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Abstract

This paper analyzes preemptive priority inventory retrial queueing system with a single vacation, working
breakdown, repair, and closedown. We assume that an arrival follows the Marked Markovian arrival
process and that the server will provide them with phase-type services. The (s, S) policy to replenish
the items and the replenishing duration follow an exponential distribution. In this paper, we consider
two types of customers: high-priority(HP) customers and low-priority(LP) customers. Arriving HP
customers should get the service if the server is idle and has a positive inventory level; otherwise, they
should wait in front of the service station. Arriving LP customers get service only if there is a positive
inventory level and there are no high-priority customers in the system; otherwise, go for the finite capacity
size of the orbit. After the completion of service, if no one is present in the high-priority queue and orbit,
the server will close down the system and then go on a single vacation. The server is idle when the
vacation period ends. When the server breaks down, it only serves the present customer and operates in
slow mode while it is being repaired. The number of high-priority customers in the system, the number
of low-priority customers in the orbit, the inventory level, and server status may all be determined in a
steady state. Numerous key performance indicators are defined, and a cost analysis is obtained. To make
our mathematical concept clearer, a few numerical examples are provided.

Keywords: Queueing-inv entor y, (s, S) policy , Retrial, Preemptiv e Priority , Single Vacation, Work-
ing Breakdo wn, Repair , Closedo wn, Marko vian Arriv al Process, Phase-type distribution, Matrix
Analytic Method.
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1. Introduction

The field of inv entor y retrial queueing systems has seen a rise in popularity in recent years due
to de velopments in computer netw orking and communications technologies. In a queueing-
inv entor y model, each client receiv es a product from the inv entor y upon completion of the ser vice.
Neuts [19] presented the modified Marko vian point process for the first time. A number of
well-kno wn techniques fall under the large categor y of point processes known as MAP, including
PH-rene w al, Marko v-modulated Poissons, and Poisson. The Marko vian arriv al process with
several correlated and non-corr elated arriv al types, as well as the phase-type distribution, were
both extensiv ely clarified by Chakra varthy [8]. Neuts [20] inv estigated the methods used in
matrix-analytic queueing theor y.

Reor dering products in a queueing order -demand inv entor y system is best done using the
techniques described by Meliko v and Molchano v [16]. A study by Ber man et al. [6] examined a
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system for inv entor y contr ol for a ser vice center that uses one inv entor y item for each ser vice
render ed. Accor ding to their assumptions, ther e must alw ays be a shortage of items for the queue
to for m, and demand and ser vice rates are predictable and steady . Ber man and Kim [7] de veloped
tw o types of queuing-inv entor y models with ser vice facilities. The first had an infinite one, while
the other had a finite capacity for queuing. In their evaluation, Yada valli et al. [25] made the
assumption that reorders are readily available and that requests belong to a rene w al process.
The inv entor y system included a ser vice station and an indefinite w aiting area. Amirthakodi
and Siv akumar [2] looked at retrial inv entor y queuing, in which ther e is a finite orbit size, a
single ser ver, and customer feedback. Sanjukta and Nabendu [21] looked into a carbon tax and
an inv entor y queueing system with a partial replenishment strategy and a limited shelf life for
perishable commodities.

Most of the time, it is belie ved that inv entor y and queueing models have not failed at
ser vice stations. In actuality , we regularly come across circumstances wher e ser vice station
malfunctions could occur . A ser ver interruption inv entor y retr y queueing system w as covered by
Krishnamoorthy et al. [11]. In their model, they took into consideration a (s, S) replenishment
policy wher e the lead time and ser vice time follo w an exponential distribution, while the arriv al
follo ws a Poisson distribution. The retrial inv entor y queuing system with ser ver failur e w as
examined by Ushakumari [24]. When the ser ver is processing requests or is idle, it could
malfunction. If a ser ver failur e results in ser vice disruption, users are placed into an infinitely
long orbit, obliged to retr y ser vice after an arbitrar y period, and so on unless the ser ver is
render ed inoperable.

The ser ver could simply quit w aiting for customers and remain unr eachable in a variety of
situations. It might also be completing other duties, such as maintenance or ser vicing mor e
clients. Krishnamoorthy and Nara yanan [12] consider ed a manufacturing inv entor y system
including ser ver vacations. They held that the manufacturing process adher ed to the Marko vian
manufacturing method and that the ser vice times for each customer were dispersed in a phase-
type manner . The inv entor y queue for retrials with several vacations w as analyzed by Sugany a
and Siv akumar [23]. They took into account a pair of ser vers and a limited orbit size capacity in
their model. The retrial queueing system incor porating a single ser ver, Ber noulli feedback, and
vacation has been examined by Ayy appan and Gowthami [4]. They took into account both the
client’s arriv al based on MAP and the ser ver ’s ser vice deliv ery based on PH distribution. Meliko v
et al. [17] examined the retrial queueing system that incor porates Poisson arriv al, exponential
ser vice time, and dela yed feedback. For their inv estigation, they emplo yed both the (s, S) and
(s, Q) replenishing policies.

An inv entor y queueing appr oach with MAP arriv als, PH offerings, and perishable goods
w as examined by Manuel et al. [15]. Additionally , they take into account their model, in which
a positiv e customer adv ances one regular customer to the front of the line while a negativ e
customer pushes one regular customer back. An inv entor y retrial queueing system inv olving
tw o commodities w as presented by Anbazhagan and Jeganathan [3]. They think of their model
as having a core item and a supplement item. Jeganathan and Selv akumar [9] examined a
queueing system for inv entor y that emplo yed a traditional retr y rate. In their work, they present
an optional oscillator y client arriv al procedur e that is subject to Ber noulli testing and can pass
through a w aiting room or an infinite orbit. A tw o-component demand inv entor y retrial queueing
system w as examined by Abdul Reiy as and Jeganathan [1]. They took into account the (s, Q)
replenishment policy while placing the order. The retrial inv entor y queueing model w as examined
by Jeganathan et al. [10] with tw o dif ferent kinds of clients. Mustapha and Majid [18] de veloped
a tw o-phase production period production inv entor y model for non-immediately degrading
products. For mixed demand with trade credit programs, Manisha et al. [14] have created the
ideal replacement and conser vation inv estment strategy . Ayy appan and Archana [5] discussed
the non-pr eemptiv e priority queueing model with optional ser vice and single vacation.
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2. Description of the model

