Sule O.B., Khalaf A.A., Isah A.M. and Kaigama A.
ON MODELING OF BIOMEDICAL DATA WITH EXPONENTIATED
GOMPERTZ INVERSE RAYLEIGH DISTRIBUTION

RT&A, No 3 (79)
Volume 19, September 2024

ON MODELING OF BIOMEDICAL DATA WITH
EXPONENTIATED GOMPERTZ INVERSE RAYLEIGH
DISTRIBUTION

Sule Omeiza Bashiru!, Alaa Abdulrahman Khalaf?, Alhaji Modu Isa® and Aishatu
Kaigama*
[ ]
Department of Mathematics and Statistics, Confluence University of Science and Technology,
Osara, Kogi State, Nigeria.
2Diyala Education Directorate, Diyala, Iraq.
34Department of Mathematics and Computer Science, Borno State University, Nigeria.
Email: 'bash0140@gmail.com; 2alaa.a.khalaf35510@st.tu.edu.iq; 3alhajimoduisa@bosu.edu.ng;
4a.kaigama@bosu.edu.ng

Abstract

This paper introduces and thoroughly examines the Exponentiated Gompertz Inverse
Rayleigh (EtGolr) Distribution, a four-parameter extension of the Gompertz Inverse
Rayleigh distribution. The primary focus is on its application to biomedical datasets,
shedding light on its mathematical and statistical properties. Some properties of the
distribution that were derived include the quantile function, median, moments, incomplete
moments, Rényi entropy, and probability weighted moments. The model parameters were
estimated using the method of maximum likelihood. A simulation study was conducted to
investigate the consistency of the proposed model. The outcome of the investigation revealed
that the model demonstrates consistency, as evidenced by the reduction in both root mean
square error (RMSE) and bias as sample sizes increase. To showcase the practical relevance
of the EtGolr distribution, the paper applies the model to three distinct biomedical datasets.
The results highlight its enhanced flexibility, demonstrating superior fit compared to its
counterpart.

Keywords: Exponentiated G, MLE, Moment, Renyi Enropy, Biomedical

I. Introduction

Statistical theory continually evolves to meet the demands of modeling complex natural phenomena
effectively. Traditional probability distributions have long served as foundational tools, yet the
complexities of modern biomedical datasets often necessitate the development of novel models to
extract deeper insights. This necessity is particularly pronounced in biomedical research, where
conventional distributions struggle to capture the intricacies of physiological measurements, disease
outcomes, and survival times across various medical conditions. Recent advancements in
distribution theory have underscored the importance of innovative models for accommodating the
skewness prevalent in the aforementioned datasets. This skewness poses a significant challenge to
conventional distributions, prompting researchers to explore extensions of established models to
better capture these complexities. Notable among these extensions are the works of [1] - [9].
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In this study, we focus on extending the Gompertz inverse Rayleigh (GolR) distribution,
introduced by [10], to create a more adaptable model. We investigate the exponentiated (Et) family
of distributions, as proposed by [11], to achieve this extension. By combining the GolR distribution
with the Et family, our aim is to develop a versatile model capable of accurately fitting real-world
datasets, particularly in biomedical science applications.

The cumulative distribution function (cdf) and probability density function (pdf) of the Et family are
given respectively as:

F(x) =[G()1° ; @)
fx) =0g()[G()]°t :0>0 @)

where G (x)and g(x) are the cdf and pdf of the baseline distribution.
The cdf and pdf of GolR distribution taken as baseline are given as:

G001 e(g){1—(1—e_(:%) ) } o
and .
960 = 28y ® |1- e‘(?yc)z] ” e(”){1_<1_e_(}) ) } 16>0,8>0,y>00>0 @)

The motivation for this research arises from the recognition that traditional distributions
often fall short in accommodating the complexities of biomedical datasets, especially those
exhibiting skewness. By extending the GolR distribution, we seek to contribute to the development
of hybrid distributions that better reflect the intricacies of real-world data.

