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Abstract

In the reliability estimation of stress-strength models, external factors such as temperature, humidity,
etc. may influence the distribution of stress and strength random variables. In traditional reliability
analysis, these external factors are accounted for by introducing a real-valued distortion function, which
replaces the original distribution with a distorted one. However, it’s important to note that the effect of
these external factors is not always adequately represented by a single real-valued function. To address
this issue, we propose the use of fuzzy numbers within the distortion function. In this paper, we introduce
the concept of a "fuzzy distortion function" to incorporate the uncertainty stemming from external
factors when estimating the reliability of stress-strength relationships. We present a methodology for
estimating fuzzy reliability by employing this fuzzy distortion function. Through an illustrative example,
we demonstrate how this approach to estimating fuzzy reliability offers a wider range of possibilities for
system reliability and provides more comprehensive insights into the system’s behaviour. Throughout
our exploration, we have delved into the diverse properties inherent in fuzzy distortion functions. These
properties highlight the versatility and adaptability of such functions in capturing uncertainty within
data sets. Moreover, we have scrutinized several methods for constructing fuzzy distortion functions
from pre-existing ones. By examining these methods, we gain valuable insights into how fuzzy distortion
functions can be tailored to specific contexts and applications, thereby enhancing the accuracy and
robustness of reliability analysis in complex systems. Additionally, in the conventional stress-strength
model, reliability is determined without considering the uncertainty in the parameters of the distribution
function. The drawback of existing methods in the literature is that they do not consider the uncertainty
or fuzziness in the parameters of the distribution. Therefore, we estimate the system reliability in the
presence of fuzzy parameters in the distribution function of corresponding random variables. The method
we discuss in this paper provides a reliability estimate of the given system under realistic situations.
A sensitivity analysis study is carried out to examine the behaviour of mean square errors (MSE) of
estimated system reliability under various scenarios. It is observed that MSE can be significantly reduced
by a suitable choice of parameters in the membership function of fuzzy parameters.

Keywords: Reliability, Fuzzy reliability, Distortion function, Fuzzy triangular number

1. Introduction

An et al. [1] used the universal generating function (UGF) approach to develop a discrete SSI
model. And they handled strength and stress as discrete random variables. Considering a
unilateral dependence of strength on stress found in some real-world circumstances. Huang et
al. [2] provide a discrete SSI model with SDS based on a UGF approach. This model treats a
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structure’s SDS as a discrete random variable that, depending on the amplitude of the applied
stress, has a different conditional probability mass function (pmf). In his study of reliability of
stress-strength for a general coherent system, Eryilmaz [3] offered the exact formula as well as ap-
proximations and limitations. The estimation process for exponential stress-strength distributions
was further illustrated by the author. In order to estimate the reliability of stress-strength model
with multicomponent, Rao et al. [4] showed that the BLUE method of estimation shows the least
MSE when compared to exact MLE, Method of Moments and TMMLE.
Kizilaslan [5] considered the system of multi-component with k statistically identical and inde-
pendently distributed components of strength and each component subjected to a shared random
stress. In order to determine the system’s reliability in both known and unknown instances for the
common second parameter λ, he used both classical and Bayesian methodologies. The system of
multicomponent with k uniformly distributed and statistically independent strength components
was explored by Kizilaslam [6]. Each element in the system was exposed to a common random
stress. When the common scale parameter λ is known in some situations but not in others, the
reliability of the system can be further assessed using frequentist and Bayesian approaches.
Dey et al. [7] compared the reliability of Bayes estimators and MLEs with respect to the mean
squared errors and the average biases in their study of reliability of the stress-strength model
of multicomponent for 238 two parameter Kumaraswamy distribution, then the distribution of
strength and stress is the same. When both the stress and strength variations follow the same
population, Rao et al. [8] investigated the reliability of stress-strength model with multicompo-
nent for exponentiated Weibull distribution. Additionally, the predicted asymptotic confidence
interval for the reliability of several components under stress. For the investigation of structural
dependability using Copulas, Zhang et al. [9] presented a stress-strength time-varying correlation
interference model.