We take into consideration a single ser ver with the preemptiv e priority inv entor y retrial queueing
system, featuring inv entor y with maximum storage capacity of S units. Customers arriv e via
the Marked Marko vian Arriv al Process (MMAP) with depictions (D0, D1, D2) with order size
k, wher e the matrix D = D0 + D1 + D2. In the system, no arriv al is governed by the squar e
matrix D0, the arriv al of high priority customers is governed by the squar e matrix D1 and the
arriv al of low priority customers is governed by the squar e matrix D2. With π repr esenting the
probability vector of D, the mean arriv al rate of HP customers is λ1 = πD1ek and the mean
arriv al rate of LP customers is λ2 = πD2ek. The ser ver provides high priority(HP) and low
priority(LP) ser vices that both follo w a PH-distribution with depictions (γ, P) and (ν, M) of orders
l1 and l2, respectiv ely. For HP and LP customers mean ser vice rate is ζ1 = [γ(−P)−1el1 ]

−1 and
ζ2 = [ν(−M)−1el2 ]

−1.

Figure 1: A pictorial illustration of the model

If the ser ver breaks down while ser ving HP or LP customers, it will first offer a slow ser vice
mode to the impacted customers befor e beginning the repair procedur e. The PH-distribution
is follo wed by the slower ser vice for HP and LP customers, together with a repr esentation of
order l1 and l2, respectiv ely, repr esented by (γ1, θP) and (ν1, θM). The breakdo wn time has an
exponential distribution with parameter σ, and the repair process has a PH-distribution with a
depiction (α, U) of order m2. When HP customers arriv e, they only interrupt their regular ser vice
if LP customer ser vices are still in progr ess, and the ser ver ser ves HP clients. In the event that
ther e are no pending requests in the HP queue, the ser ver will ser ve LP customers. Arriving HP
customers should get the ser vice if the ser ver is idle and has a positiv e inv entor y level; other wise,
they should w ait in front of the ser vice station. Arriving LP customers get ser vice only if ther e
is a positiv e inv entor y level and ther e are no high-priority customers in the system; other wise,
go for the finite capacity size of the orbit, say N. After the completion of ser vice, if no one is
present in the high-priority queue and orbit, the ser ver will close down the system and then
go on a single vacation. After the completion of the vacation period, the ser ver is idle. The
closedo wn times follo w an exponential distribution with parameter δ. The Vacation times follo w
the PH-distribution with depiction (β, W) of order m1. The LP customers retr ying for their ser vice
after the fixed times, the constant retrial rate follo w an exponential distribution with parameter χ.
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The average rate of repair and vacation is giv en by η and ψ respectiv ely.

3. The Quasi Birth and Death Process for the Matrix Generations

We are going to discuss this part, which comprises the notation that for ms the basis of the
Quasi Birth and Death (QBD) process in our model.

• ⊗ - Any tw o dif ferent order matrices can be multiplied to create a Kronecker product, and
this can be founded on the resear ch of Steeb and Har dy [22].

• ⊕ - The Kronecker sum is the sum of any tw o of the dif ferent orders of matrices.
• Ik - The identity matrix has k dimensions.
• e - The column vector ’s appr opriate dimension for each of its elements is 1.
• ek - For every k elements in a column vector, the value is 1.
• ek(L) - The column vector with dimension L, wher e the kth element is 1 and remaining

elements are 0.
• e′k(L) - The transpose of ek(L).
• The arriv al rate of HP and LP customers is repr esented by λi and described as λi = πDiek,

wher e i=1,2 respectiv ely.
• The ser vice rate for HP customers is repr esented by ζ1 and described as ζ1 = [γ(−P)−1el1 ]

−1.
• The ser vice rate for LP customers is repr esented by ζ2 and described as ζ2 = [ν(−M)−1el2 ]

−1.
• The vacation rate of the ser ver is repr esented by ψ and described as

ψ = [β(−W)−1em1 ]
−1.

• The ser ver ’s rate of repair is repr esented by η and described as η = [α(−U)−1em2 ]
−1.

• The number of HP customers in the system at time t can be repr esented by N1(t).
• The number of LP customers in the orbit at time t can be repr esented by N2(t).
• Let V(t) be the state of the ser ver at time t.

V(t) =



0, the vacation state of the ser ver,
1, the idle state of the ser ver,
2, the ser ver is offering ser vice for HP customers,
3, the ser ver is offering ser vice for LP customers,
4, the ser ver is offering slow ser vice for HP customers,
5, the ser ver is offering slow ser vice for LP customers,
6, the ser ver is under repair ,
7, the ser ver is under closedo wn process.

• Let I(t) be the level of inv entor y items at time t.
• J1(t) denotes the phases of the vacation process.
• J2(t) denotes the phases of the repair process.
• S(t) denotes the phases of the ser vice process.
• M(t) denotes the phases of the arriv al process.

Let { N1(t), N2(t), V(t), I(t), J1(t), J2(t), S(t), M(t) : t ≥ 0} indicate the Continuous Time
Marko v Chain (CTMC) with state-le vel independent QBD processes. The state space is as follo ws:

Φ = l(0) ∪∞
u1=1 l(u1),

wher e
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l(0) ={(0, u2, 0, j, a1, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ a1 ≤ m1, 1 ≤ c ≤ k}
∪ {(0, u2, 1, j, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ c ≤ k}
∪ {(0, u2, 3, j, d2, c) : 0 ≤ u2 ≤ N, 1 ≤ j ≤ S, 1 ≤ d2 ≤ l2, 1 ≤ c ≤ k}
∪ {(0, u2, 5, j, d2, c) : 0 ≤ u2 ≤ N, 1 ≤ j ≤ S, 1 ≤ d2 ≤ l2, 1 ≤ c ≤ k}
∪ {(0, u2, 6, j, a2, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ a2 ≤ m2, 1 ≤ c ≤ k}
∪ {(0, u2, 7, j, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ c ≤ k},

for u1 ≥ 1,

l(u1) ={(u1, u2, 0, j, a1, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ a1 ≤ m1, 1 ≤ c ≤ k}
∪ {(u1, u2, 1, 0, c) : 0 ≤ u2 ≤ N, 1 ≤ c ≤ k}
∪ {(u1, u2, 2, j, d1, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ d1 ≤ l1, 1 ≤ c ≤ k}
∪ {(u1, u2, 4, j, d1, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ d1 ≤ l1, 1 ≤ c ≤ k}
∪ {(u1, u2, 5, j, d2, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ d2 ≤ l2, 1 ≤ c ≤ k}
∪ {(u1, u2, 6, j, a2, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ a2 ≤ m2, 1 ≤ c ≤ k}
∪ {(u1, u2, 7, j, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ c ≤ k}.