II. Methods

2.1 Derivation of Exponentiated Gompertz Inverse Rayleigh (EtGolIR)
Distribution

This section introduces a new model called the EtGolR distribution. The cdf of the EtGolR
distribution is derived by substituting equation (3) into equation (1), as follows:

Foo = 1- e(g){l_(l_e_(%f)_a} | )
\ )

On differentiating equation (5) with respect to x, we obtain pdf of EtGoIR distribution given as:

The pdf plot of the EtGoIR distribution is given in Figure 1 below.
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Figure 1: pdf plot of EtGoIR distribution

2.2 Expansion of Density

Using the generalized binomial expansion given as

(1-y)y =

(- 1)’F(p)
4 1! DM

Applying equatlon (7) on the last term in equation (6), we have

and

el-vy"} =

Therefore,

w(ﬁf
zz ;f! 3

j=0

where

y=fi-(a- e-e)z)'”}"
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Substituting back all the expansions into equation (6), we have
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2.3 Properties of EtGoIR Distribution

This section derives some statistical properties of the EGILx distribution including moments,
survival function, hazard function, quantile functions, and order statistics.

2.3.1 Quantile function

The quantile function is the inverse of the cdf of a distribution and is used in simulation studies. It
is also applied as a measure of the spread of a distribution. The quantile function is obtained using:
Q) =F1(w) (1)

Applying equation (13) to the cdf of the new model, we have the quantile function given as

1
i -() -G)
alog(l—u§> O—
x=y{—log 1- 1—T (12)
Lo )
2.3.2 Median
Median of EtGolR distribution is obtained by setting u=0.5 in equation (12) and it is given as
N
Jlog<1—0.59>
Xmedian = Y{ —log 1-{1- -5 (13)
Lo )
2.3.3 Moments
) = [ ax a4
0
oo Y 2
E(X™) = f X3 [e‘(z) ] dx (15)
0
On solving the integral part in equation (15), we have
BT =y [y ““52] (16)
(k+1)'7Z

When r=1 in equation (16), we have mean of EtGolR distribution
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2.3.4 Incomplete Moments

The " (r > 0) incomplete moments for the EtGolR distributions follow from equation (10) as

2
i () = f par=3e G gy
0
1

Lett=(m+1) (92 =y = ((mﬂ)yz);

t
2
Whenx =0 =2t=0,andif x=u = t=(m+1)(£)
Then

() = ——y (1-1,(n +1)y?) (17)
2((m+1)y2) 2

2.3.5 Rényi Entropy

Define the Rényi entropy of the EtGolR distributions with the following formula [12]

Te(M) = 7 r1logf]”1(x)dx ,  n>o0n=#1
0
By equation (6) we find f(x)":
e e
[VJZJ [}’TJ ~o+1)y ﬂg 1{19“1J JJ g 1[13[{;{] }J
f(x) =20"B"y" x e\ )1 " e 1-e
By generalized binomial series and exponential expansion, we get
pmon NO-1) 20
—(¥ (¥
) _e§<1—(1—e (x) > > _ Z I‘(H(B _ 1) + l) < (1—e (X) > >
L, uTne-1)

L ) =
And

E(l—(l—e_(%f)_J)(nﬂ) -0\ Z

o ]ZﬁZ I"l _I_ l)Z _ 04 2
¢ Z zlo* ( (1_e (X)) )
Then

N TN — 1) + 07670 + D* oY
n= —e

[ i=zz=0 iI'TN@ —1))z! o ( (1 ¢ )
Again using a generalized binomial, we get
FGON = warane~() @) (18)

O 20NNy 2NN (N (0 — 1) + 0)2B7 () + )?(=1)PT((o + DN + op +
WhereWzZ By (I](' ) +DjB7 M+ )* (=PI ((e + DN +ap +q) (Z)

i iI'rn@ — 1))z a%q! T((e + DI + op) p
By substituting equation (18) into the equation above, we get:

1 7\2
Tz (1) = T l,llogf wx—sne-(x) M+a) g,
0
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The last integral, we get

T (1) = Llog (M) (19)

=1 2((N+q )yz)%(gnﬂ)

2.3.6 Probability Weighted Moments

The probabilistic weighted moment (¢, I)“*for EtGoIR distributions can be expressed as follows:
pom = E (x2(F100)) = [ x# Feoseoax

By equation (5), we can find F'l(x):

i ®))
FQ)N = 1—e3<1_(1_e ) ) )
\ )
By generalized binor_nial seeilries: ]
{(=®)) & af (o))
k1—e < ( ) ) =;(—1)j<9].rl>e] ( )