By assuming that both the strength and stress variables follow a Chen distribution with a
common shape parameter that may or may not be known, Tanmay et al. [10] obtained point and
interval estimates of reliability of the multi-component stress-strength model of a s-out-of-j system
using both Bayesian and classical approaches. The multi-component stress-strength reliability was
evaluated by Amal et al. [11] based on the recorded data. When the stress and strength variables
follow separate Weibull distributions with distinct scale parameters, the system’s dependability is
established. When samples are taken from distributions of stress and strength, and measurements
are made in terms of upper record values, the reliability in MSS is evaluated using the maximum
likelihood and Bayesian techniques of estimation. Amer et al. [12] assessed the reliability
when the variables strength and stress are independent and follow the exponentiated Pareto
distribution. The simple random sampling (SRS), median ranked set sampling (MRSS) and
ranked set sampling (RSS) methods are used to calculate the maximum likelihood estimators
in R. In four separate circumstances, the dependability estimate based on MRSS is taken into
consideration. When the strength and stress variables are modeled by two separate but not
identically distributed random variables from the generalized inverted exponential distributions,
Amal et al. [13] assessed reliability of the stress-strength model. When evaluating the stress
strength reliability estimator, MRSS is primarily used as opposed to RSS and SRS. A fresh addition
to stress-strength models was made by Saber et al. [14]. The extended exponential distribution
is used to apply the new model. The asymptotic distribution, the Bayesian estimation and the
maximum likelihood estimator are derived. Shubham et al. [15] investigated both conventional
and Bayesian techniques of reliability estimation of stress-strength model with multi-component
and arrived at a maximum likelihood estimate of dependability. Additionally, the confidence
intervals for asymptotic, boot-p, and boot-t data were built. Zhang et al. [16] investigated how
well the multi-component stress-strength model, which includes one stress and two associated
strength components from a parallel system, could predict dependability.

The rest of the paper is organized as follows. Section 2 gives basic definitions connected with
fuzzy numbers and distortion functions. Section 3 introduces the concept of fuzzy distortion
function. Section 3.1 describes with the estimation of the fuzzy reliability using fuzzy distortion
function and a numerical illustration of this method is presented. Section 3.2 deals with some
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interesting properties of distortion function. Section 3.3 deals with some basic methods for the
construction of distortion function. Section 4 deals with the estimation of reliability of the stress
strength model using weighted distributions. In Section 5, we present a sensitivity analysis study
to check the behaviour of MSE of reliability estimate.Section 6 concludes with presenting the
findings of this study.

2. Some basic definitions

In this section, we now provide some key definitions that are necessary to comprehend the
findings in the sections that follow.

Definition 1. (see [17]) A fuzzy set D defined on a set S is a mapping from S to the unit interval
[0, 1], denoted by

D = {(x, µD(x)) ; x ∈ S}
or

D = {x, µD(x)} ,

where µD(x) is the membership function of the set D.

Definition 2. (see [17]) A fuzzy set D defined on the real line ℜ is convex if and only if
∀ x1 ∈ S, ∀ x2 ∈ S and ∀ λ ∈ [0, 1], there holds

µD (λx1 + (1 − λ)x2) ≥ min (µD (x1) , µD (x2)) ,

or equivalently, a fuzzy set is said to be convex if all of its cut sets are convex. If the ≥ sign is
replaced by > sign, then we say that the fuzzy set is strictly convex.

Definition 3. (see [17]) For any α ∈ [0, 1], an α -cut set of D, denoted by Dα, is a classic set defined
by

Dα = {x ∈ S, µD(x) ≥ α} .

Obviously, Dα1 ⊆ Dα2 if α1 ≥ α2.