The QBD procedur e generates an infinitesimal matrix, as provided by

Q =



B00 B01 0 0 0 0 . . .
B10 A1 A0 0 0 0 . . .
0 A2 A1 A0 0 0 . . .
0 0 A2 A1 A0 0 . . .
...

...
...

. . . . . . . . .
...

...
...

...
...

. . . . . . . . .


.

The entries in Q’s block matrices are specified as follo ws:

B00 =



B00
11 B00

12 0 0 0 0
0 B00

22 B00
23 0 0 0

0 B00
32 B00

33 B00
34 0 B00

36

0 0 0 B00
44 B00

45 0
0 B00

52 0 0 B00
55 0

B00
61 0 0 0 0 B00

66


,

wher e

B00
11 =



C001 C002 0 . . . 0 0
0 C001 C002 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C001 C002
0 0 0 . . . 0 C001 + C002


,

C001 =



J1 0 . . . 0 0 . . . J3
0 J1 . . . 0 0 . . . J3
...

...
. . .

...
...

...
...

0 0 . . . J1 0 . . . J3
0 0 . . . 0 J2 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J2


, C002 = IS+1 ⊗ Im1 ⊗ D2,
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B00
12 = IN+1 ⊗ IS+1 ⊗ W0 ⊗ Ik,

wher e J1 = W ⊕ D0 − τ Im1k, J2 = W ⊕ D0, J3 = τ Im1k,

B00
22 =



C003 C004 0 . . . 0 0
0 C005 C004 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C005 C004
0 0 0 . . . 0 C006


,

C003 =



J4 0 . . . 0 0 . . . J6
0 J4 . . . 0 0 . . . J6
...

...
. . .

...
...

...
...

0 0 . . . J4 0 . . . J6
0 0 . . . 0 J5 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J5


,

C005 =



J4 0 . . . 0 0 . . . J6
0 J7 . . . 0 0 . . . J6
...

...
. . .

...
...

...
...

0 0 . . . J7 0 . . . J6
0 0 . . . 0 J8 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J8


,

C006 =



J9 0 . . . 0 0 . . . J6
0 J10 . . . 0 0 . . . J6
...

...
. . .

...
...

...
...

0 0 . . . J10 0 . . . J6
0 0 . . . 0 J11 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J11


,

C004 =

[
e′1(S + 1)⊗ D2

0

]
,

wher e J4 = D0 − τ Ik, J5 = D0, J6 = τ Ik, J7 = D0 − (χ + τ)Ik, J8 = D0 − χIk,

J9 = (D0 + D2)− τ Ik, J10 = (D0 + D2)− (χ + τ)Ik, J11 = (D0 + D2)− χIk,

B00
23 =



C007 0 . . . 0 0 0
C008 C007 . . . 0 0 0

...
. . . . . .

...
...

...
...

...
. . . . . .

...
...

0 0 . . . C008 C007 0
0 0 . . . 0 C008 0


,

C007 =

[
0

IS ⊗ ν ⊗ D2

]
, C008 =

[
0

IS ⊗ ν ⊗ χIm

]
,
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B00
33 =



C009 C0010 0 . . . 0 0
0 C009 C0010 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C009 C0010
0 0 0 . . . 0 C009 + C0010


,

C009 =



J12 0 . . . 0 0 . . . J14
0 J12 . . . 0 0 . . . J14
...

...
. . .

...
...

...
...

0 0 . . . J12 0 . . . J14
0 0 . . . 0 J13 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J13


, C0010 = IS ⊗ Il2 ⊗ D2,

wher e J12 = M ⊕ D0 − (σ + τ)Il2k, J13 = M ⊕ D0 − σIl2k, J14 = τ Il2k,

B00
34 = IN+1 ⊗ IS ⊗ el2 ⊗ ν1σIk, B00

32 =

[
0 0
0 IN ⊗ C0011

]
,

B00
36 =

[
e1(N + 1)⊗ C0011 0

]
, C0011 =

[
IS ⊗ M0 ⊗ Ik 0

]
,

B00
44 =



C0012 C0010 0 . . . 0 0
0 C0012 C0010 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C0012 C0010
0 0 0 . . . 0 C0012 + C0010


,

C0012 =



J15 0 . . . 0 0 . . . J14
0 J15 . . . 0 0 . . . J14
...

...
. . .

...
...

...
...

0 0 . . . J15 0 . . . J14
0 0 . . . 0 J16 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J16


,

wher e J15 = θM ⊕ D0 − τ Il2k, J16 = θM ⊕ D0,

B00
45 = IN+1 ⊗ C0013 , C0013 =

[
IS ⊗ θM0α ⊗ Ik 0

]
,

B00
55 =



C0014 C0015 0 . . . 0 0
0 C0014 C0015 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C0014 C0015
0 0 0 . . . 0 C0014 + C0015


,

B00
52 = IN+1 ⊗ IS+1 ⊗ U0 ⊗ Ik,
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C0014 =



J17 0 . . . 0 0 . . . J19
0 J17 . . . 0 0 . . . J19
...

...
. . .

...
...

...
...

0 0 . . . J17 0 . . . J19
0 0 . . . 0 J18 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J18


, C0015 = IS+1 ⊗ Im2 ⊗ D2,

wher e J17 = U ⊕ D0 − τ Im2k, J18 = U ⊕ D0, J19 = τ Im2k,

B00
66 =



C0016 C0017 0 . . . 0 0
0 C0016 C0017 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C0016 C0017
0 0 0 . . . 0 C0016 + C0017


,

B00
61 = IN+1 ⊗ IS+1 ⊗ β ⊗ δIk,

C0016 =



J20 0 . . . 0 0 . . . J6
0 J20 . . . 0 0 . . . J6
...

...
. . .

...
...

...
...