And using exponential expansion

e%<1_(l_e_(%)z>—“> _NJB (1 - (1 - e_(%)2>_a>r

b rlo”
Then _ ) .
Fen = Y EXLE (O (1_(1_6—@2) )

j=r=0
And using generalized binomial

(1-(-®) ) =Y ()i

=0
ro ®©

ana (1= @) 7= TR (e

w=0
Then
FOON = ke () v (20)
(—1)/*5j7B T (ra + w) (6N (T
Wherek = rla"™w! T (ro) ( j ) (s)

j=r=s=w=0

By substituting equation (20) into the equation above, we get:

_ -3 —(w+m+1)(z)2
Pom =K | x7%e x) dx
oo ,
— Y
Letu = (W+m+1)(x) then

kyr(1-9)
P = — ) e1)
(@ 2(w+m+1 )yz)l_%
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2.3.7 Survival function

S(x) =1-F(x)

S =1- 1- e(g){1_<1_e_(’_y‘)2>_a} 9
k )

2.3.8 Hazard function

H(x) = %’3
zagyzx—se—(%)zIl_e_(}_1;)2]—0—19@){1—(1—{@)2) } 1_6@){1_(1_8_(%)2) }
H(x) = 2 _Jk 9 |
- 1_8(9{1_(1_3—@ ) }
‘ )

The hazard plot of the EtGolR distribution is given in Figure 2 below.
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Figure 2: plot of hazard function of EtGolR distribution
2.3.9 Cumulative hazard function

C(x) = —log[S(x)]

Clx)=—log 1- 1- e(g){1_<1_e—(§)2)‘“}
|\ /|

6
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2.3.10 Reverse hazard function

=12

zﬂﬁyzx_3e_(]7:)2[1_e—(l—:)z]_J_le(g){1_<l—e_(%)2>_ } 1_(3(@){1_(1_8_(%)2)— }

RG) = L )

2.3.11 Order Statistics

The pdf of the r* order statistics of X,.,is given as:
frn () = Z( DIFEI ()

Inserting equation (5) and equatlon (6) into equation (30), we have
g THi-1

——— Y- 1- e(g){1_<1_e_(§)z>_a} 29,3)/2x‘3e_(£)2 [1 _
It

et O () o)

e ] k1 —e |

On bringing the like terms together, we have

£ (x)= 206y Z( 1)'x e ) 1—9{;J e 1-e

B(r,n-r+1)=

B(r,n r+1)

frn(x) =

B(rn r+1)

(0¢r+-1)

Using the generalized binomial expansion on the last term in equation (31), we have
O(r+i)-1

_6(5){1-(1-8'("5)2)_6} _ i ~1r(00 + D) (){ (1-9'(%)2)_6}1
t | £Tee+0 =), ¢ |

Substituting back into equation (31), we have

-0y Jt1
2 ot (O i1
Fon) = 22y 3 CUTO0) () [ ] 1e("){1 ( >}

B(rn-r+1) JITO(r+i)—j)
| |
Also, expanding the last term in equation (32), we have
—oy Jt1
(E){l_(l—g_(%)2> } © 2. —0k
: =S () - (1o W)
l J k=0
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n-r

fr:n(x)_B(rn r+1) ZZ

i=0 k=0

2,—0(k+1)-1
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JIT@@r +1i)—j)
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Putting all the expansions together, we have the r order statistics of EtGolR distribution given as:
2qi+1

i+j+k+1(Jj+1 :
2087 coper o (C1)itit (k Jr(=oGe+D)r(6(r+D) _3[ -¥) ]
Jran (0 = g m s i Ljzo Limo Xi2o ™ Jur@oanpreetan X € (34)
To obtain minimum order statistics for EtGolR distribution, we set r=1 in equation (34) to get
() (TP o (k4 1))r(0(1+0) (y)z i+1
n-1yo k _3 —(£
fin () = 2n6fy* XiZg Yo Ximo XiZo ™ i pri-eGer DD [e * ] (35)
To obtain maximum order statistics for EtGoIR distribution, we set r=n in equation (34) to get
DDk 1)r(0()) (V)Z i+1

k -3, (%

foun () = 206y EiZo Yo X0 ™ Jirtamy-prcotern -0 [e * ] (36)