Definition 4. (see [17]) If the membership function of fuzzy number D is determined by

µD(x) =


0 ; x ≤ a1,
(x − a1) / (a2 − a1) ; a1 ≤ x ≤ a2,
(a3 − x) / (a3 − a2) ; a2 ≤ x ≤ a3,
0 ; x ≥ a3.

x, a1, a2, a3,∈ ℜ,

then D is referred to as a triangular fuzzy number, denoted D = (a1, a2, a3).
Suppose D = (a1, a2, a3) . Then

Da = [a1 + α (a2 − a1) , a3 − α (a3 − a2)] .

Definition 5. (see [18]) A function ν(u) is called a distortion function if the following conditions
hold:
(i) ν(u) is a non-decreasing function on the interval [0, 1],
(ii) ν(0) = 0 and ν(1) = 1,
(iii) except a finite number of points, φ(u) = d

du ν(u) exists on the interval [0, 1].

Definition 6. (see [19]) Let V denote the strength random variable of the system and W denote
the stress random variable. If V and W are independent with respective distribution functions G
and F, then the traditional stress-strength reliability can be estimated as

R = P{V > W} =
∫∫

v>w
dF(w)dG(v). (1)
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3. The concept of fuzzy distortion function

In traditional stress-strength model, we are not incorporating the uncertainty in the external factor.
So it is necessary to incorporate the uncertainty in the external factor. Consider a traditional
stress-strength model, where system reliability is estimated by using a stress-strength relation. The
system’s stress is represented by the random variable W, which has the cumulative distribution
function F. With a cumulative distribution function of G, the random variable V represents the
system’s strength. Then, the reliability P of the stress-strength model of the system is given by
P = P(W < V). The drawback of this model is that the reliability estimate is unrealistic, since the
normal working condition of the system is not considered. In other words, the uncertainty in the
external factors is not considered. In general, reliability of the system is affected by environmental
factors. To make it more clear, let us consider an example: think about creating a bridge in a
city. Let W denote the weight stress of the bridge with a distribution of F and V represent the
leg strength of a bridge with a distribution of G. With time, environmental elements including
vibration, humidity, and high temperatures are exposed to the random strength and random
stress. Now it is to be observed that the effect of external factor modelled by distortion function
ν(.) need not be a simple real valued function. In other words, the distortion force can not be
considered as a constant force acting on the system at any given time. Hence, one may not obtain
the realistic results. Hence, it is necessary to incorporate this vagueness in the external factors. It
is not possible to represent the uncertainty in the external factor by a single real valued distortion
function. Therefore, we let the distortion function can take fuzzy value also. In that concern we
introduce the concept of fuzzy distortion function, which is more practicable.
We are defining the fuzzy distortion function as follows,

Fuzzy distortion function
A function ν from [0, 1] to set of fuzzy numbers in [0, 1], is called fuzzy distortion function if the
following conditions hold:
1. For fixed α ∈ [0, 1], the functions Aα(u) and Bα(u) are non decreasing where Aα and Bα are
end points of the α-cut να(u) = [Aα(u), Bα(u)],
2. ν(0) is a fuzzy number with 0 having only membership value 1,
3. ν(1) is a fuzzy number with 1 having only membership value 1,
4. For fixed α ∈ [0, 1], the functions Aα(u) and Bα(u) are differentiable except a finite number of
points on the interval [0, 1].

Then we can have some interesting result for these fuzzy distortion functions.
Theorem The end points of α−cuts of fuzzy distortion functions are real distortion function. That
is, for fixed α ∈ [0, 1], the above functions Aα(u) and Bα(u) are real distortion functions
Proof: For Fixed α ∈ [0, 1], the function Aα(u) is non decreasing. Since ν(0) is a fuzzy number
with 0 having only membership value 1, it shows that Aα(0) = 0. Similarly ν(1) is a fuzzy
number with 1 having only membership value, shows that Aα(1) = 1. Finally from the definition
of fuzzy distortion function, it is clear that Aα(u) is differentiable With the exception of a few
points on the range [0, 1]. Hence Aα(u) satisfy all the conditions for distortion function.
Similarly one can prove that Bα(u) is a distortion function. Since ν(0) is a fuzzy number with
0 having only membership value 1, it shows that Bα(0) = 0. Similarly ν(1) is a fuzzy number
with 1 having only membership value, shows that Bα(1) = 1. Finally from the definition of fuzzy
distortion function, it is clear that Bα(u) is differentiable with the exception of a few points on the
range [0, 1]. Hence Bα(u) satisfy all the conditions for distortion function.