0 0 . . . J20 0 . . . J6
0 0 . . . 0 J21 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J21


, C0017 = IS+1 ⊗ D2,

wher e J20 = D0 − (δ + τ)Ik, J21 = D0 − δIk,

B01 =



B01
11 0 0 0 0 0 0

0 B01
22 B01

23 0 0 0 0
0 0 B01

33 0 0 0 0
0 0 0 0 B01

45 0 0
0 0 0 0 0 B01

56 0
0 0 0 0 0 0 B01

67


,

wher e

B01
11 = IN+1 ⊗ IS+1 ⊗ Im1 ⊗ D1, B01

22 = IN+1 ⊗ e1(S + 1)⊗ D1,

B01
23 = IN+1 ⊗ C011 , C011 =

[
0

IS ⊗ γ ⊗ D1

]
,

B01
33 = IN+1 ⊗ IS ⊗ el2 ⊗ γ ⊗ D1, B01

45 = IN+1 ⊗ IS ⊗ Il2 ⊗ D1,

B01
56 = IN+1 ⊗ IS+1 ⊗ Im2 ⊗ D1, B01

67 = IN+1 ⊗ IS+1 ⊗ D1,

B10 =



0 0 0 0 0 0
0 0 0 0 0 0
0 B10

32 0 0 0 B10
36

0 0 0 0 B10
45 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,
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wher e

B10
32 =

[
0 0
0 IN ⊗ C101

]
, B10

36 =

[
C101 0

0 0

]
, C101 =

[
IS ⊗ P0 ⊗ Ik 0

]
,

B10
45 = IN+1 ⊗ C102 , C102 =

[
IS ⊗ θP0α ⊗ Ik 0

]
,

A1 =



A1
11 A1

12 A1
13 0 0 0 0

0 A1
22 A1

23 0 0 0 0
0 0 A1

33 A1
34 0 0 0

0 0 0 A1
44 0 0 0

0 0 0 0 A1
55 A1

56 0
0 A1

62 A1
63 0 0 A1

66 0
A1

71 0 0 0 0 0 A1
77


,

wher e

A1
11 = B00

11 , A1
12 = IN+1 ⊗ e1(S + 1)⊗ W0 ⊗ Ik,

A1
13 = IN+1 ⊗ C111 , C111 =

[
0

IS ⊗ W0γ ⊗ Ik

]
,

A1
22 =



D0 − τ Ik D2 0 . . . 0 0
0 D0 − τ Ik D2 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . D0 − τ Ik D2
0 0 0 . . . 0 (D0 + D2)− τ Ik


,

A1
23 = IN+1 ⊗ e′S(S)⊗ γ ⊗ τ Ik, A1

34 = IN+1 ⊗ IS ⊗ el1 ⊗ γ1 ⊗ σIk,

A1
33 =



C112 C113 0 . . . 0 0
0 C112 C113 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C112 C113
0 0 0 . . . 0 C112 + C113


, C113 = IS ⊗ Il1 ⊗ D2,

C112 =



J22 0 . . . 0 0 . . . J24
0 J22 . . . 0 0 . . . J24
...

...
. . .

...
...

...
...

0 0 . . . J22 0 . . . J24
0 0 . . . 0 J23 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J23


,

wher e J22 = P ⊕ D0 − (σ + τ)Il1k, J23 = P ⊕ D0 − σIl1k, J24 = τ Il1k,

A1
44 =



C114 C113 0 . . . 0 0
0 C114 C113 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C114 C113
0 0 0 . . . 0 C114 + C113


,
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C114 =



J25 0 . . . 0 0 . . . J24
0 J25 . . . 0 0 . . . J24
...

...
. . .

...
...

...
...

0 0 . . . J25 0 . . . J24
0 0 . . . 0 J26 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J26


,

wher e J25 = θP ⊕ D0 − τ Il1k, J26 = θP ⊕ D0,

A1
55 = B00

44 , A1
56 = B00

45 , A1
66 = B00

55 ,

A1
62 = IN+1 ⊗ e1(S + 1)⊗ U0 ⊗ Ik, A1

63 = IN+1 ⊗ C115 ,

C115 =

[
0

IS ⊗ U0γ ⊗ Ik

]
,

A1
77 = B00

66 , A1
71 = B00

61 ,

A0 =



A0
11 0 0 0 0 0 0

0 A0
22 0 0 0 0 0

0 0 A0
33 0 0 0 0

0 0 0 A0
44 0 0 0

0 0 0 0 A0
55 0 0

0 0 0 0 0 A0
66 0

0 0 0 0 0 0 A0
77


,

wher e A0
11 = B01

11 , A0
22 = IN+1 ⊗ D1, A0

33 = IN+1 ⊗ IS ⊗ Il1 ⊗ D1,

A0
44 = A0

33 , A0
55 = B01

45 , A0
66 = B01

56 , A0
77 = B01

67 ,

A2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 A2

32 A2
33 0 0 0 0

0 0 0 0 0 A2
46 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

wher e A2
32 = IN+1 ⊗ e1(S)⊗ P0 ⊗ Ik, A2

33 = IN+1 ⊗ C211 ,

C211 =

[
0 0

IS−1 ⊗ P0γ ⊗ Ik 0

]
, A2

46 = B10
45 .

4. Stationary Analysis

We analyze our model in a few consistent system configurations.