2.4 Maximum Likelihood Estimation (MLE)

Given some observed data, a method known as maximum likelihood estimation (MLE) can be used
to estimate a probability distribution's parameters. This is accomplished by maximizing a likelihood
function to make the observed data as probable as possible given the assumed statistical model. The
log-likelihood function of EtGolR is given as
2
logL = nlog(2) + nlog(8) + nlog(B) + 2nlog(y) —3 X%, log(x) —y* X%, ()1—6) —(o+
21°0
"2 2 -0 1—[1—6_(%) ] :|1

1Y, log [ 1-eG) ] +eyn, [1 - [1 —e () ] ] +O- DI, 1~ e 37)

The maximum likelihood estimate is the location in the parameter space where the
likelihood function is maximized. The maximum likelihood estimates of O, 3, y and o are the values
that maximize the likelihood function. We can find these values by taking the partial derivatives of
the likelihood function with respect to 0, 3, y, ¢ and setting them equal to zero. This gives us the
following equations:

e @1
azogz +Z Llog 1—e "[ [ ] ]ZO (38)

|
]
]

| |

dlogl _n +§ " [ [1 . 92]-0] —@-D3, - (39)

9B B
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20t 2y oy 5 () + G0+ DI ((y))z + 230,209 @ 1O o
1—|1—e (y)
()Zae(y l[ ]169_62 -o-1
Dy, — . [ ] —o w0
CE [ L ]

[ |
Mzgzyﬂ [1_9—(1‘;)2]_U log [1_9‘(§)2]+%Z?:1[ 1—e” 5 ]Z log 1—e (£)2]+(9—

do .
1_9—(,—5)2]_J(}%)ll_[”_(%)] |
) 1_[1_9—(%)2 _J]

| |

Since equations (38), (39), (40) and (41) are non-linear in parameters, techniques such as Newton-
Raphson method in R-software can be used to accomplish the task of estimating the parameters from
equations (38), (39), (40) and (41).

_(g)[l_e—(,—t)z '

e log

DX,

=0 (41)

III. Results

3.1 Simulation

In this section, we conduct a simulation study to assess the performance of the Maximum Likelihood
Estimation (MLE) for the EtGoIR distribution. We generate random numbers using the quantile
function (qf) of the distribution. Specifically, if U is a uniform random variable on the interval (0, 1),
then x follows the EtGolR distribution. We generated a total of n = 10000 samples, with each sample
having sizes n=20, 50, 100, 250, 500, and 1000. These samples were drawn from the EtGoIR
distribution using its quantile function. Subsequently, we calculated the empirical means, biases,
and root mean squared errors (RMSE) of the MLE.

Table.1 MLEs, biases and RMSE for some values of parameters

(0.5,0.1,0.1,0.5) (2,1,3,2.5)
n | Parameters Estimated Bias RMSE Estimated Bias RMSE
Values Values
20 0 0.4548 -0.0452 | 0.1484 2.2647 0.2647 0.9692
Jij 0.1266 0.0266 0.0976 1.0825 0.0825 0.5743
y 0.1262 0.0262 0.0579 3.0253 0.0253 0.2659
o 0.5770 0.0770 0.1908 2.7354 0.2354 0.9156
50 0 0.4737 -0.0263 | 0.1151 2.1251 0.1251 0.6905
Jij 0.1075 0.0075 0.0503 1.0966 0.0966 0.4272
y 0.1110 0.0110 0.0310 3.0438 0.0438 0.1938
o 0.5366 0.0366 0.1216 2.5940 0.0940 0.6200
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100 0 0.4890 -0.0110 | 0.0903 2.0670 0.0670 0.4628
p 0.1035 0.0035 | 0.0338 1.0951 0.0951 0.3017
y 0.1054 0.0054 | 0.0193 3.0519 0.0519 0.1539
o 0.5185 0.0185 | 0.0889 2.5425 0.0425 0.4413
250 0 0.4972 -0.0028 | 0.0665 2.0166 0.0166 0.2872
p 0.1006 0.0006 | 0.0227 1.0665 0.0665 0.2210
y 0.1019 0.0019 | 0.0126 3.0435 0.0435 0.1115
o 0.5097 0.0097 | 0.0630 2.5241 0.0241 0.2873
500 o 0.5017 0.0017 | 0.0511 2.0052 0.0052 0.1923
p 0.1012 0.0012 | 0.0160 1.0511 0.0511 0.1606
¥ 0.1006 0.0006 | 0.0091 3.0318 0.0318 0.0825
o 0.5012 0.0012 | 0.0415 2.5051 0.0051 0.1930
1000 o 0.5028 0.0028 | 0.0370 2.0010 0.0010 0.1367
p 0.1010 0.0010 | 0.0105 1.0434 0.0434 0.1208
y 0.1002 0.0002 | 0.0064 3.0288 0.0288 0.0727
o 0.5000 0.0001 0.0289 2.5048 0.0048 0.1400