3.1. Estimation of fuzzy reliability using fuzzy distortion function

In traditional stress-strength model, we are not incorporating the uncertainty in the external
factor. So it is necessary to incorporate the uncertainty in the external factor. It is not possible to
represent the uncertainty in the external factor by a single real valued distortion function. In that

RT&A, No 3 (79) 
Volume 19, September 2024

383



K sruthi and M Kumar
RELIABILITY ESTIMATION USING FUZZY DISTORTION FUNCTION

concern we are defining the fuzzy distortion function as follows, which is more reliable.
Let the random variables V and W stand in for the system’s strength with a cumulative distribution
function of G and stress with a cumulative distribution function of F, respectively. Let ν(.) be a
fuzzy distortion function. Then fuzzy reliability of the system can be estimated as follows.
For fixed α ∈ [0, 1], we get two real valued function Aα(u) and Bα(u). Since both Aα(u) and
Bα(u) are real distortion function.
Consider the function Aα(u), then we can estimate the system reliability using the distortion
function Aα(u). Let Rα,a denote the reliability estimated using the function Aα(u) and is given by

Rα,a =
∫ 1

0
Aα

(
F
(

G−1(u)
))

dAα(u). (2)

Let Rα,b denote the reliability estimated using the function Bα(u) and is given by

Rα,b =
∫ 1

0
Bα

(
F
(

G−1(u)
))

dBα(u). (3)

We can estimate the α− cuts of fuzzy reliability of the system as follows

Rα = [Rα,a, Rα,b]. (4)

Similarly for each α ∈ [0, 1], we can estimate the α−cut of R.

3.1.1 Illustration

Let the strength of a bridge leg be represented by the random variable V with distribution G.
The bridge’s tension and weight are represented by the random variable W with distribution F.
As time goes on, the random strength and stress are subjected to temperature-related external
conditions. Suppose u3,u2 and V are the distortion function corresponding to the varying
temperature. Let ν(u) = [u3, u2, u] be the distortion function. Then Aα(u) and Bα(u) can be
estimated as follows

Aα = u3 + α
[
u2 − u3

]
(5)

and
Bα = u − α

[
u − u2

]
. (6)

The system’s stress is represented by the random variable W, which has the cumulative
distribution function F(x) = 1 − e−λ1x. With a cumulative distribution function of G(y) =
1 − e−λ2y, the random variable V represents the system’s strength.

Then Aα,a and Bα,a can be estimated as follows

Aα,a =
∫ 1

0

(
(1 − α)

(
1 − (1 − u)λ1/λ2

)3
+ α

(
1 − (1 − u)λ1/λ2

)2
)(

3(1 − α)u2 + 2αu
)

du (7)

and

Bα,b =
∫ 1

0

(
(1 − α)

[
1 − (1 − u)λ1/λ2

]
+ α

[
1 − (1 − u)λ1/λ2

]2
)
((1 − α) + 2αu) du. (8)

For each α, we can estimate the α-cut of R as

Rα = [Aα,a, Bα,b]. (9)
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Figure 1: Fuzzy system reliability of for various values of α- cuts when λ1 = 0.33724 and λ2 = 0.02628.

3.2. Characterization and some properties of fuzzy distortion function

Result 1: The average of two distortion functions is again a distortion function.
Proof : Let ν1(t) and ν2(t) be two distortion function.
Define f (t) = ν1(t)+ν2(t)

2 . Since both ν1(t) and ν2(t) are non-decreasing functions. Clearly f (t) is
a non-decreasing function.
Since ν1(0) = 0 and ν2(0) = 0, so we have f (0) = 0. Similarly ν1(1) = 1 and ν2(1) = 1, shows
that f (1) = 1.
Since both ν1(t) and ν2(t) are differentiable with the exception of a few points, it holds for f (t)
also.