4.1. Criteria for stability

Let us define the matrix A as follo ws: A = A0 + A1 + A2, signifying that it is an irreducible in-
finitesimal generator matrix with dimensions of ((N + 1)(S + 1)m1k + (N + 1)k + 2(N + 1)Sl1k +
(N + 1)Sl2k + (N + 1)(S + 1)m2k + (N + 1)(S + 1)k).
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The vector κ repr esents the stationar y probability vector of A that achie ving the criteria
κA = 0 and κe = 1. The vector κ is divided by κ = (κ0, κ1, κ2, κ3, κ4, κ5, κ6) = (κ000 , κ001 ,
. . . , κ00S, κ010 , κ011 , . . . , κ01S, . . . , κ0N0, κ0N1, . . . , κ0NS, κ100 , κ110 , . . . , κ0N0, κ201 , . . . , κ20S,
κ211 , . . . , κ21S, . . . , κ2N1, . . . , κ2NS, κ301 , . . . , κ30S, κ311 , . . . , κ31S, . . . , κ3N1, . . . , κ3NS, κ401 , . . . ,
κ40S, κ411 , . . . , κ41S, . . . , κ4N1, . . . , κ4NS, κ500 , κ501 , . . . , κ50S, κ510 , κ511 , . . . , κ51S, . . . , κ5N0,
κ5N1, . . . , κ5NS, κ600 , κ601 , . . . , κ60S, κ610 , κ611 , . . . , κ61S, . . . , κ6N0, κ6N1, . . . , κ6NS), wher e κ0
has a dimension of (N + 1)(S + 1)m1k, κ1 has a dimension of (N + 1)k, κ2 has a dimension of
(N + 1)Sl1k, κ3 has a dimension of (N + 1)Sl1k, κ4 has a dimension of (N + 1)Sl2k, κ5 has a
dimension of (N + 1)(S+ 1)m2k and κ6 has a dimension of (N + 1)(S+ 1)k. When examining the
Marko v process within the frame work of QBD, our model’s stability should satisfy the essential
and suf ficient requir ements of κA0e < κA2e. Upon perfor ming certain algebraic reductions, the
stability condition κA0e < κA2e is deter mined to be

N

∑
u2=0

S

∑
j=0

κ0u2 j(em1 ⊗ D1ek) +
N

∑
u2=0

κ1u20(D1ek) +
N

∑
u2=0

S

∑
j=1

κ2u2 j(el1 ⊗ D1ek)

+
N

∑
u2=0

S

∑
j=1

κ3u2 j(el1 ⊗ D1ek) +
N

∑
u2=0

S

∑
j=1

κ4u2 j(el2 ⊗ D1ek) +
N

∑
u2=0

S

∑
j=0

κ5u2 j(em2 ⊗ D1ek)

+
N

∑
u2=0

S

∑
j=0

κ6u2 j(D1ek) <
N

∑
u2=0

N

∑
j=1

κ2u2 j(P0 ⊗ ek) +
N

∑
u2=0

N

∑
j=1

κ3u2 j(θP0 ⊗ ek).

4.2. Analysis of Stationar y Probability Vector

Let ϕ repr esent the stationar y probability vector for Q, and this is divided as ϕ = (ϕ0, ϕ1, ϕ2, . . . ).
Mention that ϕ0 has a dimension of (N + 1)(S + 1)m1k + 2(N + 1)(S + 1)k + 2(N + 1)Sl2k + (N +
1)(S + 1)m2k and ϕ1, ϕ2, . . . have a dimension of (N + 1)(S + 1)m1k + (N + 1)k + 2(N + 1)Sl1k +
(N + 1)Sl2k + (N + 1)(S + 1)m2k + (N + 1)(S + 1)k and the vector ϕ satisfies ϕQ = 0 and ϕe = 1.

Additionally , after the stability requir ement of the model is met, the stationar y probability
vector ϕ can be obtained by applying the follo wing equation:

ϕu1 = ϕ1Ru1−1, u1 ≥ 1.

The matrix quadratic equation R2 A2 + RA1 + A0 = 0 is satisfied by the minimal non-negativ e
solution R based on Neuts [20]. The matrix quadratic equation yields the rate matrix. The order
of the rate matrix R is giv en by ((N + 1)(S + 1)m1k + (N + 1)k + 2(N + 1)Sl1k + (N + 1)Sl2k +
(N + 1)(S + 1)m2k + (N + 1)(S + 1)k) and it fulfills the condition RA2e = A0e.

By solving the follo wing equations, the sub vectors ϕ0 and ϕ1 can be deter mined.

ϕ0B00 + ϕ1B10 = 0,

ϕ0B01 + ϕ1(A1 + RA2) = 0,

Subject to the normalizing condition

ϕ0e0 + ϕ1(I − R)−1e1 = 1,

wher e e0 = e(N+1)(S+1)m1k+2(N+1)(S+1)k+2(N+1)Sl2k+(N+1)(S+1)m2k and
e1 = e(N+1)(S+1)m1k+(N+1)k+2(N+1)Sl1k+(N+1)Sl2k+(N+1)(S+1)m2k+(N+1)(S+1)k.

Accor ding to Latouche and Ramasw ami [13], by utilizing important stages in the logarithmic
reduction process, the R matrix can be produced analytically .
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5. Measures of System Performance

• Average size of the HP customers in the system

Esys =
∞

∑
u1=1

u1ϕu1 e.

• Average size of the LP customers in the orbit

Eorb =
∞

∑
u1=0

N

∑
u2=1

S

∑
j=0

m1

∑
a1=1

k

∑
c=1

u2ϕu1u20ja1c +
N

∑
u2=1

S

∑
j=0

k

∑
c=1

u2ϕ0u21jc

+
∞

∑
u1=1

N

∑
u2=1

k

∑
c=1

u2ϕu1u210c +
∞

∑
u1=1

N

∑
u2=1

S

∑
j=1

l1

∑
d1=1

k

∑
c=1

u2ϕu1u22jd1c

+
N

∑
u2=1

S

∑
j=1

l2

∑
d2=1

k

∑
c=1

u2ϕ0u23jd2c +
∞

∑
u1=1

N

∑
u2=1

S

∑
j=1

l1

∑
d1=1

k

∑
c=1

u2ϕu1u24jd1c

+
∞

∑
u1=0

N

∑
u2=1

S

∑
j=1

l2

∑
d2=1

k

∑
c=1

u2ϕu1u25jd2c +
∞

∑
u1=0

N

∑
u2=1

S

∑
j=0

m2

∑
a2=1

k

∑
c=1

u2ϕu1u26ja2c

+
∞

∑
u1=0

N

∑
u2=1

S

∑
j=0

k

∑
c=1

u2ϕu1u27jc.

• Expected size of the inv entor y items

Einv =
∞

∑
u1=0

N

∑
u2=0

S

∑
j=1

m1

∑
a1=1

k

∑
c=1

jϕu1u20ja1c +
N

∑
u2=0

S

∑
j=1

k

∑
c=1

jϕ0u21jc

+
∞

∑
u1=1

N

∑
u2=0

S

∑
j=1

l1

∑
d1=1

k

∑
c=1

jϕu1u22jd1c +
N

∑
u2=0

S

∑
j=1

l2

∑
d2=1

k

∑
c=1

jϕ0u23jd2c

+
∞

∑
u1=1

N

∑
u2=0

S

∑
j=1

l1

∑
d1=1

k

∑
c=1

jϕu1u24jd1c +
∞

∑
u1=0

N

∑
u2=0

S

∑
j=1

l2

∑
d2=1

k

∑
c=1

jϕu1u25jd2c

+
∞

∑
u1=0

N

∑
u2=0

S

∑
j=1

m2

∑
a2=1

k

∑
c=1

jϕu1u26ja2c +
∞

∑
u1=0

N

∑
u2=0

S

∑
j=1

k

∑
c=1

jϕu1u27jc.