Table 1 presents the simulation outcomes corresponding to the EtGolR distribution. It is observed
that as the sample size increases, the Root Mean Square Error (RMSE) and bias associated with the
parameter estimators consistently decreases. The outcome suggest that the model is consistent.

3.2 Applications

This section demonstrates the practical application of the EtGolR distribution by utilizing it to model
biomedical datasets. We compare its performance in providing a robust parametric fit to the datasets
with that of the Gompertz Inverse Rayleigh (GoIR) distribution, the generalized Gompertz (GGo)
distribution, the exponentiated exponential (EtEx) distribution, and the inverse Rayleigh (IR)
distribution. Metrics such as the log likelihood, Akaike Information Criterion (AIC), and Bayesian
Information Criterion (BIC) are employed for this comparison. To discern the most suitable model,
computations of the log likelihood, AIC, and BIC values are carried out for both the proposed EtGoIR
model and the alternative models used for comparison. The model exhibiting the lowest log
likelihood, AIC, and BIC values is deemed the most appropriate match for the provided datasets.
For this analytical endeavor, the R software is employed, facilitating the necessary calculations and
comparisons.

Data set 1 has been utilized by [13] and [14]. The dataset comprises the summation of skinfold

measurements from 202 athletes at the Australian Institute of Sports. It consists of the following
values:
28.0, 98, 89.0, 68.9, 69.9, 109.0, 52.3, 52.8, 46.7, 82.7, 42.3, 109.1, 96.8, 98.3, 103.6, 110.2, 98.1, 57.0, 43.1,
71.1, 29.7, 96.3, 102.8, 80.3, 122.1, 71.3, 200.8, 80.6, 65.3, 78.0, 65.9, 38.9, 56.5, 104.6, 74.9, 90.4, 54.6,
131.9, 68.3, 52.0, 40.8, 34.3, 44.8, 105.7, 126.4, 83.0, 106.9, 88.2, 33.8, 47.6, 42.7, 41.5, 34.6, 30.9, 100.7,
80.3, 91.0, 156.6, 95.4, 43.5, 61.9, 35.2, 50.9, 31.8, 44.0, 56.8, 75.2, 76.2, 101.1, 47.5, 46.2, 38.2, 49.2, 49.6,
34.5,37.5,75.9, 87.2,52.6, 126.4, 55.6, 73.9, 43.5, 61.8, 88.9, 31.0, 37.6, 52.8, 97.9, 111.1, 114.0, 62.9, 36.8,
56.8, 46.5, 48.3, 32.6, 31.7,47.8, 75.1, 110.7, 70.0, 52.5, 67, 41.6, 34.8, 61.8, 31.5, 36.6, 76.0, 65.1, 74.7, 77.0,
62.6, 41.1, 58.9, 60.2, 43.0, 32.6, 48, 61.2, 171.1, 113.5, 148.9, 49.9, 59.4, 44.5, 48.1, 61.1, 31.0, 41.9, 75.6,
76.8,99.8, 80.1, 57.9, 48.4, 41.8, 44.5, 43.8, 33.7, 30.9, 43.3, 117.8, 80.3, 156.6, 109.6, 50.0, 33.7, 54.0, 54.2,
30.3, 52.8, 49.5, 90.2, 109.5, 115.9, 98.5, 54.6, 50.9, 44.7, 41.8, 38.0, 43.2, 70.0, 97.2, 123.6, 181.7, 136.3,
42.3,40.5, 64.9, 34.1, 55.7, 113.5, 75.7, 99.9, 91.2, 71.6, 103.6, 46.1, 51.2, 43.8, 30.5, 37.5, 96.9, 57.7, 125.9,
49.0, 143.5, 102.8, 46.3, 54.4, 58.3, 34.0, 112.5, 49.3, 67.2, 56.5, 47.6, 60.4, 34.9.
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Data set 2, encompassing the remission times (in months) of a randomized collection of one

hundred and twenty-eight (128) bladder cancer patients, has been utilized by [15] and [14]. The
dataset comprises the following values:
0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23,
2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64,
3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34,
5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63,
7.66,7.87,7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79,
11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 14.83, 15.96, 16.62, 17.12,
17.14, 17.36, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01,
46.12, 79.05.