Result 2: The average of finite number of distortion functions is again a distortion function.
Proof: Let ν1(t), ν2(t), ..., νn(t) be n distortion functions.
Define f (t) = ν1(t)+ν2(t)+...+νn(t)

n . We have ν1(t), ν2(t), ..., νn(t) are non-decreasing functions. Then
f (t) is also a non-decreasing function.
We have ν1(0) = 0, ν2(0) = 0, ..., νn(0) = 0, so we have f (0) = 0. Similarly ν1(1) = 1, ν2(1) =
1, ..., νn(1) = 1, imply f (1) = 1.
Since all the functions ν1(t), ν2(t), ..., νn(t) are differentiable with the exception of a limited num-
ber of points, then the function f (t) is also differentiable with the exception of a few points.

Result 3: The product of two distortion functions is again a distortion function.
Proof : Let ν1(t) and ν2(t) be two distortion function.
Define f (t) = ν1(t).ν2(t). Since both ν1(t) and ν2(t) are non-decreasing functions. Clearly f (t) is
a non-decreasing function.
Since ν1(0) = 0 and ν2(0) = 0, so we have f (0) = 0. Similarly ν1(1) = 1 and ν2(1) = 1, imply
f (1) = 1.
Since both ν1(t) and ν2(t) are differentiable with the exception of a few points, it holds for f (t)
also.
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Result 4: The product of finite number distortion functions is again a distortion function.
Proof: Let ν1(t), ν2(t), ..., νn(t) be n distortion functions.
Define f (t) = ν1(t).ν2(t)...νn(t). We have ν1(t), ν2(t), ..., νn(t) are non-decreasing functions. Then
f (t) is also a non-decreasing function.
We have ν1(0) = 0, ν2(0) = 0, ..., νn(0) = 0, so we have f (0) = 0. Similarly ν1(1) = 1, ν2(1) =
1, ..., νn(1) = 1, imply f (1) = 1.
Since all the functions ν1(t), ν2(t), ..., νn(t) are differentiable with the exception of a limited num-
ber of points, hence it holds for f (t) also.

3.3. Methods for construction of fuzzy distortion function

Result 1 Let ν1(t), ν2(t) and ν3(t) are three distortion function with ν1(t) ≤ ν2(t) ≤ ν3(t). Then
ν(t) defined by ν(t) = [ν1(t), ν2(t), ν3(t)] is a fuzzy distortion function.
Proof: Define ν(t) = [ν1(t), ν2(t), ν3(t)]. Then

Aα(t) = ν1(t) + α(ν2(t)− ν1(t)) (10)

and
Bα(t) = ν3(t)− α(ν3(t)− ν2(t)). (11)

First we have to prove that Aα(t) and Bα(t) are non-decreasing. For that we made a rearrange as
Aα(t) = (1 − α)ν1(t) + αν2(t) and Bα(t) = (1 − α)ν2(t) + αν3(t).
Since ν1(t), ν2(t) and ν3(t) are non-decreasing functions and 1 − α > 0. Both Aα(t) and Bα(t) are
non-decreasing.
We have ν1(0) = 0, ν2(0) = 0 and ν3(0) = 0.
Then

Aα(0) = (1 − α)ν1(0) + α(ν2(0) = (1 − α)0 + α0 = 0, (12)

and
Bα(0) = (1 − α)ν2(0) + α(ν3(0) = (1 − α)0 + α0 = 0. (13)

Similarly ν1(1) = 1, ν2(1) = 1 and ν3(1) = 1.
Then

Aα(1) = (1 − α)ν1(1) + α(ν2(1) = (1 − α)1 + α1 = 1 (14)

and
Bα(1) = (1 − α)ν2(1) + α(ν3(1) = (1 − α)1 + α1 = 1. (15)

Since the three functions ν1(t), ν2(t) and ν3(t) are differentiable with the exception of a limited
number of points, Aα(t) and Bα(t) are also differentiable with with the exception of a few points.
Hence the function ν(t) satisfy all the conditions for fuzzy distortion function.