• Expected reorder rate

ER =
N

∑
u2=0

l2

∑
d2=1

k

∑
c=1

ϕ0u23(s+1)d2 c(M0 ⊗ Ik)e +
∞

∑
u1=0

N

∑
u2=0

l2

∑
d2=1

ϕu1 u25(s+1)d2 c(θM0α ⊗ Ik)e

+
N

∑
u2=0

l1

∑
d1=1

k

∑
c=1

ϕ1u22(s+1)d1 c(P0 ⊗ Ik)e +
∞

∑
u1=2

N

∑
u2=0

l1

∑
d1=1

k

∑
c=1

ϕu1 u22(s+1)d1 c(P0γ ⊗ Ik)e

+
∞

∑
u1=1

N

∑
u2=0

l1

∑
d1=1

k

∑
c=1

ϕu1 u22(s+1)d1 c(θP0α ⊗ Ik)e.

• Probability for the vacation state of the ser ver

Pvac =
∞

∑
u1=0

N

∑
u2=0

S

∑
j=0

m1

∑
a1=1

k

∑
c=1

ϕu1u20ja1c.

• Probability for the idle state of the ser ver

Pidle =
N

∑
u2=0

S

∑
j=0

k

∑
c=1

ϕ0u21jc +
∞

∑
u1=1

N

∑
u2=0

k

∑
c=1

ϕu1u210c.
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• The probability that HP customers receiv e normal mode ser vice from the ser ver

PHNB =
∞

∑
u1=1

N

∑
u2=0

S

∑
j=1

l1

∑
d1=1

k

∑
c=1

ϕu1u22jd1c.

• The probability that LP customers receiv e normal mode ser vice from the ser ver

PLNB =
N

∑
u2=0

S

∑
j=1

l2

∑
d2=1

k

∑
c=1

ϕ0u23jd2c.

• The probability that HP customers receiv e slow mode ser vice from the ser ver

PHSB =
∞

∑
u1=1

N

∑
u2=0

S

∑
j=1

l1

∑
d1=1

k

∑
c=1

ϕu1u24jd1c.

• The probability that LP customers receiv e slow mode ser vice from the ser ver

PLSB =
∞

∑
u1=0

N

∑
u2=0

S

∑
j=1

l2

∑
d2=1

k

∑
c=1

ϕu1u25jd2c.

• Probability of the ser ver is in repair process

Prep =
∞

∑
u1=0

N

∑
u2=0

S

∑
j=0

m2

∑
a2=1

k

∑
c=1

ϕu1u26ja2c.

• Probability of the ser ver is in closedo wn process

Pcd =
∞

∑
u1=0

N

∑
u2=0

S

∑
j=0

k

∑
c=1

ϕu1u27jc.

• The rate of effectiv e retrials

R = χ
N

∑
u2=1

S

∑
j=1

k

∑
c=1

ϕ0u21jc

6. Analysis of Cost function

We have assumed that every cost factor (per unit of time) correlates to a distinct system
measur e while de veloping the expense function for our model.

• EI - The cost of inv entor y for retaining each unit of goods.
• EH1 - Keeping a HP customer ’s cost in the system for each unit of time.
• EH2 - Keeping a LP customer ’s cost in the system for each unit of time.
• ES - Initial costs for each order.

TC(s, S) = EI Einv + EH1 Esys + EH2 Eorb + ESER

7. Numerical Results

Using both numerical and graphical illustrations, we will be studying the beha vior of the
models in the section that follo ws. The next three are various MAP repr esentations with the same
mean value of 1 across all arriv al processes. Chakra varthy [8] used these three arriv al value sets
as input data in their literatur e.

• A-ER(Arrival in Erlang):
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D0 =

[
−2 2
0 −2

]
D1 =

[
0 0

1.2 0

]
, D2 =

[
0 0

0.8 0

]
.

• A-EX(Arrival in Exponential):
D0 =

[
−1

]
, D1 =

[
0.6

]
, D2 =

[
0.4

]
.

• A-HE(Arrival in Hyper-exponential):

D0 =

[
−1.90 0

0 −0.19

]
, D1 =

[
1.026 0.114

0.1026 0.0114

]
, D2 =

[
0.684 0.076

0.0684 0.0076

]
.

The ser vice, vacation, and repair processes each have three distinct phase-type distributions that
we should take into consideration. We will use the notations X-ER, X-EX and X-HE respectiv ely
for Erlang, exponential and hyper -exponential cases dealing with X-type distribution wher e
X = S, V, R depending on whether the ser vices, vacations or repairs are under consideration.

• X-ER(Erlang):

γ = ν = β = α = (1, 0), P = M = W = U =

[
−2 2
0 −2

]
.

• X-EX(Exponential):

γ = ν = β = α = [1], P = M = W = U = [1].

• X-HE(Hyper-exponential):

γ = ν = β = α = (0.8, 0.2), P = M = W = U ==

[
−2.8 0

0 −0.28

]
.

7.1. Illustrativ e Example 1

We explor ed the effects of repair rate (η) versus the average size of HP customers in the
system( Esys). In order to attain system stability , we fix λ = 1, ζ1 = 10, ζ2 = 8, ψ = 8, σ = 1, τ = 5,
χ = 4, δ = 4, θ = 0.6, s = 3, S = 6, N = 5.

• We combine the arriv al and ser vice time categories in Tables 1 through 3 to inv estigate the
repair rate versus the average size of HP customers in the system.

• When the repair rate (η) rises, the corresponding the average size of HP customers in the
system( Esys) reduces.

• When comparing arriv al times to all other arriv als, the Esys drops quickly for hyper -
exponential arriv als, and slowly for Erlang arriv als. Similarly , for ser vice durations, the Esys
decr eases mor e slowly in Erlang ser vices than it does with hyper -exponential ser vices.

