.5, 61.8, 88.9, 31.0, 37.6, 52.8, 97.9, 111.1, 114.0, 62.9, 36.8, 

56.8, 46.5, 48.3, 32.6, 31.7, 47.8, 75.1, 110.7, 70.0, 52.5, 67, 41.6, 34.8, 61.8, 31.5, 36.6, 76.0, 65.1, 74.7, 77.0, 

62.6, 41.1, 58.9, 60.2, 43.0, 32.6, 48, 61.2, 171.1, 113.5, 148.9, 49.9, 59.4, 44.5, 48.1, 61.1, 31.0, 41.9, 75.6, 

76.8, 99.8, 80.1, 57.9, 48.4, 41.8, 44.5, 43.8, 33.7, 30.9, 43.3, 117.8, 80.3, 156.6, 109.6, 50.0, 33.7, 54.0, 54.2, 

30.3, 52.8, 49.5, 90.2, 109.5, 115.9, 98.5, 54.6, 50.9, 44.7, 41.8, 38.0, 43.2, 70.0, 97.2, 123.6, 181.7, 136.3, 

42.3, 40.5, 64.9, 34.1, 55.7, 113.5, 75.7, 99.9, 91.2, 71.6, 103.6, 46.1, 51.2, 43.8, 30.5, 37.5, 96.9, 57.7, 125.9, 

49.0, 143.5, 102.8, 46.3, 54.4, 58.3, 34.0, 112.5, 49.3, 67.2, 56.5, 47.6, 60.4, 34.9. 
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      Data set 2, encompassing the remission times (in months) of a randomized collection of one 

hundred and twenty-eight (128) bladder cancer patients, has been utilized by [15] and [14]. The 

dataset comprises the following values:  

0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 

2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 

3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 

5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 

7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 

11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 14.83, 15.96, 16.62, 17.12, 

17.14, 17.36, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 

46.12, 79.05. 

      Data set 3, representing the survival times of one hundred and twenty-one (121) patients with 

breast cancer obtained from a large hospital during the period from 1929 to 1938, was obtained from 

[17]. The dataset is outlined as follows:  

0.3, 0.3, 1.0, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 

15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 

24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 

40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 

51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 

78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0, 126.0, 

127.0, 129.0, 129.0, 139.0, 154.0. 

Table 2: Summary Statistics of data 

N Min. Max. Q1 Q2 Mean Q3 Var. SD Ku Sk 

Data1 202 28.00 200.80 43.85 58.60 69.02 90.35 1060.501 32.565 4.365 1.175 

Data2 128 0.080 79.050 3.348 6.395 9.366 11.838 110.425 10.508 18.485 3.286 

Data3 121 0.30 154.00 17.30 40.00 46.08 60.00 1259.567 35.490 3.372 1.029 

Table 2 demonstrate that the three datasets exhibit a high degree of skewness. 

Table 3: The models' MLEs and performance requirements based on data set 1 

Models ̂ ̂ ̂ ̂ ll AIC BIC 

EtGoIR 0.1985 369.5184 0.3036 0.1799 -953.632 1915.2650 1928.4980 

GoIR 0.0031 - 0.0000 0.8601 -987.520 1981.0410 1990.9660 

GGo -0.0052 15.4031 - 0.0597 -956.086 1918.1730 1928.9200 

EtEx 0.0406 8.5786 - - -958.006 1920.0130 1926.6300 

IR 52.6054 - - - -966.462 1934.9250 1938.2330 
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Figure 3: Density plots for data set 1 

Table 4: The models' MLEs and performance requirements based on data set 2 

Models ̂ ̂ ̂ ̂ ll AIC BIC 

EtGoIR 0.0003 2.5796 0.0001 0.3400 -410.704 829.4088 834.1479 

GoIR 0.0839 - 0.0041 0.5129 -413.575 833.1505 836.1377 

GGo -0.0224 1.5034 - 0.1678 -413.183 832.3668 835.3539 

EtEx 0.1213 1.2180 - - -413.077 830.1552 834.8592 

IR 2.2612 - - - -774.341 1550.683 1553.535 
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Figure 4: Density plots for data set 2 

Table 5: The models’ MLEs and performance requirements based on data set 3. 

Models ̂ ̂ ̂ ̂ ll AIC BIC 

EtGoIR 0.0000 0.5664 0.4016 0.9033 -578.7145 1165.4290 1176.6120 

GoIR 0.0933 - 0.0002 0.6341 -579.9791 1165.9580 1176.7450 

GGo 0.0066 1.1485 - 0.0182 -579.9435 1165.9371 1176.7274 

EtEx 0.0269 1.4244 - - -581.7091 1167.4182 1168.2120 

IR 2.2612 - - - -1087.464 2176.9290 2179.7240 
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Figure 5: Density plots for data set 3. 

     Tables 3 to 5 showcase the superior ability of the proposed model to effectively fit the highly 

skewed datasets compared to the competing models, as indicated by the evaluation metrics 

employed. Figures 3 to 5 also showed that the proposed model fits the data set adequately. 

IV. Discussion

This paper introduces a novel distribution termed the Exponentiated Gompertz Inverse Rayleigh 

(EtGoIR) distribution, extending the framework of the Gompertz Inverse Rayleigh (GoIR) 

distribution. The introduction of a new parameter enhances the distribution's adaptability in 

capturing various nuances present in biomedical datasets. The paper extensively examines the 

properties of the EtGoIR distribution, effectively demonstrating its practical applicability to real-life 

scenarios through the implementation of Maximum Likelihood Estimation (MLE). The empirical 

findings consistently substantiate that the proposed EtGoIR model outperforms the alternative 

distribution models under consideration in accurately fitting the provided datasets. 
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