Result 2 Let ν1(t), ν2(t), ν3(t) and ν4(t) are four distortion function with ν1(t) ≤ ν2(t) ≤
ν3(t) ≤ ν4(t). Then ν(t) defined by ν(t) = [ν1(t), ν2(t), ν3(t), ν4(t)] is a fuzzy distortion function

Proof: Define ν(t) = [ν1(t), ν2(t), ν3(t), ν4(t)]. Then

Aα(t) = ν1(t) + α(ν2(t)− ν1(t)) (16)

and
Bα(t) = ν4(t)− α(ν4(t)− ν3(t)). (17)

First we will prove that Aα(t) and Bα(t) are non-decreasing. For that we made a rearrange as
Aα(t) = (1 − α)ν1(t) + α(ν2(t) and Bα(t) = (1 − α)ν4(t) + αν3(t).
Since ν1(t), ν2(t), ν3(t) and ν4(t) are non-decreasing functions and 1 − α > 0. Both Aα(t) and
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Bα(t) are non-decreasing.
We have ν1(0) = 0, ν2(0) = 0,ν3(0) = 0 and ν4(0) = 0,
Then

Aα(0) = (1 − α)ν1(0) + α(ν2(0) = (1 − α)0 + α0 = 0, (18)

and
Bα(0) = (1 − α)ν4(0) + αν3(0) = (1 − α)0 + α0 = 0. (19)

Similarly ν1(1) = 1, ν2(1) = 1, ν3(1) = 1 and ν4(1) = 1.
Then

Aα(1) = (1 − α)ν1(1) + α(ν2(1) = (1 − α)1 + α1 = 1 (20)

and
Bα(1) = (1 − α)ν4(1) + αν3(1) = (1 − α)1 + α1 = 1. (21)

Since the four functions ν1(t), ν2(t), ν3(t) and ν4(t) are differentiable except a finite number of
points, Aα(t) and Bα(t) are also differentiable with the exception of a few points.
It is proved that the function ν(t) satisfy all the conditions for fuzzy distortion function.

4. Estimation of stress-strength reliability using the weighted

probability density function

Consider a traditional stress-strength model, where system reliability is estimated by using a
stress-strength relation. Let the random variable Y represent the strength of the system with
cumulative distribution function G and the random variable X represent the stress of the system
with cumulative distribution function F. Then, the stress-strength reliability P of the system is
given by P = P(X < Y). The drawback of this model is that the reliability estimate is unrealistic,
since the normal working condition of the system is not considered. In other words, the fuzziness
of parameters of the distribution is not taken into account, whereas, on the other hand, state of
the system is highly dependent on the state of the parameters in the lifetime distribution. This is
due to the fact that there exists an uncertainty in the parameters of distribution function. Hence,
we incorporate this uncertainty factor by suitably modifying the density function and obtain the
weighted probability density function and which can be used to get reliability estimate of the
given system. Hence, we proceed as follows:

Let the random variable X have the probability density function f (x, θ). For the function H(θ),
θ ∈ Θ, where Θ is the domain of definition of the parameter θ, the weighted probability density
function of X is defined by

f (x) =
∫

Θ
H∗(θ) f (x, θ)dθ, (22)

where H∗(θ) is called the pseudo-membership function and is defined by

H∗(θ) =
H(θ)∫

Θ H(θ)dθ
. (23)

The definition and construction of above membership function is explained in detail by authors
in [20].
Now let X be the stress random variable having the probability density function f (x, θ1), θ1 ∈ Θ1,
where Θ1 is the domain of definition of the parameter θ1. Then the weighted probability density
function (wpdf) of X (see, [20] for further information) is given by

f ∗(x) =
∫

θ1∈Θ1

H∗(θ1) · f (x, θ1)dθ1 (24)