Data set 3, representing the survival times of one hundred and twenty-one (121) patients with
breast cancer obtained from a large hospital during the period from 1929 to 1938, was obtained from
[17]. The dataset is outlined as follows:
0.3,0.3,1.0,4.0,5.0,5.6,6.2,6.3,6.6,6.8,7.4,7.5,84,84,10.3,11.0,11.8,12.2, 12.3,13.5, 14.4, 14.4, 14.8,
15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6,
24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0,
40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0,
51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0,
78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0, 126.0,
127.0, 129.0, 129.0, 139.0, 154.0.

Table 2: Summary Statistics of data

N | Min. | Max. | Q1 Q2 | Mean | Q3 Var. SD Ku Sk
Datal | 202 | 28.00 | 200.80 | 43.85 | 58.60 | 69.02 | 90.35 | 1060.501 | 32.565 | 4.365 | 1.175
Data2 | 128 | 0.080 | 79.050 | 3.348 | 6.395 | 9.366 | 11.838 | 110.425 | 10.508 | 18.485 | 3.286
Data3 | 121 | 0.30 | 154.00 | 17.30 | 40.00 | 46.08 | 60.00 | 1259.567 | 35.490 | 3.372 | 1.029
Table 2 demonstrate that the three datasets exhibit a high degree of skewness.
Table 3: The models” MLEs and performance requirements based on data set 1

Models [g 0 7 o) I AIC BIC
EtGoIR 0.1985 369.5184 0.3036 0.1799 -953.632 | 1915.2650 | 1928.4980
GoIR 0.0031 - 0.0000 0.8601 -987.520 | 1981.0410 | 1990.9660
GGo -0.0052 15.4031 - 0.0597 -956.086 | 1918.1730 | 1928.9200
EtEx 0.0406 8.5786 - - -958.006 | 1920.0130 | 1926.6300
IR 52.6054 - - - -966.462 | 1934.9250 | 1938.2330
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Figure 3: Density plots for data set 1
Table 4: The models’ MLEs and performance requirements based on data set 2
Models ﬂA 0 7 G | AIC BIC

EtGoIR 0.0003 2.5796 0.0001 0.3400 -410.704 829.4088 | 834.1479

GoIR 0.0839 - 0.0041 0.5129 -413.575 833.1505 | 836.1377
GGo -0.0224 1.5034 - 0.1678 -413.183 832.3668 | 835.3539
EtEx 0.1213 1.2180 - - -413.077 830.1552 | 834.8592

IR 2.2612 - - - -774.341 1550.683 1553.535
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Figure 4: Density plots for data set 2
Table 5: The models” MLEs and performance requirements based on data set 3.
Models ﬂ 0 7 o i AIC BIC
EtGolR 0.0000 0.5664 0.4016 0.9033 -578.7145 1165.4290 | 1176.6120
GolIR 0.0933 - 0.0002 0.6341 -579.9791 1165.9580 | 1176.7450
GGo 0.0066 1.1485 - 0.0182 -579.9435 1165.9371 | 1176.7274
EtEx 0.0269 1.4244 - - -581.7091 1167.4182 | 1168.2120
IR 2.2612 - - - -1087.464 2176.9290 | 2179.7240
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Figure 5: Density plots for data set 3.

Tables 3 to 5 showcase the superior ability of the proposed model to effectively fit the highly
skewed datasets compared to the competing models, as indicated by the evaluation metrics
employed. Figures 3 to 5 also showed that the proposed model fits the data set adequately.

IV. Discussion

This paper introduces a novel distribution termed the Exponentiated Gompertz Inverse Rayleigh
(EtGolR) distribution, extending the framework of the Gompertz Inverse Rayleigh (GolR)
distribution. The introduction of a new parameter enhances the distribution's adaptability in
capturing various nuances present in biomedical datasets. The paper extensively examines the
properties of the EtGolR distribution, effectively demonstrating its practical applicability to real-life
scenarios through the implementation of Maximum Likelihood Estimation (MLE). The empirical
findings consistently substantiate that the proposed EtGoIR model outperforms the alternative
distribution models under consideration in accurately fitting the provided datasets.