7.2. Illustrativ e Example 2

We explor ed the effects of HP ser vice rate (ζ1) versus the Total Cost(TC) of the system. In order
to attain system stability , we fix λ = 1, ζ2 = 8, ψ = 8, η = 6, σ = 1, τ = 5, χ = 4, δ = 4, θ = 0.6,
s = 3, S = 6, N = 5, EI = 50, EH1 = 200, EH2 = 180, ER = 220.

• We combine the arriv al and ser vice time categories in Tables 4 through 6 to inv estigate the
HP ser vice rate versus the total cost of the system

• When the HP ser vice rate (ζ1) rises, the corresponding the total cost of the system( TC)
reduces.

• When comparing arriv al times to all other arriv als, the TC drops quickly for hyper -
exponential arriv als, and slowly for Erlang arriv als. Similarly , for ser vice durations, the TC
decr eases mor e slowly in Erlang ser vices than it does with hyper -exponential ser vices.

7.3. Illustrativ e Example 3

We explor ed the effects of retrial rate (χ) versus the average size of LP customers in the orbit( Eorb).
In order to attain system stability , we fix λ = 1, ζ1 = 10, ζ2 = 8, ψ = 8, σ = 1, τ = 5, η = 6, δ = 4,
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θ = 0.6, s = 3, S = 6, N = 5.
• We combine the arriv al and ser vice time categories to inv estigate the rate of retrial versus

the average size of LP customers in the orbit, using Figur es 2 through 4.
• When the retrial rate (χ) rises, the corresponding average size of LP customers in the

orbit( Eorb) reduces.
• When comparing arriv al times to all other arriv als, the Eorbit drops quickly for hyper -

exponential arriv als, and slowly for Erlang arriv als.

Table 1: Repair rate(η) vs Esys - X-ER

X-ER
η A-ER A-EX A-HE

6.0 0.10813513 0.12190924 0.14286803
6.5 0.10786026 0.12152199 0.14226519
7.0 0.10763579 0.12120252 0.14176864
7.5 0.10744949 0.12093492 0.14135332
8.0 0.10729269 0.12070781 0.14100134
8.5 0.10715912 0.12051288 0.14069960
9.0 0.10704411 0.12034388 0.14043834
9.5 0.10694416 0.12019608 0.14021010

10.0 0.10685657 0.12006582 0.14000914
10.5 0.10677924 0.11995019 0.13983096

Table 2: Repair rate(η) vs Esys - X-EX

X-EX
η A-ER A-EX A-HE

6.0 0.10901178 0.12413720 0.14698476
6.5 0.10867336 0.12369032 0.14629182
7.0 0.10839815 0.12332339 0.14572339
7.5 0.10817062 0.12301736 0.14524978
8.0 0.10797985 0.12275870 0.14484984
8.5 0.10781790 0.12253750 0.14450816
9.0 0.10767894 0.12234641 0.14421327
9.5 0.10755857 0.12217984 0.14395643

10.0 0.10745340 0.12203347 0.14373094
10.5 0.10736082 0.12190393 0.14353155
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Figure 2: Retrial rate(χ) vs Eorb - A-ER
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Figure 3: Retrial rate(χ) vs Eorb - A-EX
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Table 3: Repair rate(η) vs Esys - X-HE

X-HE
η A-ER A-EX A-HE

6.0 0.11918175 0.13742625 0.16861900
6.5 0.11850292 0.13665603 0.16748394
7.0 0.11795708 0.13603251 0.16656203
7.5 0.11751074 0.13551942 0.16580136
8.0 0.11714044 0.13509118 0.16516511
8.5 0.11682931 0.13472934 0.16462655
9.0 0.11656496 0.13442027 0.16416588
9.5 0.11633814 0.13415374 0.16376814

10.0 0.11614181 0.13392192 0.16342189
10.5 0.11597051 0.13371874 0.16311819

Table 4: HP service rate(ζ1) vs TC - X-ER

X-ER
ζ1 A-ER A-EX A-HE
10 287.97326332 298.59933362 316.43100759
11 287.74939522 298.08848910 315.15693318
12 287.58577777 297.70317492 314.18547489
13 287.46248681 297.40469160 313.42429235
14 287.36716153 297.16827941 312.81429994
15 287.29182156 296.97748060 312.31615614
16 287.23113722 296.82099764 311.90277542
17 287.18144377 296.69085871 311.55497162
18 287.14015651 296.58130309 311.25881669
19 287.10541130 296.48808035 311.00398146

Table 5: HP service rate(ζ1) vs TC - X-EX

X-EX
ζ1 A-ER A-EX A-HE
10 288.98571417 299.98654358 318.45145147
11 288.70159130 299.40909492 317.07970441
12 288.49311376 298.97229601 316.03161949
13 288.33556222 298.63313169 315.20927312
14 288.21349742 298.36397016 314.54968265
15 288.11689338 298.14638167 314.01074509
16 288.03902055 297.96767769 313.56338397
17 287.97523158 297.81888191 313.18695269
18 287.92223650 297.69349308 312.86643407
19 287.87765496 297.58670481 312.59067408
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Table 6: HP service rate(ζ1) vs TC - X-HE

X-HE
ζ1 A-ER A-EX A-HE
10 295.87738733 307.40357235 328.41423547
11 295.31869946 306.58861243 326.77655347
12 294.89650447 305.96029062 325.50031090
13 294.56917993 305.46410267 324.48262461
14 294.30990735 305.06435501 323.65537379
15 294.10075941 304.73681683 322.97187661
16 293.92937439 304.46453218 322.39919670
17 293.78699896 304.23532420 321.91350697
18 293.66729077 304.04024987 321.49719185
19 293.56556118 303.87261147 321.13697796
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Figure 4: Retrial rate(χ) vs Eorb - A-HE
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8. Conclusion

The present study inv estigated a retrial inv entor y queuing system that incor porates MMAP
arriv als for HP and LP customers, ser vices, vacations, and repairs, all of which follo w phase-type
distribution, (s, S) replenishment inv entor y policy , working breakdo wn, and closedo wn. We
examined the system’s stability criteria as well as the inv ariant probability vector. We analyzed
the activ e period and also offered cost evaluations and system perfor mance measur es. Emplo ying
numeric values of arriv als and ser vices in this model, we computed the average size of HP
customers in the system for dif ferent values of repair rate and the total cost of the system for
dif ferent values of ser vice rate. The tw o-dimensional plots sho w the average size of LP customers
in the orbit for dif ferent values of retrial rate. The average size of HP customers in the system
for various values of vacation and ser vice rates is depicted in the three-dimensional graphs.
Every table and graph sho ws the stability of the system. We also expand our resear ch to include
multi-ser vers with tw o commodity inv entor y queueing systems.