Let Y be the strength random variable having the probability density function g(x, θ2), θ2 ∈ Θ2,
where Θ2 is the domain of definition of the parameter θ2. Then the weighted probability density
function of Y, similar to the definition of wpdf of X, is given by

g∗(x) =
∫

θ2∈Θ2

H∗(θ2) · g(x, θ2)dθ2 (25)
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Let X and Y have exponential distribution with parameters θ1 and θ2 respectively. Then the stress
random variable X has probability density function f (x) = θ1e−θ1x, θ1 > 0 and the strength
random variable Y has probability density function g(y) = θ2e−θ2y, θ2 > 0.
Let H1 (θ1) and H2 (θ2) represent the membership function for the parameters θ1 and θ2 respec-
tively. Then we may write (See, [21])

H1 (θ1) =

{
1+cos[aπ(θ1− 1

b )]
2 if 1

b −
1
a ≤ θ1 ≤ 1

b +
1
a

0, otherwise
(26)

H2 (θ2) =

{
1+cos[cß(θ2− 1

d )]
2 if 1

d − 1
c ≤ θ2 ≤ 1

d + 1
c

0, otherwise
(27)

It is easy to check from the definition of pseudo-membership function given in equation (23) that

H∗
1 (θ1) =

a
2

{
1+cos[aß(θ1− 1

b )]
2 if 1

b −
1
a ≤ θ1 ≤ 1

b +
1
a

0, otherwise
(28)

H∗
2 (θ2) =

c
2

{
1+cos[cß(θ2− 1

d )]
2 if 1

d − 1
c ≤ θ2 ≤ 1

d + 1
c

0, otherwise
(29)

Then reliability of the system under stress-strength model is given by

R∗ = P(X∗ < Y∗)

=
∫∫

x<y
f ∗(x)g∗(y)dxdy

=
∫ ∞

0

∫ y

0
f ∗(x)g∗(y)dxdy

=
∫ ∞

0

∫ y

0

[∫
θ1∈Θ1

H∗
1 (θ1) f (x, θ1) dθ1

∫
θ2∈Θ2

H∗
2 (θ2) g (y, θ2) dθ2 dxdy

=
∫

θ1∈Θ1

∫
θ2∈Θ2

H∗
1 (θ1) H∗

2 (θ2)

[∫ ∞

0

∫ y

0
f (x, θ1) g (y, θ2) dxdy

]
dθ2dθ1

=
∫

θ1∈Θ1

∫
θ2∈Θ2

ac
4

[
1 + cos

(
aπ

(
θ1 −

1
b

))] [
1 + cos

(
cπ

(
θ2 −

1
d

))]
θ1

θ1 + θ2
dθ2dθ1,

(30)

where the parameters θ1 and θ2 are non-negative. Since the closed form expression for indefinite
integrals do not exit in (30), we resort to evaluate the integrals using numerical integration.
The integrals are computed using two-dimensional quadrature method with the help of the
operator quad2d in MATLAB for numerical integration. The following section gives the details of
numerical results.

4.1. Numerical Results

In this section, we present some numerical results to illustrate the reliability of the system via
equation (30) for various choices of the parameters, namely, a, b, c, and d in equation (28) and
(29), which are the part of the integral in (30). The Table 1 illustrates the results obtained in
Section 4.