474



Sule O.B., Khalaf A.A., Isah A.M. and Kaigama A.
ON MODELING OF BIOMEDICAL DATA WITH EXPONENTIATED
GOMPERTZ INVERSE RAYLEIGH DISTRIBUTION

RT&A, No 3 (79)
Volume 19, September 2024

References

[1] Isah A.M., Sule O.B., Kaigama A. and Khalaf A.A. (2024). Topp-Leone Exponentiated
Burr XII distribution: Theory and Application to Real-life Data sets. Iraqi Statisticians Journal. 1(1): 63
-72.

[2] Sule O.B. (2024). A Study on Topp-Leone Kumaraswamy Fréchet Distribution with
Applications: Methodological Study. Turkish Journal of Biostatistics. 16(1): 1 —15.

[3] Kumar, K. and Kumari A. (2023). Inferences for Two Inverse Rayleigh Populations Based
on Joint Progressively Type-II Censored Data. Computational Intelligence in Sustainable Reliability
Engineering, 159-179.

[4] Leao, J., Saulo, H., Bourguignon, M., Cintra, R. J., Rego, L. C. and Cordeiro, G. M. (2022).
On some properties of the beta inverse Rayleigh distribution. arXiv preprint,

[5] Sule O.B., Ibrahim LI. and Isa A.M. (2023). On the properties of generalized Rayleigh
distribution with applications. Reliability: theory & applications. 18(3): 374-386.

[6] Sule O.B. and Halid O.Y (2023). On the Properties and Applications of Topp-Leone
Gompertz Inverse Rayleigh distribution. Reliability: theory & applications. 18(4): 1032 — 1045.

[7] Sule O.B. and Halid O.Y (2023). On Gompertz Exponentiated Inverse Rayleigh
Distribution. Reliability: Theory & Applications. 18(1): 412-424.

[8] Adegoke T.M., Oladoja O.M., Sule O.B., Mustapha A.A., Aderupatan D.E and Nzei L.C.
(2023). Topp-Leone Inverse Gompertz Distribution: Properties and different estimations techniques
and Applications. Pakistan Journal of Statistics. 39(4): 433 — 456.

[9] Sule O.B. (2021). A New Extended Generalized Inverse Exponential Distribution:
Properties and Applications. Asian Journal of Probability and Statistics. 11(2): 30 — 46.

[10] Halid, O. Y and Sule B.O. (2022). A classical and Bayesian estimation techniques for
Gompertz inverse Rayleigh distribution: properties and application, Pakistan Journal of Statistics,
38(1): 49-76.

[11] Mudholkar, G.S. and Srivastava, D.K. (1993) Exponentiated Weibull Family for
Analyzing Bathtub Failure-Rate Data. IEEE Transactions on Reliability, 42, 299-302

[12] Khalaf, A. A. and khaleel, M. A. (2022). [0, 1] Truncated exponentiated exponential
Gompertz distribution: Properties and applications. In AIP Conference Proceedings. 1(23): 070035.

[13] Sule, O. B. (2023). A Study On The Properties of a New Exponentiated Extended Inverse
Exponential Distribution with Applications. Reliability: Theory & Applications. 18(3 (74)): 59-72.

[14] Almarashi, A. M., Elgarhy, M., Jamal, F. and Chesneau, C. (2022). The Exponentiated
truncated inverse Weibull-generated family of distributions with applications. Symmetry. 12(4): 650.

[15] Alotaibi, R, Baharith, L. A., Almetwally, E. M., Khalifa, M., Ghosh, I. and Rezk, H.
(2022). Statistical Inference on a Finite Mixture of Exponentiated Kumaraswamy-G Distributions
with Progressive Type II Censoring Using Bladder Cancer Data. Mathematics.10(15): 2800.

[16] Chaudhary, A. K., and Kumar, V. (2020). The Logistic NHE Distribution with Properties
and Applications. International Journal for Research in Applied Science & Engineering Technology
(IJRASET). 8(12): 591-603.

[17] Lee, E. T. (1986). Statistical methods for survival data analysis. IEEE Transactions on
Reliability, 35(1): 123-123.

475