References

[1] Abdul Reiy as, M. and Jeganathan, K. (2023). A classical retrial queueing inv entor y system
with tw o component demand rate, International Journal of Operational Research, 47(4):508–533.

[2] Amirthakodi, M. and Siv akumar , B. (2015). An inv entor y system with ser vice facility and
finite orbit size for feedback customers, OPSEARCH, 52(2):225–255.

[3] Anbazhagan, N. and Jeganathan, K. (2013). Two-commodity Marko vian inv entor y system
with compliment and retrial demand, British Journal of Mathematics and Computer Science,
3(2):115–134.

[4] Ayy appan, G. and Gowthami, R. (2019). Analysis of MAP/PH/1 retrial queue with constant
retrial rate, Ber noulli schedule vacation, Ber noulli feedback, breakdo wn and repair , Reliability:
Theory and Applications, 14(2):86–103.

[5] Ayy appan, G. and Archana Gurulakshmi, G. (2023). Analysis of MMAP/PH/1 Classical
Retrial Queue with Non-pr eemptiv e priority , Second optional ser vice, Differentiate breakdo wns,
Phase type repair , Single vacation, Emer gency vacation, Closedo wn, Setup and Discouragement,
Reliability: Theory and Applications, 18(3):528:551.

[6] Ber man, O., Kaplan, E. H. and Shimshak, D. G. (1993). Deter ministic appr oximations for
inv entor y management at ser vice facilities, IIE Transactions, 25(5):98–104.

[7] Ber man,O. and Kim, E. (1999). Stochastic models for inv entor y management at ser vice facility ,
Communications in Statistics. Stochastic Models, 15(4):695–718.

[8] Chakra varthy , S. R. (2010). Marko vian arriv al process, Wiley Ency clopaedia of Operations
Resear ch and Management, John Wiley and Sons, Inc., USA.

[9] Jeganathan, K. and Selv akumar , S. (2022). An optional arriv al process of the oscillator y
demands in the inv entor y queueing system with queue dependent ser vice rate, International
Journal of Mathematics in Operational Research, 22(2):162–194.

[10] Jeganathan, K., Vidhy a, S., Hema vathy , R., Anbazhagan, N., Joshi, G. P., Kang, C. and Seo,
C. (2022). Analysis of M/M/1/N Stochastic Queueing- Inventor y System with Discr etionar y
Priority Service and Retrial Facility , Sustainability, 14(10), 6370.

[11] Krishnamoorthy , A., Nair , S. S. and Nara yanan, V. C. (2011). An inv entor y model w ith ser ver
interruptions and retrials, Operational Research, 12(22):151–171.

[12] Krishnamoorthy , A. and Nara yanan, V. C. (2011). Production inv entor y with ser vice time
and vacation to the ser ver, IMA Journal of Management Mathematics, 22(1):33–45.

[13] Latouche, G. and Ramasw ami, V. (1999). Introduction of Matrix Analytic Methods in
Stochastic Modeling, Society for Industrial and Applied Mathematics, Philadelphia.

[14] Manisha Pant, Seema Shar ma and Anand Chauhan (2022). Optimal replenishment and
preser vation inv estment policy for hy brid demand with trade credit schemes, International
Journal of Mathematics in Operational Research, 23(2):232–258.

RT&A, No 3 (79) 
Volume 19, September 2024

440



G. Ayy appan, S. Meena
ANAL YSIS OF MMAP/PH1,PH2/1 PREEMPTIVE PRIORITY INVENT ORY...

[15] Manuel, P., Siv akumar , B. and Ariv arignan, G. (2007). A perishable inv entor y system w ith
ser vice facilities, MAP arriv als and PH-S ervice times, Journal of Systems Science and Systems
Engineering, 16(1):62–73.

[16] Meliko v, A. Z. and Molchano v, A. A. (1992). Stock optimization in transportation/storage
systems, Cybernetics and System Analysis, 28(1):484–487.

[17] Meliko v, A., Aliy eva, S., Nair , S. S. and Kumar , B. K. (2022). Retrial Queuing-Inv entor y
Systems with Dela yed Feedback and Instantaneous Damaging of Items, Axioms, 11(5), 241.

[18] Mustapha Law al Malumfashi and Majid Khan Majahar Ali (2023). A production inv entor y
model for non-instantaneous deteriorating items with tw o-phase production period, stock-
dependent demanand and shortages, International Journal of Mathematics in Operational Research,
24(2):173–193.

[19] Neuts, M. F. (1979). A versatile Marko vian point process, Journal of Applied Probability,
16(4):764–779.

[20] Neuts, M. F. (1984). Matrix-analytic methods in queuing theor y, European Journal of Operational
Research, 15(1):2–12.

[21] Sanjukta Malakar and Nabendu Sen (2023). An inv entor y model to study partial replacement
policy and finite shelf life for deteriorating items with carbon tax, International Journal of
Mathematics in Operational Research, 24(2):286–299.

[22] Steeb, W. H. and Har dy, Y. (2011). Matrix Calculus and Kronecker Product: A Practical
Appr oach to Linear and Multilinear Algebra, World Scientific Publishing, Singapor e.

[23] Sugany a, C. and Siv akumar , B. (2019). MAP/P H(1), P H(2)/2 finite retrial inv entor y system
with ser vice facility , multiple vacatio ns for ser vers, International Journal of Mathematics in
Operational Research, 15(3):265–295.

[24] Ushakumari, P. V. (2017). A retrial inv entor y system with an unr eliable ser ver, International
Journal of Mathematics in Operational Research, 10(2):190–210.

[25] Yada valli, V. S. S., Siv akumar , B. and Ariv arignan, G. (2008). Inventor y system with rene w al
demands at ser vice facilities, International Journal of Production Economics, 114(1):252–264.

RT&A, No 3 (79) 
Volume 19, September 2024

441