Table 1 Reliability estimation using the weighted probability density function
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a b c d Reliability
9.5 9.3 450.0 444.0 0.9758
9.6 9.0 452.0 451.0 0.9774
12.0 10.0 456.0 450.0 0.9759
11.0 9.0 456.0 454.0 0.9785
10.0 8.0 457.0 454.0 0.9810
11.0 7.0 456.0 455.0 0.9840
19.0 9.0 456.0 455.0 0.9816
10.0 8.0 456.0 454.0 0.9810

It is observed from the computational experience that for the exponential lifetime distribution of
the system, the fuzziness of the parameters modelled using membership function has significant
advantage in describing the vagueness in the system parameters. Note that the above results are
obtained from reliability equation given in (30), where the closed form expression of reliability
does not exist, and a numerical integration is carried out. Hence, the choice of membership
function works well under the situation that the exact expression for reliability is not possible to
compute. This is evident from the examples computed in the above Table 1, where the minimum
reliability obtained is about 97%. The reliability of the system without using the weighted
probability density function with θ1 = 0.00227 and θ2 = 0.00447 is estimated as 0.3368. But from
Table 1, it is observed that when we use weighted probability density function with parameters
a = 9.5, b = 9.3, c = 450.0 and d = 444.0, the reliability of the system is estimated as 0.9758. It
is observed that, when we use the weighted probability density function, the reliability of the
system is increased by 60%.

5. Sensitivity analysis

In previous sections, several reliability estimates developed by incorporating the fuzziness in
the data involve number of parameters which come from either membership functions or from
distortion functions applied for estimating the stress-strength reliability of the system under
consideration. Therefore it is necessary to study the worthiness of these reliabilities estimated
in terms of their mean square errors (MSE). Hence this section discuss MSE of the reliability
estimate developed in Section 4.
We study via numerical computation, how MSE is sensitive to changes in the parameters
a, b, c and d of the membership function of parameters of distribution functions. For illus-
tration, we let θ1 = 0.2128 and θ2 = 0.0045. First, we vary one parameter keeping the remaining
parameters fixed. There will be four different cases. Figure 2 shows the variation of MSE
when one of the parameters is varied while keeping other parameters fixed. In Figure 2, for
the fixed combination b = 1, c = 30, d = 10 (see, Graph (i)), and varying the parameter a, it
can be observed that there is a sudden decrease in MSE. Similar observation is true for set of
a = 10, b = 9, c = 450 and for varying d (see, graph (iv)). Note that from Graph (ii) and (iii) we
see that the MSE is showing increasing trend.
Next, study the changes in MSE by varying two parameters while keeping any two of the four
remaining parameters held fixed. Figure 3 illustrate one such case for the fixed combination of
b = 10, c = 60 while varying the remaining parameters. It is observed that there is a gradual
decrease in MSE.
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Graph(i) Graph(ii)

Graph(iii) Graph(iv)

Figure 2: MSE of reliability estimator under membership function, when one parameter is
varied and remaining parameters are held fixed.

Figure 3 MSE of reliability using membership function when b and c are fixed.

Finally, from this sensitivity analysis study, it is noted that the accuracy of reliability estimate
depends upon the choice of the parameters in the membership function, which can again depends
upon availability of the type of data. Further, observe that the reliability estimates obtained are
based upon numerical integration, since the closed form of expression does not exist. However,
we strongly believe that the choice of membership in modelling vagueness play very important
role in obtaining fuzzy reliability estimate.
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6. Conclusions

In the conventional stress-strength model, reliability is determined without considering the
variability in environmental factors. In our research, we introduced the notion of a fuzzy
distortion function to account for the uncertainty in these environmental factors. Our approach
involved assessing the reliability of the stress-strength model by employing the fuzzy distortion
function. We illustrated this method with an example and also examined various characteristics
of the distortion function. Additionally, we derived techniques for constructing a fuzzy distortion
function based on existing actual distortion functions. The drawbacks of existing methods in
the literature are that it does not consider the uncertainty or fuzziness in data and nature to
estimate the system reliability under realistic situations. But in this work system reliability is
estimated using the weighted probability density function by incorporating the fuzziness in data,
which is practical and realistic. Finally, a sensitivity analysis study of MSE of reliability estimate
obtained using cosine membership function is presented. It is observed that MSE as a function
of parameters of membership function of a fuzzy parameter, can be minimized significantly by
careful choice of parameters of membership functions.
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